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Abstract

In this expository article, after the basic theory of orientation preserving C1 diffeomorphisms of
the circle, we present D. McDuff’s theorem on the lengths of the complementary intervals of the
unique Cantor minimal set of a Denjoy C1 diffeomorphism of the circle. This leads to a question
posed by Dusa McDuff which is related to the solvability of a cohomological equation on the Cantor
set.
c⃝ 2013 Elsevier GmbH. All rights reserved.
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1. Introduction

The combinatorial, topological and statistical study of the dynamics of Ck

diffeomorphisms f : S1
→ S1, k ≥ 0, is an old but still active area of research in

dynamical systems having its origins in the work of H. Poincaré. The case k = 0 means
that f is merely a homeomorphism. The theory of circle diffeomorphisms gives insight and
motivation for the creation of theories to study dynamical systems on higher dimensional
phase spaces, apart from the fact that often the latter reduces to lower dimensional ones.
The case of sufficiently smooth or even real analytic circle diffeomorphisms can be
considered as one of the simple cases where methods resembling KAM-theory are used.
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Concerning the topological dynamics of f , there is a dichotomy: if f has periodic points,
then every minimal set is finite, but the absence of periodic points implies the existence of
a unique minimal set which is either S1 itself or is a Cantor set topologically. The last
case does not occur if k ≥ 2, as was shown by A. Denjoy [4]. Actually, it cannot occur
for orientation preserving C1 diffeomorphisms such that the logarithm of the derivative
has bounded variation (see Theorem 3.6 below) or satisfies the Zygmund condition. The
latter was proved by J. Hu and D. Sullivan [6]. In the sequel we focus on the orientation
preserving C1 diffeomorphisms of S1 which have a unique Cantor minimal set. They are
usually called Denjoy C1 diffeomorphisms. Their existence had been known to P. Bohl
from his studies on differential equations on the 2-torus [2].

A Cantor set is always the unique minimal set of some orientation preserving
homeomorphism of S1. It may not be the minimal set of any Denjoy C1 diffeomorphism
of S1, but its image under some orientation preserving C1 diffeomorphism may be. In the
late seventies M. Herman asked which Cantor subsets of S1 can be minimal sets of Denjoy
C1 diffeomorphisms? The invariance of a Cantor set under a Denjoy C1 diffeomorphism
implies geometric constraints. In Section 5 we present D. McDuff’s theorem [8], which
gives a necessary condition in terms of the set of lengths of its complementary intervals.
More precisely, if we arrange the lengths of the complementary intervals of the minimal
Cantor set K of a Denjoy C1 diffeomorphism f in decreasing order λ1 > λ2 > · · · > 0,
then lim infn→+∞

λn
λn+1

= 1. It follows that the standard ternary Cantor set cannot be the

minimal set of any Denjoy C1 diffeomorphism. More examples of this kind have been
constructed by A. Norton [9] and A. Portela [10].

The question which arises from McDuff’s result is whether the sequence of ratios
λn
λn+1


n∈N actually tends to 1. This question was asked by D. McDuff in [8] and to the

author’s present knowledge remains still open. In Section 6 we describe a connection
between this question and the behavior of the derivative on K . This observation can be
traced in the work of A. Portela [11]. To be more precise, we show that the answer is
affirmative if log f ′ is a continuous coboundary on K . As it is shown in the beginning of
Section 6, log f ′ is never a continuous coboundary on the whole S1. However there are
examples where log f ′ is a continuous coboundary on K and examples where it is not.
Hopefully the effort to characterize the class of Denjoy C1 diffeomorphisms f for which
log f ′ is a continuous coboundary on their Cantor minimal set will give some new insight
for the resolution of McDuff’s question. The result and question of D. McDuff and the
question on the cohomological triviality of log f ′ on K are about geometric features of the
Cantor set K and the unique invariant Borel probability measure of the f , respectively.

A general reference for basic notions and terminology used in the sequel is [7].
The author would like to thank Andrés Navas and the referees for their comments that

helped to improve the presentation of some parts of this article.

2. Homeomorphisms of the circle

Let f : S1
→ S1 be a homeomorphism. There is then a homeomorphism F : R → R

such that f (e2π i t ) = e2π i F(t) for every t ∈ R. Such an F is called a lift of f . Clearly,
any two lifts of f differ by an integer. The original homeomorphism f is orientation
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preserving if and only if F is increasing, and orientation reversing if F is decreasing. It
is easy to see that in the latter case F(t + k) = F(t) − k for every k ∈ Z, and f has
exactly two fixed points. We shall be concerned exclusively with orientation preserving
homeomorphisms f of S1. Then F(t+k) = F(t)+k for every k ∈ Z or equivalently F−id
is periodic with period 1. So we have a well defined continuous function ψ : S1

→ R with
ψ(e2π i t ) = F(t)− t , the displacement function.

Lemma 2.1. If a = min{ψ(z) : z ∈ S1
} and b = max{ψ(z) : z ∈ S1

}, then b − a < 1.

Proof. If s, t ∈ R and s ≤ t < s + 1, then

ψ(e2π is)− ψ(e2π i t ) = F(s)− s − F(t)+ t ≤ t − s < 1,

because F is increasing. Therefore, ψ(e2π is) < 1 + ψ(e2π i t ) for every t ∈ [s, s + 1).
Consequently, ψ(e2π is) < 1 + a for every s ∈ R, and so b < 1 + a. �

Proposition 2.2 (Poincaré). There exists a constant ρ(F) ∈ R such that

lim
n→+∞

1
n
(Fn

− id) = ρ(F)

uniformly on R.

Proof. Let µ ∈ M f (S1), where M f (S1) denotes the set of f -invariant Borel probability
measures. Let ψn : S1

→ R be the continuous function

ψn(e
2π i t ) =

1
n
(Fn(t)− t).

Then, ψ = ψ1 and

1
n

n−1
k=0

(ψ ◦ f k)(e2π i t ) =
1
n

n−1
k=0

ψ(e2π i Fk (t)) =
1
n

n−1
k=0

(F − id)(Fk(t))

=
1
n

n−1
k=0

Fk+1(t)− Fk(t) =
1
n
(Fn(t)− t) = ψn(e

2π i t ).

Thus, the integral of ψn is equal to the integral of ψ and
S1


nψn − n


S1
ψdµ


dµ = 0.

Applying now Lemma 2.1 to f n , which lifts to Fn with displacement function nψn , we
get ψn −


S1
ψdµ

 < 1
n
,

for every n ∈ N. Hence

lim
n→+∞

ψn =


S1
ψdµ

uniformly on S1. �
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Remarks 2.3. (a) For every µ ∈ M f (S1) we have

ρ(F) =


S1
ψdµ.

(b) ∥Fn
− id − nρ(F)∥ < 1 for every n ∈ N.

(c) If a = ρ(F), there exists some t0 ∈ R such that

Fn(t0)− t0 − na = nψn(e
2π i t0)− n


S1
ψdµ = 0.

So Fn(t0) = Rna(t0), or in other words R−na ◦ Fn has a fixed point t0, where
Rna : R → R is the translation Rna(t) = t + na.

(d) For every a ∈ R we have ρ(Ra) = a.

(e) Since Rk ◦ F = F ◦ Rk for every k ∈ Z, we have

(Rk ◦ F)n − id

n
=

Rnk ◦ Fn
− id

n
=

Fn
− id + nk

n
→ ρ(F)+ k.

It follows that the number ρ( f ) = e2π iρ(F)
∈ S1 does not depend on the choice of the

particular lift F of f . It is called the Poincaré rotation number of f .

Proposition 2.4. An orientation preserving homeomorphism f : S1
→ S1 has a periodic

orbit if and only if ρ( f ) ∈ Q/Z.

Proof. Let F be a lift of f . If z0 = e2π i t0 is a periodic point of f of period q , then
z0 = f q(e2π i t0) = e2π i Fq (t0), and therefore p = Fq(t0)− t0 ∈ Z. So we have

ρ(F) = lim
n→+∞

Fnq(t0)− t0
nq

= lim
n→+∞

np

nq
=

p

q
.

Conversely, if ρ(F) = p/q ∈ Q, then R−p ◦ Fq has a fixed point t0 ∈ R or equivalently
Fq(t0) = t0 + p. �

If f : X → X is a homeomorphism of a metric space X , the set

L+(x) = {y ∈ X : f nk (x) → y for some nk → +∞}

is called the positive limit set of the point x ∈ X , and is a closed invariant set. Similarly,
the negative limit set L−(x) is defined and has the same properties.

Proposition 2.5. If the orientation preserving homeomorphism f : S1
→ S1 has

irrational rotation number, then there exists a compact f -invariant set K ⊂ S1 with the
following properties.

(i) L+(x) = L−(x) = K for every x ∈ S1, and in particular K is minimal.

(ii) Either K = S1 or K is a Cantor set.

(iii) suppµ = K for every f -invariant Borel probability measure.
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Proof. Let x ∈ S1 and K = L+(x). Since K is closed and invariant, we have
L+(y)∪ L−(y) ⊂ K for every y ∈ K . The connected components In, n ∈ Z, of S1

\ K are
permuted by f . Let now y ∈ S1

\ K . If L+(y)∩ (S1
\ K ) ≠ ∅, there are some n, k, l ∈ Z

with k > l such that f k(y), f l(y) ∈ In . This means that y ∈ f −k(In) ∩ f −l(In) and
therefore f k−l(In) ∩ In ≠ ∅. Then, f k−l( Īn) = Īn , and from the intermediate value
theorem f k−l must have a fixed point in Īn . This contradicts Proposition 2.4, since f is
supposed to have irrational rotation number. Hence L+(y) ⊂ K and similarly L−(y) ⊂ K
for every y ∈ S1. In other words, we have shown that L+(y) ∪ L−(y) ⊂ L+(x) for every
x, y ∈ S1 and similarly L+(y)∪ L−(y) ⊂ L−(x). Thus L+(y)∪ L−(y) ⊂ L+(x)∩ L−(x)
for every x, y ∈ S1, and symmetrically we get

L+(x) ∪ L−(x) ⊂ L+(y) ∩ L−(y) ⊂ L+(y) ∪ L−(y) ⊂ L+(x) ∩ L−(x)

for every x, y ∈ S1. Hence K = L+(y) = L−(y) = L+(x) = L−(x) for every x, y ∈ S1.
It is clear now that K is a perfect set. If K is not totally disconnected, it contains an open
interval J ⊂ S1. Then, for every x ∈ S1 there exists n ∈ Z such that f n(x) ∈ J , that
is x ∈ f −n(J ) ⊂ K . This shows that K = S1, if it is not a Cantor set. Obviously,
K = {x ∈ S1

: x ∈ L+(x)}, and so from Poincaré’s recurrence theorem we have
suppµ ⊂ K for every µ ∈ M f (S1). Since K is minimal, we must have equality. �

An important property of the rotation number is that it remains invariant under
orientation preserving semi-conjugation. We use the term orientation preserving surjection
for a continuous surjection of the circle onto itself which is induced by a nondecreasing
map of the real line.

Proposition 2.6. Let f, g : S1
→ S1 be two orientation preserving homeomorphisms and

let h : S1
→ S1 be an orientation preserving surjection such that h ◦ f = g ◦ h. Then

ρ( f ) = ρ(g).

Proof. Let F,G and H be lifts of f, g and h, respectively, and let φ : S1
→ R be the

displacement function of h, that is φ(e2π i t ) = H(t)− t . There exists some k ∈ Z such that
H(F(t)) = G(H(t))+ k for every t ∈ R and inductively H ◦ Fn

= Gn
◦ H + k, n ∈ Z.

So,

Fn
+ φ ◦ Fn

= Gn
◦ H − H + id + φ + nk

and therefore

1
n
(Fn

− id)+
1
n
φ ◦ Fn

=
1
n
(Gn

− id) ◦ H +
1
n
φ + k.

Taking the limit we get ρ(F) = ρ(G)+ k. �

Theorem 2.7. If the orientation preserving homeomorphism f : S1
→ S1 has irrational

rotation number e2π ia , then there exists a non-decreasing continuous surjection H : R →

R such that H(0) = 0 and H(t + 1) = H(t) + 1 for every t ∈ R which induces
an orientation preserving continuous surjection h : S1

→ S1 of degree 1 such that
h ◦ f = ra ◦ h, where ra is the rotation by 2πa. The map h is a homeomorphism if
and only if f is minimal.
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Proof. For convenience we put exp(t) = e2π i t . Let µ be an f -invariant Borel probability
measure and ν = (exp |[0, 1))−1

∗ µ on [0, 1). Since f has no periodic points, by
Proposition 2.4, µ has no atoms and so does ν. We extend ν to an infinite measure on
R periodically. More precisely, on [n, n + 1) we set ν = (exp |[n, n + 1))−1

∗ µ. If A ⊂ R is
a Borel set, we have

ν(A) =


n∈Z

ν(A ∩ [n, n + 1)) =


n∈Z

µ(exp(A ∩ [n, n + 1)))

and ν(F(A)) = ν(A), for every lift F of f , since µ is f -invariant. Let now H : R → R
be defined by

H(t) =

 t

0
dν.

Obviously, H(0) = 0 and H(t + 1) = H(t)+ 1. Also, H is continuous, because ν has no
atoms. In addition,

H(F(x))− H(x) =

 F(0)

0
dν +

 F(t)

F(0)
dν −

 t

0
dν

=

 F(0)

0
dν = H(F(0))− H(0).

Consequently, H induces an orientation preserving surjection h : S1
→ S1 such that

h ◦ f = rb ◦h, where b = H(F(0))− H(0). But from Proposition 2.6 we necessarily have
a = b (mod 1).

If f is minimal, then µ is positive on non-empty open sets and therefore H is an
increasing homeomorphism. Conversely, if h is a homeomorphism, then the f -orbit of
any point z ∈ S1 is h−1({h(z)e2π ina

: n ∈ Z}), which is dense in S1. �

3. Denjoy’s theory of C1 diffeomorphisms of the circle

Let a ∈ R \ Q. A rational number p/q, where p ∈ Z, q ∈ N and (p, q) = 1, is called a
rational approximation of a ifa −

p

q

 < 1

q2 .

It is a well known fact of number theory that for every a ∈ R \ Q there exists a sequence
(pn/qn)n∈N in Q such that pn ∈ Z, qn ∈ N, (pn, qn) = 1, qn → +∞ anda −

pn

qn

 ≤
1

qnqn+1
<

1

q2
n

for every n ∈ N.
Let now 0 < a < 1 be an irrational number and 0 < p/q < 1 a rational approximation

of a as above. Let also exp : R → S1 denote the universal covering map exp(t) = e2π i t .
For every integer 0 ≤ k < q there exists exactly one point of the finite sequence
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e2π ina, n = 1, 2, . . . , q , in the interval exp


k
q ,

k+1
q


on S1. Indeed, assuming that

0 < a −
p
q <

1
q2 (the case −

1
q2 < a −

p
q < 0 being similar) we have

0 < na −
np

q
<

n

q2 <
1
q

for n = 1, 2, . . . , q , and therefore e2π ina
∈ exp


np
q ,

np+1
q


. Since p and q are relatively

prime, the finite sequences exp


np
q ,

np+1
q


, n = 1, 2, . . . , q and exp


k
q ,

k+1
q


, k =

0, 1, . . . , q − 1 of intervals coincide (with different order on S1), and evidently have
mutually disjoint interiors and cover S1.

Theorem 3.1 (Denjoy–Koksma Inequality). Let f : S1
→ S1 be an orientation preserving

homeomorphism with irrational rotation number e2π ia . Let p/q ∈ Q be a rational
approximation of a. If φ : S1

→ R is a (not necessarily continuous) function of bounded
variation V (φ), then

q−1
n=0

φ( f n(z))− q


S1
φdµ

 ≤ V (φ)

for every f -invariant Borel probability measure µ and z ∈ S1.

Proof. Since a is irrational, there exists an orientation preserving continuous surjection
h : S1

→ S1 such that h ◦ f = ra ◦ h, where ra is the rotation by 2πa, by Theorem 2.7.
Thus, h( f n(z)) = h(z)e2π ina for every z ∈ S1 and n ∈ Z. Also, h∗µ is invariant by ra
and is therefore the normalized Lebesgue measure on S1. Let z ∈ S1 and put z0 = zq = z
and zk ∈ S1 be such that h(zk) = h(z)e2π ik/q for 1 ≤ k < q . Denoting by [zk, zk+1] the
(positively oriented) maximal interval on S1 with such endpoints zk and zk+1 we have

[zk ,zk+1]

dµ =


[h(zk ),h(zk+1)]

d(h∗µ) =
1
q

for all 0 ≤ k < q . Since f is a homeomorphism, it suffices to prove the inequality
q

n=1

φ( f n(z))− q


S1
φdµ

 ≤ V (φ).

From the preceding observation, for every n = 1, 2, . . . , q, there exists a unique interval
In from the finite sequence of intervals [zk, zk+1], 0 ≤ k < q, such that h(In) contains
h(z)e2π ina . Therefore, f n(z) ∈ In and

q
n=1

φ( f n(z))− q


S1
φdµ

 =


q

n=1


φ( f n(z))− q


In

φdµ


≤

q
n=1

q




In


φ( f n(x))− φ


dµ
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≤

q
n=1

sup
x∈In

|φ( f n(z))− φ(x)|

≤

q
n=1

V (φ|In) ≤ V (φ). �

Corollary 3.2. An orientation preserving homeomorphism of S1 with irrational rotation
number is uniquely ergodic.

Proof. Using the notations of Theorem 3.1 and choosing a sequence (pn/qn)n∈N of
rational approximations of a such that qn → +∞, we have

lim
n→+∞

1
qn

qn−1
k=0

φ ◦ f k
=


S1
φdµ

uniformly on S1, for every function φ : S1
→ R of bounded variation. Since the subspace

of continuous functions of bounded variation is dense in the space of continuous functions
on S1, it follows that the f -invariant Borel probability measure µ is unique. �

We turn now to the study of orientation preserving C1 diffeomorphisms of the circle
with irrational rotation number.

Proposition 3.3 (Denjoy). Let f : S1
→ S1 be an orientation preserving C1

diffeomorphism with irrational rotation number. Then,
S1
(log f ′)dµ = 0

where µ is the unique f -invariant Borel probability measure.

Proof. From the chain rule, for every n ∈ N we have log( f n)′ =
n−1

k=0(log f ′) ◦ f k and
so

lim
n→+∞

1
n

log( f n)′ =


S1

log f ′dµ

uniformly on S1, by unique ergodicity.
If


S1 log f ′dµ > 0, then ( f n)′ → +∞ uniformly on S1, from which it follows that
S1
( f n)′(z)dz =

 1

0
(Fn)′(t)dt → +∞,

where F : R → R is a lift of f .
If


S1 log f ′dµ < 0, then ( f n)′ → 0 uniformly on S1, from which it follows that
S1
( f n)′(z)dz =

 1

0
(Fn)′(t)dt → 0.

However, in both cases we have
S1
( f n)′(z)dz =

 1

0
(Fn)′(t)dt = F(1)− F(0) = 1. �
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Corollary 3.4. If f : S1
→ S1 is an orientation preserving C1 diffeomorphism with

irrational rotation number and unique invariant Borel probability measure µ, then,

lim
n→+∞


S1
( f n)′dµ

1/n

= 1.

Proof. From the unique ergodicity, the chain rule and Proposition 3.3 it follows that
limn→+∞


( f n)′

1/n
= 1, uniformly on S1. By Hölder’s inequality

lim inf
n→+∞


S1
( f n)′dµ

1/n

≥ lim
n→+∞


S1


( f n)′

1/ndµ = 1.

On the other hand, for every n ∈ N there exists zn ∈ S1 such that ( f n)′(zn) ≥ ( f n)′(z) for
all z ∈ S1. Therefore,

lim sup
n→+∞


S1
( f n)′dµ

1/n

≤ lim
n→+∞


( f n)′(zn)

1/n
= 1. �

Proposition 3.5 (Denjoy). Let f : S1
→ S1 be an orientation preserving C1

diffeomorphism with irrational rotation number e2π ia and let p/q ∈ Q be a rational
approximation of a. If log f ′ has bounded variation on S1 and V is its total variation,
then e−V

≤ ( f ±q)′ ≤ eV or equivalently | log( f q)′| ≤ V .

Proof. Since f is C1 and S1 is compact, and since log f ′ has bounded variation, by
assumption, from the Denjoy–Koksma inequality we have

q−1
n=0

(log f ′)( f n(z))− q


S1
(log f ′)dµ

 ≤ V .

By the chain rule and Proposition 3.3, this becomes | log( f q)′(z)| ≤ V for every z ∈

S1. �

Theorem 3.6 (Denjoy). Let f : S1
→ S1 be an orientation preserving C1 diffeomorphism

with irrational rotation number e2π ia . If log f ′ has bounded variation on S1, then f is
topologically conjugate to ra .

Proof. Suppose that f is not topologically conjugate to ra . There exists a Cantor set
K ⊂ S1 which is the unique minimal set of f , by Proposition 2.5. If I is a connected
component of S1

\ K , then f n(I ), n ∈ Z, is a sequence of disjoint open intervals. Let
(pn/qn)n∈N be a sequence of rational approximations of a such that qn → +∞. From the
mean value theorem and Proposition 3.5 we get λ( f qn (I )) ≥ e−V λ(I ), where λ denotes
the normalized Lebesgue measure on S1 and V is the total variation of log f ′. It follows
that

1 ≥ λ


∞

n=1

f qn (I )


=

∞
n=1

λ( f qn (I )) = +∞. �
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In the next section we shall show that the preceding theorem of A. Denjoy is not true
without the assumption on the bounded variation of log f ′ by constructing an explicit
example. An orientation preserving C1 diffeomorphism of the circle with irrational rotation
number which is not topologically conjugate to a rotation will be called a Denjoy C1

diffeomorphism.

4. Examples of Denjoy C1 diffeomorphisms

From any orientation preserving C1 diffeomorphism g : S1
→ S1 which is topologically

conjugate to an irrational rotation we shall construct following M. Herman [5] a Denjoy
C1 diffeomorphism f : S1

→ S1 by inserting intervals at the points of one of its orbits
and an orientation preserving continuous surjection h : S1

→ S1 of degree 1 such that
h ◦ f = g ◦ h. We shall need some preparation.

Lemma 4.1. The set of orientation preserving C1 diffeomorphisms of S1 with rational
rotation number is dense in the space of all orientation preserving C1 diffeomorphisms of
S1 endowed with the C1 topology.

Proof. Let f : S1
→ S1 be an orientation preserving C1 diffeomorphism without periodic

points and K be its unique minimal set according to Proposition 2.5. The set of points in K
which are approximated by other points of K from both sides is uncountable. Let z = e2π i t

be such a point. Let F : R → R be a lift of f . Since K is minimal, there is a sequence of
positive integers nk → +∞ and mk ∈ Z such that Fnk (t)− mk → t and Fnk (t)− mk < t
for every k ∈ N. For every a ≥ 0 we consider the C1 diffeomorphism fa = ra ◦ f , where
ra is the rotation by 2πa. Then a lift of fa is the function Fa(x) = F(x) + a, x ∈ R and
inductively we see that Fn

a (x) ≥ Fn(x) + a for all n ∈ N, because if this holds for n − 1
then

Fn
a (x) = Fa(F

n−1
a (x)) ≥ Fa(F

n−1(x)+ a) ≥ Fa(F
n−1(x)) = Fn(x)+ a.

Since F ′
a = F ′, fa, a ≥ 0, is a continuous curve of orientation preserving C1

diffeomorphisms with respect to the C1 topology. It follows now that for each k ∈ N
there exists some 0 < ak ≤ t + mk − Fnk (t) such that Fnk

ak (t) = t + mk . This means that
z is a periodic point of fak and since ak → 0, we have fak → f in the C1 topology. �

Note that an orientation preserving C1 diffeomorphism f : S1
→ S1 with rational

rotation number always has a periodic point z such that 0 < ( f N )′(z) ≤ 1, where N is its
period.

Proposition 4.2. For every orientation preserving C1 diffeomorphism f : S1
→ S1 there

exists some z ∈ S1 such that the sequence (( f n)′(z))n∈Z is bounded.

Proof. Let D denote the set of all orientation preserving C1 diffeomorphisms of S1 for
which the conclusion holds. In view of Lemma 4.1 it suffices to prove that D is closed in
the C1 topology. Let ( fk)k∈N be a sequence in D converging to some f in the C1 topology.
Let zk ∈ S1 be such that (( f n

k )
′(zk))n∈Z is bounded and let Mk = sup{( f n

k )
′(zk) : n ∈ Z}.

There exist nk ∈ Z such that 1
2 Mk < ( f nk

k )′(zk) ≤ Mk . Passing to a subsequence,
if necessary, we may assume that the sequence (( f nk

k )(zk))k∈N converges to some point
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z ∈ S1. We shall prove that the sequence (( f n)′(z))n∈Z is bounded. Indeed, if this is not
the case, there exists n ∈ Z such that ( f n)′(z) > 2 and so ( f n

k )
′( f nk

k (zk)) > 2 for large
values of k. Therefore,

( f n+nk
k )′(zk) = ( f n

k )
′( f nk

k (zk)) · ( f nk
k )′(zk) > 2 ·

Mk

2
= Mk,

and this is a contradiction. �

Let now g : S1
→ S1 be an orientation preserving C1 diffeomorphism which is

topologically conjugate to an irrational rotation and let G : R → R be a lift of g. By
Proposition 4.2, there exists t0 ∈ R such that the sequence ((Gn)′(t0))n∈Z is bounded. Since
{Gn(x)+ m : m, n ∈ Z} is dense in R for all x ∈ R, we may assume that t0 ≠ Gn(0)+ m
for all m, n ∈ Z, otherwise we replace g with a conjugate by a suitable rotation. Let
ln > 0, n ∈ Z, be such that

(i)


n∈Z ln(Gn)′(t0) = 1

(ii) limn→±∞
ln+1

ln
= 1 and

(iii) for a given 0 < δ < 1
2 we have sup

 ln+1
ln

− 1

: n ∈ Z

< δ < 1

2 .

For instance if we choose suitable ϵ > 0, c > 0 and sufficiently large b > 0, we can take

ln =
c

(b + |n|)(log(b + |n|))1+ϵ
.

We consider the functions q : R → R+ with

q(t) =


0, if t ≠ Gn(t0)+ m for all m, n ∈ Z,
ln(G

n)′(t0), if t = Gn(t0)+ m for some m, n ∈ Z

and J : R → R defined by

J (t) =




0≤s≤t

q(s), if t ≥ 0,

−


t<s≤0

q(s), if t < 0.

The function J is strictly increasing, continuous except at the points of the set {Gn(t0)+
m : m, n ∈ Z}, where it is only right continuous and from the left has jump ln(Gn)′(t0) at
the point Gn(t0)+ m. Moreover, J (0) = 0 and J (t + 1) = J (t)+ 1 for every t ∈ R, and
so J (k) = k for k ∈ Z. The set C = J (R) is closed, perfect, totally disconnected, invariant
under integer translations and has Lebesgue measure zero.

Let In,m = [J (Gn(t0)+ m)− ln(Gn)′(t0), J (Gn(t0)+ m)], m, n ∈ Z and H : R → R
be the function defined by

H(x) =


t, if x = J (t) for some t ∈ R,
Gn(t0)+ m, if x ∈ In,m .

The function H is continuous, non-decreasing, H ◦ J = id and H(C) = R. Moreover,
H(0) = 0 and H(x + 1) = H(x)+ 1 for every x ∈ R, and so H(k) = k for k ∈ Z.
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Let Fn,0 : In,0 → In+1,0 be the C1 diffeomorphism defined by

Fn,0(x) = an+1 + G ′(Gn(t0))
 x

an


1 +

cn

l2
n
(y − an)(bn − y)


dy,

where we put for simplicity an = J (Gn(t0))− ln(Gn)′(t0), bn = J (Gn(t0)) and

cn = 6

 ln+1

ln
− 1

 1

((Gn)′(t0))2
.

Then F ′

n,0(an) = F ′

n,0(bn) = G ′(Gn(t0)) and F ′

n,0(x)

G ′(Gn(t0))
− 1

 ≤
3
2

 ln+1

ln
− 1

 < 3
2
δ < 1

for every x ∈ In,0, n ∈ Z. Therefore

lim
n→±∞


sup

 F ′

n,0(x)

G ′(Gn(t0))
− 1

 : x ∈ In,0


= 0.

For every m ∈ Z we define Fn,m : In,m → In+1,m by Fn,m = Rm ◦ Fn,0 ◦ R−m ,
where Rm denotes translation by m. Then Fn,m is an increasing C1 diffeomorphism and
F ′

n,m(x) = F ′

n,0(x − m) for every x ∈ In,m . Also the function β : R → (0,+∞) defined
by

β(x) =


G ′(H(x)), if x ∈ C,
F ′

n,m(x), if x ∈ In,m for some m, n ∈ Z

is continuous.
Since R \ C is dense in R, there exists a unique increasing homeomorphism F : R → R

which restricted to every In,m coincides with Fn,m . If x ∈ In,m , then x +1 ∈ In,m+1 and so
F(x + 1) = F(x)+ 1. Also, H(F(x)) = Gn+1(t0)+ m = G(Gn(t0)+ m) = G(H(x)). It
follows by continuity that F(x + 1) = F(x)+ 1 and H(F(x)) = G(H(x)) for all x ∈ R.
Therefore F is the lift of an orientation preserving homeomorphism f : S1

→ S1 and H
is the lift of an orientation preserving continuous surjection h : S1

→ S1 of degree 1 such
that h ◦ f = g ◦ f . So ρ( f ) = ρ(g), by Proposition 2.6. The set K = p(C) is a minimal
Cantor set of f , because {Fn(x)+ m : m, n ∈ Z} is dense in C for every x ∈ C .

It remains to show that f is actually a C1 diffeomorphism. Since F is increasing, it has
bounded variation on every compact interval. Also, if E ⊂ R is a set of Lebesgue measure
zero, then F(R \ C) has Lebesgue measure zero, because F is C1 on R \ C , and therefore
F(E) has Lebesgue measure zero, since C does. From Banach’s theorem, F is absolutely
continuous on every compact interval. It follows that

F(x) = F(0)+

 x

0
F ′(t)dt = F(0)+

 x

0
β(t)dt

for every x ∈ R, because F ′
= β almost everywhere. Hence F is C1 and F ′

= β

everywhere on R. Consequently, f is a Denjoy C1 diffeomorphism. Note that f ′(z) =
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g′(h(z)) for every z ∈ K . We shall return to this property of the derivative of f at the end
of Section 6.

5. The lengths of the complementary intervals

Let f : S1
→ S1 be a Denjoy C1 diffeomorphism with unique minimal set K . The

set C of the connected components of S1
\ K is countable and


I∈C λ(I ) ≤ 1, where λ

denotes the normalized Lebesgue measure on S1. So, there exists a sequence (λn)n∈N of
real numbers such that

(i)


∞

n=1 λn ≤ 1,
(ii) λn+1 < λn for every n ∈ N, and

(iii) for every n ∈ N there exists some (possibly not unique) I ∈ C such that λn = λ(I ).

The sequence (λn)n∈N is called the spectrum of K . McDuff’s theorem can be stated as
follows.

Theorem 5.1. The sequence of ratios

λn
λn+1


n∈N is bounded and has 1 as a limit point.

That it is bounded can be proved easily as follows. Let I ∈ C. For every n ∈ N there
exists some non-negative integer m0 such that λn ≤ λ( f m0(I )) and λ( f m(I )) ≤ λn+1 for
all m > m0. Let J = f m0(I ). Then,

λn

λn+1
≤

λ(J )

λ( f (J ))
≤

1
τ
,

where τ = inf{ f ′(z) : z ∈ S1
}, from the mean value theorem.

It follows immediately from Theorem 5.1 that the standard ternary Cantor set is not the
minimal set of any Denjoy C1 diffeomorphism, since the sequence of ratios is constant
with all terms equal to 3.

Theorem 5.1 says in other words that lim infn→+∞
λn
λn+1

= 1. What about lim sup?

McDuff’s Question. Is it true that

lim
n→+∞

λn

λn+1
= 1?

This is a natural question asked more than three decades ago by Dusa McDuff and
remains still unanswered to the author’s knowledge. Note that this is the case if in the
example of Section 4 we choose g to be an irrational rotation. In the next section we shall
show that an affirmative answer is implied by the solvability of a cohomological equation
on K .

Proof of Theorem 5.1. We shall prove the conclusion by contradiction. We shall assume
that lim infn→+∞

λn
λn+1

> 1 and prove that then for every ϵ > 0 there exists an open set

U ⊂ S1 such that U ∩ K ≠ ∅ and λ( f n(I )) < ϵ for every non-negative integer n and
every I ∈ C with I ⊂ U . This is certainly a contradiction, because choosing any I ∈ C
and 0 < ϵ < λ(I ) there exists a non-negative integer n (actually infinitely many) such that
f −n(I ) ⊂ U and at the same time f −n(I ) ∈ C.
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We start now the proof of the above assertion. Our assumption means that there exists
ρ > 0 such that

1 + ρ <
λn

λn+1
≤

1
τ

for every n ∈ N, and so

(1 + ρ)m <
λn

λn+1
·
λn+1

λn+2
· · ·

λn+m−1

λn+m
=

λn

λn+m
≤

1
τm

for every m, n ∈ N.
For I ∈ C let d(I ) = n in case λ(I ) = λn . Obviously, d : C → N is a surjective

function, by definition, but may be not injective. As an intermediate step we shall prove
now that K can be covered by a finite number of disjoint open intervals A1, . . . , Ar , for
some r ∈ N, such that if I, I ′

∈ C and I, I ′
⊂ A j for some 1 ≤ j ≤ r , then d(I ) ≤ d(I ′)

implies d( f (I )) ≤ d( f (I ′)). Let m ∈ N be such that (1 + ρ)m > max{
1
τ
, ∥ f ′

∥}. If I ∈ C
is such that d(I ) = n > m, then from the mean value theorem we have

λn+m <
λn

(1 + ρ)m
< τλn = τλ(I ) ≤ λ( f (I )) ≤ ∥ f ′

∥λ(I )

= ∥ f ′
∥λn <

λn−m

λn
· λn = λn−m .

Consequently, |d( f (I )) − d(I )| < m. Let also 0 < δ < ρτm . Since f is C1 and K
is a Cantor set, there exists an open cover {A1, . . . , Ar } of K consisting of disjoint open
intervals such that | f ′(z1) − f ′(z2)| < δ for z1, z2 ∈ A j , 1 ≤ j ≤ r . Moreover, we
may choose the open cover {A1, . . . , Ar } so fine that any connected component of S1

\ K
contained in some A j , 1 ≤ j ≤ r has length smaller than λm . If I, I ′

∈ C are contained
in A j for some 1 ≤ j ≤ r , then d(I ), d(I ′) > m and from the mean value theorem it
follows thatλ( f (I ))

λ(I )
−
λ( f (I ′))

λ(I ′)

 < δ.

Suppose that n = d(I ) ≤ d(I ′). There is some k ∈ Z such that d( f (I )) = n + k. From the
above observations we have |k| = |d( f (I ))− d(I )| < m and so λn+k > λn+m . It follows
that

λ( f (I ′)) < λn+k + δλn < λn+k + ρτmλn ≤ λn+k + ρλn+m

< λn+k(1 + ρ) < λn+k−1.

Therefore λ( f (I ′)) ≤ λn+k , which means that d( f (I )) ≤ d( f (I ′)).
Let now ϵ > 0. Taking ϵ smaller, if necessary, we may assume that any J ∈ C with

λ(J ) < ϵ is contained in A j for some 1 ≤ j ≤ r . Let Cϵ denote the set of all J ∈ C such
that λ( f n(J )) < ϵ for every non-negative integer n. Note that for every J ∈ C there exists
n0 ∈ N such that λ( f n(J )) < ϵ for all n ≥ n0, and therefore f n0(J ) ∈ Cϵ . There exists an
open interval U ⊂ S1 such that U ∩ K ≠ ∅ and one of the connected components I0 of
S1

\ K contained in U is of maximal length and belongs to Cϵ .
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We shall prove by induction the following claims:

(Pn) f n(U ) ∩ K ⊂ A j for some 1 ≤ j ≤ r and
(Qn) d( f n(I )) ≥ d( f n(I0)) for every I ∈ C with I ⊂ U .

Once we have proved the claims the conclusion is obvious, since by (Qn) we shall have

λ( f n(I )) ≤ λ( f n(I0)) < ϵ

for every non-negative integer n. We proceed to prove the claims. Firstly, (Q0) holds
by the choice of U . If (Pn) and (Qn) hold, it follows from the property of the open
cover {A1, . . . , Ar } we proved in the intermediate step that (Qn+1) holds. So it suffices
to prove that (Qn) implies (Pn). If (Qn) is true and I ∈ C with I ⊂ U , then λ( f n(I )) ≤

λ( f n(I0)) < ϵ. Thus, f n(I ) ⊂ A j for some 1 ≤ j ≤ r . Since U is connected and
A1, . . . , Ar are disjoint, there exists some 1 ≤ j ≤ r such that f n(I ) ⊂ A j for every
I ∈ C with I ⊂ U . Hence f n(U ) ∩ K = f n(U ∩ K ) ⊂ A j . �

6. The derivative of Denjoy C1 diffeomorphisms

In this last section we shall relate McDuff’s question to the problem of the solvability
of the cohomological equation log f ′

= u − u ◦ f on the unique Cantor minimal set
K of a Denjoy C1 diffeomorphism f . This depends on the behavior of the sequence of
the derivatives of the iterates of f on K . It should be noted that in any case there is no
continuous function u : S1

→ R such that log f ′
= u − u ◦ f on S1. Indeed, if I ⊂ S1

\ K
is a closed interval, then ( f n(I ))n∈Z is a family of mutually disjoint closed intervals. So,

∞
n=1


I
( f n)′dz =

∞
n=1


f n(I )

dz = λ


∞

n=1

f n(I )


≤ 1,

where λ denotes the normalized Lebesgue measure on S1. It follows that the series
∞

n=1( f n)′(z) converges for λ-almost all z ∈ I and therefore limn→+∞( f n)′(z) = 0, λ-
almost everywhere on I . Since λ(I ) > 0, there exists a point z ∈ S1

\ K such that
limn→+∞( f n)′(z) = 0. It follows from this that there exists no continuous function
u : S1

→ R such that log f ′
= u − u ◦ f on S1.

We proceed now to the description of the relation between the lengths of the
complementary intervals of the unique Cantor minimal set of a Denjoy C1 diffeomorphism
f : S1

→ S1 with unique minimal set K and the behavior of its derivative on K . Let
(λn)n∈N be the spectrum of K . By Theorem 5.1, lim infn→+∞

λn
λn+1

= 1. Let

σ = lim sup
n→+∞

λn

λn+1
.

Proposition 6.1. There exists a point z0 ∈ K such that ( f n)′(z0) ≤
1
σ

for every n ∈ N
and there exists a point z1 ∈ K such that f ′(z1) ≥ σ .

Proof. There exist positive integers nk → +∞ such that σ = limk→+∞

λnk
λnk+1

. For every

k ∈ N there exists some Ik ∈ C such that λnk ≤ λ(Ik) and λ( f n(Ik)) ≤ λnk+1 for
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every n ∈ N. Since limk→+∞ λ( f (Ik)) = 0, there exists an accumulation point y ∈ K
of ( f (Ik))k∈N. So, z0 = f −1(y) is an accumulation point of (Ik)k∈N, and passing to a
subsequence, if necessary, we may assume that limk→+∞(sup{dist(z0, z) : z ∈ Ik}) = 0.
On the other hand, from the mean value theorem we have

( f n)′(z0) = lim
k→+∞

λ( f n(Ik))

λ(Ik)

for every n ∈ N, because f is C1. For every ϵ > 0 there exists k0 ∈ N such that

σ − ϵ <
λnk

λnk+1
≤

λ(Ik)

λ( f n(Ik))

for every k ≥ k0 and every n ∈ N. Therefore, ( f n)′(z0) ≤
1

σ−ϵ
for every ϵ > 0 and n ∈ N,

and the first assertion follows.
For the second assertion let I ∈ C. For every k ∈ N there exists mk ∈ N such that

λ( f −mk (I )) ≤ λnk+1 < λnk ≤ λ( f −mk+1(I )).

By the mean value theorem, there exists zk ∈ f −mk (I ) such that

λ( f −mk+1(I )) = f ′(zk)λ( f −mk (I )).

For every ϵ > 0 there exists some k0 ∈ N such that

f ′(zk) =
λ( f −mk+1(I ))

λ( f −mk (I ))
≥

λnk

λnk+1
> σ − ϵ

for every k ≥ k0. Since limk→+∞ λ( f −mk (I )) = 0, the sequence (zk)k∈N has an
accumulation point z ∈ K . It follows that for every ϵ > 0 there exists z ∈ K such
that f ′(z) ≥ σ − ϵ, because f is C1. For the same reason and the compactness of K we
conclude that there exists a point z1 ∈ K such that f ′(z1) ≥ σ . �

Proposition 6.2. There exists a point z2 ∈ K such that ( f n)′(z2) ≥ 1 for every n ∈ N.

Proof. Suppose on the contrary that for every z ∈ K there exists n(z) ∈ N such that
( f n(z))′(z) < 1. Since f is C1, there exists an open neighborhood Vz of z in S1 such that
( f n(z))′(y) < 1 for all y ∈ Vz . The open cover {Vz : z ∈ K } has a finite refinement
{I1, . . . , Im} consisting of open disjoint intervals covering K , because K is a Cantor set.
For each integer 1 ≤ j ≤ m there exists some n j ∈ N such that ( f n j )′(y) < 1 for all
y ∈ I j . Now S1

\
m

j=1 I j is a disjoint union of closed intervals A1, . . . , Am . Each one

of them is contained in a connected component of S1
\ K and is therefore wandering with

respect to f . Let N = max{n j : 1 ≤ j ≤ m} and M = sup{ f ′(z) : z ∈ S1
}. Then M ≥ 1,

by Proposition 6.1. Let R be a connected component of S1
\ K such that f −n(A1) ⊂ R

for some n ∈ N and

λ(R) <
1

M N · min{λ(A1), . . . , λ(Am)}.

Then there exists some integer 1 ≤ j ≤ m such that R ⊂ I j . From the mean value theorem,
there exists a point ξ ∈ R such that

λ( f n j (R))

λ(R)
= ( f n j )′(ξ) < 1
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and so λ( f n j (R)) < λ(R). Taking f n j (R) in the place of R and repeating the above
argument inductively we construct a sequence (rk)k∈N whose terms are elements of
{n1, . . . , nm} such that

λ( f r1+···+rk (R)) < · · · < λ( f r1(R)) < λ(R)

for every k ∈ N. For every j ∈ N there exists k ∈ N such that

r1 + · · · + rk ≤ j < r1 + · · · + rk + rk+1

and then we have

λ( f j (R)) = λ( f j−(r1+···+rk )( f r1+···+rk (R))) ≤ M N
· λ( f r1+···+rk (R))

< Mn
· λ(R) < λ(A1).

This contradicts our choice of R so that A1 ⊂ f n(R) for some n ∈ N. �

Theorem 6.3. If σ > 1, there exists a point z ∈ K such that inf{( f n)′(z) : n ∈ N} = 0.

Proof. We shall prove that this holds for every point z ∈ K such that ( f n)′(z) ≤
1
σ

for all
n ∈ N. The existence of this kind of points has been proved in Proposition 6.1. Suppose
on the contrary that a = inf{log( f n)′(z) : n ∈ N} > −∞. There exists some n0 ∈ N such
that

0 ≤ log( f n0)′(z)− a <
1
2

log σ

and therefore for every n ∈ N we have

log( f n)′( f n0(z)) = log( f n+n0)′(z)− log( f n0)′(z) > −
1
2

log σ.

Since K is minimal, there exists a sequence of positive integers nk → +∞ such that
f −n0(z) = limk→+∞ f nk (z). Now we havelog( f n0+nk )′( f n0(z))− log( f n0+nk )′(z)


≤

n0−1
j=0

log f ′( f n0+nk+ j (z))− log f ′( f j (z))
.

From the uniform continuity of log f ′ and the finite number of iterates f, . . . , f n0−1 it
follows that for every ϵ > 0 there exists k0 ∈ N such that

n0−1
j=0

log f ′( f n0+nk+ j (z))− log f ′( f j (z))
 < ϵ

for every k ≥ k0. Consequently,

−
1
2

log σ < log( f n0+nk )′( f n0(z)) < ϵ + log( f n0+nk )′(z) ≤ ϵ − log σ

for every k ≥ k0. This means that 0 ≤
1
2 log σ < ϵ for every ϵ > 0, which contradicts our

assumption that σ > 1. �

Corollary 6.4. If σ > 1, there is a point z ∈ K such that sup{( f n)′(z) : n ∈ N} = +∞.
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Proof. From Proposition 6.2 there is a point z ∈ K such that ( f n)′(z) ≥ 1 for every n ∈ N.
By Theorem 6.3, there is a point z0 ∈ K such that inf{( f n)′(z0) : n ∈ N} = 0. For every
M ≥ 1 there is N ∈ N such that ( f N )′(z0) <

1
M . Since K is minimal, there is n0 ∈ N

such that ( f N )′( f n0(z)) < 1
M . It follows that

( f n0)′(z) =
( f N+n0)′(z)

( f N )′( f n0(z))
> M. �

From Theorem 6.3 we get immediately the following.

Corollary 6.5. If σ > 1, there exists no continuous function u : K → R such that
log f ′

= u − u ◦ f . �

The question now arises whether there exists a continuous function u : K → R such
that log f ′

= u − u ◦ f on K. In other words, is log f ′ a continuous coboundary on K
(see p. 100 in [7])? Roughly speaking, in case log f ′ is a coboundary on K , the unique
f -invariant Borel probability measure, whose support is K , is of “geometric nature”.

The solvability of the cohomological equation log f ′
= u − u ◦ f on K is C1-invariant.

More precisely, let h : S1
→ S1 be a C1 diffeomorphism and g = h◦ f ◦h−1. Then g is also

a Denjoy C1 diffeomorphism with Cantor minimal set h(K ). If there exists a continuous
function u : K → R such that log f ′

= u − u ◦ f on K , then for w = u ◦ h−1
+ log(h−1)′

we have log g′
= w − w ◦ g on h(K ).

The examples presented in Section 4 show that there are Denjoy C1 diffeomorphisms for
which the answer to the above question is affirmative and others for which is negative. More
precisely, starting with an orientation preserving C1 diffeomorphism g : S1

→ S1 which
is topologically conjugate to an irrational rotation, we constructed in Section 4 a Denjoy
C1 diffeomorphism f : S1

→ S1 and an orientation preserving continuous surjection
h : S1

→ S1 of degree 1 such that h ◦ f = g ◦ h. The construction has the additional
feature that f ′(z) = g′(h(z)) for all z in the Cantor minimal set K of f . So, if we choose
in the beginning g to be an irrational rotation, then f ′(z) = 1 for every z ∈ K and log f ′

is a continuous coboundary on K . However, if we choose g with the property that there
exists z0 ∈ S1 such that the sequence (log(gn)′(z0))n∈Z is unbounded, then log f ′ is not
a continuous coboundary on K . This property of g is equivalent to saying that g is not
C1 conjugate to an irrational rotation. For a proof of this we refer to Theorem 6.1.1 on
p. 48 of [5] or Lemma 3.2 on p. 53 of [3]. Examples of this kind of C1 diffeomorphisms
are included in the family ga : S1

→ S1, 0 < |a| < 1
2π , having corresponding lifts

Ga : R → R given by the formula Ga(x) = x + a + a sin 2πx . The set

P =


a ∈


−

1
2π
,

1
2π


: ρ(Ga) is irrational


is perfect, nowhere dense and ga is not C1 conjugate to an irrational rotation for a in a
dense subset of P (see the corollary on p. 73 in [3]).

The following problem now arises.

Problem. Characterize the class of Denjoy C1 diffeomorphisms for which the logarithm
of the derivative is a continuous coboundary on their Cantor minimal set.
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According to the theory developed in [1], which generalizes the Gottschalk–Hedlund
theorem, the solvability of the above cohomological equation is closely related to the
Cesaro summability of the distortion at certain intervals.
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