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Preface

Topological complexity is a numerical homotopy invariant which arises from the
problem of designing motion planning algorithms. The algorithmic motion planning
problem is central in robotics and requires the application of tools of algebraic topology.
A motion planning algorithm of a given mechanical system with configuration space of
states X is a function which associates to a pair (x, y) ∈ X × X a continuous motion
from x to y or in other words a continuous path in X with initial point x and terminal
point y. Stated more precisely, let PX denote the space of all continuous paths in X
endowed with the compact-open topology. The endpoints map π : PX → X ×X given
by π(γ) = (γ(0), γ(1)) is a fibration. A motion planning algorithm is a (not necessarily
continuous) section of π. The discontinuities of motion planning algorithms provide a
measure of the complexity of robot navigation. On the other hand, a continuous section
of π exists if and only if X is contractible. Thus, the discontinuities of motion planning
algorithms may reflect homotopy properties of X. Thus, outside robotics topological
complexity is an interesting numerical homotopy invariant which may help to understand
the nature of some geometric problems.

The topological complexity TC(X) of a path-connected space X is a positive integer
(or infinity) and is defined in an analogous way as its Lusternik-Schnirelmann category
catX. They are both special cases of the more general notion of the genus of a fibra-
tion introduced and studied by A.S. Schwarz in [20]. The Schwarz genus (or sectional
category) of a fibration p : E → B is the smallest positive integer k such that B can be
covered by k open sets U1, U2,...,Uk for which there are continuous sections si : Ui → E,
1 ≤ i ≤ k, for p. The topological complexity TC(X) is the genus of the endpoints
fibration π : PX → X ×X and depends only on the homotopy type of X.

The study of the notion of topological complexity was initiated by M. Farber in [8]
and [9]. It is a new active area of research. In this work we present some basic parts
of the research that has been done during the last twelve years giving emphasis to the
computation of the topological complexity of a large number of spaces. In the first
chapter we give the basic prperties of the notion and its relation to the Lusternik-
Schnirelmann category. In the second chapter we give cohomological lower bounds using
the notion of sectional category weight of a cohomology class with respect to a fibration.
The last chapter is devoted to the still open problem of the calculation of the topological
complexity of the real projective spaces and its relation to the immersion problem.



iv



Contents

1 Introduction to topological complexity 3
1.1 Basic properties of topological complexity . . . . . . . . . . . . . . . . . . 3
1.2 LS category and topological complexity . . . . . . . . . . . . . . . . . . . 8
1.3 Relative topological complexity . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Cohomology and topological complexity 19
2.1 Sectional category weight . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Cohomology classes of weight greater than 1 . . . . . . . . . . . . . . . . . 23
2.3 Topological Complexity of lens spaces . . . . . . . . . . . . . . . . . . . . 27

3 Topological Complexity of real projective spaces 31
3.1 An upper bound for TC(RPn) . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Nonsingular maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Topological Complexity of RPn and the immersion problem . . . . . . . . 35

1



2 CONTENTS



Chapter 1

Introduction to topological
complexity

1.1 Basic properties of topological complexity

For a topological space X we consider the space PX of paths in X, i.e. continuous maps
γ : I → X, equiped with the compact-open topology. Also, we consider the continuous
map π : PX → X × X defined by π(γ) = (γ(0), γ(1)), which is called the endpoints
fibration of X because of the following:

Lemma 1.1.1 The map π is a fibration for any space X.

Proof Let f : Y → PX be a continuous map of a space Y into the space PX, and let
F : Y × I → X ×X be a homotopy such that F (y, 0) = πf(y) for all y ∈ Y . We write
F = (F1, F2) for the components of F . Let H̃ : Y × I × I → X be defined by

H̃(y, t, s) =


F1(y, t− 3s), if 0 ≤ s ≤ t

3

f(y)

(
s− t

3

1− 2t
3

)
, if t

3 ≤ s ≤ 1− t
3

F2(y, 3s+ (t− 3)), if 1− t
3 ≤ s ≤ 1

The map H̃ is continuous and induces a continuous map H : Y × I → PX with
H(y, t)(s) = H̃(y, t, s). Also, H(y, 0) = f(y) for y ∈ Y and π ◦ H = F , i.e. H lifts F .

The endpoints fibration π rarely admits a continuous section. Actually, the following
holds.

Proposition 1.1.2 Given a nonempty space X the fibration π : PX → X × X has a
continuous section s : X ×X → PX if and only if the space X is contractible.

Proof Suppose that there is a continuous section s : X ×X → PX of π. This means
that s(x, y) is a path in X starting at x and ending at y for all x, y ∈ X. We fix a point
x0 ∈ X, and define a map F : X × I → X by F (x, t) = s(x, x0)(t) for x ∈ X and t ∈ I.
Then F is a homotopy of 1X to the constant map with value x0, thus X is contractible.

3



4 CHAPTER 1. INTRODUCTION TO TOPOLOGICAL COMPLEXITY

Conversely, suppose that the space X is contractible. Then there is a point x0 ∈ X
and a homotopy F : X × I → X satisfying F (x, 0) = x and F (x, 1) = x0 for all x ∈ X.
Let s : X×X → PX be the map defined by s(x, y) = F (·, x)∗F (·, y)−1, where ∗ denotes
the concatenation. The map s is a continuous section of π.

Remark: The fact that there is always a continuous section of π for a contractible space
X is a special case of the fact that every fibration over a contractible base space has a
continuous section.

Let p : E → B be a fibration with B contractible and E non-empty. If x̃0 is any point
of E, x0 = p(x̃0) and F : B×I → B is a homotopy such that F (x, 0) = x0 and F (x, 1) = x
for x ∈ X then the homotopy lifting property gives a homotopy F̃ : B × I → E with
F̃ (x, 0) = x̃0 for x ∈ B and p ◦ F̃ = F , i.e. F̃ lifts F . Since p(F̃ (1, x)) = x for all x ∈ B,
the map s = F̃ (1, ·) : B → E is a continuous section.

{0} ×B E

[0, 1]×B B

x̃0

i p

F

F̃

Definition 1.1.3 If X is a path-connected space we define the topological complexity
TC(X) of X as the least positive integer k such that there is a covering of X × X by
k open subsets U1, U2, . . . , Uk ⊂ X × X and there are continuous maps si : Ui → PX,
1 ≤ i ≤ k with π ◦ si = iUi, where iUi : Ui ↪→ X ×X is the inclusion map. If no such k
exists we define TC(X) =∞.

The statement π ◦ si = iUi in this definition means that si is a section of π|π−1(Ui) :
π−1(Ui)→ Ui.

Ui PX

X ×X

si

π

The Proposition 1.1.2 says that TC(X) = 1 if and only if the space X is contractible.

The topological complexity of a path-connected space is a special case of the
more general notion of Schwarz genus of a fibration. The Schwarz genus (or sectional
category) of a fibration p : E → B is defined to be the minimal cardinality of open
coverings of the base space B consisting of sets on each of which there exist a continuous
section.

Remark: For a subspace G ⊂ X ×X, there is a continuous section s : G→ PX of π if
and only if there is a homotopy of maps st : G → X, 0 ≤ t ≤ 1 such that s0, s1 are the
projections of G onto the first and the second coordinates, respectively.

Example: Let us show that TC(Sn) = 2 for n odd. Since Sn is not contractible, by
Proposition 1.1.2, TC(Sn) > 1. Thus, it suffices to show that TC(Sn) ≤ 2. To do this,
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we consider the sets U1 = {(A,B) ∈ Sn × Sn : A 6= −B} and U2 = {(A,B) ∈ Sn × Sn :
A 6= B} and define s1 : U1 → PSn, s2 : U2 → PSn as follows:

For (A,B) ∈ U1, s1(A,B) is the unique shortest arc of Sn connecting A and B passed
with velocity of constant length.

For (A,B) ∈ U2, s2(A,B) is the concatenation of the shortest arc from A to −B
with constant velocity and a path moving from −B to B. For the constraction of the
path from −B to B, we consider a tangent vector field υ on Sn which is nonzero at each
point. Such a tangent vector field exists, since n is odd. Then we consider the spherical
arc from −B to B:

− cosπt ·B + sinπt · υ(B)

|υ(B)|
, 0 ≤ t ≤ 1.

Example: Assuming that n is even, we will show that TC(Sn) ≤ 3. We define U1, s1

as in the odd dimensional case. Then we consider a tangent vector field υ on Sn, which
vanishes at a point B0 ∈ Sn and is nonzero at all points B ∈ Sn, B 6= B0. Setting
U2 = {(A,B) ∈ Sn × Sn : A 6= B and B 6= B0} we define s2 : U2 → PSn as in the odd
dimensional case. If we choose a point C ∈ Sn, C 6= B0,−B0 then the set Y = Sn − C
is homeomorphic with Rn, hence there is a continuous section s : U3 = Y × Y → PSn.
Since Sn×Sn− (U1∪U2) = {(−B0, B0)}, the sets U1, U2, U3 cover Sn×Sn and therefore
TC(Sn) ≤ 3. We shall prove later that actually TC(Sn) = 3 when n is even.

The following Theorem shows that the topological complexity depends only on the
homotopy type of X.

Theorem 1.1.4 If there are continuous maps f : X → Y and g : Y → X between
topological spaces X and Y such that f ◦ g ' 1Y , then TC(Y ) ≤ TC(X).

Proof It suffices to show that if U is an open set in X ×X which admits a continuous
section of the endpoints fibration πX of X then the set V = (g×g)−1(U) ⊂ Y ×Y admits
a continuous section of πY . For then, if k = TC(X) and U1 ∪ U2 ∪ . . . ∪ Uk = X ×X is
an open covering of X ×X such that each Ui admits a continuous section of πX , then
the sets Vi = (g × g)−1(U), i = 1, 2, . . . , k, form an open covering of Y × Y on each
member of which there is a continuous section of πY , thus TC(Y ) ≤ TC(X). Suppose
that U is an open set in X×X that admits a continuous section s : U → PX of πX . We
define a continuous section σ : V → PY of πY for the set V = (g × g)−1(U) as follows.
We consider a homotopy ht : Y → Y , 0 ≤ t ≤ 1, with h0 = 1Y and h1 = f ◦ g. For
(A,B) ∈ V we define the path σ(A,B) : I → V by

σ(A,B)(t) =


h3t(A), for 0 ≤ t ≤ 1

3

f(s(gA, gB)(3t− 1)), for 1
3 ≤ t ≤

2
3

h3(1−t)(B), for 2
3 ≤ t ≤ 1.

Corollary 1.1.5 (Homotopy Invariance) If two spaces X and Y have the same homo-
topy type then TC(X) = TC(Y ).

Corollary 1.1.6 If a space X retracts to a subspace A ⊂ X then TC(X) ≥ TC(A).
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Equivalent characterizations of topological complexity can be given for special classes
of spaces.

Definition 1.1.7 Let A be a subspace of a topological space X. We say that A is a
neighborhood retract in X if A is a retract of some open neighborhood of itself.

Definition 1.1.8 A topological space X is called a Euclidean Neighborhood Retract
(ENR) if it is homeomorphic to a neighborhood retract in Rn for some n.

A subspace X ⊂ Rn is an ENR if and only if it is locally compact and locally
contractible. (see [5], chapter 4, section 8)

Proposition 1.1.9 Let X be an ENR. We define the following numbers:

• k = k(X) is the least positive integer k with the property that there is a sequence
U1 ⊂ U2 ⊂ . . . ⊂ Uk = X ×X of k open subsets and a section s : X ×X → PX of
the fibration π such that the restrictions s|Ui+1−Ui, i = 1, 2, . . . , k−1 are continuous.

• l = l(X) is the least positive integer l with the property that there is a sequence
F1 ⊂ F2 ⊂ . . . ⊂ Fl = X ×X of l closed subsets and a section s : X ×X → PX of
π such that the restrictions s|Fi+1−Fi, i = 1, 2, . . . , l − 1 are continuous.

• r = r(X) is the least positive integer r with the property that there is a splitting
G1 ∪ G2 ∪ . . . ∪ Gr = X × X of X × X consisting of r pairwise disjoint, locally
compact subspaces of X ×X each of which admits a continuous section of π.

• q = q(X) is the least positive integer q with the property that there is a splitting
G1 ∪G2 ∪ . . .∪Gq = X ×X of X ×X consisting of q locally compact subspaces of
X ×X each of which admits a continuous section of π.

Then these numbers are equal to TC(X), i.e., TC(X) = k = l = r = q.

We shall use the following elementary Lemmas.

Lemma 1.1.10 If X is a normal space and X = U1∪U2∪ . . .∪Un, where U1, U2, . . . , Un
are open subsets of X then there are closed sets F1, F2, . . . , Fn such that Fi ⊂ Ui for all
i and X = F1 ∪ F2 ∪ . . . ∪ Fn.

Proof We proove the lemma by induction on n. First, we suppose that X = U1 ∪ U2

where X is normal and U1, U2 are open sets. Then, the sets X − U1, X − U2 are closed
and disjoint, thus there are disjoint open sets O1 ⊃ X − U1 and O2 ⊃ X − U2, since X
is normal. The sets F1 = X − O1, F2 = X − O2 are closed, Fi ⊂ Ui and X = F1 ∪ F2.
This proves the lemma in the case n = 2.

Now, let n > 2 and assume that the conclusion is true for n−1 sets U1, U2, . . . , Un−1.
Suppose that X = U1 ∪ . . . ∪ Un where X is normal and U1, . . . , Un are open sets.
There are closed sets F1 ⊂ U1 and G ⊂ U2 ∪ . . . ∪ Un with X = F1 ∪ G. Since G is
normal and G = (U2 ∩ G) ∪ . . . ∪ (Un ∩ G), by our assumption, there are closed sets
F2 ⊂ U2 ∪ G, . . . , Fn ⊂ Un ∪ G in G such that G = F2 ∪ . . . ∪ Fn. Hence, we have
constructed a finite sequence F1, . . . , Fn with the required properties.
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The next lemma is Exercise 2 at the end of Charter 4 in [5].

Lemma 1.1.11 Let Y be an ANR and X be a binormal space, i.e., X × I is a normal
space. Let A ⊂ X be a closed set and f, g : X → Y be continuous maps such that
f |A ' g|A. Then there exists an open set A ⊂ V ⊂ X such that f |V ' g|V .

Proof Let M = X × {0} ∪X × {1} ∪A× I and H : f |A ' g|A. We set F (x, 0) = f(x),
F (x, 1) = g(x) for x ∈ X and F (a, t) = H(a, t) for a ∈ A, t ∈ I to get a well defined
continuous map F : M → Y . Since Y is an ANR and M is a closed subset of the
normal space X× I, there exist an open set M ⊂ U ⊂ X× I and a continuous extension
F̃ : U → Y of F . Since each a ∈ A has an open neighborhood Na in X such that
Na × I ⊂ U , there exists an open set A ⊂ V ⊂ X such that A × I ⊂ V × I ⊂ U .
Obviously, F̃ |V×I : f |V ' g|V .

Proof of Proposition 1.1.9 Let TC(X) = s. The proposition will be prooved, showing
the inequalities s ≥ k, s ≥ l, k ≥ r, l ≥ r, r ≥ q, q ≥ s.

For the first inequality, we consider an open covering of X ×X consisting of s open
sets W1,W2, . . . ,Ws such that each Wi admits a continuous section si of π. We put Ui =
W1 ∪ . . .∪Wi for i = 1, . . . , s and define a section s : X ×X → PX by s(x, y) = si(x, y)
where i is the smallest index with the property (x, y) ∈ Wi. Hence U1 ⊂ U2 ⊂ . . . ⊂
Us = X ×X and, since Ui+1 − Ui = Wi+1 − (W1 ∪ . . . ∪Wi) and s = si in Ui+1 − Ui, it
follows that s|Ui+1−Ui is a continuous map.

For the second inequality, using Lemma 1.1.10 for the metrizable, hence normal space
X ×X, we obtain closed sets V1, . . . , Vs in X ×X such that each Vi is contained in Wi

and V1 ∪ . . .∪ Vs = X ×X. Applying the same argument as in the first inequality, using
the sets Vi in place of Ui we conclude the second inequality.

For the inequality k ≥ r, we consider a sequence U1 ⊂ . . . ⊂ Uk = X ×X of k open
sets in X×X such that each of the sets Ui+1−Ui. i = 0, 1, . . . , k−1 admits a continuous
section of π. We set Gi = Ui − (U1 ∪ . . . ∪ Ui−1). Then the sets Gi are locally compact.
(see [6], Theorem 6.5, p. 239) Also, since the sets Gi cover X ×X and they are pairwise
disjoint, we have k ≥ r.

Similarly, it follows that l ≥ r.
The inequality r ≥ q is trivial.
For the last inequality q ≥ s, we consider a covering of X × X consisting of s

locally compact subsets G1, G2, . . . , Gs such that each Gi admits a continuous section
si : Gi → PX. The map si : Gi → PX corresponds to a homotopy hit : Gi → X between
the projections hi0, h

i
1 of Gi onto the first and the second coordinates, respectively. Since

Gi is locally compact, there is an open set Wi ⊂ X×X such that Gi = Gi∩Wi. (see [6],
Theorem 6.5, p. 239) It follows that there is an open set Ui with Gi ⊂ Ui ⊂ Wi such
that the projections of Ui onto the first and the second coordinates are homotopic by a
homotopy H i

t : Ui → X by Lemma 1.1.11. This homotopy H i
t , 0 ≤ t ≤ 1, corresponds to

a continuous section Si : Ui → PX. Since the sets Ui cover X ×X and each Ui admits
a continuous section Si : Ui → PX, we conclude that q ≥ s.

If we only assume that X is a locally compact metrizable space then
TC(X) ≥ max{k(X), l(X)} and min{k(X), l(X)} ≥ r(X). If in addition X is
ANR, then Proposition 1.1.9 above remains still true. This follows from the arguments
of the proof. Recall that a space X is called absolute neighborhood retract (ANR) if for
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every normal space Y , closed subspace A ⊂ Y , and every continuous map f : A → X
there exists a continuous extension of f to a neighborhood of A (in Y).

Example: Let Y be an ENR space for which the suspension X = ΣY is ENR. The
space X is the quotient of Y × I identifying the points of the subspaces Y × 0 and Y × 1
into two single points p and q, respectively. Also, all points x ∈ X−p are assosiated with
continuous paths σx in X − p starting at q and ending at x that depend continuously on
X−p. We will show that TC(X) ≤ 3. We consider the sequence F1 ⊂ F2 ⊂ F3 = X×X
of closed subsets with F1 = {(p, p)} and F2 = p × X ∪ X × p. We define a section
s : X×X → PX of π as follows. We set s(p, p) to be the constant loop at the point p. For
x ∈ X−p we define s(p, x) = γ0∗σx, and s(x, p) = s(p, x)−1 = the inverse path of s(p, x),
where γ0 is a fixed path in X from p to q. Since F2−F1 = {p}×(X−{p})∪(X−{p})×{p},
we have defined the map s in F2. For (x, y) ∈ F3 − F2 = (X − p) × (X − p) we define
s(x, y) = σ−1

x ∗ σy. From the construction of s, the maps s|Fi−Fi−1 for i = 1, 2, 3 are
continuous and the inequality TC(X) ≤ 3 follows from Proposition 1.1.9.

1.2 LS category and topological complexity

The definition of topological complexity is inspired by the notion of Lusternik-
Schnirelmann category.

Definition 1.2.1 Let X be a topological space. A set A ⊂ X is called categorical if the
inclusion i : A ↪→ X is nullhomotopic.

Definition 1.2.2 The category catX of a space X is defined to be the least positive
integer k such that there are k open categorical subsets U1, . . . , Uk of X that cover X. If
no such integer k exists, we put catX =∞.

We observe that a non-empty space X is contractible if and only if catX = 1. Also,
if X is a suspension (of some space) then catX ≤ 2. In particular catSn = 2.

Like topological complexity, the Lusternik-Schnirelmann category of a space X can
be thought of as the Schwarz genus of a particular fibration. Let X be path-connected
and fix a point x0 ∈ X. Let P0X = {γ|γ : I → X with γ(0) = x0} be the space of paths
in X with initial point x0 equiped with the compact-open topology. The continuous
map π0 : P0X → X sending each path γ ∈ P0X to γ(1) is a fibration. Actually it
is the fibration induced from the endpoints fibration π : PX → X × X by the map
f : X → X ×X defined by f(x) = (x0, x). (Identifying each path γ ∈ P0X to (γ, γ(1))
we take P0X = {(γ, x) ∈ PX ×X|π(γ) = f(x)}) (see [19], corollary 8, p. 99)

P0X = f∗(PX) PX

X X ×X

pr1

π0=pr2 π

f

Since there is a continuous section of π0 over an open set U ⊂ X if and only if
U is categorical, the Schwarz genus of the fibration π0 is the Lusternik-Schnirelmann
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category of X.

The next proposition shows that this number is a topological invariant.

Proposition 1.2.3 If X and Y are topological spaces and f : X → Y and g : Y → X
are continuous maps such that f ◦ g ' 1Y then catX ≥ catY .

Proof Let U ⊂ X be open and categorical. Then g−1(U) is open and categorical (in Y ).
In fact, the inclusion map j : g−1(U) ↪→ Y is nullhomotopic, since j = 1Y ◦j ' f ◦g|g−1(U)

and the map f ◦ g|g−1(U) is nullhomotopic because so is the map f |U . Thus, a collection
of open categorical subsets of X that cover X pulls back to a covering of Y consisting
of open categorical sets and the inequality catX ≥ catY follows.

Corollary 1.2.4 If two spaces X and Y have the same homotopy type then catX =
catY .

Proposition 1.2.5 Let R be a commutative ring with a unity and let X be a topological
space. If u1, . . . , uk ∈ H∗(X;R) are non-zero cohomology classes of positive degree and
u1 ^ · · ·^ uk 6= 0 then catX > k.

Proof Let catX ≤ k and let X = U1 ∪ . . . ∪ Uk, where each Ui is open and categorical.
We consider the cohomology sequence of the pair (X,Ui)

· · · Hq(X,Ui;R) Hq(X;R) Hq(Ui;R) · · ·
j∗i

Since Ui is categorical, the induced by the inclusion homomorphism
Hq(X;R) → Hq(Ui;R) in the above exact sequence is trivial for q > 0. Thus,
by exactness, the homomorphisms j∗i : Hq(X,Ui;R) → Hq(X;R) for q > 0 are
epimorphisms. Hence ui = j∗i (ui) for some ui ∈ H∗(X,Ui;R).

The commutativity of the diagram

X (X,A ∪B)

X ×X (X,A)× (X,B)

j

∆ ∆

j1×j2

shows that j∗∆∗ = ∆∗(j∗1 × j∗2), where ∆ is the diagonal map and j, j1, j2 are the
inclusions. Thus j∗(a ^ b) = j∗∆∗(a × b) = ∆∗(j∗1 × j∗2)(a × b) = ∆∗(j∗1(a) × j∗2(b)) =
j∗1(a) ^ j∗2(b). This means that

j∗(u1 ^ · · ·^ uk) = j∗1(u1) ^ · · ·^ j∗k(uk)

= u1 ^ · · ·^ uk 6= 0,

where j : X ↪→ (X,U1 ∪ . . . ∪ Uk), ji : X ↪→ (X,Ui). Since H∗(X,U1 ∪ . . . ∪ Uk;R) =
H∗(X,X;R) = 0, we see that u1 ^ · · · ^ uk = 0, and so j∗(u1 ^ · · · ^ uk) = 0, a
contradiction.
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Example: We will show that catRPn = catCPn = n + 1. The cohomology ring of
RPn with coefficients in Z2 is H∗(RPn;Z2) ∼= Z2[a]/ < an+1 >, where a is an element
of degree 1 and an 6= 0. Proposition 1.2.5 says that catRPn > n. In the case of the
complex projective space CPn, we have

Hq(CPn;Z) =

{
Z for q = 0, 2, . . . , 2n

0 for q 6= 0, 2, . . . , 2n

and
H∗(CPn;Z) ∼= Z[a]/ < an+1 >,

where a is an element of degree 2 and an 6= 0. Hence catCPn > n. Writ-
ing points of CPn in homogeneous coordinates [z0, . . . , zn], the open subsets
Ui = {[z0, . . . , zn] ∈ CPn : zi 6= 0}, 0 ≤ i ≤ n, which define the standard
complex manifold structure on CPn, form an open covering consisting of categorical
sets, thus catCPn ≤ n+1. We obtain that catCPn = n+1 and similarly catRPn = n+1.

In the sequel we shall repeatedly use the following simple observation.

Lemma 1.2.6 If X is path-connected and {Aj}j∈J is a collection of open categorical
subsets of X such that Ai ∩Aj = ∅ for i 6= j, then the union

⋃
j∈J Aj is also categorical.

Proof Since X is path-connected, all constant maps from a subspace of X to X are
homotopic. Thus, we may choose a collection of homotopies Fj : Aj × I → X, j ∈ J ,
such that Fj(·, 0) = ij : Aj ↪→ X and Fj(·, 1) = b for some point b ∈ X. If A =

⋃
j∈J Aj ,

we may define F : A × I → X by F (y, t) = Fj(y, t) for y ∈ Aj , 0 ≤ t ≤ 1. Since
F |Aj×I = Fj and the sets Aj × I are open in A × I and disjoint and the maps Fj are
continuous, it follows that the map F is a well defined continuous homotopy from the
inclusion map A ↪→ X to a constant map.

Definition 1.2.7 Let m ≥ 1 be an integer. We say that the (covering) dimension of a
Hausdorff space X is at most m, denoted dimX ≤ m, if every collection of open sets in X
that covers X has an open refinement such that each point is contained at most in m+ 1
elements of this refinement. We write dimX = m if dimX ≤ m and dimX 6≤ m− 1.

Proposition 1.2.8 If X is a path-connected, paracompact and locally contractible space
and dimX ≤ m, then catX ≤ m+ 1. In other words, catX ≤ dimX + 1.

Proof Let {Uj}j∈J be a finite open covering of X consisting of categorical sets. Since
X is paracompact, there is a partition of unity {πj}j∈J subordinated to {Uj}j∈J . For
x ∈ X, we define S(x) = {j ∈ J |πj(x) > 0}. The set S(x) is finite since x ∈ suppπj for
finitely many j ∈ J . Also, for a finite set S ⊂ J , we define

W (S) = {x ∈ X|πi(x) < πj(x) for all i ∈ J − S and πj(x) > 0 for all j ∈ S}.

We will proove that W (S) is open. Since W (S) =
⋂
j∈J Kj where

Kj = {x ∈ X|πi(x) < πj(x) for all i ∈ J − S and πj(x) > 0},

it suffices to proove that each set Kj is open. In fact, a point x ∈ Kj has an open
neighborhood Ux such that the set Jx = {i ∈ J |Ux ∩ suppπi 6= ∅} is finite. We see that
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Ux ∩Kj = {y ∈ Ux|πi(y) < πj(y) for all i ∈ J − S and πj(y) > 0}
= {y ∈ Ux|πi(y) < πj(y) for all i ∈ Jx − S and πj(y) > 0}

=
( ⋂
i∈Jx−S

Ki
j

)
∩ {y ∈ Ux|πj(y) > 0}

where Ki
j = {y ∈ Ux|πi(y) < πj(y)}. Therefore, Ux ∩ Kj is open and hence so is

Kj =
⋃
x∈Kj

(Ux ∩Kj).

Also, if S * S′ and S′ * S then W (S) ∩W (S′) = ∅, because if x ∈ W (S) ∩W (S′)
then πi(x) < πj(x) < πi(x) for i ∈ S′ − S, j ∈ S − S′. We set

Wk =
⋃
{W (S(x))|x ∈ X,S(x) has k elements}

for k = 1, 2, . . .. The sets Wk are open and since W (S) ⊂ Uj for all j ∈ S, Lemma 1.2.6
implies that the sets Wk are categorical.

If there is a number n such that Uj1 ∩ Uj2 ∩ . . . ∩ Ujn+1 = ∅ for all distinct
j1, j2, . . . , jn+1 ∈ J , then Wk = ∅ for k ≥ n + 1. Thus, we obtain an open covering
of X consisting of n categorical sets.

Using this argument for an open refinement of a covering consisting of open cate-
gorical subsets of X such that each point contained at most in m + 1 elements of the
refinement, we obtain catX ≤ m+ 1.

Since each n-dimensional manifold has covering dimension at most n (see [18], The-
orem 2.15, p. 24) we obtain the following.

Corollary 1.2.9 If M is a path-connected n-manifold then catM ≤ n+ 1.

Example: We will show that catTn = n + 1. The cohomology ring H∗(Tn;Q) of the
n-torus Tn with coefficients in Q is an exterior algebra on n generators, hence catTn > n
by Proposition 1.2.5. Also, by Corollary 1.2.9, catTn ≤ n+1, and therefore catTn = n+1.

Example: The above Proposition 1.2.8 is false without the hypothesis that X is
locally contractible. We consider the space X =

⋃∞
n=1Cn, where Cn is the circle in

the plane R2 with center at ( 1
n , 0) and radius 1

n . We will show that the point (0, 0)
has no neighborhoods which are categorical. If it is not true then some circle Cn is
categorical with respect to X, hence with respect to R2 − {x}, where x is any point in
the interior of Cn. But this is false, since Cn is a deformation retract of R2 − {x} and
the inclusion map Cn ↪→ R2 − {x} induces an isomorphism on the fundamental groups.
This means that catX = ∞. Also, dimX = 1. In fact, if we take an open covering of
X then we can construct an open refinement of this covering as follows. We take an
open ball B with center at (0, 0) such that the set B ∩ X is contained in an element
of the covering. Then the set X − B consists of a finite number of disjoint arcs. We
cover these arcs by smaller open arcs such that no point of X is contained in three
of them. We choose the diameter of these small arcs to be very small (i.e. smaller
than a Lebesgue number of the covering) so that each small arc is contained in a set
of the covering. All small arcs together with B ∩ X form an open refinement of the
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original covering such that no point of X belongs to more than two sets of the refinement.

Remark: If X is a Hausdorff space then catX ≤ n if and only if there is a sequence V1 ⊂
V2 ⊂ . . . ⊂ Vn = X of n open sets such that each of the differences Vi−Vi−1 is contained
in an open categorical subset of X.(Here V0 = ∅) If there exists such a sequence, the
corresponding differences cover the space X, hence we obtain a covering of X consisting
of n open categorical subsets, and catX ≤ n. Conversely, if catX ≤ n then there are
open categorical sets U1, . . . , Un in X that cover X, hence the sets Vi = U1 ∪ . . .∪Ui for
i = 1, . . . , n form a sequence as above.

The proof of the following proposition is taken from [3] and is included here for the
sake of completeness.

Proposition 1.2.10 If X and Y are path-connected spaces such that the space X × Y
is completely normal then

cat(X × Y ) ≤ catX + catY − 1.

Proof Let catX = n and catY = m. Then there are sequences U1 ⊂ . . . ⊂ Un = X
and V1 ⊂ . . . ⊂ Vm = Y of open sets for X and Y , respectively, such that there exist
categorical open sets Z1, . . . , Zn ⊂ X and W1, . . . ,Wm ⊂ Y with the property Zi ⊃
Ui − Ui−1 and Wj ⊃ Vj − Vj−1. (Here U0 = V0 = 0)

Setting Ct =
⋃t
i=1 Ui × Vt+1−i we define a sequence C1 ⊂ . . . ⊂ Cn+m−1 = X × Y .

(Here Ui = X for i > n and Vj = Y for j > m)
We see that

Cj+1 − Cj =

j+1⋃
k=1

Uk × Vj+2−k −
j+1⋃
k=1

Uk × Vj+1−k

=

j+1⋃
k=1

j+1⋂
l=1

(Uk × Vj+2−k) ∩ (Ul × Vj+1−l)
{

=

j+1⋃
k=1

j+1⋂
l=1

(
(Uk − Ul)× Vj+2−k

)
∪
(
Uk × (Vj+2−k − Vj+1−l)

)
=

j+1⋃
k=1

(Uk − Uk−1)× (Vj+2−k − Vj+1−k)

=

j+1⋃
k=1

Aj+1
k

where Aj+1
k = (Uk − Uk−1)× (Vj+2−k − Vj+1−k).

In addition, Aj+1
k ⊂ Zk ×Wj+2−k and the set Zk ×Wj+2−k is open and categorical

with respect to X × Y . Also, if k > l then (Uk − Uk−1) ⊂ X − Uk−1, so (Uk − Uk−1) ∩
(Ul − Ul−1) = ∅ and

Aj+1
k ∩Aj+1

l = (Uk − Uk−1)× (Vj+2−k − Vj+1−k) ∩ (Ul − Ul−1)× (Vj+2−l − Vj+1−l)

= (Uk − Uk−1) ∩ (Ul − Ul−1)× (Vj+2−k − Vj+1−k) ∩ (Vj+2−l − Vj+1−l)

= ∅
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Thus, for all k 6= l, we have Aj+1
k ∩ Aj+1

l = Aj+1
k ∩ Aj+1

l = ∅. Because the space

X×Y is completely normal and Aj+1
k ⊂ Zk×Wj+2−k, there are disjoint open categorical

neighborhoods of the sets Aj+1
k and Aj+1

l for k 6= l. Since these categorical neighborhoods
are disjoint and the space X×Y is path-connected, their union is also categorical, hence
the union of the sets Aj+1

k and Aj+1
l has a categorical open neighborhood.

Also, (Aj+1
k ∪Aj+1

l )∩Aj+1
r = (Aj+1

k ∩Aj+1
r )∪ (Aj+1

k ∩Aj+1
r ) = ∅ and (Aj+1

k ∪Aj+1
l )∩

Aj+1
r = ∅ for distinct k, l, r. Therefore the sets Aj+1

k ∪ Aj+1
l and Aj+1

r are separated by

disjoint categorical open neighborhoods, and the union Aj+1
k ∪Aj+1

l ∪Aj+1
r is contained

in a categorical open set. We continue the process and we obtain that the set Cj+1−Cj
is contained in a categorical open set. Therefore cat(X × Y ) ≤ n+m− 1.

Remark: Note that the product of two completely normal spaces may not be a normal
space. For example the space Ru, which is the set of real numbers with the topology
having basis the intervals (a, b], a < b, is completely normal, but Ru×Ru is not normal.
(see [6], p. 144)

Proposition 1.2.11 If X is any path-connected metrizable space then

catX ≤ TC(X) ≤ 2catX − 1.

Proof Suppose that there is a continuous section s : U → PX of the endpoints fibration
π over an open set U ⊂ X ×X. Then the set V = {B ∈ X|(A0, B) ∈ U} is open and
categorical, where A0 is a fixed point of X. In fact, the inclusion map iV : V ↪→
X is homotopic to the constant map with value A0 by the homotopy V × I → X,
(B, t) 7→ s(A0, B)(t). Thus, if {Ui} is an open covering of X × X such that each Ui
admits a continuous section of π then the sets Vi = {B ∈ X|(A0, B) ∈ Ui} form an
open covering of X by categorical sets, hence TC(X) ≥ catX. Since by Proposition
1.2.10, cat(X ×X) ≤ 2catX − 1, it suffices to proove that TC(X) ≤ cat(X ×X). Let
U ⊂ X × X be an open categorical (in X × X) subset. Then, taking a homotopy
ht : U → X × X with h0 = iU and h1 = (A0, B0) for some (A0, B0) ∈ X × X, we
construct a continuous section s : U → PX of π by sending each (A,B) ∈ U to the path
s(A,B) = pr1ht(A,B) ∗ γ ∗ pr2h1−t(A,B), where ∗ denotes the concatenation of paths,
pr1, pr2 are the projections of X×X onto the first and the second factor and γ is a path
from A0 to B0.

Corollary 1.2.12 Let X be a path-connected metrizable locally contractible space. Then

TC(X) ≤ 2dimX + 1.

Proof This is immediate consequence of the right inequality of Proposition 1.2.11 and
the inequality of Proposition 1.2.8.

Corollary 1.2.13 If G is a connected Lie group then TC(G) = catG.

Proof ¿From Proposition 1.2.11, we have TC(G) ≥ catG. Let U ⊂ G be an open
categorical set. We will show that over the open set W = {(A,B) ∈ G×G|A ·B−1 ∈ U}
there is a continuous section s : W → PG of the endpoints fibration π. Since G is
connected, there is a homotopy ht : U → G such that h0 = iU and h1 = e, where e is
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the identity element of G. Then we can define s : W → PG by s(A,B) = ht(A ·B−1)·B
for (A,B) ∈ W . This argument shows that TC(G) ≤ catG, bacause if catG = k and
U1 ∪ . . . ∪ Uk = G is an open covering consisting of categorical (in G) sets then the sets
Wi = {(A,B) ∈ G × G|A · B−1 ∈ Ui} for i = 1, . . . , k form an open covering of G × G
such that each set of this covering admits a continuous section of π.

Example: We have shown that catTn = catRPn = n + 1. Since Tn and RP 3 are
connected Lie groups (RP 3 is homeomorphic to the 3-dimensional rotation group
SO(3)), TC(Tn) = catTn = n+ 1 and TC(RP 3) = catRP 3 = 4.

Remark: Proposition 1.2.10 is actually true if we only assume that X,Y are path-
connected normal spaces. Therefore Proposition 1.2.11 is true if X is normal and
Corollary 1.2.12 if X is paracompact, path-connected and locally contractible.

There is a product formula for topological complexity analogous to Proposition 1.2.10.

Theorem 1.2.14 For any path-connected metrizable spaces X and Y ,

TC(X × Y ) ≤ TC(X) + TC(Y )− 1.

Proof There are open coverings U1 ∪ . . . ∪ Un = X ×X and V1 ∪ . . . ∪ Vm = Y × Y for
X × X and Y × Y , respectively, such that there is a continuous section si : Ui → PX
of πX for i = 1, . . . , n and there is a continuous section σj : Vj → PY of πY for
j = 1, . . . ,m, where n = TC(X) and m = TC(Y ). Since X×X is paracompact, there is
a partition of unity fi : X ×X → R for i = 1, . . . , n subordinated to the covering {Ui}.
Similarly, there is a partition of unity gj : Y × Y → R for j = 1, . . . ,m subordinated
to the covering {Vj}. For non-empty sets S ⊂ {1, . . . , n} and T ⊂ {1, . . . ,m} we define
W (S, T ) ⊂ (X × Y ) × (X × Y ) to be the set consisting of all 4-tuples (A,B,C,D) ∈
(X×Y )×(X×Y ) such that fi(A,C)· gj(B,D) > fi′(A,C)· gj′(B,D) for all (i, j) ∈ S×T
and for all (i′, j′) /∈ S × T . The sets W (S, T ) have the following properties:

1. Each set W (S, T ) is open in (X × Y )× (X × Y ).

2. W (S, T ) ∩W (S′, T ′) = ∅ whenever S × T * S′ × T ′ and S′ × T ′ * S × T .

3. The set W (S, T ) is contained in Ui × Vj for all (i, j) ∈ S × T .

4. On each W (S, T ) there exists a continuous section W (S, T )→ P (X × Y ).

5. The sets W (S, T ) cover (X × Y )× (X × Y ).

The set W (S, T ) is the finite intersection of the open sets W
(i′,j′)
(i,j) for (i, j) ∈ S×T and

(i′, j′) /∈ S′×T ′, where W
(i′,j′)
(i,j) is the set consisting of (A,B,C,D) ∈ (X ×Y )× (X ×Y )

such that fi(A,C)· gj(B,D) > fi′(A,C)· gj′(B,D). Hence, each W (S, T ) is open in (X×
Y ) × (X × Y ). The property 2 follows since fi(A,C)· gj(B,D) > fi′(A,C)· gj′(B,D) >
fi(A,C)· gj(B,D) for (A,B,C,D) ∈ W (S, T ) ∩W (S′, T ′), (i, j) ∈ (S × T ) − (S′ × T ′)
and (i′, j′) ∈ (S′ × T ′)− (S × T ). The property 3 follows from the fact that W (S, T ) ⊂
(suppfi) × (suppgj) ⊂ Ui × Vj for (i, j) ∈ S × T . The set W (S, T ) admits the section
W (S, T )→ P (X × Y ), (A,B,C,D) 7→ (si(A,C), σj(B,D)), so the property 4 follows.
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For property 5, we choose (A,B,C,D) ∈ (X × Y ) × (X × Y ). Let S be the set of
indices i ≤ n such that fi(A,C) = maxk≤n fk(A,C) and let T be the set of j ≤ m such
that gj(B,D) = maxl≤m gl(B,D). Then (A,B,C,D) ∈ W (S, T ), hence the property 5
follows.

We define the sets

Wk =
⋃

|S|+|T |=k

W (S, T ), k = 2, 3, . . . , n+m.

These sets form an open covering of (X×Y )× (X×Y ). By property 2, if |S|+ |T | =
|S′|+|T ′| = k then the sets W (S, T ) and W (S′, T ′) either coincide (when S = S′ and T =
T ′) or are disjoint (otherwise). Therefore, there is a continuous section Wk → P (X×Y )
over each Wk, and the inequality follows.

The method of proofs of Proposition 1.2.8 and Theorem 1.2.14 is a modification of
Milnor’ s procedure.

There is an upper bound for the topological complexity of the total space of a fibra-
tion in terms of the topological complexity of the fiber and the Lusternik-Schnirelmann
category of the cartesian product of the base space with itself. We will use it later in
Chapter 2.

Proposition 1.2.15 Let p : E → B be a fibration with B path-connected and let F =
p−1(x0) be the fiber of p over a point x0 ∈ B. Then TC(E) ≤ TC(F ) · cat(B ×B).

Proof Let B×B = U1∪ . . .∪Uk, F ×F = V1∪ . . .∪Vl be open coverings such that each
Uj is categorical with respect to B × B and there is a continuous section si : Vi → PF
of the endpoints fibration πF of F over each Vi, where k = cat(B × B), l = TC(F ). A
homotopy of the inclusion map Uj ↪→ B × B to the constant map Uj → B × B with
constant value (x0, x0) corresponds to a continuous map hj : Uj → PB×PB = P (B×B).
If (x, y) ∈ Uj then, setting hj(x, y) = (ax,y, bx,y), we have ax,y(0) = x, ax,y(1) = x0,
bx,y(0) = y, bx,y(1) = x0.

We define B = {(e, ω) ∈ E × PB : ω(0) = p(e)}. Since p is a fibration, there is a
continuous map λ : B → PE such that for (e, ω) ∈ B, λ(e, ω)(0) = e and p◦λ(e, ω) = ω.
(see [19], Theorem 8, chapter 2, section 7, p. 92)

We define a continuous map kj : (p × p)−1(Uj) → F × F by sending each (e, e′) ∈
(p×p)−1(Uj) to (λ(e, ax,y)(1), λ(e′, bx,y)(1)), where x = p(e), y = p(e′). The sets k−1

j (Vi)
for j = 1, . . . , k and for i = 1 . . . , l clearly form an open covering of E × E. We define a
continuous section of the endpoints fibration πE : PE → E ×E over k−1

j (Vi) by sending

each (e, e′) ∈ k−1
j (Vi) to λ(e, ax,y) ∗ si(λ(e, ax,y)(1), λ(e′, bx,y)(1)) ∗ λ(e′, bx,y)

−1, where
x = p(e), y = p(e′). We obtain that TC(X) ≤ kl.

1.3 Relative topological complexity

Definition 1.3.1 We define the relative topological complexity TCX(A) of a space X
with respect to a subspace A of X ×X to be the Schwarz genus of the fibration π|π−1(A) :
π−1(A) → A, where π denotes the usual fibration π : PX → X × X. Equivalently,
TCX(A) is the least integer k ≥ 1 such that there exist k open subsets U1, . . . , Uk of A
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that cover A with the propery that the projections Ui → X of each Ui on the first and
the second factors are homotopic.

Lemma 1.3.2 Let X be a space and A ⊂ X×X. The following properties are equivalent:

• TCX(A) = 1

• The projections A → X of A on the first and the second factors are homotopic.
(Equivalently, there is a continuous section A → PX of the fibration π : PX →
X ×X over A)

• The inclusion map i : A ↪→ X×X is homotopic to a continuous map g : A→ X×X
with g(A) ⊂ ∆X = {(x, x) : x ∈ X}.

Proof The equivalence of the first two properties follows immediately from the definition
of TCX(A). We shall proove the equivalence of the second and the third assertion. If
the projections pr1, pr2 : A → X are homotopic then the map (pr1, pr2) : A → X ×X
is homotopic to the map (pr2, pr2) : A → X ×X, whose values are in ∆X . Conversely,
if the third property is true then there is a homotopy st = (s1t, s2t) : A → X × X,
0 ≤ t ≤ 1, such that the maps s10, s20 : A→ X are the projections of A on the first and
the second factors, respectively, and s11 = s21. Hence, we have the continuous section
s : A→ PX of π : PX → X ×X defined by s(a, b) = s1t(a, b) ∗ s2t(a, b)

−1 for (a, b) ∈ A.

Note that TCX(A) ≤ TCX(B) if A ⊂ B ⊂ X ×X, and in the case B = X ×X, we
obtain TCX(A) ≤ TC(X).

Lemma 1.3.3 Let A ⊂ B ⊂ X ×X and suppose that the inclusion map B ↪→ X ×X is
homotopic to a map B → X ×X, whose values are in A. Then TCX(A) = TCX(B).

Proof Since TCX(A) ≤ TCX(B), it suffices to proove that TCX(A) ≥ TCX(B). Let
A = U1 ∪ . . . ∪ Uk be an open covering of A such that the projections Ui → X of
each Ui on the first and the second factors are homotopic, where k = TCX(A). Let
ht : B → X ×X be a homotopy such that h0 is the inclusion and h1(B) ⊂ A. There is a
homotopy si : Ui × I → X such that si(·, 0), si(·, 1) are the projections of Ui of the first
and the second factors, respectively. Setting Wi = h−1

1 (Ui) we get an open covering of
B. On each Wi there is a continuous section Wi → PX of π : PX → X ×X defined by
(x, y) 7→ pr1ht(x, y)∗si(h1(x, y), ·)∗pr2ht(x, y)−1. This shows that TCX(A) ≥ TCX(B).

Lemma 1.3.4 If X is an ENR and the subset A ⊂ X ×X is locally compact then there
is an open set A ⊂ U ⊂ X ×X such that TCX(A) = TCX(U).

Proof Let k = TCX(A) and let A = U1 ∪ . . . ∪ Uk, where each Ui is open in A and the
projections Ui → X over each Ui on the first and the second factors are homotopic. Since
A is locally compact and Ui is open in A, we have Ui = Oi∩A, where Oi ⊂ X×X is open
(See [6], Theorem 6.5, p. 239). ¿From Lemma 1.1.11, there is an open set Ui ⊂ Õi ⊂ Oi
such that the projections Õi → X are homotopic. Therefore TCX(A) = TCX(U), where
U = Õ1 ∪ . . . ∪ Õk.
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Proposition 1.3.5 If X is an ENR and X×X = A1∪. . .∪Ak, where the sets A1, . . . , Ak
are locally compact then TC(X) ≤ TCX(A1) + . . .+ TCX(Ak).

Proof ¿From Lemma 1.3.4, there are open sets U1 ⊃ A1, . . . , Uk ⊃ Ak such that
TCX(Ai) = TCX(Ui) for i = 1, . . . , k. Since the sets Ui form an open covering of
X ×X, we have

TC(X) ≤ TCX(U1) + . . .+ TCX(Uk)

= TCX(A1) + . . .+ TCX(Ak).
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Chapter 2

Cohomology and topological
complexity

2.1 Sectional category weight

Throughout this section we assume that a fixed fibration p : E → B and a fixed com-
mutative ring R with a unity are given and we are interested in cohomology classes in
the cohomology ring H∗(B;R). We denote by f∗p : f∗(E) → X the fibration induced
from p by a continuous map f : X → B (see [19], Chapter 2, Section 8, p.98) and by
genus(f∗p) the Schwarz genus of f∗p. Also, we write H∗(B) instead of H∗(B;R). The
following notion was introduced in [11].

Definition 2.1.1 The sectional category weight of a cohomology class ξ ∈ H∗(B) with
respect to p, denoted by wgtp(ξ), is defined to be the largest integer k ≥ 0 such that
f∗(ξ) = 0 for all continuous maps f : X → B with genus(f∗p) ≤ k. The sectional
category weight of the zero class is defined to be ∞.

Note that the inequality genus(f∗p) ≤ k means that there are k open sets U1, . . . , Uk
that cover X and k continuous maps φi : Ui → E, i = 1, . . . , k, such that p ◦ φi = f |Ui

for i = 1, . . . , k.

Proposition 2.1.2 If ξ ∈ H∗(B) then wgtp(ξ) ≥ 1 if and only if p∗(ξ) = 0.

Proof Suppose firstly that p∗(ξ) = 0. Let f : X → B be a continuous map with
genus(f∗p) ≤ 1. Then there is a section g : X → f∗(E) of f∗p. The commutativity of
the diagram

H∗(X) H∗(f∗(E)) H∗(E)

H∗(X) H∗(B)

g∗ A

(f∗p)∗

f∗

p∗

shows that f∗(ξ) = g∗(f∗p)∗f∗(ξ) = g∗Ap∗(ξ) = 0. Thus wgtp(ξ) ≥ 1.
Conversely, if wgtp(ξ) ≥ 1 then genus(p∗p) = 1, because the diagonal map ∆ : E →

E × E = p∗(E) is a section of p∗p, so p∗(ξ) = 0.

19
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Definition 2.1.3 Let X be a space and let R be a commutative ring with a unity. The
TC-weight of a cohomology class u ∈ H∗(X ×X) is defined to be the sectional category
weight wgtπ(u) of u with respect to the endpoints fibration π : PX → X ×X.

Corollary 2.1.4 wgtπ(u) ≥ 1 if and only if ∆∗(u) = 0, where ∆ : X → X ×X is the
diagonal map.

Proof The map i : X → PX that sends each x ∈ X to the constant path at the point x
is a homotopy equivalence. Thus the conclusion follows from Proposition 2.1.2 and the
commutativity of the diagram

PX

X X ×X

πi

∆

Proposition 2.1.5 If genus(p) < ∞ then wgtp(ξ) < genus(p) for all non-zero coho-
mology classes ξ ∈ H∗(B).

Proof Let ξ ∈ H∗(B) with wgtp(ξ) ≥ genus(p). Then since genus(1∗p) = genus(p) ≤
wgtp(ξ), where 1 : B → B is the identity map, we have ξ = 1∗(ξ) = 0.

The above observation means that in order to find lower bounds of the Schwarz genus
of a fibration p it suffices to find non-zero cohomology classes of the highest possible
sectional weight with respect to p.

Proposition 2.1.6 If genus(p) <∞ then

wgtp(ξ1 ^ · · ·^ ξl) ≥
l∑

i=1

wgtp(ξi)

for ξ1, . . . , ξl ∈ H∗(B).

Proof Suppose that ξ = ξ1 ^ · · · ^ ξl 6= 0 (In the case ξ1 ^ · · · ^ ξl = 0 we have
wgtp(ξ1 ^ · · ·^ ξl) =∞ ≥

∑l
i=1 wgtp(ξi)). We put ki = wgtp(ξi) and k = k1 + · · ·+ kl.

Let f : X → B be a map with genus(f∗p) ≤ k. There is an open covering U1∪ . . .∪Uk =
X of X such that there are k continuous maps φi : Ui → E with p ◦φi = f |Ui . We define
the families of sets Ω1, . . . ,Ωl by

Ω1 = {U1, . . . , Uk1},Ω2 = {Uk1+1, . . . , Uk1+k2}, . . . ,Ωl = {U∑l−1
i=1 ki+1, . . . , Ul}.

We also set Ai to be the union of the family of sets Ωi for i = 1, . . . , l.

Since genus((f |Ai)
∗p) ≤ ki = wgtp(ξi), we have f∗(ξi)|Ai = (f |Ai)

∗(ξi) = 0 and so
f∗(ξi) pulls back to a cohomology class in H∗(X,Ai). Thus we obtain f∗(ξ) = f∗(ξ1) ^
· · ·^ f∗(ξl) = 0.

The propositions 2.1.5 and 2.1.6 above give the following.
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Proposition 2.1.7 If genus(p) <∞, ξ1, . . . , ξl ∈ H∗(B) and ξ1 ^ · · ·^ ξl 6= 0 then

genus(p) >

l∑
i=1

wgtp(ξi).

Definition 2.1.8 Any cohomology class u ∈ H∗(X×X;R), where R denotes a commu-
tative ring with a unity, is called a zero-divisor if wgtπ(u) ≥ 1.

Note that from Corollary 2.1.4 the last statement is equivalent to ∆∗(u) = 0.

If u ∈ Hq(X;R) then the cohomology class u = 1 × u − u × 1 ∈ Hq(X ×X;R) is a
zero-divisor, since ∆∗(u) = ∆∗(1× u)−∆∗(u× 1) = 1 ^ u− u ^ 1 = u− u = 0.

¿From Proposition 2.1.7 follows that

Proposition 2.1.9 If the cohomology classes u1, . . . , uk ∈ H∗(X × X;R) are zero-
divisors and u1 ^ · · ·^ uk 6= 0, then TC(X) > k.

Example: We have shown in Section 1.1 that TC(Sn) = 2 for odd n and TC(Sn) ≤ 3
for even n. We will show that actually TC(Sn) = 3 for n even.

Let u ∈ Hn(Sn;Q) be a non-zero cohomology class of degree n. Then, setting
u = 1× u− u× 1, we have

u2 = (1× u− u× 1) ^ (1× u− u× 1)

= 1× u2 − (−1)n
2
u× u− u× u+ u2 × 1

= −(−1)nu× u− u× u
= −[1 + (−1)n]u× u,

hence u2 6= 0 if n is even, and from Proposition 2.1.9 we get TC(Sn) > 2 for n even.

Example: We will show that TC(CPn) = 2n+ 1. Let u ∈ H2(CPn;Q) be a generator.
Since (1× u) ^ (u× 1) = u× u = (u× 1) ^ (1× u), we have

(1× u− u× 1)2n = (−1)n
(

2n

n

)
(un × un) 6= 0.

Therefore, by Proposition 2.1.9, TC(CPn) > 2n. In addition, we have shown that
catCPn = n+ 1 and Proposition 1.2.11 shows that TC(CPn) ≤ 2n+ 1.

Example: We will show that

TC(Sm × · · · × Sm︸ ︷︷ ︸
n factors

) =

{
n+ 1 if m is odd

2n+ 1 if m is even

By Theorem 1.2.14, we have
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TC(Sm × · · · × Sm︸ ︷︷ ︸
n factors

) ≤ TC(Sm × · · · × Sm︸ ︷︷ ︸
n−1 factors

) + TC(Sm)− 1

≤ · · ·
≤ TC(Sm × · · · × Sm︸ ︷︷ ︸

n−k factors

) + kTC(Sm)− k

≤ · · ·
≤ TC(Sm) + (n− 1)TC(Sm)− (n− 1)

= n(TC(Sm)− 1) + 1,

and thus TC(Sm × · · · × Sm) ≤ n+ 1 if m is odd and ≤ 2n+ 1 if m is even.
Let a ∈ Hm(Sm;Q) be the fundumental class and let ai be the image of a under the

homomorphism pr∗i : Hm(Sm;Q)→ Hm(X;Q) induced by the projection pri : X → Sm

of X = Sm× · · · ×Sm onto the i-th factor. If ui = 1× ai− ai× 1 ∈ Hm(X ×X;Q) then

u1 ^ · · ·^ un =
∑

i1,...,in∈{0,1}

(±)(ai11 ^ · · ·^ ainn )× (a1−i1
1 ^ · · ·^ a1−in

n ) 6= 0,

and hence, by Proposition 2.1.9, TC(X) > n. So in the case that m is odd the conclusion
follows. In the case that m is even, we have u2

i = 1×a2
i −(−1)mai×ai−ai×ai+a2

i ×1 =
−2(ai × ai). Thus

u2
1 ^ · · ·^ u2

n = (−2)n(a1 ^ · · ·^ an)× (a1 ^ · · ·^ an) 6= 0,

and therefore, by Proposition 2.1.9, TC(X) > 2n and the conlusion follows.

Example: We will show that TC(Σg) = 5, where Σg is a compact orientable 2-
dimensional surface of genus g ≥ 2.

There are cohomology classes u1, u2, υ1, υ2 ∈ H1(Σg;Q) which form a symplectic
system. This means that the following properties are satisfied (see [15]):

1. u2
i = 0 and υ2

i = 0.

2. u1 ^ υ1 = u2 ^ υ2 = A 6= 0, where A ∈ H2(Σg;Q) is the fundamental class.

3. ui ^ uj = υi ^ υj = υi ^ uj = 0 for i 6= j.

Therefore

2∏
i=1

(1× ui − ui × 1) ^ (1× υi − υi × 1) =

2∏
i=1

(1×A+A× 1 + υi × ui − ui × υi)

= 2A×A 6= 0.

¿From Proposition 2.1.9 we have TC(Σg) > 4. Also, the fact that Σg is a 2-manifold
and Corollary 1.2.12 imply that TC(Σg) ≤ 2dim(Σg) + 1 ≤ 5.
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Example: We will show that TC(RPn) ≥ 2r provided that 2r−1 ≤ n < 2r. We consider
the zero-divisor 1 × a + a × 1 ∈ H1(RPn × RPn;Z2), where a ∈ H1(RPn;Z2) is the
generator. We will show that the (2r − 1)-th power of this zero divisor

(1× a+ a× 1)2r−1 =

2r−1∑
i=0

(±)

(
2r − 1

i

)
ai × a2r−1−i

is nonzero. In fact, the binomial coefficients
(

2r−1
i

)
= (2r−1)(2r−2)···(2r−i)

1·2···i are odd because

if i = 2mk, where 0 ≤ m < r and k is an odd positive integer, then 2r−i
i = 2r−m−k

k , hence(
2r−1
i

)
is a quotient of two odd integers. Also, the term

(
2r−1
n

)
an × a2r−1−n is non-zero,

since a is the generator and an, a2r−1−n are non-zero. Therefore, by Künneth formula,
we get (1× a+ a× 1)2r−1 6= 0. (see [15], Theorem 3.16, p.219)

2.2 Cohomology classes of weight greater than 1

In this section we will prove a criterion which provides cohomology classes of weight at
least 2 using stable cohomology operations, whose definition we recall first briefly.

Let p, q ∈ Z and G,G′ be two abelian groups. A cohomology operation of type
(p, q|G,G′) is a natural transformation

θ : Hp(−;G)→ Hq(−;G′)

of sets. This means that to every topological pair (X,A) corresponds a function (not
necessarily homomorphism)

θ(X,A) : Hp(X,A;G)→ Hq(X,A;G′)

so that for every continuous map f : (X,A)→ (Y,B) we have a commutative diagramm

Hp(Y,B;G) Hq(Y,B;G′)

Hp(X,A;G) Hq(X,A;G′)

θ(Y,B)

f∗ f∗

θ(X,A)

The cohomology operation θ is called additive if θ(X,A) is a homomorphism for each
topological pair (X,A).

For example, let (C∗, ∂) be a free chain complex and 0 G′ G G′′ 0
be a short exact sequence of abelian groups. Since C∗ is free, we get a short exact
sequence of cochain complexes

0 Hom(C,G′) Hom(C,G) Hom(C,G′′) 0

and therefore a natural transformation (the connecting homomorphism) β :
Hq(C;G′′)→ Hq+1(C;G′) for each q ∈ Z, called the Bockstein homomorphism. Setting
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C = ∆∗(X,A) for a topological pair (X,A) we get an additive cohomology operation of
type (q, q + 1|G′′, G′) for each q ∈ Z.

Another example of a (non-additive) cohomology operation is provided by taking
powers. More precisely, let R be a commutative ring with a unity. For every p, q ∈ Z+

let θp : Hq(X,A;R)→ Hqp(X,A;R) be defined by θp(σ) = σp, where the power is taken
with respect to the cup-product. Then, θp is a cohomology operation of type (q, pq|R,R).
It is in general non-additive. It is however additive if R = Z2 and p = 2.

A stable cohomology operation of degree i is a sequence of additive cohomology op-
erations θ : Hq(−;G) → Hq+i(−;G′) for each q ∈ Z, that is of type (q, q + i|G,G′)
respectively, which commute with the (unreduced) suspension isomorphism Hq(X;G) ∼=
Hq+1(ΣX;G) for every space X or equivalently, commute with the connecting homomor-
phisms δ∗ : Hq(A;G) → Hq+1(X,A;G) in the long exact sequence of every topological
pair (X,A).

The Steenrod squares is a sequence of stable cohomology operations (Sqi)i≥0 each
of degree i respectively, where G = G′ = Z2. More precisely, for every topological pair
(X,A) and each i ≥ 0 we have a sequence of homomorphisms

Sqi : Hq(X,A;Z2)→ Hq+i(X,A;Z2)

for all q ∈ Z and they satisfy the following axioms:
(i) Sq0 = id
(ii) If σ ∈ Hq(X,A;Z2), then Sqq(σ) = σ2 = σ ^ σ.
(iii) If σ ∈ Hq(X,A;Z2) and i > q, then Sqi(σ) = 0.
(iv) If σ ∈ H∗(X,A;Z2), τ ∈ H∗(Y,B;Z2) and the pair {X × B,A × Y } is excisive

in X × Y , then

Sqk(σ × τ) =
∑
i+j=k

Sqi(σ)× Sqj(τ) (Cartan formula)

It follows from naturality and the definition of the cup-product that

Sqk(σ ^ τ) =
∑
i+j=k

Sqi(σ) ^ Sqj(τ).

The stability of Sqi can be shown to follow from the above four axioms as well the
following property:

(v) Sq1 is the Bockstein homomorphism defined from the coefficient exact sequence

0 Z2 Z4 Z2 0

(see [2], [7], [15] and [17] for details)
The Steenrod cyclic reduced power operations are analogues of the Steenrod squares

for odd prime p > 2.
For a prime p > 2, the Steenrod cyclic reduced power operations is a sequence

of stable cohomology operations (P i)i≥0, each of degree 2i(p − 1) respectively, where
G = G′ = Zp. For every topological pair (X,A) and i ≥ 0 we have a sequence of
homomorphisms

P i : Hq(X,A;Zp)→ Hq+2i(p−1)(X,A;Zp)

for all q ∈ Z, which satisfy the following axioms:
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(i) P 0 = id
(ii) If σ ∈ H2i(X,A;Zp), then P i(σ) = σp.
(iii) If σ ∈ Hq(X,A;Zp) and 2i > q, then P i(σ) = 0.
(iv) If σ ∈ H∗(X,A;Zp), τ ∈ H∗(Y,B;Zp) and the pair {X × B,A × Y } is excisive

in X × Y , then

P k(σ × τ) =
∑
i+j=k

P i(σ)× P j(τ) (Cartan formula)

As in the case of Steenrod squares, we have a corresponding Cartan formula for
cup-products and the stability is implied from these four axioms. (see [2], [15])

Definition 2.2.1 The excess of a stable cohomology operation θ is the largest integer
e(θ) such that θ(u) = 0 for every u ∈ Hq(X;G) with q < e(θ).

By axioms (i) and (ii), the excess of the Steenrod square Sqi is e(Sqi) = i and for odd
prime p the excess of the Steenrod cyclic power operation P i is e(P i) = 2i. If i1, . . . , in
are positive integers and θ = Sqi1Sqi2 · · ·Sqin , then axiom (iii) implies that

e(θ) ≥ max{ik − ik+1 − · · · − in|1 ≤ k ≤ n}.

If moreover ik ≥ 2ik+1 for all 1 ≤ k < n, then

ik −
n∑

l=k+1

il ≤ ik−1 −
n∑
l=k

il

and therefore

e(θ) ≥ max{ik − ik+1 − · · · − in|1 ≤ k ≤ n}
= i1 − i2 − · · · − in

=
n−1∑
k=1

(ik − 2ik+1) + in.

We now describe a method of finding cohomology classes of TC-weight greater than
1 given a stable cohomology operation θ : H∗(−;R)→ H∗+i(−;R′), where R and R′ are
two commutative rings with a unity.

If u ∈ Hq(X;R) then we denote by u the cohomology class

u = 1× u− u× 1 ∈ Hq(X ×X;R)

and recall that u is a zero-divisor, i.e. wgtπ(u) ≥ 1. Also,

θ(u) = θ(pr∗2(u)− pr∗1(u)) = θ(pr∗2(u))− θ(pr∗1(u)) = pr∗2(θ(u))− pr∗1(θ(u)) = θ(u),

since pr∗1(u) = u×1 and pr∗2(u) = 1×u, where pr1, pr2 : X×X → X are the projections.

We will need the following.

Lemma 2.2.2 Let f = (f1, f2) : Y → X×X be a continuous map and π : PX → X×X
be the endpoints fibration. Then genus(f∗π) ≤ k if and only if there are k open sets
U1, . . . , Uk ⊂ Y that cover Y and f1|Ui ' f2|Ui for all i = 1, . . . , k.
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Proof Let U ⊂ Y be an open set. It suffices to show that there exist a local section
of f∗π over U if and only if f1|U ' f2|U . A local section s : U → f∗(PX) exists if and
only if there exist a continuous map J : U → PX with π ◦ J = f |U . In fact, if such a
map J exists then we define s(y) = (y, Jy). Also, a continuous map J : U → PX with
π ◦ J = f |U is assosiated to a homotopy F : f1|U ' f2|U , defined by evaluation, and
conversely.

Theorem 2.2.3 Let θ : H∗(−;R) → H∗+i(−;R′) be a stable cohomology operation of
degree i, where R and R′ are two commutative rings with a unity, and let u ∈ Hq(X;R)
be a cohomology class with q ≤ e(θ). Then wgtπ(θ(u)) = wgtπ(θ(u)) ≥ 2.

Proof Let f = (f1, f2) : Y → X×X be a continuous map such that genus(f∗π) ≤ 2. It
suffices to show that f∗(θ(u)) = 0. By Lemma 2.2.2, there are open subsets A,B ⊂ Y ,
A ∪B = Y with f1|A ' f2|A and f1|B ' f2|B. We consider the element in Hq(Y ;R)

f∗(u) = f∗(pr∗2(u))− f∗(pr∗1(u)) = (pr2f)∗(u)− (pr1f)∗(u) = f∗1 (u)− f∗2 (u),

where pr1, pr2 : X ×X → X are the projections. We take the Mayer-Vietoris sequence

· · · Hq−1(A ∩B;R) Hq(Y ;R) Hq(A;R)
⊕
Hq(B;R) · · ·δ j∗A−j

∗
B

where jA : A ↪→ Y , jB : B ↪→ Y are the inclusion maps. Since j∗Af
∗(u) = 0 and

j∗Bf
∗(u) = 0, there exists w ∈ Hq−1(A ∩ B;R) such that f∗(u) = δ(w). Therefore

f∗(θ(u)) = f∗(θ(u)) = θ(f∗(u)) = θ(δ(w)) = δ(θ(w)) = 0, by naturality and since θ is
stable.

Example: The short exact sequence 0 Z Z Z2 02 induces a long exact
sequence

· · · Hq(X;Z) Hq(X;Z) Hq(X;Z2) Hq+1(X;Z) · · ·2 β

for any space X, where β is the corresponding Bockstein homomorphism.
Recall that for even n

Hq(RPn;Z) =


Z for q = 0

Z2 for 0 < q < n, q odd

0 otherwise

and for odd n

Hq(RPn;Z) =


Z for q = 0, n

Z2 for 0 < q < n, q odd

0 otherwise

(see [2], chapter 4, section 14, p. 218). If 0 < q < n, it follows from the Universal Coeffi-
cient Theorem that Hq(RPn;Z) ∼= Ext(Hq−1(RPn;Z);Z), since Hom(Hq(RPn;Z),Z) =
0. Therefore for even n

Hq(RPn;Z) =


Z for q = 0

Z2 for q = n

Z2 for 0 < q < n, q even

0 otherwise
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and for odd n

Hq(RPn;Z) =


Z for q = 0, n

Z2 for 0 < q < n, q even

0 otherwise

In the case of the real projective space RPn, n ≥ 2, the above long exact sequence
implies that the Bockstein homomorphism β : H1(RPn;Z2) → H2(RPn;Z) is an iso-
morphism.

If y ∈ H2(RPn;Z) is a generator then y = β(x) for a generator x ∈ H1(RPn;Z2).
Since the excess of the Bockstein stable cohomology operation is 1, it follows from The-
orem 2.2.3 that

wgtπ(1× y − y × 1) ≥ 2.

2.3 Topological Complexity of lens spaces

In this section we will apply Theorem 2.2.3 in order to compute the topological
complexity of lens spaces.

Let m > 1 be an integer. Recall that the lens space L2n+1
m is defined to be the

orbit space S2n+1/Zm of the action of Zm, regarding it as the multiplicative group
{z ∈ C|zm = 1}, on the unit sphere S2n+1 = {(z0, z1, . . . , zn) ∈ Cn+1||z0|2 + |z1|2 +
. . . + |zn|2 = 1} ⊂ Cn+1 defined by pointwise multiplication (see [15], example 2.43, p.
144). The Hopf fibration η : S2n+1 → CPn factors through L2n+1

m , so we have a map
η̃ : L2n+1

m → CPn. Over the set Ui = {[z0, . . . , zn] ∈ CPn|zi 6= 0} there is a trivialization
φi : η−1(Ui) → Ui × S1 with φi(z0, . . . , zn) = ([z0, . . . , zn], zi/|zi|), where [z0, . . . , zn] are
the homogeneous coordinates of a point. This means that φi is homeomorphism and the
following diagram is commutative

η−1(Ui) Ui × S1

Ui

φi

η projection

The inverse of φi is given by φ−1
i ([z0, . . . , zn], λ) = |zi| λzi (z0, . . . , zn). It follows that

φi induces a trivialization φ̃i : η−1(Ui)/Zm → Ui × (S1/Zm) ≈ Ui × S1, i.e., φ̃i is
homeomorphism and we have the commutative diagam

η−1(Ui)/Zm Ui × (S1/Zm)

Ui

φ̃i

η̃ projection

(Note that η−1(Ui)/Zm = η̃−1(Ui) and the orbit space topology of the action of Zm on
η−1(Ui) coincides with the subspace topology induced by L2n+1

m ).

Proposition 2.3.1 TC(L2n+1
m ) ≤ 4n+ 2.
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Proof The map η̃ : L2n+1
m → CPn is a fibration with fiber S1, since it is a fiber bundle

with trivializations the maps φ̃i, i = 0, 1, . . . , n and the base space CPn is metrizable.
Proposition 1.2.15 implies that TC(L2n+1

m ) ≤ TC(S1) · cat(CPn × CPn) = 2cat(CPn ×
CPn). By Proposition 1.2.10 and the proof of Proposition 1.2.11 we have 2n + 1 =
TC(CPn) ≤ cat(CPn × CPn) ≤ 2cat(CPn) − 1 = 2n + 1. Hence, cat(CPn × CPn) =
TC(CPn) = 2n+ 1 and the inequality follows.

The homology groups of the lens space L2n+1
m are given by

Hq(L
2n+1
m ;Z) =


Z for q = 0, 2n+ 1

Zm for 0 < q < 2n+ 1, q odd

0 otherwise

and, by the Universal Coefficient Theorem, it follows that

Hq(L2n+1
m ;Zm) =

{
Zm for 0 ≤ q ≤ 2n+ 1

0 for q > 2n+ 1.

We choose a generator x ∈ H1(L2n+1
m ;Zm) and we consider the Bockstein homomorphism

β : H1(L2n+1
m ;Zm) → H2(L2n+1

m ;Zm) assosiated to the short exact sequence of abelian

groups 0 Zm Zm2 Zm 0.m The element y = β(x) ∈ H2(L2n+1
m ;Zm) is a

generator since β is an isomorphism (see [15], example 3E.1, p. 303). Also, for all i
the elements yi ∈ H2i(L2n+1

m ;Zm) and x ^ yi ∈ H2i+1(L2n+1
m ;Zm) are generators. As a

ring,

H∗(L2n+1
m ;Zm) ∼= Zm[x, y]/ < yn+1, x2 − ky >,

where k = m/2 if m is even and k = 0 if m is odd (see [15], example 3.41, p. 251 and
example 3E.2, p. 304).

Proposition 2.3.2 Let k, l be two integers, 0 ≤ k, l ≤ n, k + l > 0 and m does not
divide

(
k+l
k

)
. Then TC(L2n+1

m ) ≥ 2(k + l + 1).

Proof By Künneth formulas, the cross product homomorphism

× : H∗(L2n+1
m ;Zm)

⊗
H∗(L2n+1

m ;Zm)→ H∗(L2n+1
m × L2n+1

m ;Zm)

is a ring isomorphism (see [15], Theorem 3.16, p. 219). Therefore H∗(L2n+1
m ×L2n+1

m ;Zm)
is a free Zm-module with basis the elements xs1yr1 × xs2yr2 , where s1, s2 ∈ {0, 1} and
0 ≤ r1, r2 ≤ n. Also, the excess of the Bockstein stable cohomology operation is 1, hence
Theorem 2.2.3 implies that wgtπ(y) ≥ 2. We have

(y)k+l = (1×y−y×1)k+l = 1×yk+l+ · · ·+ (−1)k
(
k + l

k

)
yk×yl+ · · ·+ (−1)k+lyk+l×1

and x ^ (y)k+l = A−B, where A and B are given by

A = 1× (xyk+l) + · · ·+ (−1)k
(
k + l

k

)
yk × (xyl) + · · ·+ (−1)k+lyk+l × x
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and

B = x× yk+l + · · ·+ (−1)k
(
k + l

k

)
(xyk)× yl + · · ·+ (−1)k+l(xyk+l)× 1.

Since
(
k+l
k

)
is not divisible by m, it follows that the terms (−1)k

(
k+l
k

)
yk × (xyl) and

(−1)k
(
k+l
k

)
yk× (xyl) are not 0, and thus x ^ (y)k+l 6= 0. Therefore by Proposition 2.1.7

TC(L2n+1
m ) > 2(k + l) + 1.

Corollary 2.3.3 If m ≥ 3 then TC(L3
m) = 6. In the case m = 2, TC(L3

2) = 4.

Proof By Proposition 2.3.1, TC(L3
m) ≤ 6, and by Proposition 2.3.2 with k = l = 1 we

obtain TC(L3
m) ≥ 6 for m > 2. In the case m = 2 we observe that L3

2 = RP 3.

Let p be a prime. We denote the p-adic representation of a positive integer n by
n = n0 + n1p+ · · ·+ nkp

k = n0n1 . . . nk, where 0 ≤ ni < p, nk 6= 0. Also, we set ni = 0
for i > k.

Lemma 2.3.4 Let p be a prime and let m,n be positive integers with p-adic represen-
tations n = n0n1 . . . and m = m0m1 . . ., respectively. The maximal value of k ≥ 0
such that pk divides

(
n+m
n

)
equals to the number of the values of i ≥ 0 for which either

(a) ni + mi ≥ p or (b) there exists r ≥ 0 such that ni + mi = ni−1 + mi−1 = · · · =
ni−r +mi−r = p− 1 and ni−r−1 +mi−r−1 ≥ p.

Proof We first show that for the integer n = n0n1 . . . nk the maximal integer l ≥ 0
such that pl divides n! is equal to l = [np ] + · · · + [ n

pk
]. We have [np ] = n1 . . . nk, [

n
p2

] =

n2 . . . nk, . . . , [
n
pk

] = nk and we observe that each factor of n! that the first term at its
p-adic representation is not 0, is relative prime to p and each other factor is divisible by
p. Therefore

n! = p
[n
p

]
(n1 . . . nk)!C = p

[n
p

]+[ n
p2

]
(n2 . . . nk)!C = · · · = p

[n
p

]+···+[ n

pk
]
nk!C = plC

(Here C denotes an integer relative prime to p).

Let ps be the maximal power of p that divides
(
n+m
n

)
. Then p−s

(
n+m
n

)
= (n+m)!

psn!m! is
an integer relative prime to p and the maximal power of p that divides the numerator
must be equal to the maximal power of p that divides the denominator, that is

s+

∞∑
i=1

[ n
pi

]
+

∞∑
i=1

[m
pi

]
=

∞∑
i=1

[n+m

pi

]
,

hence

s =

∞∑
i=1

([n+m

pi

]
−
[ n
pi

]
−
[m
pi

])
=

∞∑
i=1

({ n
pi

}
+
{m
pi

}
−
{n+m

pi

})
,

where {x} = x− [x] is the fractional part of x. Each term of this sum is 0 or 1, because it
is an integer and belongs to (−1, 2). Also, a term of the sum is 1 if and only if the number
{ n
pi
}+ {m

pi
} = n0+m0

pi
+ n1+m1

pi−1 + · · ·+ ni−1+mi−1

p is at least 1. It suffices to show that the

second statement is true if and only if at least one of the properties (a) and (b) is true
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for the integer i− 1. If (a) or (b) is true for i− 1 then it is obvious that { n
pi
}+ {m

pi
} ≥ 1.

For the converse, we suppose that this number is ≥ 1 and that the properties (a) and
(b) are false and we will arrive at a contradiction. Then ni−1 +mi−1 = p− 1, otherwise
since ni +mi ≤ 2p− 2 we take

n0 +m0

pi
+
n1 +m1

pi−1
+ · · ·+ ni−1 +mi−1

p
<
p− 2

p
+ (2p− 2)

( 1

p2
+

1

p3
+ · · ·

)
= 1.

Similarly, we have ni−1 +mi−1 = · · · = n1 +m1 = n0 +m0 = p− 1, hence

n0 +m0

pi
+
n1 +m1

pi−1
+ · · ·+ ni−1 +mi−1

p
< (p− 1)

(1

p
+

1

p2
+ · · ·

)
= 1,

which contradicts to the hypothesis that the above sum is ≥ 1.

Let p be an odd prime and let n be a positive integer with p-adic repesentation
n = n0n1 . . .. We define a sequence r0(n), r1(n), . . . , ri(n), . . . of nonegative integers as
follows: If 2ni < p then ri(n) = 0 and if 2ni ≥ p then ri(n) is the maximal value of k ≥ 1
such that ni+1 = ni+2 = · · · = ni+k−1 = (p− 1)/2. Also we set

αp(n) =
∞∑
i=0

ri(n).

In the case p = 2, we define α2(n) to be the number of ones in the dyadic representation
of n.

Proposition 2.3.5 If p is a prime and pαp(n)+1 divides m then TC(L2n+1
m ) = 4n+ 2.

Proof Since the number αp(n) counts the integers i ≥ 0 for which 2ni ≥ p and the
integers i ≥ 0 for which ni = ni−1 = · · · = ni−r = (p− 1)/2 and 2ni−r−1 ≥ p, it follows
by Lemma 2.3.4 that pαp(n) is the maximal power of p that divides

(
2n
n

)
. Hence m does

not divide
(

2n
n

)
and by Propositions 2.3.1 and 2.3.2 we have TC(L2n+1

m ) = 4n+ 2.

Corollary 2.3.6 If p is an odd prime divisor of m and ni ≤ (p − 1)/2 for all i, where
n = n0n1 . . . is the p-adic representation of n, then TC(L2n+1

m ) = 4n+ 2.

Corollary 2.3.7 If k ≥ 1 and α2(n) ≤ k − 1 then TC(L2n+1
2k

) = 4n+ 2.



Chapter 3

Topological Complexity of real
projective spaces

3.1 An upper bound for TC(RP n)

In this section we will give an upper bound of TC(RPn), n > 1, connected to the minimal
dimension of Rk in which RPn can be immersed. As we know from Chapter I, we have

n+ 1 ≤ TC(RPn) ≤ 2n+ 1.

Especially, if n is a power of 2, then the last example of section 2.1 gives TC(RPn) = 2n
or 2n+ 1. We will prove that the former holds.

We regard a point of RPn as a line in Rn+1 which passes from the origin, i.e. as a
1-dimensional linear subspace of Rn+1.

Theorem 3.1.1 If an immersion i : RPn → Rk exists then TC(RPn) ≤ k + 1.

Proof Projecting orthogonally the vector fields ∂
∂x1

, . . . , ∂
∂xk

on Rk, where x1, . . . , xk

are the standard coordinates of Rk, we define k smooth vector fields v1, . . . , vk on RPn,
i.e. vj(A) is the orthogonal projection of ∂

∂xj
(i(A)) onto TARPn for all A ∈ RPn. It is

obvious that the tangent vectors v1(A), . . . , vk(A) span the tangent space TARPn for all
A ∈ RPn.

Recall that the tangent space TARPn is naturally identified with the orthogonal
complement of the line A in Rn+1.Therefore, each nonzero tangent vector v ∈ TARPn,
where A ∈ RPn, is assosiated with a line v̂ in Rn+1 which passes through the origin
and it is orthogonal to A. Also, the vector v induces an orientation of the 2-dimensional
linear subspace of Rn+1 that contains the lines A and v̂.

We define the subsets U0, U1, . . . , Uk ⊂ RPn × RPn by setting (A,B) ∈ U0 if and
only if the lines A and B make an acute angle and, for j = 1, . . . , k, (A,B) ∈ Uj

if and only if vj(A) 6= 0 and the lines B and v̂j(A) make an acute angle. The map
Sn × Sn → R, (x, y) 7→ | < x, y > |, where <,> is the usual inner product, factors
through a map φ : RPn × RPn → R under the quotient map p × p : Sn × Sn →
RPn × RPn and U0 = φ−1(R − {0}), hence the set U0 is open in RPn × RPn. Each
set Uj , j = 1, . . . , k, is also open, since it is the inverse image of the open set U0 under
the map qj × 1 : Oj × RPn → RPn × RPn, where Oj = {A ∈ RPn|vj(A) 6= 0} and

31
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qj : Oj → RPn is the map qj(A) = v̂j(A). In addition, we will show that the sets
Uj , 0 ≤ j ≤ k, cover the space RPn × RPn. Let (A,B) ∈ RPn × RPn. Since the

vectors vj(A), 1 ≤ j ≤ k, span the tangent space TARPn, the lines A and v̂j(A) for all
j = 1, . . . , k with vj(A) 6= 0 span the space Rn+1. We choose nonzero vectors A,B and

vj(A) in the lines A,B and v̂j(A), respectively. There are scalars λ and λj such that

B = λA+
∑
j

λjvj(A),

thus

0 < |B|2 =< B,B >= λ < A,B > +
∑
j

λj < vj(A), B > .

Hence either < A,B >6= 0 or < vj(A), B >6= 0 for some j. This means that at least one
of the sets Uj contains the pair (A,B).

Now, we will construct a continuous section sj : Uj → PRPn of the endpoints
fibration π : PRPn → RPn × RPn over each set Uj . If (A,B) ∈ U0 then we define
s0(A,B) to be the path in RPn which follows from rotation of the line A towards the
line B with constant velocity in the 2-plane containing the lines A and B in the direction
of the acute angle. For j = 1, . . . , k and A ∈ RPn with vj(A) 6= 0, we define Rj(A) to

be the path in RPn which follows from rotation of the line A towards to the line v̂j(A)

with constant velocity in the 2-plane containing the lines A and v̂j(A) in the direction
of the orientation determined by the tangent vector vj(A). We define sj by setting

sj(A,B) = Rj(A) ∗ s0(v̂j(A), B) for all pairs (A,B) ∈ Uj . Therefore, TC(RPn) ≤ k+ 1.

The following corollary is an application of the Whitney theorem, which says that
every C∞-manifold of dimension n > 1 can be immersed into R2n−1 (see [1], Theorem
3.8, p. 86).

Corollary 3.1.2 TC(RPn) ≤ 2n for all n.

In section 2.1 we have shown that TC(RPn) ≥ 2r whenever n ≥ 2r−1. So we obtain
the following.

Corollary 3.1.3 If n is a power of 2 then TC(RPn) = 2n.

3.2 Nonsingular maps

Another upper bound for TC(RPn) can be obtained from the existece of a certain kind
of maps.

Definition 3.2.1 A continuous map f : Rn × Rn → Rk such that
(i) f(αx, βy) = αβf(x, y) for all α, β ∈ R and all x, y ∈ Rn and
(ii) f(x, y) 6= 0 for all x, y ∈ Rn − {0}
is called a nonsingular map.
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Example: We will construct a nonsingular map f : Rn × Rn → R2n−1. We recall
that there is an infinite number of vectors in a n-dimensional vector space such that
any n of them are linearly independent. Indeed, given vectors v1, . . . , vk, k ≥ n, in the
Euclidean space Rn such that any n of them are linearly independent, we may find a
vector w which does not belong to the (n − 1)-dimensional subspace of Rn spanned by
the vectors vi1 , . . . , vin−1 for all 1 ≤ i1 < i2 < · · · < in−1 ≤ k. This is true, because a
(n − 1)-dimensional suspace V of Rn has measure 0 in Rn in the sence that there is a
sequence of rectangles whose union covers V and of total length less than a given positive
number, hence, the space Rn cannot be covered by a finite number of (n−1)-dimensional
subspaces. Now, we consider 2n − 1 linear transformations α1, α2, . . . , α2n−1 : Rn → R
such that any n of them are linearly independent in the dual space of Rn. For x, y ∈ Rn
we define f(x, y) to be the point of R2n−1 whose j-th coordinate is αj(x)αj(y). The
property (ii) of the definition of the nonsingular map follows from the fact that for
x ∈ Rn − {0} the number of the real numbers α1(x), . . . , α2n−1(x) which are nonzero
is at least n. In fact, if this is not true, then n of the numbers α1(x), . . . , α2n−1(x) are
zero, say α1(x) = 0, . . . , αn(x) = 0. Since the linear functionals α1, . . . , αn span the dual
space of Rn, we have that α(x) = 0 for every linear functional α, which is a contradiction.

Example: Nonsingular maps do not always exist. If k < n then there is no nonsingular
map f : Rn × Rn → Rk. Indeed, if such a map f exists then applying the Borsuk-Ulam
theorem to the map Sn−1 → Rk ⊂ Rn−1, x 7→ f(x, y), where y ∈ Rn − {0} is fixed, we
have f(x, y) = f(−x, y) for some x ∈ Sn−1, therefore, f(x, y) = 0, which contradicts
property (ii).

Proposition 3.2.2 If there exists a nonsingular map f : Rn+1 × Rn+1 → Rk such that
the first coordinate of f(x, x) is positive for all x 6= 0, then TC(RPn) ≤ k.

Proof Suppose that φ : Rn+1 × Rn+1 → R is a continuous function such that
(i) φ(λx, µy) = λµφ(x, y) for every x, y ∈ Rn+1 and λ, µ ∈ R, and
(ii) φ(x, x) > 0 for x 6= 0.

The set

Vφ = {(u, v) ∈ Sn × Sn : φ(u, v) > 0}

is an open neighborhood of the diagonal in Sn × Sn, by property (ii). On Vφ we can
define a continuous section τ of the endpoints fibration of Sn such that τ(u, v) is the
path obtained by rotating u toward v, if u 6= v, and is the constant path with value u,
if u = v. More precisely, the oriented angle 0 ≤ θ ≤ π from u to v is determined by
cos θ = 〈u, v〉. Let

J(u, v) =
v − 〈u, v〉u

(1− 〈u, v〉2)1/2

be the unique unit vector in the plane spanned by u and v such that (u, J(u, v)) is an
orthonormal basis which defines the same orientation with (u, v). For 0 ≤ t ≤ 1, we
define

τ(u, v)(t) =

{
(cos θt)u+ (sin θt)J(u, v), if u 6= v

u, if u = v.

Let p : Sn → RPn be the quotient map. If (u, v), (u′, v′) ∈ Vφ are such that (p×p)(u, v) =
(p × p)(u′, v′), then (−u,−v) = (u′, v′), and therefore τ(u′, v′)(t) = −τ(u, v)(t). This
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shows that τ induces a continuous section sφ of the endpoints fibration of RPn on the
open neighborhood Uφ = (p× p)(Vφ) of the diagonal in RPn × RPn.

If φ has only property (i), then we put

Vφ = {(u, v) ∈ Sn × Sn : u 6= ±v and φ(u, v) > 0}

and we define a continuous section τ on Vφ of the endpoints fibration of Sn by the same
formula

τ(u, v)(t) = (cos θt)u+ (sin θt)J(u, v).

Again τ induces a continuous section sφ : Uφ → PRPn of the endpoints fibration of RPn
on the open set Uφ = (p× p)(Vφ).

Now if we have a nonsingular map f : Rn+1×Rn+1 → Rk and f = (f1, f2, ..., fk) such
that f1(x, x) > 0 for all x 6= 0, then {Uf1 , Uf2 , ..., Ufk} is an open covering of RPn×RPn
on each member of which there is a continuous section of the endpoints fibration of RPn.
This completes the proof.

We will construct a nonsingular map f : R8×R8 → R8 such that the first coordinate
of f(x, x) is positive for x 6= 0. For this purpose, we identify the set R8 with the
set O of octonions, that is, we write an element (t, x, y, z, s, u, v, w) ∈ R8 in the form
t+ ix+ jy+ kz + ls+mu+ nv+ ow, where i, j, k, l,m, n, o are generalized square roots
of −1. The multiplication of i, j, k, l,m, n, o is defined by the following table.



i j k l m n o

i −1 k −j m −l −o n
j −k −1 i n o −l −m
k j −i −1 o −n m −l
l −m −n −o −1 i j k
m l −o n −i −1 −k j
n o l −m −j k −1 −i
o −n m l −k −j i −1


Also, we identify the set R4 of quadraples (t, x, y, z) of real numbers with the set

H of quaternions t + ix + jy + kz, where i, j, k are generalized square roots of −1 with
ij = k = −ji, jk = i = −kj, ki = j = −ik. Octonions are written in the form t+ix+jy+
kz+ ls+mu+nv+ow = Q+Rl, where Q and R are the quaternions Q = t+ ix+jy+kz
and R = s+ iu+ jv + kw. In addition, we define the conjugate of a quaternion and an
octonion by

t+ ix+ jy + kz = t− ix− jy − kz
and

t+ ix+ jy + kz + ls+mu+ nv + ow = t− ix− jy − kz − ls−mu− nv − ow.

We define now a nonsingular map f : R8×R8 → R8 by setting f(A,B) = AB. Hence,
Proposition 3.2.2 implies that TC(RP 7) ≤ 8. Also, we obtain by Proposition 1.2.11 and
the fact that catRPn = n+ 1 that TC(RPn) ≥ n+ 1, so we have the following corollary.

Corollary 3.2.3 TC(RP 7) = 8

Remark: In analogy with octonions we can use complex numbers and quaternions to
define nonsingular maps g : R2 × R2 → R2 and h : R4 × R4 → R4. In the same way, we
define g(z, w) = zw for complex numbers z, w and h(A,B) = AB for quaternions A,B.
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3.3 Topological Complexity of RP n and the immersion
problem

The calculation of TC(RPn) for all n > 1, by finding a general formula as in the case
of TC(CPn), turns out to be a very difficult problem. Actually, the main results of the
last two sections can be reversed. Firstly, the following is proved in [13].

Theorem 3.3.1 The topological complexity of RPn is equal to the smallest positive
integer k such that there exists a nonsingular map Rn+1 × Rn+1 → Rk.

Secondly, a converse of Theorem 3.1.1 holds in the following form.

Theorem 3.3.2 For n 6= 1, 3, 7, the topological complexity of RPn is equal to the
smallest positive integer k such that RPn can be immersed into Rk−1.

Thus, the problem of computing TC(RPn) is equivalent to the immersion problem
for real projective spaces. This is a classical problem in Topology, on which a lot of
work has been done starting with results of H. Hopf and H. Whitney around 1940,
but nevertheless remains unsolved in general. By now many important immersion and
nonimmersion results for RPn have been proved. The proof of Theorem 3.3.2 is based
on some of them. We refer to [4] for a historical survey.

¿From the above follows that TC(RPn) is a nondecreasing function of n, i.e. n ≤ m
implies that TC(RPn) ≤ TC(RPm). Another proof of this can be found in [14]. It
would be desirable to have a simple direct proof of this.
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