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1. Introduction 

The concept of a dynamical system of characteristic 0 + is due to T. Ura. In 
[1] S. Ahmad classified these dynamical systems on N 2 and in [12] R. Knight 
characterized them on p z in terms of their fixed point set. Because of the defini- 
tion (see 2.2), it seems that the term D+-stable is better than "characteristic 
0 § and we shall use it in the sequel. 

In this paper we are concerned with the study of the global qualitative 
behavior of D+-stable dynamical systems, in connection with the topological 
structure of the underlying phase spaces. More precisely, we answer the following 
problems: 

I. Find all the 2-manifolds which can support (non-trivial) D § dynam- 
ical systems. 

II. Describe the phase portraits of the D § dynamical systems on these 
manifolds. 

III. Find how the continuous D§ dynamical systems on 2-manifolds 
are related to the smooth ones. 

It turns out that the existence of periodic orbits in a D+-stable dynamical 
system on a 2-manifold M is crucial not only for its phase portrait but also 
for the topological structure of M. It is proved that there are only seven 2- 
manifolds supporting D+-stable dynamical systems with at least one periodic 
orbit. Moreover, we give a rather complete description of these systems (see 
3.1, 3.2). From this we deduce that the sphere S 2, the projective plane IP 2, the 
torus T 2 and the Klein bottle K 2 are the only compact 2-manifolds supporting 
(non-trivial) D § dynamical systems (see 3.4). On the contrary, there exists 
a (non-trivial) /)+-stable dynamical system without periodic orbits on every 
non-compact 2-manifold (see 4.1). Finally, using our answer to problem II and 
the methods of [-10, I1] we prove that every continuous D+-stable dynamical 
system on a 2-manifold is topologically equivalent to a smooth one (see 5.1). 

2. Preliminary Results 

Before proving the main theorems of the paper, we shall establish our notation 
and prove some preliminary results. 
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2.1. Let (IR, M, cp) be a dynamical system on a metric space M, i.e. a continuous 
action of the additive group of the real numbers IR on M. We let q~(t, x ) = t x  
and if I ~IR, A ~ M, then I A = { t x :  t e l ,  x~A}.  The orbit of the point x ~ M  
is denoted by lR(x), the positive semiorbit by IR + (x) and the negative semiorbit 
by lR-(x). A point x ~ M  is called periodic if there exists a T > 0  such that 
T x = x  and t x + x  for all t~(0, T). 

Two dynamical systems (N, M, ~0) and (IR, M', (p') are called topologically 
equivalent if there is a homeomorphism h: M ~ M' that takes orbits onto orbits 
preserving their orientation. 

We recall that the positive limit set of the point x ~ M is the set L + (x) = {y ~ M: 
t ,x--*y for some t , ~  + oo}, its positive prolongational limit set is the set J+(x) 
= {yEM: t, x ,  ~ y for some x, --* x and t, ~ + oo} and its first positive prolonga- 
tion the set D + (x)= I I  + (x)u  J + (x). The sets L-(x), J - ( x )  and D- (x )  are defined 
analogously. For  each A c m we let D + (A)= U { D+ (x): x~A}.  

A set A c M is called stable if every neighborhood of A contains a positively 
invariant ne ighborhood of A. The point x ~ M  is said to be attracted to A ~ M 
if for each neighborhood W of A there is a t > 0  such that ]R+( tx)c  W. The 
set E + (A) of points that are attracted to A is called the region of attraction 
of A. The set A is called asymptotically stable if it is stable and E+(A) is an 
open neigborhood of A. A stable set A is called globally asymptotically stable 
if E + (A) = M. 

2.2. Definition. A dynamical system (IR, M, q)) is called D +-stable (or of charac- 
teristic 0 +) if D + ( x ) = ~  (x) for each x ~ m .  

The preceding definition is equivalent to saying that D + (A)= A for every 
positively invariant, closed subset A of M or that L + ( x ) = J  + (x) for each x e M .  
Clearly, D +-stability is an invariant to topological equivalence. 

2.3. Proposition. Let (~,  M, qo) be a D +-stable dynamical system on a connected, 
locally compact, metric space M. 

(a) Every positively invariant, closed subset of M with compact boundary is 
stable (see [9, Theorem 1]). 

(b) I f  an invariant, closed set has compact boundary and is asymptotically 
stable then it is globally asymptotically stable (see [1, Proposition 3.2]). 

(c) For each x E M  the limit set L + (x) is stable, compact and minimal whenever 
it is non-empty and either L- (x )= ~ or L- (x )= L + (x)= lR(x) (see [2, Lemma 4.5]). 

(d) The set G={xEM:  L+(x)+N} is open, since each positive limit set is 
compact and stable. 

In this paper we are especially interested in the case where M is a 2-manifold. 
For  the proof of the following theorem see [-4] or [3]. 

2.4. Theorem. A stable compact minimal set of a dynamical system on a 2-manifold 
is either a fixed point, a periodic orbit or the system is topologically equivalent 
to some irrational flow on the torus T 2. 

So by 2.3(c) we have: 
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2.5. Theorem. Let (N, M, q~) be a D+-stable dynamical system on a 2-manifold 
M, not topologically equivalent to any irrational f low on the torus T 2. Then, 
given a point x ~ M  its positive limit set L + (x) is either a f ixed point or a periodic 
orbit, whenever it is non-empty. 

2.6. Notation. In the remainder of this section we assume that M is a 2-manifold 
and (N, M, (p) a D+-stable dynamical system, not topologically equivalent to 
any irrational f low on T 2. By 2.3(c), 2.5 and [14, Corollary 1.11] we have that 
each point x ~ M  is either fixed, periodic or its orbit is homeomorphic to IR. 
Let F denote the set of fixed points, P the set of periodic points and Q the 
set of points whose orbits are homeomorphic  to ~ .  So M = F u P u Q .  It is 
clear that F u P = {x c M: x E J + (x)}. Therefore, the set F ~ P is closed [14, Theo- 
rem 2.12] and Q is open in M. 

2.7. Proposition. (a) F ~ P = { x ~ M :  U ( x ) + ~ }  and therefore if  A is a compact 
invariant subset of M, then A c F u P. 

(b) Let A c M be a closed, invariant set with compact boundary. I f  A is isolated 
from fixed points and periodic orbits in M - - A ,  then it is globally asymptotically 
stable. 

Proof (a) If L-(x)@ ~, then x e L - ( x ) =  L + (x) (2.3 (c)) and by 2.5, x ~ F  ~ P. 
(b) The sets A and ~?A are stable (2.3(a)). Let W be an open, relatively 

compact and positively invariant neighborhood of 0A such that I~c~(M-A)c~ 
( F u P ) = ~ .  For  each x ~ W c ~ ( M - A )  the set L+(x) is either a fixed point or 
a periodic orbit contained in W ~  M - A .  So necessarily N @ L + (x) c 0A for each 
x e Wc~ ( M -  A). This implies that W c  E + (A), which means that A is asymptoti- 
cally stable, hence globally asymptotically stable (2.3(b)). 

2.8. Proposition. The restricted dynamical system on Q is parallelizable and each 
connected component of Q is homeomorphic either to ]1l 2 or to IR x S 1, depending 
upon whether the section is homeomorphic to N~ or to S ~ respectively. 

Proof Since L + (x)= J+ ( x ) c  F ~ P for all x e Q, the first assertion follows from 
[5, Ch. IV, 2.6]. The section in a connected component C of Q is a 1-manifold 
[-8, Ch. VII, 1.6], hence homeomorphic  to IR or to S ~. So C must be homeo- 
morphic to ]R 2 o r  t o  ]R x S 1. 

The above properties hold for both orientable or non-orientable M. If M 
is non-orientable and p: ~r ~ M is its orientable double covering, then there 
exists a unique dynamical system OR, M, ~) on ~r, called the lifted dynamical 
system on M, which makes p equivariant [6, Ch. I, p. 63]. 

2.9. Theorem. The lifted dynamical system OR, ~I, ~o) of  a D +-stable dynamical 
system (]R, M, ~o) on a non-orientable 2-manifold M is also D +-stable. 

Proof It suffices to prove that 3 + ( 2 ) c  L+(2) for each 2 ~ M  with J + ( 2 ) + ~ .  
Let )TeJ+(2) and suppose that p (~)=x ,  p()7)=y and p - l ( x ) =  {Y, 2'}, p - l ( y ) =  
{)7, )7'}. Then, y ~ J + (x) because p is equivariant. By D +-stability, L + (x) = J + (x) ~ 
and L+(x) is either a fixed point or a periodic orbit (2.5). Thus, L + (x )=N(y)  
and the points y, )7, )7 are all fixed or periodic. It is easy to see that IR()7)w ~()7')= 
L + (2 )wL  + (2'). We shall show that )Tq!L + (2) leads to a contradiction. If )7r + (2), 
then L + (2) = IR()7'), L + (2') = IR()7) and IR ()7) n ~()7') = ~.  The compact orbit N (y) 



456 K. Athanassopoulos 

is stable and so are IR@) and ROY ), because they are compact and the covering 
is finite. Let Vbe a positively invariant, open neighborhood of IR0Y ) such that 
~c~lR(~)=g. Since L+(2)=IR(~'), there is some t > 0  such that lR+(t2) c V. 
Hence J + ( 2 ) = J + ( t 2 ) c  V.. This implies that )~r which is contradictory 
to our hypothesis at the beginning of the proof. 

3. D§ Dynamical Systems on 2-Manifolds with Periodic Orbits 

In this section we describe the D+-stable dynamical systems on 2-manifolds 
having at least one periodic orbit and we classify the 2-manifolds supporting 
such systems. First we study the case where the manifold is orientable. The 
non-orientable case is treated then using Theorem 2.9. 

3.1. Let M be an orientable 2-manifold and (IR, M, ~0) a D+-stable dynamical 
system such that P + ~.  As M is orientable we can construct around each period- 
ic orbit an open neighborhood Vhomeomorphic to N x S 1 with Vc~ F = ~,  using 
local cross sections [8, Ch. VII, 2.6]. Let P~ denote the connected component  
of P which contains x e P  and po its interior. 

3.1.1. Proposition. I f  there exists a point x e P  such that pO = ~,  then M is homeo- 
morphic to IR x S 1 and the periodic orbit JR(x) is globally asymptotically stable. 

Proof Let V be an open neighborhood of lR(x) homeomorphic to ]R x S 1 with 
Vc~ F =  N. There is a connected, positively invariant, open neighborhood W of 
lR(x) such that 14/c V, because lR(x) is stable (2.3(a)). We shall show Wc~ 
( P - I R ( x ) ) = ~ .  Suppose there exists some zeWc~(P- lR(x ) ) .  Then l i t ( z )c  Wc~ 
( P - N ( x ) )  and since Vc~F=yzl, the periodic orbit lR(z) is not nullhomotopic 
in V [7, Proposition 1.7], [5, Ch. V, 3.8]. This implies that lit(x), lR(z) are the 
boundary curves of an invariant annulus A c F. Since A is a connected, compact, 
invariant set containing no fixed points and x e A ,  we have A c P~ (2.7(a)). Hence 
pO + ~,  a contradiction to the hypothesis. 

Thus, the periodic orbit lR(x) is isolated from fixed points and other periodic 
orbits. Hence it is globally asymptotically stable (2.7(b)) and M=IRV. 

The restricted dynamical system on M--IR(x)  is parallelizable and has a 
compact section S whose connected components are homeomorphic to S 1. We 
may also choose S to be contained in F. The set V-IR(x )  has two connected 
components V1 and V2. There are exactly two connected components $1 and 
$2 of S contained in V1 and V 2 respectively. The simple closed curves S~, S 2 
are the boundary curves of a positively invariant annulus which contains lR(x) 
in its interior. Since ]R(x) is globally asymptotically stable, each orbit in M - I R ( x )  
intersects $1~$2 .  It follows that S = S t u S 2  and M - I R ( x )  has exactly two 
connected components, namely IRS~ and IRS2, both homeomorphic to IR x S* 
with common boundary IR(x). Therefore M is homeomorphic to IR x S ~. 

3.1.2. Lemma. Let x e P be such that po ~ ~.  Then, ~ = ~ and one of the following 
holds. 

(a) pO is homeomorphic to IR x S 1 so that the factor ]R corresponds to a section 
of the restricted dynamical system in po and the factor S 1 to the periodic orbits. 
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(b) The dynamical system on M is topologically equivalent to the rational 
f low on the torus T 2. 

I 

Proof Let z ~P~. Since F u P is closed, z EF u P. If z~ F, {z} is stable and therefore 
every disk D with z~D ~ contains a periodic orbit lR(y)c  P~ bounding a disk 
Dy c D. By 2.7(a), D y c  F w P .  Hence, there is a connected, open neighborhood 
U of IR(y) such that U n D  ~ consists entirely of periodic orbits. Thus, ~ . D c ~  
U c D n P  ~  So z~--~ 

In case z ~ P  we take an open neighborhood V of P,(z) homeomorphic  to 
• S 1 with Vc~ F = g~. Let y' ~ P~ such that Ill(y') c V -  ~ (x), which exists because 

p O + ~ .  Then, R(z)  and R(y')  bound an invariant annulus K in V. By 2.7(a) 
we have K c F u P ,  i.e. K ~ c pO. Therefore z~~ 

Next we show that the po is connected. If A, B are non-empty, open sets 
such that po = A u B, then the closures of A, B relative to M - - F  have non-empty 
intersection because ~=Pf~  and P is closed in M - F .  Let z be a point in the 
intersection of the closures of A, B in M - - F ,  Van open neighborhood of N(z) 
homeomorphic  to R x S  1 such that Vc~F=gl  and z lEA ,  zzEB such that 
~-~(Z1)U~-~(Z2) C V, Then, N(z0 ,  R(Z2) bound an annulus K c P ~  V. Thus, K 
= (K c~ A) u K n B) from which follows that A n B • ~.  Hence po is connected. 

The rest of the assertion follows from [16, Proposition 4.5]. 

3.1.3. Lemma. The set P is closed in M if  and only if  there are no nullhomotopic 
periodic orbits. 

Proof  If z ~ P - P  c F, then any disk D with z~D ~ contains a nullhomotopic 
periodic orbit. 

If R(x)  is a nullhomotopic periodic orbit, then by [-7, Proposition 1.7] it 
bounds a disk D c F wP.  The closed set F n D  is not empty [5, Ch. V, 3.8] 
and the connectivity of D implies that F c~/54 ~. 

3.1.4. Theorem. Suppose that P is (non-empty and) non-closed. Then one of  the 
following holds. 

(a) M is homeomorphic to the sphere S 2, M = F  u P and F consists of  two 
centers. 

(b) M is homeomorphic to IR 2 and F is a singleton {s} which is either a 
global center or a local one. In the last case there is a globally asymptotically 
stable disk consisting of  s and periodic orbits surrounding it. 

Proof  Since P is non-closed, there exists a nullhomotopic periodic orbit lR(x) 
bounding a disk D, c F w P  (3.1.3, 2.7(a)). By [-1, Theorem 4.2], D x n F = { s }  
for some s e F  which is a global center with respect to the restricted dynamical 
system in D ~ By 3.1.2, for each z e P  ~ the periodic orbit N(z) bounds a disk 
Dz such that Fc~Dz= {s} and either Dzl c Dz2 or D~2 c Dzl whenever Zl, z2~P ~  
The set E = po u {s} is invariant, open and homeomorphic  to ~2.  Furthermore,  
E ~ F u P and so either F c~ ~ E 4= g or ~ E c P. 

Let F ~ O E ~ g l  and y e F n O E .  Let D be a disk such that y e D  ~ and s ~ M - - D .  
There is a z e P  ~ such that lR(z )c  D. The periodic orbit IR(z) bounds a disk 
U~ c D and Dzn  U~=~(z)  because D~ U ~ is open and closed in D o and sq~D. 
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This implies that Dz w Uz is homeomorphic to the sphere S 2 and M = Dz w Uz. 
By [1, Theorem 4.2], F ~  Uz={S '} for some s'~F which is a global center with 
respect to the restricted dynamical system in U~. Hence case (a) follows. 

Now let 8E c P. If 8 E = ~ ,  then M = E  and s is a global center. Suppose 
that ~ + 8E ~ P, y e S E  and Vbe an open neighborhood of IR(y) homeomorphic 
to ~ x  S 1 such that Vc~F=~.  There is a point z~E such that N ( z ) c  V. The 
periodic orbits N~(y), lR(z) bound an annulus A c Pxc~ Vsuch that A c~D~ =lR(z). 
Hence Dy=DzwA is a disk such that 8Dy=lR(y). It is easy to see that D o 
is open and closed in E. Therefore, D~ Dy=E=P~ and Px=Dy--{s}. The 
disk Dr is isolated from fixed points and periodic orbits in M - D y ,  for if there 
is a periodic orbit in (M--Dy)c~ V then it bounds an invariant disk containing 
Dy which means that yspO, a contradiction. By 2.7(b), Dy is globally asymptoti- 
cally stable and P = Dy - {s}, Fvo P = Dr. 

The set V - N ( y )  has two connected components V1 and 1/2 contained in 
D ~ and M - D y  respectively. Since every orbit in M - D r  intersects 1/2, the set 
M - D r  is connected. The restricted dynamical system on M - D y  is parallelizable 
and has a compact section S homeomorphic to SL The simple closed curve 
S bounds with IR(y) a positively invariant annulus, because it is not nullhomo- 
topic in V. Therefore, S bounds a positively invariant disk U containing Dy. 
On the other hand M - U  ~ is homeomorphic to N~-x S 1. It follows that M 
is homeomorphic  to IR 2 and (b) holds. 

3.1.5. Theorem. Let P be closed and po + ~. Then, either the dynamical system 
is topologically equivalent to the rational flow on the torus T 2 or M is homeo- 
morphic to N x S 1 and one of the following holds. 

(a) M = P .  
(b) P corresponds to IR- x S 1 and is globally asymptotically stable. 
(c) P corresponds to [ -  1, 1] x S 1 and is globally asymptotically stable. 

Proof. Since P is closed and P~ we have Px=R~ for each x ~ P  (3.1.1, 3.1.2). 
Suppose that the system is not topologically equivalent to the rational flow 
on the torus T 2. Then, pO is homeomorphic to N x S 1 for each x ~ P  (3.1.2). 
If 8P ~ =~  for some x~P,  then case (a) occurs. So, in the remainder of the 
proof we assume that 8 P x + ~  for each xeP .  

Let x~P,  y~SP~, V be an open neighborhood of N(y) homeomorphic  to 
IR x S 1 such that V ~ F = ~  and z~P ~ with IR(z) c V. The periodic orbits lR(y), 
lR(z) bound an annulus A c V~ P~. 

Suppose that 8P~=IR(y). The open set P~ has two connected compo- 
nents X1, X2 say with X~ ~ A ~  X2~A~  The set X 2 n A  ~ is open and 
closed in X2. Hence, X 2 = A  ~ Since 8P~=N(y), P~=XI u A  is homeomorphic 
to N -  x S 1 and has compact boundary. It is easy to verify that P~ is isolated 
from fixed points and periodic orbits in M - P x .  Hence, P~ is globally asymptoti- 
cally stable (2.7(b)). Working as in the last part of the proof  of 3.1.4, we can 
prove that M is homeomorphic to N x S ~ and case (b) occurs. 

Now let 8/'~ =t= IR(y) and y 'e  8 P~ be such that N(y')4= N(y). The periodic orbits 
N(y), IR(y') are the boundary curves of an invariant annulus K c P~ which is 
isolated from fixed points and periodic orbits in M - - K .  Hence, K is globally 
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asymptotically stable and K = P. The open set M - P  has two connected compo- 
nents, each homeomorphic  to IR x S 1. Again we can prove that M is homeo- 
morphic to IR x S 1 and case (c) occurs. 

3.2. Theorem. Let M be a non-orientable 2-manifold and OR, M, ~o) a D +-stable 
dynamical system on M such that P + ~.  Then, one of the following holds. 

(a) M is homeomorphic to the projective plane ]p2, M = F  u P and F is a 
singleton. 

(b) M is homeomorphic to the open Mdbius strip M 2 and either (i) M = P ,  
(ii) there is a globally asymptotically stable periodic orbit or (iii) P is a globally 
asymptotically stable closed M6bius strip. 

(c) M is homeomorphic to the Klein bottle K 2 and M = P. 

Proof Let OR, M, qS) be the lifted dynamical system on the orientable double 
covering space 2~ of M, which is D +-stable (2.9) and has at least one periodic 
orbit. Therefore, applying the results of 3.1, M is homeomorphic  either to N~ 2, 
S 2, R x S 1 or T 2. Note that if (R, M, ~p) has at least one fixed point then 
(N~, M, 0) has at least two fixed points. The case M = I R  2 is thus excluded 
by 3.1.4(b) and we are left with the last three cases. If M = S  s, then the lifted 
dynamical system is described by 3.1.4(a) and we have case (a). I f / ~ = ] R  x S 1 
o r  T 2 then M is homeomorphic  to M s o r  K 2 respectively and the lifted dynami- 
cal system is described by 3.1.l or 3.1.5. However, the dynamical system 
described by 3.1.5(b) is not compatible with the covering map of lR x S 1 onto 
m 2. So, we have (b) and (c). 

3.3. Corollary. The only 2-manifolds which can support a D+-stable dynamical 
system with at least one periodic orbit are the euclidean plane N~ 2, the sphere 
S 2, the cylinder ~ x S ~, the torus T 2, the projective plane g~2, the open Miibius 
s t r ip  M s and the Klein bottle K 2. 

3.4. Corollary. The sphere S 2, the projective plane ~,s, the torus T z and the Klein 
bo t t l e  K s are the only compact 2-manifolds which can support (non-trivial) 
D +-stable dynamical systems. 

Proof Let M be a compact 2-manifold and (IR, M, ~o) a D+-stable dynamical 
system. If the system is non-trivial and not topologically equivalent to any 
irrational flow on the torus T s, then M = F u P  and P + ~ .  So, the assertion 
is a consequence of 3.3. 

4. D +-Stable Dynamical Systems on 2-Manifolds Without Periodic Orbits 

Let M be a 2-manifold supporting a (non-trivial) D+-stable dynamical system 
without periodic orbits, not topologically equivalent to any irrational flow on 
the torus T 2. Then, M is necessarily non-compact (2.7(a)). In this section we 
consider D +-stable dynamical systems on non-compact 2-manifolds without period- 
ic orbits. 

4.1. Example. Every non-compact  2-manifold M supports a (non-trivial) 
D +-stable dynamical system without periodic orbits. As a result of the classifica- 
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e 

Fig. 

tion of non-compact 2-manifolds given in [13], if e is an end of M, there is 
a disk D in the end point compactification M + of M (see [15]) such that 
D n (M + - - M ) =  {e}. On M we consider the dynamical system which fixes the 
points of M outside the interior of D and in the interior of D is as illustrated 
in Fig. 1. This dynamical system on M is D+-stable and has no periodic orbit. 

4.2. Proposition. Let (P,~, M, q)) be a D+-stable dynamical system on the non- 
compact 2-manifold M with P = ~.  

(a) The restricted dynamical system on M - - F  is parallelizable and each con- 
nected component of  M - F  is homeomorphic to IR 2 or ~ x S t. 

(b) Let G = { x ~ M :  L+ (x)~:~}. The map g: G-->F with L+(x)={g(x)} is con- 
tinuous. 

(c) The set F is locally connected, asymptotically stable and E + (F)= G. 
(d) For each seO F there is at least one x e G - -  F such that L + (x)= {s}. 

Proof Assertion (a) is a restatement of 2.8, while (b) follows from the stability 
of fixed points. It is also evident that F is asymptotically stable and E + (F) = G. 

w e  show that F is locally connected. Let s e F and V be a positively invariant, 
open neighborhood of s such that P c  G (2.3(d)). The non-empty set A = {x~ V: 
L + ( x ) c  V} is a positively invariant, open neighborhood of s by (b). Let W 
be the connected component of A containing s. Then, Wis an open neighborhood 
of s and l R + ( x ) c  Wfor  all xeW. It suffices to prove that W n F  is connected. 
Let F1, F2 be non-empty, closed sets in W~ F such that Wn F =/71 u F2. Set 
W I = { x E W :  L+(x)cF/}, i=1 ,  2. The sets W1, Wz are non-empty and 
W= W1 u W2. By (b) they are also closed in W. Hence, Wt n W2 4= ~.  Therefore, 
F1 c~ Fz ~:~  and Wn F is connected. For  (d) see the remark at the bot tom of 
p. 569 in Eli. 

The following proposition can be proved in the same way as Theorem 4.8 
in [1]. 

4.3. Proposition. (a) Each connected component K o f f  is contained in a connected 
component C of  G and K = C n F. Furthermore, K is asymptotically stable and 
E + (K) = C. 

(b) I f  F has a connected component K with compact boundary, then K = F  
and F is globally asymptotically stable. 

(c) F has a countable number of  connected components. 
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4.4. Remark. The study of D r_stable dynamical systems without periodic orbits 
on non-compact  2-manifolds is continued in [15] with the study of the "behavior  
at infinity" of the orbits with empty limit sets. This is done by extending the 
system to a (possibly non Dr-s table)  dynamical  system on the end point compac- 
tification M r of M and studying the extended system near M r - M  [15]. 

5. Smoothing D +-Stable Dynamical Systems on 2-Manifolds 

In this last section we combine the results obtained in the preceding sections 
and the ideas of 1-10, 11] in order to smooth Dr-s tab le  dynamical systems 
on 2-manifolds. Since the method of proof  has already been presented, we do 
not provide full details. 

5.1. Theorem. Every D +-stable dynamical system on a 2-manifold is topologically 
equivalent to a smooth D r-stable dynamical system. 

Proof Let (IR, M, q)) be a D+-stable dynamical  system on a 2-manifold M. 
If it is topologically equivalent to some irrational flow on the torus T 2, then 
it is of course smoothable.  If not, by 2.8, 3.1, 3.2 and using flow boxes as 
charts, we can construct a C ~ structure N on M - F  with respect to which 
the restricted dynamical system in M - F  is smooth. The C ~~ structure N induces 
on M - - F  the given topology of M. Hence it is diffeomorphic to the original 
C ~ structure d of M restricted on M - F ,  by a smooth diffeomorphism 
h: (M--F, N ) ~ ( M - - F ,  sO), because M is 2-dimensional. Moreover,  we may 
choose h so that it can be extended to a homeomorphism H of M onto itself 
that fixes each point of F. Let i~(t, x)=h((p(t, h-l(x))) for t ~ ,  x e M - - F .  The 
triple (~ ,  M - F ,  #) is a smooth dynamical  system on M - F  (with respect to 
sr Let t /be the infinitesimal generator of this system. Using standard techniques 
one can construct a smooth function f :  M ~ N  r with F = f - l ( 0 )  such that 
the vector field fq  can be smoothly extended to all of M leaving the points 
of F fixed. The flow of the extended vector field on M is a smooth D +-stable 
dynamical system topologically equivalent to (~,  M, ~o) under H. 

Remark. As was pointed out by the referee, a much more powerful smoothing 
result concerning dynamical  systems on compact 2-manifolds is proved in Gutier- 
rez, C.: Smoothing continuous flows on two-manifolds and recurrence. Ergodic 
Th., Dynamical  Systems 6, 17-44 (1986). 
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