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ABSTRACT

Let X be a compact metric space and T : X → X a continuous surjection. We

present sufficient conditions which imply the existence of absolutely continuous con-

formal measures for T with respect to a given ergodic T -invariant Borel probability

measure. The same conditions give measurable or L∞ solutions of the corresponding

cohomological equation. We illustrate our results in an example of a sofic system.

1 Introduction

Let X be a compact metric space, T : X → X a continuous surjection and let f : X → R

be a continuous function. We call a Borel probability measure ν on X an ef -conformal

measure for T if ν is equivalent to T∗ν and
dν

d(T∗ν)
= ef . This kind of measure has been

used without a particular name in [7] and in a more general probabilistic setting in [10].
In this note we study the existence of absolutely continuous conformal measures

with respect to a given ergodic T -invariant Borel probability measure. We present a
sufficient condition for the existence of an absolutely continuous conformal measure for
a continuous surjection. The problem of the existence of an ef -conformal measure ν

for a homeomorphism T which is absolutely continuous with respect to an ergodic T -
invariant Borel probability measure µ is closely related to the existence and regularity
properties of solutions of the cohomological equation f = u − u ◦ T . This relation is
explained with details in section 2. If there exists a continuous solution u, then f is
called a continuous coboundary. According to the classical Gottschalk-Hedlund theorem
(see page 102 in [5]), if T is minimal, then f is a continuous coboundary if and only if
there exists x0 ∈ X such that

sup{|

n−1
∑

k=0

f(T k(x0))| : n ∈ N} < +∞.

The main result is Theorem 3.5 which can be stated as follows.
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Main Theorem. Let X be a compact metric space and T : X → X a continuous
surjection. Let µ ∈ M(X) be an ergodic T -invariant measure and let f : X → R be a

continuous function such that

∫

X

fdµ = 0. If there exists a constant c ≥ 1 such that

En(f) ≤ c

∫

X

En(f)dµ

for every n ∈ N, where En(f) = eSn(f) and Sn(f) = −

n−1
∑

k=0

f ◦ T k, then there exists

an ef -conformal measure ν for T which is absolutely continuous with respect to µ.

Moreover,
dν

dµ
∈ L∞(µ) and − log(

dν

dµ
) is a measurable solution of the cohomological

equation f = u− u ◦ T . �

If T is a homeomorphism, then in Theorem 3.7 we prove that if the stronger condition

1

c

∫

X

En(f)dµ ≤ En(f) ≤ c

∫

X

En(f)dµ

for every n ∈ N (or −n ∈ N) holds for some constant c ≥ 1, then a ef -conformal measure

ν for T exists which is equivalent to µ and log(
dν

dµ
) ∈ L∞(µ). Also, f is a L∞(µ)

coboundary with transfer function − log(
dν

dµ
). This result holds without the assumption

that T is minimal.
In a final section we illustrate our results in an example of a known sofic system which

is attributed to B. Markus in [4]. In this example T is the two-sided left shift restricted
on a suitable compact subset X of {−1, 1}Z and is a continuous factor of a subshift of
finite type on N + 1 symbols for some integer N ≥ 2. The system is not minimal, it is
chaotic and it has the strong specification property.

2 Conformal measures

Let T : X → X be a continuous surjection of a compact metric space X and let f :
X → R be a continuous function. A ef -conformal measure for T is a Borel probability
measure ν on X such that

∫

X

φdν =

∫

X

(φ ◦ T )efdν

for every continuous function φ : X → R. Evidently, a ef -conformal measure for T is
T -quasi-invariant and is an e−f◦T−1

-conformal measure for T−1, in case T is a homeo-
morphism.

It is easy to see that if h : X → X is a homeomorphism and S = h ◦ T ◦ h−1, then
h∗ν is a ef◦h

−1

-conformal measure for S for every ef -conformal measure ν for T .
According to the main result (Theorem 6.2) of [1] if T : X → X is a homeomorphism

of a compact metric space X and f : X → R is a continuous function, then there exists
a ef -conformal measure for T if and only if there exists a point x ∈ X such that

lim sup
n→+∞

1

n

n−1
∑

k=0

f(T k(x)) ≤ 0
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and

lim sup
n→+∞

1

n

n
∑

k=1

−f(T−k(x)) ≤ 0.

For the reader’s convenience we shall describe a construction of conformal measures for
homeomorphisms due to M. Denker and M. Urbanski given in [2] (see also section 9.2
in [6]). Note that there may be no ef -conformal measure for T for a given continuous
function f : X → R. This is the case, for example, if f > 0, since we necessarily have
∫

X

efdν = 1 for every ef -conformal measure. We need some preliminary observations.

Let (an)n∈N be a sequence of real numbers and let c = lim sup
n→+∞

an

n
. The series

∞
∑

n=1

ean−ns converges for s > c, diverges for s < c and we cannot tell for s = c, by

the root test.

Lemma 2.1. There exists a sequence of positive real numbers (bn)n∈N such that

lim
n→+∞

bn

bn+1
= 1 and the series

∞
∑

n=1

bne
an−ns converges for s > c and diverges for s ≤ c.

Proof. If the series

∞
∑

n=1

ean−nc diverges, we may take bn = 1 for every n ∈ N. Suppose

that it converges. We choose a sequence of positive integers (nk)k∈N such that

lim
k→+∞

nk

nk+1
= 0 and lim

k→+∞

ank

nk
= c.

It suffices now to put ǫk =
ank

nk
− c and take

bn = exp

[

n

(

nk − n

nk − nk−1
ǫk−1 +

n− nk−1

nk − nk−1
ǫk

)]

for nk−1 ≤ n < nk. �

Let f : X → R be a continuous function such that

∫

X

fdµ = 0 for some ergodic

T -invariant Borel probability measure µ. It is well known that the set of points x ∈ X

such that the limit

lim
n→+∞

1

n

n
∑

k=1

f(T−k(x))

exists in R has measure 1 with respect to every T -invariant Borel probability measure,
and is therefore non-empty. So there exists a point x ∈ X such that

lim
n→+∞

1

n

n
∑

k=1

f(T−k(x)) =

∫

X

fdµ = 0,

since µ is assumed to be ergodic.
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If we take an = −

n
∑

k=1

f(T−k(x)), then lim
n→+∞

an

n
= 0. Let Ms =

∞
∑

n=1

bne
an−ns, s > 0,

where (bn)n∈N is the corresponding sequence given from Lemma 2.1, and

µs =
1

Ms

∞
∑

n=1

bne
an−nsδT−n(x), s > 0.

Proposition 2.2. Every accumulation point with respect to the weak* topology of the
directed family of Borel probability measures (µs)s>0, as s ↓ 0, is a ef -conformal measure
for T .

Proof. For every continuous function φ : X → R we have on the one hand

∫

X

φdµs =
1

Ms

∞
∑

n=1

bne
an−nsφ(T−n(x))

and on the other

∫

X

(φ ◦ T )efdµs =
1

Ms

∞
∑

n=1

bne
an−nsφ(T−n+1(x))ef(T

−n(x))

=
1

Ms

[

b1e
−sφ(x) +

∞
∑

n=1

bn+1e
−sean−nsφ(T−n(x))

]

.

Since lim
s↓0

b1e
−sφ(x)

Ms
= 0, we need to estimate the difference

1

Ms

∣

∣

∣

∣

∞
∑

n=1

bne
an−nsφ(T−n(x))−

∞
∑

n=1

bn+1e
−sean−nsφ(T−n(x))

∣

∣

∣

∣

≤
‖φ‖

Ms

∞
∑

n=1

∣

∣

∣

∣

bn+1

bn
e−s − 1

∣

∣

∣

∣

bne
an−ns.

Given ǫ > 0 there exists n0 ∈ N such that for n ≥ n0 we have
∣

∣

∣

∣

bn+1

bn
− 1

∣

∣

∣

∣

< ǫ

and therefore
∣

∣

∣

∣

bn+1

bn
e−s − 1

∣

∣

∣

∣

< ǫe−s + |1− e−s|.

It follows that
1

Ms

∞
∑

n=1

∣

∣

∣

∣

bn+1

bn
e−s − 1

∣

∣

∣

∣

bne
an−ns

<
1

Ms

n0−1
∑

n=1

∣

∣

∣

∣

bn+1

bn
e−s − 1

∣

∣

∣

∣

bne
an−ns +

ǫe−s + |1− e−s|

Ms
·

∞
∑

n=n0

bne
an−ns

≤
1

Ms

n0−1
∑

n=1

∣

∣

∣

∣

bn+1

bn
e−s − 1

∣

∣

∣

∣

bne
an−ns + ǫe−s + |1− e−s|.
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Since lim
s↓0

Ms = +∞, there exists some 0 < s0 < 1 such that ǫe−s + 1− e−s < 2ǫ,

1

Ms

n0−1
∑

n=1

∣

∣

∣

∣

bn+1

bn
e−s − 1

∣

∣

∣

∣

bne
an−ns < ǫ

and
b1e

−s

Ms
< ǫ for all 0 < s < s0.

Summarizing, for every ǫ > 0 there exists 0 < s0 < 1 such that
∣

∣

∣

∣

∫

X

φdµs −

∫

X

(φ ◦ T )efdµs

∣

∣

∣

∣

< 4ǫ‖φ‖

for all 0 < s < s0 and every continuous function φ : X → R. This proves the assertion. �

There is a close relation between ef -conformal measures for a homeomorphism T :
X → X of a compact metric space and solvability of the cohomological equation f =
u− u ◦ T , where f : X → R is continuous (see also Proposition 4.4 in [1]).

Let µ be any T -invariant Borel probability measure. If there exists a measurable
solution u of the above cohomological equation defined µ-almost everywhere such that
e−u ∈ L1(µ), then there exists a ef -conformal measure ν for T equivalent to µ with
density

dν

dµ
=

e−u

∫

X

e−udµ

.

Thus, if there exists a continuous solution u, then for every T -invariant Borel probability
measure we get an equivalent ef -conformal measure for T . Moreover, in this case, every
ef -conformal measure ν for T is obtained in this way. Indeed, we have

∫

X

φeudν =

∫

X

(φ ◦ T )eudν

for every continuous function φ : X → R, and so the equivalent measure µ to ν with
density

dµ

dν
=

eu
∫

X

eudν

is T -invariant. Consequently, if f is a continuous coboundary, then the ef -conformal
measures for T are in one-to-one correspondence with the T -invariant Borel probability
measures and each ef -conformal measure for T is equivalent to its corresponding T -
invariant measure.

Conversely, suppose that µ is an ergodic T -invariant Borel probability measure and

f : X → R is a continuous function such that

∫

X

fdµ = 0. Suppose further that there

exists a ef -conformal measure ν ∈ M(X) for T which is absolutely continuous with

respect to µ and let g =
dν

dµ
. For every measurable set A ⊂ X we have

∫

X

(χA ◦ T )(g ◦ T )dµ = ν(A) =

∫

X

(χA ◦ T )efdν =

∫

X

(χA ◦ T )efgdµ
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and therefore
∫

T−1(A)
[gef − (g ◦ T )]dµ = 0.

Since µ is T -invariant, it follows that g ◦ T = gef µ-almost everywhere. The ergodicity
of µ implies now that g > 0 µ-almost everywhere. So, u = − log g is a measurable
solution of the cohomological equation f = u − u ◦ T . If log g ∈ L∞(µ) and T is a
minimal homeomorphism, then there exists some continuous function u : X → R such
that f = u− u ◦ T , by Proposition 4.2 on page 46 in [3].

Note that ν is equivalent to µ, because g > 0. We remark that this is actually a
more general fact which holds for every T -quasi-invariant Borel probability measure. To
see this, let T : X → X be a homeomorphism of a compact metric space X and µ be
an ergodic T -invariant Borel probability measure. Let ν is a T -quasi-invariant Borel

probability measure which is absolutely continuous with respect to µ. Let g =
dν

dµ
and

A = g−1(0). If S =
⋃

n∈Z

T n(A), then S is T -invariant and ν(S) = 0. On the other hand

µ(X \S) > 0, and since µ is ergodic we get µ(S) = 0, that is g > 0 µ-almost everywhere.
In particular, if T is uniquely ergodic, then every T -quasi-invariant measure for T which
is absolutely continuous with respect to its unique invariant Borel probability measure
is equivalent to it.

3 Absolutely continuous conformal measures

Let X be a compact metric space and µ ∈ M(X). The set

Aµ = {ν ∈ M(X) : ν ≪ µ}

is not empty, since it contains µ, and is convex. In general, Aµ is not a closed subset of
M(X) with respect to the weak* topology. For example, if we let µ be the Lebesgue
measure on the unit interval [0, 1] and for 0 < ǫ < 1 we let µǫ denote the Borel

probability measure on [0, 1] with density
1

ǫ
χ[0,ǫ], then lim

ǫ→0
µǫ is the Dirac point measure

at 0.

Lemma 3.1. Let X be a compact metric space and µ ∈ M(X). Let (νn)n∈N be a

sequence in Aµ converging weakly* to some ν ∈ M(X) and let fn =
dνn

dµ
, n ∈ N. If

there exist non-negative h, g ∈ L1(µ) such that h ≤ fn ≤ g for every n ∈ N, then ν ∈ Aµ

and h ≤
dν

dµ
≤ g.

Proof. Since ν is a finite measure, there exists a (countable) basis U of the topology of
X such that ν(∂U) = 0 for every U ∈ U . So U is contained in the algebra

C(ν) = {A|A ⊂ X Borel and ν(∂A) = 0}

and since it generates the Borel σ-algebra of X, so does C(ν). Let now A ⊂ X be a

Borel set with µ(A) = 0 and ǫ > 0. There exists 0 < δ < ǫ such that

∫

B

gdµ < ǫ for
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every Borel set B ⊂ X with µ(B) < δ, because g ∈ L1(µ). There exists some A0 ∈ C(ν)
such that µ(A△A0) < δ and ν(A△A0) < δ. Thus µ(A0) < δ and |ν(A) − ν(A0)| < δ.
By weak* convergence, ν(A0) = lim

n→+∞
νn(A0) and so there exists some n0 ∈ N such that

|νn(A0)− ν(A0)| < ǫ for n ≥ n0. Therefore,

ν(A0) < νn(A0) + ǫ =

∫

A0

fndµ+ ǫ ≤

∫

A0

gdµ + ǫ < 2ǫ.

It follows that 0 ≤ ν(A) < 3ǫ for every ǫ > 0, which means that ν(A) = 0. This shows
that ν ∈ Aµ.

To prove the last assertion, we note first that there exists a sequence of (finite)
partitions (Pn)n∈N of X such that Pn+1 is a refinement of Pn, the Borel σ-algebra of X

is generated by
∞
⋃

n=1

Pn and µ(∂B) = 0 for every B ∈ Pn and n ∈ N. It can be constructed

starting with a countable basis {Un : n ∈ N} of the topology of X such that µ(∂Un) = 0
for every n ∈ N and defining inductively Pn to be the finite family consisting of Borel
sets with positive µ measure of the form B ∩ Un or B ∩ (X \ Un), for B ∈ Pn−1, taking
P0 = {X}.

Let Pn(x) denote the element of Pn which contains x ∈ X. Then,

dν

dµ
(x) = lim

n→+∞

ν(Pn(x))

µ(Pn(x))
,

µ-almost everywhere on X and in L1(µ) (see page 8 in [8]). On the other hand, by the
weak* convergence and since ν ∈ Aµ, for every k ∈ N and x ∈ X there exists some
nk ∈ N such that

|ν(Pk(x)) − νnk
(Pk(x))| <

1

k
µ(Pk(x)).

It follows that

0 ≤
ν(Pk(x))

µ(Pk(x))
<

1

k
+
νnk

(Pk(x))

µ(Pk(x))
=

1

k
+

1

µ(Pk(x))

∫

Pk(x)
fnk

dµ ≤
1

k
+

1

µ(Pk(x))

∫

Pk(x)
gdµ.

Since

lim
k→+∞

1

µ(Pk(x))

∫

Pk(x)
gdµ = g(x)

µ-almost everywhere on X and in L1(µ), it follows that 0 ≤
dν

dµ
(x) ≤ g(x) µ-almost

everywhere on X.
Similarly, from

ν(Pk(x))

µ(Pk(x))
> −

1

k
+
νnk

(Pk(x))

µ(Pk(x))
= −

1

k
+

1

µ(Pk(x))

∫

Pk(x)
fnk

dµ ≥ −
1

k
+

1

µ(Pk(x))

∫

Pk(x)
hdµ

follows that h(x) ≤
dν

dµ
(x) µ-almost everywhere on X. �

Let X be a compact metric space and T : X → X a continuous surjection. For

any continuous function f : X → R we put Sn(f) = −
n−1
∑

k=0

f ◦ T k and En(f) = eSn(f).
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Let Mn = sup{Sn(f)(x) : x ∈ X} and Ln = inf{Sn(f)(x) : x ∈ X}, n ∈ N. Since

Sn(f) ◦ T = Sn+1(f) + f for n ∈ N, if gn =

n−1
∑

k=0

Ek(f), then we have

(gn ◦ T )e−f − gn = En(f)− e−f .

Let now µ ∈ M(X) be T -invariant and suppose that

∫

X

fdµ = 0. So, Ln ≤ 0 ≤ Mn

for every n ∈ N. Putting hn =
gn

∫

X

gndµ

, we get

(hn ◦ T )− hne
f =

ef − e−Sn(f)

e−Sn(f)

∫

X

gndµ

,

for every n ∈ N.

Suppose that there exists a positive h ∈ L1(µ) such that En(f) ≤ h

∫

X

En(f)dµ for

every n ∈ N. Then also 0 ≤ hn ≤ h for n ∈ N. If νn denotes the element of Eµ with

hn =
dνn

dµ
, then {νn : n ∈ N} ⊂ Eµ, by Lemma 3.1.

Proposition 3.2. Let X be a compact metric space and T : X → X a continuous
surjection. Let µ ∈ M(X) be T -invariant and let f : X → R be a continuous function

such that

∫

X

fdµ = 0. Suppose that

(i) there exists a positive h ∈ L1(µ) such that En(f) ≤ h

∫

X

En(f)dµ for every n ∈ N,

and

(ii) the sequence e−Mn

n−1
∑

k=0

eLk , n ∈ N, is unbounded.

Then there exists an ef -conformal measure for T which is absolutely continuous with
respect to µ.

Proof. Using the above notations, it suffices to prove that there exists a sequence of
positive integers nj → +∞ such that lim

j→+∞

(

(hnj
◦ T )− hnj

ef
)

= 0 µ-almost everywhere

on X. Indeed, passing to a subsequence if necessary, there exists ν ∈ Eµ such that
ν = lim

j→+∞
νnj

, by Lemma 3.1. Since µ is T -invariant, for every continuous function

φ : X → R we have
∫

X

(

φ− (φ ◦ T )ef
)

dν = lim
j→+∞

∫

X

(φ ◦ T )
(

(hnj
◦ T )− hnj

ef
)

dµ = 0,

by dominated convergence, because

|(φ ◦ T )((hn ◦ T )− hne
f )| ≤ ‖φ‖((h ◦ T ) + hef ) ∈ L1(µ).

Since

|(hn ◦ T )− hne
f | = ef

|En(f)− e−f |
∫

X

gndµ

,
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we need only prove that there exist nj → +∞ such that

lim
j→+∞

µ({x ∈ X : |Enj
(f)(x)− e−f(x)| ≥ δ

∫

X

gnj
dµ}) = 0

for every δ > 0. Let

An,δ = {x ∈ X : En(f)(x) ≥ e−f(x) +
δ

h(x)

n−1
∑

k=0

Ek(f)(x)}, and

A′
n,δ = {x ∈ X : En(f)(x) ≤ e−f(x) −

δ

h(x)

n−1
∑

k=0

Ek(f)(x)}.

Our assumption (i) implies that it suffices to prove the existence of a sequence of positive
integers nj → +∞ such that lim

j→+∞
µ(Anj ,δ) = lim

j→+∞
µ(A′

nj ,δ
) = 0 for every δ > 0.

For every x ∈ An,δ we have

h(x)

δ
> e−Mn

n−1
∑

k=0

Ek(f)(x)

and integrating over An,δ we obtain

1

δ

∫

X

hdµ ≥ µ(An,δ)e
−Mn

n−1
∑

k=0

eLk .

Similarly, for every x ∈ A′
n,δ we have

n−1
∑

k=0

Ek(f)(x) <
h(x)

δ
e−f(x)

and integrating over A′
n,δ we get

µ(A′
n,δ)

n−1
∑

k=0

eLk ≤
1

δ

∫

X

he−fdµ.

Our assumption (ii) means that there exist nj → +∞ such that e−Mnj

nj−1
∑

k=0

eLk → +∞,

and therefore we also have

nj−1
∑

k=0

eLk → +∞, because Ln ≤ 0 ≤ Mn. Consequently,

lim
j→+∞

µ(Anj ,δ) = lim
j→+∞

µ(A′
nj ,δ

) = 0. �

In the next proposition we make a more restrictive assumption (i) and a weaker
assumption (ii).
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Proposition 3.3. Let X be a compact metric space and T : X → X a continuous
surjection. Let µ ∈ M(X) be T -invariant and let f : X → R be a continuous function

such that

∫

X

fdµ = 0. Suppose that

(i) there exists a constant c ≥ 1 such that En(f) ≤ c

∫

X

En(f)dµ for every n ∈ N,

and

(ii) the sequence e−Mn

n−1
∑

k=0

eMk , n ∈ N, is unbounded,

Then there exists an ef -conformal measure for T which is absolutely continuous with
respect to µ.

Proof. Our assumption (ii) means that there exists a sequence of positive integers nj →

+∞ such that e−Mnj

nj−1
∑

k=0

eMk → +∞, as j → +∞. Using the same notations as above

we have

∫

X

gnj
dµ → +∞ and

e
−Snj

∫

X

gnj
dµ ≥

1

c
· e−Mnj

nj−1
∑

k=0

eMk → +∞,

as j → +∞, by our assumptions. Therefore, lim
j→+∞

(

(hnj
◦ T )− hnj

ef
)

= 0 uniformly

on X and as in the proof of Proposition 3.2, every ν ∈ {νnj
: j ∈ N} is ef -conformal

measure for T that is absolutely continuous with respect to µ. �

As the following Lemma shows, if in Proposition 3.3 the T -invariant measure
µ ∈ M(X) is ergodic, then condition (ii) is implied by condition (i).

Lemma 3.4. Let X be a compact metric space and T : X → X a continuous surjection.
Let µ ∈ M(X) be an ergodic T -invariant measure and let f : X → R be a continuous

function such that

∫

X

fdµ = 0. Suppose that there exists a constant c ≥ 1 such that

En(f) ≤ c

∫

X

En(f)dµ

for every n ∈ N.

(a) If An = {x ∈ X : Sn(x) > Mn − log c − 1}, n ∈ N, then µ(An) ≥
e− 1

ec− 1
for

n ∈ N.
(b) For every N ∈ N there exists n ∈ N such that Mn+j ≤ Mn +1 for all 0 ≤ j ≤ N .

(c) The sequence e−Mn

n−1
∑

k=0

eMk , n ∈ N, is unbounded.

Proof. (a) From our assumption we have

eMn−log c ≤

∫

X

En(f)dµ ≤ eMnµ(An) + eMn−log c−1µ(X \ An),
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from which the required inequality follows.
(b) We proceed to prove the assertion by contradiction assuming that there exists

someN ∈ N such that for every n ∈ N there exists 1 ≤ jn ≤ N such thatMn+jn > Mn+1.
Inductively, if we put nk = 1+ j1+ · · ·+ jk, then Mnk

> M1+k and 1+k ≤ nk ≤ 1+kN

for every k ∈ N. Therefore,
Mnk

nk
>

1

N + 1

for every k ∈ N. If now k0 ∈ N is such that
∣

∣

∣

log c− 1

nk

∣

∣

∣
<

1

2(N + 1)
for k ≥ k0, then for

x ∈ An we have
1

nk

Snk
(x) >

1

2(N + 1)

and by (a) we get

µ({x ∈ X :
1

nk

Snk
(x) >

1

2(N + 1)
}) ≥

e− 1

ec− 1
> 0

for every k ≥ k0. Hence the sequence (
1

n
Sn)n∈N does not converge in measure to zero.

This contradicts the Ergodic Theorem of Birkhoff, since we assume that µ is an ergodic
T -invariant Borel probability measure.

(c) Suppose on the contrary that there exists a real number a > 0 such that

e−Mn

n−1
∑

k=0

eMk ≤ a, for every n ∈ N. By (b), for every N ∈ N there exists n ∈ N such

that Mn+j ≤ Mn + 1 for all 0 ≤ j ≤ N , and so

N
∑

j=0

n+j−1
∑

k=0

eMk ≤ a

N
∑

j=0

eMn+j ≤ eaeMn + a

(

n+N−1
∑

k=0

eMk −

n−1
∑

k=0

eMk

)

≤ ea(1 + a)eMn − a

n−1
∑

k=0

eMk .

Substituting

N
∑

j=0

n+j−1
∑

k=0

eMk = (N + 1)

n−1
∑

k=0

eMk +NeMn +

N−1
∑

i=1

(N − i)eMn+i ,

we arrive at

(N + 1 + a)

n−1
∑

k=0

eMk +NeMn +

N−1
∑

i=1

(N − i)eMn+i ≤ ea(1 + a)eMn

and therefore N ≤ ea(1 + a) for every N ∈ N, contradiction. �

The above immediately imply the following theorem which is the main result of this
note.
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Theorem 3.5. Let X be a compact metric space and T : X → X a continuous surjection.
Let µ ∈ M(X) be an ergodic T -invariant measure and let f : X → R be a continuous

function such that

∫

X

fdµ = 0. If there exists a constant c ≥ 1 such that

En(f) ≤ c

∫

X

En(f)dµ

for every n ∈ N, then there exists an ef -conformal measure ν for T which is absolutely

continuous with respect to µ. Moreover,
dν

dµ
∈ L∞(µ) and − log(

dν

dµ
) is a measurable

solution of the cohomological equation f = u− u ◦ T . �

The preceding Theorem 3.5 combined with the main result of [9] gives the following.

Corollary 3.6. Let X be a compact metric space and T : X → X a continuous surjection
which is a locally eventually onto local homeomorphism. Let µ ∈ M(X) be an ergodic

T -invariant measure and let f : X → R be a continuous function such that

∫

X

fdµ = 0.

If there exists a constant c ≥ 1 such that

1

c

∫

X

En(f)dµ ≤ En(f) ≤ c

∫

X

En(f)dµ

for every n ∈ N, then there exists an ef -conformal measure ν for T which is absolutely

continuous with respect to µ. Moreover, − log(
dν

dµ
) ∈ L∞(µ) and in case µ has full

support the cohomological equation f = u− u ◦ T has a continuous solution. �

If X is a compact metric space and T : X → X is a homeomorphism, for any
continuous function f : X → R we put

En(f) =



































exp
n
∑

k=1

f ◦ T−k, if n > 0,

1, if n = 0,

exp (−

|n|−1
∑

k=0

f ◦ T k), if n < 0.

As before we also put Sn(f) = logEn(f) and Mn = sup{Sn(f)(x) : x ∈ X}, n ∈ Z.

Let now µ ∈ M(X) be T -invariant and suppose that

∫

X

fdµ = 0. Then, Mn ≥ 0 for

every n ∈ Z. Since Sn(f) ◦ T
−1 = Sn+1(f)− f ◦ T−1 for n ∈ N, if gn =

n−1
∑

k=0

Ek(f), then

we have
(gn ◦ T−1)ef◦T

−1

− gn = En(f)− 1.
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Putting hn =
gn

∫

X

gndµ

, we get

(hn ◦ T−1)ef◦T
−1

− hn =
1− e−Sn(f)

e−Sn(f)

∫

X

gndµ

,

for every n ∈ N. So the same reasoning as above and Lemma 3.1 give the following.

Theorem 3.7. Let X be a compact metric space and T : X → X a homeomorphism.
Let µ ∈ M(X) be an ergodic T -invariant measure and let f : X → R be a continuous

function such that

∫

X

fdµ = 0.

(a) If there exists a constant c ≥ 1 such that

En(f) ≤ c

∫

X

En(f)dµ

for every n ∈ N (or −n ∈ N), then there exists an ef -conformal measure ν for T which

is equivalent to µ such that
dν

dµ
∈ L∞(µ) .

(b) Moreover, if
1

c

∫

X

En(f)dµ ≤ En(f) ≤ c

∫

X

En(f)dµ

for every n ∈ N (or −n ∈ N), then log(
dν

dµ
) ∈ L∞(µ). �

Combining Theorem 3.7 with section 2 we get the following.

Corollary 3.8. Let X be a compact metric space and T : X → X a minimal homeo-
morphism. Let µ ∈ M(X) be an ergodic T -invariant measure and let f : X → R be a

continuous function such that

∫

X

fdµ = 0. Then the following assertions are equivalent.

(i) f is a continuous coboundary.
(ii) There exists a constant c ≥ 1 such that

1

c

∫

X

En(f)dµ ≤ En(f) ≤ c

∫

X

En(f)dµ

for every n ∈ N (or −n ∈ N). �

4 An example

We shall illustrate the results of the preceding section by applying them to a specific
homeomorphism and continuous function. Let N ≥ 2 be an integer and XN be the
compact subset of {−1, 1}Z consisting of all sequences (xn)n∈Z such that

∣

∣

∣

∣

n
∑

k=m

xk

∣

∣

∣

∣

≤ N
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for every m, n ∈ Z with m < n. Obviously, XN is invariant under the shift. The
restriction T of the shift on XN defines a symbolic dynamical system which is sofic,
that is a continuous factor of a subshift of finite type. To see this, we consider the
shift S : {0, 1, ..., N}Z → {0, 1, ..., N}Z on N + 1 symbols and the transition matrix
A = (aij)0≤i,j≤N where aij = 1, if |i− j| = 1, and aij = 0 otherwise. The corresponding
subshift of finite type is defined on

ΩA = {(yn)n∈Z ∈ {0, 1, ..., N}Z : |yn+1 − yn| = 1 for all n ∈ Z}.

The continuous surjection h : ΩA → XN defined by

h((yn)n∈Z) = (yn+1 − yn)n∈Z

satisfies h ◦ S = T ◦ h. Since A is an irreducible 0-1 matrix, the subshift (ΩA, S) is
topologically transitive and has a dense subset of periodic points. Since the symbolic
system (XN , T ) is a continuous factor of (ΩA, S), it has the same properties and so it is
chaotic.

Let f : X → {−1, 1} be the restriction to XN of the projection to the 0-th coordinate.
It is proved in Proposition 11.16 in [4] that f is a Borel measurable coboundary with a
bounded measurable transfer function but it is not a continuous coboundary for T .

A Markov measure on ΩA defined by a stochastic matrix which is compatible with
A and a corresponding probability vector is ergodic for S (see page 161 in [8]) and is
projected by h to an ergodic T -invariant Borel probability measure µ on XN . Since f is
an L∞(µ)-coboundary, we have

∫

XN

fdµ = 0.

In this case we have En(f)((xn)n∈Z) = e−(x0+x1+···+xn−1) and therefore

e−N ≤ En(f) ≤ eN

for every n ∈ N. It follows from Theorem 3.7 that there exists an ef -conformal measure

ν for T on XN which is equivalent to µ such that log(
dν

dµ
) ∈ L∞(µ).
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