A sufficient condition for the logarithm of the derivative of a Denjoy C^1 diffeomorphism to be a measurable coboundary

Konstantin Athanassopoulos

Department of Mathematics and Applied Mathematics, University of Crete, GR-70013 University Campus, Voutes-Iraklion, Greece e-mail: athanako@uoc.gr

ABSTRACT

We give a sufficient condition under which the logarithm of the derivative of a Denjoy C^1 diffeomorphism of the circle is a measurable coboundary on the unique Cantor minimal set. This condition also guarantees the existence of an automorphic measure which is equivalent to the unique invariant Borel probability measure.

1 Introduction

One of the most important examples of uniquely ergodic homeomorphisms are the orientation preserving homeomorphisms of the circle S^1 which have irrational rotation numbers and are not topologically conjugate to rotations. Among them special place occupy the Denjoy C^1 diffeomorphisms, named after A. Denjoy who gave explicit constructions of such C^1 examples and proved that they cannot be C^2 in [4]. Prior to A. Denjoy, similar examples had been constructed by P. Bohl in [3]. For an exposition of the theory of Denjoy C^1 diffeomorphisms of S^1 we refer to [2], [7] and [10].

Let $T: S^1 \to S^1$ be a Denjoy C^1 diffeomorphism with unique Cantor minimal set Kand unique invariant Borel probability measure μ . Then K is the nonwandering set of Tand μ is supported on K. The original motivation of this note was to examine whether μ is in some sense geometric with respect to T. This is closely related to a problem stated in [1]. To be more precise, we want to find conditions under which μ is equivalent to a Borel probability measure ν on K such that

$$\int_{K} \phi d\nu = \int_{K} (\phi \circ T) T' d\nu$$

for every continuous function $\phi : K \to \mathbb{R}$. A measure ν with this property is called automorphic for T. It is clear from the change of variable formula that the (normalized) Lebesgue measure of S^1 is automorphic for T, but is not equivalent to μ .

The automorphic measures for T are defined as automorphic measures of exponent 1 in [6], but they have appeared in the literature much earlier in the more general setting of homeomorphisms on compact metric spaces. Let X be a compact metric space, $T: X \to X$ be a homeomorphism and let $f: X \to \mathbb{R}$ be a continuous function

⁰2010 Mathematics Subject Classification: 37A05, 37A40, 37E10.

Key words and phrases: uniquely ergodic homeomorphism, Denjoy ${\cal C}^1$ diffeomorphism, automorphic measure.

such that $\int_X f d\mu = 0$ for some ergodic *T*-invariant Borel probability measure μ . A Borel probability measure ν on *X* is called a e^f -conformal measure for *T* if ν is equivalent to $T_*\nu$ and $\frac{d\nu}{d(T_*\nu)} = e^f$. This kind of measure has been used without a particular name in [8]. If μ is an ergodic *T*-invariant Borel probability measure on *X*, as it is explained in section 2, the existence of a e^f -conformal measure for *T* which is absolutely continuous with respect to μ (actually equivalent to μ) is equivalent to the existence of a measurable solution of the cohomological equation $f = u - u \circ T$. In particular, if *T* is a Denjoy C^1 diffeomorphism with unique minimal Cantor set *K*, then there exists an automorphic measure for *T* which is equivalent to its unique invariant Borel probability measure if and only if log *T'* is a measurable coboundary on *K*.

In this note we study the existence of conformal measures for a uniquely ergodic homeomorphism which is absolutely continuous to its invariant Borel probability measure. In section 3 we present a sufficient condition for that, using the Schauder-Tychonoff fixed point theorem applied to the dual Perron-Frobenius operator on an appropriate convex set. This approach was inspired by [6]. As a corollary we get the following, which is the main result of this paper.

Theorem 1.1. Let $T: S^1 \to S^1$ be a Denjoy C^1 diffeomorphism with unique minimal set K and unique T-invariant Borel probability measure μ . If there exists a positive $g \in L^1(\mu)$ and an integer $m \ge 0$ such that

$$(T^n)' \le g \int_K (T^n)' d\mu$$

on K for every $n \ge m$, then there exists an automorphic measure for T which is equivalent to μ and $\log T'$ is a measurable coboundary on K. \Box

2 Conformal measures

Let $T: X \to X$ be a homeomorphism of a compact metric space X and let $f: X \to \mathbb{R}$ be a continuous function. A e^{f} -conformal measure for T is a Borel probability measure ν on X such that

$$\int_X \phi d\nu = \int_X (\phi \circ T) e^f d\nu$$

for every continuous function $\phi : X \to \mathbb{R}$. Evidently, a e^{f} -conformal measure for T is T-quasi-invariant and is an $e^{-f \circ T^{-1}}$ -conformal measure for T^{-1} .

It is easy to see that if $h: X \to X$ is a homeomorphism and $S = h \circ T \circ h^{-1}$, then $h_*\nu$ is a $e^{f \circ h^{-1}}$ -conformal measure for S for every e^f -conformal measure ν for T.

The construction of a conformal measure can be described as follows (see [5]). Let $(a_n)_{n\in\mathbb{N}}$ be a sequence of real numbers and let $c = \limsup_{n\to+\infty} \frac{a_n}{n}$. The series $\sum_{n=1}^{\infty} e^{a_n - ns}$ converges for s > c, diverges for s < c and we cannot tell for s = c, by the root test. There exists a sequence of positive real numbers $(b_n)_{n\in\mathbb{N}}$ such that $\lim_{n\to+\infty} \frac{b_n}{b_{n+1}} = 1$ and ∞

the series $\sum_{n=1}^{\infty} b_n e^{a_n - ns}$ converges for s > c and diverges for $s \le c$.

Let $f: X \to \mathbb{R}$ be a continuous function such that $\int_X f d\mu = 0$ for some ergodic *T*-invariant Borel probability measure μ . It is well known that the set of points $x \in X$ such that the limit

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(T^{-k}(x))$$

exists in \mathbb{R} has measure 1 with respect to every *T*-invariant Borel probability measure, and is therefore non-empty. So there exists a point $x \in X$ such that

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} f(T^{-k}(x)) = 0.$$

Let $a_n = -\sum_{k=1}^n f(T^{-k}(x))$ and $M_s = \sum_{n=1}^\infty b_n e^{a_n - ns}$, where $(b_n)_{n \in \mathbb{N}}$ is the corresponding sequence as above. Each accumulation point in the weak* topology as $s \neq 0$ of the

sequence as above. Each accumulation point in the weak* topology as $s \downarrow 0$ of the directed family

$$\mu_s = \frac{1}{M_s} \sum_{n=1}^{\infty} b_n e^{a_n - ns} \delta_{T^{-n}(x)}, \quad s > 0$$

is a e^{f} -conformal measure for T.

There is a close relation between e^f -conformal measures for a homeomorphism $T : X \to X$ of a compact metric space and solvability of the cohomological equation $f = u - u \circ T$, where $f : X \to \mathbb{R}$ is continuous.

Let μ be any *T*-invariant Borel probability measure. If there exists a measurable solution *u* of the above cohomological equation defined μ -almost everywhere such that $e^{-u} \in L^1(\mu)$, then there exists a e^f -conformal measure ν for *T* equivalent to μ with density

$$\frac{d\nu}{d\mu} = \frac{e^{-u}}{\int_X e^{-u} d\mu}$$

Thus, if there exists a continuous solution u, then for every T-invariant Borel probability measure we get an equivalent e^{f} -conformal measure for T. Moreover, in this case, every e^{f} -conformal measure ν for T is obtained in this way. Indeed, we have

$$\int_X \phi e^u d\nu = \int_X (\phi \circ T) e^u d\nu$$

for every continuous function $\phi: X \to \mathbb{R}$, and so the equivalent measure μ to ν with density

$$\frac{d\mu}{d\nu} = \frac{e^u}{\int_X e^u d\iota}$$

is T-invariant. Consequently, if f is a continuous coboundary, then the e^{f} -conformal measures for T are in one-to-one correspondence with the T-invariant Borel probability measures and each e^{f} -conformal measure for T is equivalent to its corresponding T-invariant measure.

Conversely, suppose that μ is an ergodic *T*-invariant Borel probability measure and $f: X \to \mathbb{R}$ is a continuous function such that $\int_X f d\mu = 0$. Suppose further that there exists a e^f -conformal measure $\nu \in \mathcal{M}(X)$ for *T* which is absolutely continuous with respect to μ and let $g = \frac{d\nu}{d\mu}$. For every measurable set $A \subset X$ we have

$$\int_X (\chi_A \circ T)(g \circ T)d\mu = \nu(A) = \int_X (\chi_A \circ T)e^f d\nu = \int_X (\chi_A \circ T)e^f g d\mu$$

and therefore

$$\int_{T^{-1}(A)} [ge^f - (g \circ T)]d\mu = 0.$$

Since μ is *T*-invariant, it follows that $g \circ T = ge^f \mu$ -almost everywhere. The ergodicity of μ implies now that g > 0 μ -almost everywhere. So, $u = -\log g$ is a measurable solution of the cohomological equation $f = u - u \circ T$. If $\log g \in L^{\infty}(\mu)$ and *T* is a minimal homeomorphism, then there exists some continuous function $u: X \to \mathbb{R}$ such that $f = u - u \circ T$, by Proposition 4.2 on page 46 in [7].

Note that ν is equivalent to μ , because g > 0. We remark that this is actually a more general fact which holds for every *T*-quasi-invariant Borel probability measure. To see this, let $T: X \to X$ be a homeomorphism of a compact metric space X and μ be an ergodic *T*-invariant Borel probability measure. Let ν is a *T*-quasi-invariant Borel probability measure which is absolutely continuous with respect to μ . Let $g = \frac{d\nu}{d\mu}$ and $A = g^{-1}(0)$. If $S = \bigcup_{n \in \mathbb{Z}} T^n(A)$, then S is *T*-invariant and $\nu(S) = 0$. On the other hand $\mu(X \setminus S) > 0$, and since μ is ergodic we get $\mu(S) = 0$, that is g > 0 μ -almost everywhere. In particular, if T is uniquely ergodic, then every *T*-quasi-invariant measure for T which is absolutely continuous with respect its unique invariant Borel probability measure is equivalent to it.

3 Absolutely continuous conformal measures for uniquely ergodic homeomorphisms

Let X be a compact metric space and $\mu \in \mathcal{M}(X)$. The set

$$A_{\mu} = \{\nu \in \mathcal{M}(X) : \nu \ll \mu\}$$

is not empty, since it contains μ , and is convex. In general, A_{μ} is not a closed subset of $\mathcal{M}(X)$ with respect to the weak* topology. For example, if we let μ be the Lebesgue measure on the unit interval [0,1] and for $0 < \epsilon < 1$ we let μ_{ϵ} denote the Borel probability measure on [0,1] with density $\frac{1}{\epsilon}\chi_{[0,\epsilon]}$, then $\lim_{\epsilon \to 0} \mu_{\epsilon}$ is the Dirac point measure at 0.

Lemma 3.1. Let X be a compact metric space and $\mu \in \mathcal{M}(X)$. Let $(\nu_n)_{n \in \mathbb{N}}$ be a sequence in A_{μ} converging weakly* to some $\nu \in \mathcal{M}(X)$ and let $f_n = \frac{d\nu_n}{d\mu}$, $n \in \mathbb{N}$. If

there exist non-negative $h, g \in L^1(\mu)$ such that $h \leq f_n \leq g$ for every $n \in \mathbb{N}$, then $\nu \in A_\mu$ and $h \leq \frac{d\nu}{d\mu} \leq g$.

Proof. Since ν is a finite measure, there exists a (countable) basis \mathcal{U} of the topology of X such that $\nu(\partial U) = 0$ for every $U \in \mathcal{U}$. So \mathcal{U} is contained in the algebra

$$\mathcal{C}(\nu) = \{A | A \subset X \text{ Borel and } \nu(\partial A) = 0\}$$

and since it generates the Borel σ -algebra of X, so does $\mathcal{C}(\nu)$. Let now $A \subset X$ be a Borel set with $\mu(A) = 0$ and $\epsilon > 0$. There exists $0 < \delta < \epsilon$ such that $\int_B gd\mu < \epsilon$ for every Borel set $B \subset X$ with $\mu(B) < \delta$, because $g \in L^1(\mu)$. There exists some $A_0 \in \mathcal{C}(\nu)$ such that $\mu(A \triangle A_0) < \delta$ and $\nu(A \triangle A_0) < \delta$. Thus $\mu(A_0) < \delta$ and $|\nu(A) - \nu(A_0)| < \delta$. By weak* convergence, $\nu(A_0) = \lim_{n \to +\infty} \nu_n(A_0)$ and so there exists some $n_0 \in \mathbb{N}$ such that $|\nu_n(A_0) - \nu(A_0)| < \epsilon$ for $n \ge n_0$. Therefore,

$$\nu(A_0) < \nu_n(A_0) + \epsilon = \int_{A_0} f_n d\mu + \epsilon \le \int_{A_0} g d\mu + \epsilon < 2\epsilon$$

It follows that $0 \leq \nu(A) < 3\epsilon$ for every $\epsilon > 0$, which means that $\nu(A) = 0$. This shows that $\nu \in A_{\mu}$.

To prove the last assertion, we note first that there exists a sequence of (finite) partitions $(\mathcal{P}_n)_{n\in\mathbb{N}}$ of X such that \mathcal{P}_{n+1} is a refinement of \mathcal{P}_n , the Borel σ -algebra of X is generated by $\bigcup_{n=1}^{\infty} \mathcal{P}_n$ and $\mu(\partial B) = 0$ for every $B \in \mathcal{P}_n$ and $n \in \mathbb{N}$. It can be constructed starting with a countable basis $\{U_n : n \in \mathbb{N}\}$ of the topology of X such that $\mu(\partial U_n) = 0$ for every $n \in \mathbb{N}$ and defining inductively \mathcal{P}_n to be the finite family consisting of Borel sets with positive μ measure of the form $B \cap U_n$ or $B \cap (X \setminus U_n)$, for $B \in \mathcal{P}_{n-1}$, taking $\mathcal{P}_0 = \{X\}$.

Let $\mathcal{P}_n(x)$ denote the element of \mathcal{P}_n which contains $x \in X$. Then,

$$\frac{d\nu}{d\mu}(x) = \lim_{n \to +\infty} \frac{\nu(\mathcal{P}_n(x))}{\mu(\mathcal{P}_n(x))},$$

 μ -almost everywhere on X and in $L^1(\mu)$ (see page 8 in [9]). On the other hand, by the weak^{*} convergence and since $\nu \in A_{\mu}$, for every $k \in \mathbb{N}$ and $x \in X$ there exists some $n_k \in \mathbb{N}$ such that

$$|\nu(\mathcal{P}_k(x)) - \nu_{n_k}(\mathcal{P}_k(x))| < \frac{1}{k}\mu(\mathcal{P}_k(x)).$$

It follows that

$$0 \le \frac{\nu(\mathcal{P}_k(x))}{\mu(\mathcal{P}_k(x))} < \frac{1}{k} + \frac{\nu_{n_k}(\mathcal{P}_k(x))}{\mu(\mathcal{P}_k(x))} = \frac{1}{k} + \frac{1}{\mu(\mathcal{P}_k(x))} \int_{\mathcal{P}_k(x)} f_{n_k} d\mu \le \frac{1}{k} + \frac{1}{\mu(\mathcal{P}_k(x))} \int_{\mathcal{P}_k(x)} g d\mu.$$

Since

$$\lim_{k \to +\infty} \frac{1}{\mu(\mathcal{P}_k(x))} \int_{\mathcal{P}_k(x)} g d\mu = g(x)$$

 μ -almost everywhere on X and in $L^1(\mu)$, it follows that $0 \leq \frac{d\nu}{d\mu}(x) \leq g(x) \mu$ -almost everywhere on X.

Similarly, from

$$\frac{\nu(\mathcal{P}_{k}(x))}{\mu(\mathcal{P}_{k}(x))} > -\frac{1}{k} + \frac{\nu_{n_{k}}(\mathcal{P}_{k}(x))}{\mu(\mathcal{P}_{k}(x))} = -\frac{1}{k} + \frac{1}{\mu(\mathcal{P}_{k}(x))} \int_{\mathcal{P}_{k}(x)} f_{n_{k}} d\mu \ge -\frac{1}{k} + \frac{1}{\mu(\mathcal{P}_{k}(x))} \int_{\mathcal{P}_{k}(x)} h d\mu$$

follows that $h(x) \leq \frac{d\nu}{d\mu}(x)$ μ -almost everywhere on X. \Box

Let now $T: X \to X$ be a uniquely ergodic homeomorphism $T: X \to X$. Conformal measures for T can be obtained as fixed points of the dual Perron-Frobenius operator. Let μ be the unique T-invariant Borel probability measure and $c = \int_X f d\mu$, where $f: X \to \mathbb{R}$ is a continuous function. Let $\mathcal{M}(X)$ denote the set of Borel probability measures on Xequipped with the weak* topology. The dual Perron-Frobenius operator is the continuous map $W: \mathcal{M}(X) \to \mathcal{M}(X)$ defined by

$$W(\nu)(\phi) = \frac{1}{\int_X e^f d\nu} \cdot \int_X (\phi \circ T) e^f d\nu$$

for every continuous function $\phi: X \to \mathbb{R}$ (see page 185 in [8]). Since T is a homeomorphism, W is a homeomorphism and its inverse is given by the formula

$$W^{-1}(\nu)(\phi) = \frac{1}{\int_X e^{-f \circ T^{-1}} d\nu} \cdot \int_X (\phi \circ T^{-1}) e^{-f \circ T^{-1}} d\nu.$$

It follows from the Schauder-Tychonoff theorem that W has a fixed point in $\mathcal{M}(X)$. If ν is a fixed point of W, then $\int_X e^f d\nu = e^c$, and therefore ν is a e^{f-c} -conformal measure for T. Indeed, if ν is a fixed point of W, then for every $n \in \mathbb{N}$ we have

$$\left(\int_X e^f d\nu\right)^n = \int_X \exp\left(\sum_{k=0}^{n-1} f \circ T^k\right) d\nu,$$

as one easily verifies by induction. It follows that

$$n \left| \log \left(\int_X e^{f-c} d\nu \right) \right| = \left| \log \left(\int_X \exp\left(-nc + \sum_{k=0}^{n-1} f \circ T^k \right) d\nu \right) \right| \le \| -nc + \sum_{k=0}^{n-1} f \circ T^k \|,$$

and therefore

$$\left|\log\left(\int_X e^{f-c} d\nu\right)\right| \le \|\lim_{n \to +\infty} \left(-c + \frac{1}{n} \sum_{k=0}^{n-1} f \circ T^k\right)\| = 0.$$

For any continuous function $f: X \to \mathbb{R}$ we put

$$E_n(f) = \begin{cases} \exp\sum_{k=1}^n f \circ T^{-k}, & \text{if } n > 0, \\ 1, & \text{if } n = 0, \\ \exp\left(-\sum_{k=0}^{|n|-1} f \circ T^k\right), & \text{if } n < 0. \end{cases}$$

We can use the Schauder-Tychonoff theorem to get the following result for the existence of absolutely continuous conformal measures in the case of uniquely ergodic homeomorphisms.

Theorem 3.2. Let X be a compact metric space and $T: X \to X$ a uniquely ergodic homeomorphism with unique invariant Borel probability measure μ . Let $f: X \to \mathbb{R}$ be a continuous function such that $\int_X f d\mu = 0$. If there exists a non-negative $g \in L^1(\mu)$ and an integer $m \ge 0$ such that

$$E_n(f) \le g \int_X E_n(f) d\mu$$

for every $n \ge m$, then there exists a e^{f} -conformal measure for T equivalent to μ and f is a measurable coboundary.

Proof. Let $W : \mathcal{M}(X) \to \mathcal{M}(X)$ be the dual Perron-Frobenius operator. One can prove by induction that

$$W^n(\nu)(\phi) = \frac{1}{\int_X (\exp\sum_{k=0}^{n-1} f \circ T^k) d\nu} \cdot \int_X (\phi \circ T^n) (\exp\sum_{k=0}^{n-1} f \circ T^k) d\nu$$

and

$$W^{-n}(\nu)(\phi) = \frac{1}{\int_X (\exp(-\sum_{k=1}^n f \circ T^{-k})) d\nu} \cdot \int_X (\phi \circ T^{-n})(\exp(-\sum_{k=1}^n f \circ T^{-k})) d\nu$$

for every $\nu \in \mathcal{M}(X)$ and $n \in \mathbb{N}$. From the invariance of μ we get

$$W^{n}(\mu)(\phi) = \frac{1}{\int_{X} E_{n}(f)d\mu} \cdot \int_{X} \phi E_{n}(f)d\mu$$

for every $n \in \mathbb{Z}$. Note also that

$$\int_X (\phi \circ T) e^f E_n(f) d\mu = \int_X \phi E_{n+1}(f) d\mu$$

for every continuous $\phi: X \to \mathbb{R}$.

If now $A \subset X$ is a measurable set, it follows from regularity that

$$W^{n}(\mu)(A) = \frac{1}{\int_{X} E_{n}(f)d\mu} \cdot \int_{A} E_{n}(f)d\mu$$

which implies that $W^n(\mu) \in A_{\mu}$ and

$$\frac{dW^n(\mu)}{d\mu} = \frac{E_n(f)}{\int_X E_n(f)d\mu}$$

for every $n \in \mathbb{Z}$. If C_m is the convex hull of $\{W^n(\mu) : n \ge m\}$, then $W(C_m) \subset C_m$. Indeed, let

$$t_n = \frac{\int_X E_{n+1}(f)d\mu}{\int_X E_n(f)d\mu}$$

for all $n \in \mathbb{Z}$. If $a_1,...,a_n \ge 0$ are such that $a_1 + \cdots + a_n = 1$ and $j_1,...,j_n \in \mathbb{Z}$, then

$$W\left(\sum_{k=1}^{n} a_k W^{j_k}(\mu)\right) = \sum_{k=1}^{n} \frac{a_k t_{j_k}}{a_1 t_{j_1} + \dots + a_n t_{j_n}} \cdot W^{j_k + 1}(\mu).$$

This shows that $W(C_m) \subset C_m$ and by continuity $W(\overline{C_m}) \subset \overline{C_m}$. Since $\overline{C_m}$ is a compact convex subset of $\mathcal{M}(X)$, it follows from the Schauder-Tychonoff theorem that W has a fixed point in $\overline{C_m}$ or in other words there is a e^f -conformal measure for T in $\overline{C_m}$. Moreover, our assumption and Lemma 3.1 imply that $\overline{C_m} \subset A_\mu$. This proves the conclusion. \Box

The conclusion of Theorem 3.2 remains true under the assumption that there exists an integer $m \leq 0$ such that

$$E_n(f) \le g \int_X E_n(f) d\mu$$

for every $n \leq m$, by considering W^{-1} .

4 The derivative of Denjoy C^1 diffeomorphisms

Let $T: S^1 \to S^1$ be an orientation preserving C^1 diffeomorphism with irrational rotation number $\rho(T)$. It is well known (see [2], [7], [10]) that T is uniquely ergodic and there exists a unique minimal set $K \subset S^1$ which is the support of the unique T-invariant Borel probability measure μ , and either $K = S^1$, in which case T is topologically conjugate to the rotation by the angle $2\pi\rho(T)$ or K is a Cantor set and T is only topologically semi-conjugate to the rotation by the angle $2\pi\rho(T)$. In the latter case T is a Denjoy C^1 diffeomorphism and the semi-conjugation is never C^1 . In both cases, K is the nonwandering set of T and

$$\int_{S^1} \log(T^n)' d\mu = 0$$

for every $n \in \mathbb{Z}$.

A T'-conformal measure ν for T on K will be called automorphic for T and is a Borel probability measure on K such that

$$\int_{K} \phi d\nu = \int_{K} (\phi \circ T) T' d\nu$$

for every continuous function $\phi : K \to \mathbb{R}$. By the change of variable formula, the (normalized) Lebesgue measure of S^1 is automorphic for T. It is also T-quasi-invariant from the mean value theorem.

If $h: S^1 \to S^1$ be an orientation preserving C^1 diffeomorphism and $S = h \circ T \circ h^{-1}$, then S is a Denjoy C^1 diffeomorphism with unique minimal set h(K) and unique Sinvariant Borel probability measure $h_*\mu$. If ν is an automorphic measure for T, then

$$\nu' = \frac{h'}{\int_K h' d\nu} \cdot h_* \iota$$

is automorphic for S. It follows that if $\nu \ll \mu$, then $\nu' \ll h_*\mu$.

The proof of Theorem 1.1 is now an immediate consequence of Theorem 3.2 and the chain rule.

If $\log T'$ is a continuous coboundary on K, then there exists a unique automorphic measure for T which is absolutely continuous with respect to μ , since T is uniquely ergodic. We note however that one can construct examples of Denjoy C^1 diffeomorphisms where the logarithm of the derivative is not a continuous coboundary on the unique minimal set and others where it is. In any case, $\log T'$ is never a continuous coboundary on S^1 , by an argument due to M. Herman [7]. See also section 6 in [2].

References

- K. Athanassopoulos, Divergence of C¹ vector fields and nontrivial minimal sets on 2-manifolds, J. Differential Equations 243 (2007), 24-35.
- [2] K. Athanassopoulos, Denjoy C¹ diffeomorphisms of the circle and McDuff's question, Expositiones Math. 33 (2015), 48-66.
- [3] P. Bohl, Über die hinsichtlich der unabhängigen variabeln periodische Differentialgleichung erster Ordnung, Acta Math. 40 (1916) 321-336.
- [4] A. Denjoy, Sur les courbes définies par les équations différentielles a la surface du tore, J. Math. Pures et Appl. 11 (1932) 333-375.
- [5] M. Denker and M.Urbanski, On the existence of conformal measures, Trans. Amer. Math. Soc. 328 (1991), 563-587.
- [6] R. Douady and J.-C. Yoccoz, Nombre de rotation des difféomorphisms du cercles et mesures automorphes, Regular Chaotic Dyn. 4 (1999), 3-24.
- [7] M. Herman, Sur la conjugaision différentiable des difféomorphismes du cercle á des rotations, Publications Mathématiques I.H.E.S 49 (1979), 5-233.
- [8] W. Krieger, On quasi-invariant measures in uniquely ergodic systems, Invent. Math. 14 (1971), 184-196.
- [9] R. Mañé, Ergodic Theory and Differentiable Dynamics, Springer-Verlag, New York, 1983.
- [10] A. Navas, *Groups of circle diffeomorphisms*, Chicago Lectures in Mathematics Series, The University of Chicago Press, Chicago and London, 2011.