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ABSTRACT

We give a sufficient condition under which the logarithm of the derivative of a Denjoy

C1 diffeomorphism of the circle is a measurable coboundary on the unique Cantor

minimal set. This condition also guarantees the existence of an automorphic measure

which is equivalent to the unique invariant Borel probability measure.

1 Introduction

One of the most important examples of uniquely ergodic homeomorphisms are the orien-
tation preserving homeomorphisms of the circle S1 which have irrational rotation num-
bers and are not topologically conjugate to rotations. Among them special place occupy
the Denjoy C1 diffeomorphisms, named after A. Denjoy who gave explicit constructions
of such C1 examples and proved that they cannot be C2 in [4]. Prior to A. Denjoy,
similar examples had been constructed by P. Bohl in [3]. For an exposition of the theory
of Denjoy C1 diffeomorphisms of S1 we refer to [2], [7] and [10].

Let T : S1 → S1 be a Denjoy C1 diffeomorphism with unique Cantor minimal set K
and unique invariant Borel probability measure µ. Then K is the nonwandering set of T
and µ is supported on K. The original motivation of this note was to examine whether µ
is in some sense geometric with respect to T . This is closely related to a problem stated
in [1]. To be more precise, we want to find conditions under which µ is equivalent to a
Borel probability measure ν on K such that

∫

K

φdν =

∫

K

(φ ◦ T )T ′dν

for every continuous function φ : K → R. A measure ν with this property is called
automorphic for T . It is clear from the change of variable formula that the (normalized)
Lebesgue measure of S1 is automorphic for T , but is not equivalent to µ.

The automorphic measures for T are defined as automorphic measures of exponent
1 in [6], but they have appeared in the literature much earlier in the more general
setting of homeomorphisms on compact metric spaces. Let X be a compact metric
space, T : X → X be a homeomorphism and let f : X → R be a continuous function
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such that

∫

X

fdµ = 0 for some ergodic T -invariant Borel probability measure µ. A Borel

probability measure ν on X is called a ef -conformal measure for T if ν is equivalent to

T∗ν and
dν

d(T∗ν)
= ef . This kind of measure has been used without a particular name

in [8]. If µ is an ergodic T -invariant Borel probability measure on X, as it is explained in
section 2, the existence of a ef -conformal measure for T which is absolutely continuous
with respect to µ (actually equivalent to µ) is equivalent to the existence of a measurable
solution of the cohomological equation f = u− u ◦ T . In particular, if T is a Denjoy C1

diffeomorphism with unique minimal Cantor set K, then there exists an automorphic
measure for T which is equivalent to its unique invariant Borel probability measure if
and only if log T ′ is a measurable coboundary on K.

In this note we study the existence of conformal measures for a uniquely ergodic
homeomorphism which is absolutely continuous to its invariant Borel probability
measure. In section 3 we present a sufficient condition for that, using the Schauder-
Tychonoff fixed point theorem applied to the dual Perron-Frobenius operator on an
appropriate convex set. This approach was inspired by [6]. As a corollary we get the
following, which is the main result of this paper.

Theorem 1.1. Let T : S1 → S1 be a Denjoy C1 diffeomorphism with unique minimal

set K and unique T -invariant Borel probability measure µ. If there exists a positive

g ∈ L1(µ) and an integer m ≥ 0 such that

(T n)′ ≤ g

∫

K

(T n)′dµ

on K for every n ≥ m, then there exists an automorphic measure for T which is equiv-

alent to µ and log T ′ is a measurable coboundary on K. �

2 Conformal measures

Let T : X → X be a homeomorphism of a compact metric space X and let f : X → R

be a continuous function. A ef -conformal measure for T is a Borel probability measure
ν on X such that

∫

X

φdν =

∫

X

(φ ◦ T )efdν

for every continuous function φ : X → R. Evidently, a ef -conformal measure for T is
T -quasi-invariant and is an e−f◦T−1

-conformal measure for T−1.
It is easy to see that if h : X → X is a homeomorphism and S = h ◦ T ◦ h−1, then

h∗ν is a ef◦h
−1

-conformal measure for S for every ef -conformal measure ν for T .
The construction of a conformal measure can be described as follows (see [5]). Let

(an)n∈N be a sequence of real numbers and let c = lim sup
n→+∞

an

n
. The series

∞
∑

n=1

ean−ns

converges for s > c, diverges for s < c and we cannot tell for s = c, by the root test.

There exists a sequence of positive real numbers (bn)n∈N such that lim
n→+∞

bn

bn+1
= 1 and

the series

∞
∑

n=1

bne
an−ns converges for s > c and diverges for s ≤ c.
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Let f : X → R ba a continuous function such that

∫

X

fdµ = 0 for some ergodic

T -invariant Borel probability measure µ. It is well known that the set of points x ∈ X

such that the limit

lim
n→+∞

1

n

n
∑

k=1

f(T−k(x))

exists in R has measure 1 with respect to every T -invariant Borel probability measure,
and is therefore non-empty. So there exists a point x ∈ X such that

lim
n→+∞

1

n

n
∑

k=1

f(T−k(x)) = 0.

Let an = −

n
∑

k=1

f(T−k(x)) and Ms =

∞
∑

n=1

bne
an−ns, where (bn)n∈N is the corresponding

sequence as above. Each accumulation point in the weak* topology as s ↓ 0 of the
directed family

µs =
1

Ms

∞
∑

n=1

bne
an−nsδT−n(x), s > 0

is a ef -conformal measure for T .
There is a close relation between ef -conformal measures for a homeomorphism T :

X → X of a compact metric space and solvability of the cohomological equation f =
u− u ◦ T , where f : X → R is continuous.

Let µ be any T -invariant Borel probability measure. If there exists a measurable
solution u of the above cohomological equation defined µ-almost everywhere such that
e−u ∈ L1(µ), then there exists a ef -conformal measure ν for T equivalent to µ with
density

dν

dµ
=

e−u

∫

X

e−udµ

.

Thus, if there exists a continuous solution u, then for every T -invariant Borel probability
measure we get an equivalent ef -conformal measure for T . Moreover, in this case, every
ef -conformal measure ν for T is obtained in this way. Indeed, we have

∫

X

φeudν =

∫

X

(φ ◦ T )eudν

for every continuous function φ : X → R, and so the equivalent measure µ to ν with
density

dµ

dν
=

eu
∫

X

eudν

is T -invariant. Consequently, if f is a continuous coboundary, then the ef -conformal
measures for T are in one-to-one correspondence with the T -invariant Borel probability
measures and each ef -conformal measure for T is equivalent to its corresponding T -
invariant measure.
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Conversely, suppose that µ is an ergodic T -invariant Borel probability measure and

f : X → R is a continuous function such that

∫

X

fdµ = 0. Suppose further that there

exists a ef -conformal measure ν ∈ M(X) for T which is absolutely continuous with

respect to µ and let g =
dν

dµ
. For every measurable set A ⊂ X we have

∫

X

(χA ◦ T )(g ◦ T )dµ = ν(A) =

∫

X

(χA ◦ T )efdν =

∫

X

(χA ◦ T )efgdµ

and therefore
∫

T−1(A)
[gef − (g ◦ T )]dµ = 0.

Since µ is T -invariant, it follows that g ◦ T = gef µ-almost everywhere. The ergodicity
of µ implies now that g > 0 µ-almost everywhere. So, u = − log g is a measurable
solution of the cohomological equation f = u − u ◦ T . If log g ∈ L∞(µ) and T is a
minimal homeomorphism, then there exists some continuous function u : X → R such
that f = u− u ◦ T , by Proposition 4.2 on page 46 in [7].

Note that ν is equivalent to µ, because g > 0. We remark that this is actually a
more general fact which holds for every T -quasi-invariant Borel probability measure. To
see this, let T : X → X be a homeomorphism of a compact metric space X and µ be
an ergodic T -invariant Borel probability measure. Let ν is a T -quasi-invariant Borel

probability measure which is absolutely continuous with respect to µ. Let g =
dν

dµ
and

A = g−1(0). If S =
⋃

n∈Z

T n(A), then S is T -invariant and ν(S) = 0. On the other hand

µ(X \S) > 0, and since µ is ergodic we get µ(S) = 0, that is g > 0 µ-almost everywhere.
In particular, if T is uniquely ergodic, then every T -quasi-invariant measure for T which
is absolutely continuous with respect its unique invariant Borel probability measure is
equivalent to it.

3 Absolutely continuous conformal measures for uniquely

ergodic homeomorphisms

Let X be a compact metric space and µ ∈ M(X). The set

Aµ = {ν ∈ M(X) : ν ≪ µ}

is not empty, since it contains µ, and is convex. In general, Aµ is not a closed subset of
M(X) with respect to the weak* topology. For example, if we let µ be the Lebesgue
measure on the unit interval [0, 1] and for 0 < ǫ < 1 we let µǫ denote the Borel

probability measure on [0, 1] with density
1

ǫ
χ[0,ǫ], then lim

ǫ→0
µǫ is the Dirac point measure

at 0.

Lemma 3.1. Let X be a compact metric space and µ ∈ M(X). Let (νn)n∈N be a

sequence in Aµ converging weakly* to some ν ∈ M(X) and let fn =
dνn

dµ
, n ∈ N. If
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there exist non-negative h, g ∈ L1(µ) such that h ≤ fn ≤ g for every n ∈ N, then ν ∈ Aµ

and h ≤
dν

dµ
≤ g.

Proof. Since ν is a finite measure, there exists a (countable) basis U of the topology of
X such that ν(∂U) = 0 for every U ∈ U . So U is contained in the algebra

C(ν) = {A|A ⊂ X Borel and ν(∂A) = 0}

and since it generates the Borel σ-algebra of X, so does C(ν). Let now A ⊂ X be a

Borel set with µ(A) = 0 and ǫ > 0. There exists 0 < δ < ǫ such that

∫

B

gdµ < ǫ for

every Borel set B ⊂ X with µ(B) < δ, because g ∈ L1(µ). There exists some A0 ∈ C(ν)
such that µ(A△A0) < δ and ν(A△A0) < δ. Thus µ(A0) < δ and |ν(A) − ν(A0)| < δ.
By weak* convergence, ν(A0) = lim

n→+∞
νn(A0) and so there exists some n0 ∈ N such that

|νn(A0)− ν(A0)| < ǫ for n ≥ n0. Therefore,

ν(A0) < νn(A0) + ǫ =

∫

A0

fndµ+ ǫ ≤

∫

A0

gdµ + ǫ < 2ǫ.

It follows that 0 ≤ ν(A) < 3ǫ for every ǫ > 0, which means that ν(A) = 0. This shows
that ν ∈ Aµ.

To prove the last assertion, we note first that there exists a sequence of (finite)
partitions (Pn)n∈N of X such that Pn+1 is a refinement of Pn, the Borel σ-algebra of X

is generated by
∞
⋃

n=1

Pn and µ(∂B) = 0 for every B ∈ Pn and n ∈ N. It can be constructed

starting with a countable basis {Un : n ∈ N} of the topology of X such that µ(∂Un) = 0
for every n ∈ N and defining inductively Pn to be the finite family consisting of Borel
sets with positive µ measure of the form B ∩ Un or B ∩ (X \ Un), for B ∈ Pn−1, taking
P0 = {X}.

Let Pn(x) denote the element of Pn which contains x ∈ X. Then,

dν

dµ
(x) = lim

n→+∞

ν(Pn(x))

µ(Pn(x))
,

µ-almost everywhere on X and in L1(µ) (see page 8 in [9]). On the other hand, by the
weak* convergence and since ν ∈ Aµ, for every k ∈ N and x ∈ X there exists some
nk ∈ N such that

|ν(Pk(x)) − νnk
(Pk(x))| <

1

k
µ(Pk(x)).

It follows that

0 ≤
ν(Pk(x))

µ(Pk(x))
<

1

k
+
νnk

(Pk(x))

µ(Pk(x))
=

1

k
+

1

µ(Pk(x))

∫

Pk(x)
fnk

dµ ≤
1

k
+

1

µ(Pk(x))

∫

Pk(x)
gdµ.

Since

lim
k→+∞

1

µ(Pk(x))

∫

Pk(x)
gdµ = g(x)

µ-almost everywhere on X and in L1(µ), it follows that 0 ≤
dν

dµ
(x) ≤ g(x) µ-almost

everywhere on X.
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Similarly, from

ν(Pk(x))

µ(Pk(x))
> −

1

k
+
νnk

(Pk(x))

µ(Pk(x))
= −

1

k
+

1

µ(Pk(x))

∫

Pk(x)
fnk

dµ ≥ −
1

k
+

1

µ(Pk(x))

∫

Pk(x)
hdµ

follows that h(x) ≤
dν

dµ
(x) µ-almost everywhere on X. �

Let now T : X → X be a uniquely ergodic homeomorphism T : X → X. Conformal
measures for T can be obtained as fixed points of the dual Perron-Frobenius operator. Let

µ be the unique T -invariant Borel probability measure and c =

∫

X

fdµ, where f : X → R

is a continuous function. Let M(X) denote the set of Borel probability measures on X

equipped with the weak* topology. The dual Perron-Frobenius operator is the continuous
map W : M(X) → M(X) defined by

W (ν)(φ) =
1

∫

X

efdν

·

∫

X

(φ ◦ T )efdν

for every continuous function φ : X → R (see page 185 in [8]). Since T is a homeomor-
phism, W is a homeomorphism and its inverse is given by the formula

W−1(ν)(φ) =
1

∫

X

e−f◦T−1

dν

·

∫

X

(φ ◦ T−1)e−f◦T−1

dν.

It follows from the Schauder-Tychonoff theorem that W has a fixed point in M(X). If

ν is a fixed point of W , then

∫

X

efdν = ec, and therefore ν is a ef−c-conformal measure

for T . Indeed, if ν is a fixed point of W , then for every n ∈ N we have

(
∫

X

efdν

)n

=

∫

X

exp
(

n−1
∑

k=0

f ◦ T k
)

dν,

as one easily verifies by induction. It follows that

n
∣

∣log
(

∫

X

ef−cdν
)

∣

∣ =
∣

∣log
(

∫

X

exp
(

−nc+

n−1
∑

k=0

f ◦ T k
)

dν
)

∣

∣ ≤ ‖ − nc+

n−1
∑

k=0

f ◦ T k‖,

and therefore

∣

∣log
(

∫

X

ef−cdν
)

∣

∣ ≤ ‖ lim
n→+∞

(

−c+
1

n

n−1
∑

k=0

f ◦ T k
)

‖ = 0.

For any continuous function f : X → R we put

En(f) =



































exp
n
∑

k=1

f ◦ T−k, if n > 0,

1, if n = 0,

exp (−

|n|−1
∑

k=0

f ◦ T k), if n < 0.

6



We can use the Schauder-Tychonoff theorem to get the following result for the
existence of absolutely continuous conformal measures in the case of uniquely ergodic
homeomorphisms.

Theorem 3.2. Let X be a compact metric space and T : X → X a uniquely ergodic

homeomorphism with unique invariant Borel probability measure µ. Let f : X → R be a

continuous function such that

∫

X

fdµ = 0. If there exists a non-negative g ∈ L1(µ) and

an integer m ≥ 0 such that

En(f) ≤ g

∫

X

En(f)dµ

for every n ≥ m, then there exists a ef -conformal measure for T equivalent to µ and f

is a measurable coboundary.

Proof. Let W : M(X) → M(X) be the dual Perron-Frobenius operator. One can prove
by induction that

W n(ν)(φ) =
1

∫

X

(exp

n−1
∑

k=0

f ◦ T k)dν

·

∫

X

(φ ◦ T n)(exp

n−1
∑

k=0

f ◦ T k)dν

and

W−n(ν)(φ) =
1

∫

X

(exp(−

n
∑

k=1

f ◦ T−k))dν

·

∫

X

(φ ◦ T−n)(exp(−
n
∑

k=1

f ◦ T−k))dν

for every ν ∈ M(X) and n ∈ N. From the invariance of µ we get

W n(µ)(φ) =
1

∫

X

En(f)dµ

·

∫

X

φEn(f)dµ

for every n ∈ Z. Note also that
∫

X

(φ ◦ T )efEn(f)dµ =

∫

X

φEn+1(f)dµ

for every continuous φ : X → R.
If now A ⊂ X is a measurable set, it follows from regularity that

W n(µ)(A) =
1

∫

X

En(f)dµ
·

∫

A

En(f)dµ

which implies that W n(µ) ∈ Aµ and

dW n(µ)

dµ
=

En(f)
∫

X

En(f)dµ
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for every n ∈ Z. If Cm is the convex hull of {W n(µ) : n ≥ m}, then W (Cm) ⊂ Cm.
Indeed, let

tn =

∫

X

En+1(f)dµ
∫

X

En(f)dµ

for all n ∈ Z. If a1,...,an ≥ 0 are such that a1 + · · · + an = 1 and j1,...,jn ∈ Z, then

W

( n
∑

k=1

akW
jk(µ)

)

=
n
∑

k=1

aktjk
a1tj1 + · · · antjn

·W jk+1(µ).

This shows that W (Cm) ⊂ Cm and by continuity W (Cm) ⊂ Cm. Since Cm is a compact
convex subset of M(X), it follows from the Schauder-Tychonoff theorem that W has a
fixed point in Cm or in other words there is a ef -conformal measure for T in Cm. More-
over, our assumption and Lemma 3.1 imply that Cm ⊂ Aµ. This proves the conclusion. �

The conclusion of Theorem 3.2 remains true under the assumption that there exists
an integer m ≤ 0 such that

En(f) ≤ g

∫

X

En(f)dµ

for every n ≤ m, by considering W−1.

4 The derivative of Denjoy C1 diffeomorphisms

Let T : S1 → S1 be an orientation preserving C1 diffeomorphism with irrational rotation
number ρ(T ). It is well known (see [2], [7], [10]) that T is uniquely ergodic and there
exists a unique minimal set K ⊂ S1 which is the support of the unique T -invariant Borel
probability measure µ, and either K = S1, in which case T is topologically conjugate
to the rotation by the angle 2πρ(T ) or K is a Cantor set and T is only topologically
semi-conjugate to the rotation by the angle 2πρ(T ). In the latter case T is a Denjoy
C1 diffeomorphism and the semi-conjugation is never C1. In both cases, K is the non-
wandering set of T and

∫

S1

log(T n)′dµ = 0

for every n ∈ Z.
A T ′-conformal measure ν for T on K will be called automorphic for T and is a Borel

probability measure on K such that

∫

K

φdν =

∫

K

(φ ◦ T )T ′dν

for every continuous function φ : K → R. By the change of variable formula, the
(normalized) Lebesgue measure of S1 is automorphic for T . It is also T -quasi-invariant
from the mean value theorem.
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If h : S1 → S1 be an orientation preserving C1 diffeomorphism and S = h ◦ T ◦ h−1,
then S is a Denjoy C1 diffeomorphism with unique minimal set h(K) and unique S-
invariant Borel probability measure h∗µ. If ν is an automorphic measure for T , then

ν ′ =
h′

∫

K

h′dν

· h∗ν

is automorphic for S. It follows that if ν ≪ µ, then ν ′ ≪ h∗µ.
The proof of Theorem 1.1 is now an immediate consequence of Theorem 3.2 and the

chain rule.
If log T ′ is a continuous coboundary on K, then there exists a unique automorphic

measure for T which is absolutely continuous with respect to µ, since T is uniquely
ergodic. We note however that one can construct examples of Denjoy C1 diffeomorphisms
where the logarithm of the derivative is not a continuous coboundary on the unique
minimal set and others where it is. In any case, log T ′ is never a continuous coboundary
on S1, by an argument due to M. Herman [7]. See also section 6 in [2].
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