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Chapter 1

Introduction

1.1 Measurable dynamical systems

Let (X, A, 1) be a probability space. An endomorphism of X isamap T : X — X
such that T71(A) € Aand u(A) = u(T~1(A)) for every A € A. If T is invertible and
T~ is also an endomorphism, then T is called automorphism. A measurable flow
on X is a one parameter group of automorphisms (¢;):cr, such that the evaluation
map ¢ : R x X — X is also measurable. Any of the above is called a measurable
dynamical system.

Two measurable dynamical systems, say T} : X — Xj on probability spaces
( Xk, Ak, ux), k = 1,2, are called measurably isomorphic if there are Ti-invariant
sets Yy € A with pp(Yy) = 1, k = 1,2, and an isomorphism h : (Y7, Ay, 1) —
(Ya, As, pio) such that Thoh =hoTy on Yy and Ty o h™' = h™' o T on Y.

We shall give in this introductory section three examples. Further examples will
be given in later chapters. Let first G be a compact topological group. The Haar
measure p on G is the unique Borel probability measure invariant under left and
right translations of G. For instance, if G is a torus, then the Haar measure is the
normalized Lebesgue measure. Let T : G — G be a continuous group epimorphism.
If v(A) = u(T~1(A)) for any Borel set A C G, then v(T(z)A) = u(xT~(A)) =
v(A). Since T is onto, it follows that v = pu. So T preserves the Haar measure.
In particular, for the case G = S! we have that the map T'(z) = 2" preserves the
normalized Lebesgue measure, for any n € Z*.

Let (X, A, 1) be a probability space and (F, F) be a measurable space. A random
variable with values in F is a measurable function from X to E. A stochastic process
with values in E and parameter space .J, which is usually one of Z*, Z, RT or R,
is a family of random variables f = (f;)jcs with values in E. If on the product E7
we consider the product o-algebra F7, which is by definition the smallest o-algebra
that contains 77]»_1(.7-")7 j € J, where 7; : E/ — E is the j-projection, then f is just
a random variable with values in the measurable space (E”, F7).

The distribution of a random variable g : X — FE is the probability measure
g«pt = pro gt on (E,F). The distribution of a stochastic process f = (f;)jes :
X — E7 is the probability measure f,u on (E7, F7). This is the unique probability
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4 CHAPTER 1. INTRODUCTION

measure such that

for every finite set {j1,...,jn} C J and A;,,...4;, € F.
If {p; : j € J} is a family of probability measures on (E,F), there exists a
unique probability measure 7 on (EJ JF ) such that

! (15 (A e N H(AG) = g (Agy)- g (Ag,)

for every finite set {ji,...,jn} C J and A;,,...A;, € F. The measure p”’ is called the
product measure of the family {p; : j € J}.
The random variables f; : X — E, j € J, are called independent if

(5 AR O DA = 5 (Ag)-n( 5, (A5,)

for every finite set {ji,...,jn} C J and Aj;,,...A;, € F. In other words, they are
independent if and only if the distribution f,u of the stochastic process f = (f;)jes
coincides with the product measure ;i where f; is the distribution of the random
variable f;. The random variables are called identically distributed if their distribu-
tions are equal.

Let now f = (fx)rez+ be a sequence of independent and identically distributed
random variables and 7 : EZ" — EZ" be the shift, that is 7 is the map defined by
T((k)k>0) = (Tk+1)k>0- Then the distribution f,pu is preserved by 7. In general we
have the following.

1.1.1. Lemma. The product measure ,uZJr of a sequence of probability measures
(k) gez+ on (E,F) is preserved by the shift if and only if py, = p for every k, 1 € Z+.

Proof. If ky,....k, € Z" and Ag,,..., Ay, € F, then
T_l(WI;I(Akl) N...N Wl;nl(Akn)) = WI;IJFI(A;CI) N...N Wl;nlﬂ(Akn).
So, if ,uZ+ is T-invariant, we have
1, +,

i(A) = 1 (e (g M(A)) = i (i (A)) = g (A)

for every k € Z™ and A € F. Conversely, if p, = pg for every k € Z*, then
T*MZ+(7TI;11(A;€1) N...N W,;nl(Akn)) = 2" (T_l(ﬂ];ll(Akl) N...N ﬂ];nl(Akn))) =
Z e (Ar) N N (A)) = po(A Ap,) =
p (o (Ak) NN (Ak,, ) = po(Aky )0 (A,

T (g (Ary) 0 (Ag,)-

Since ,uZJr and T, ,uZ+ are equal on cylinders, they are everywhere equal. [J
A stochastic process f = (fi)rez+ is call stationary if its distribution is preserved
by the shift. This is equivalent to saying that

(i (Ar) NN F  (A)) = (i (Ar) N0 Y (Ag,))
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for every ki,...k, € Z% and A,,...,Ax, € F. So every stochastic process of
independent and identically distributed random variables is stationary.

1.1.2. Proposition. Let (X, A,u) be a probability space, T : X — X be an
endomorphism and (E,F) be a measurable space. For every measurable f : X — E,
the sequence of random variables f, = foT*, k € ZT is a stationary stochastic
process.

Proof. For every ky,....k, € ZT and Ayg,,...,Ax, € F we have
P (Aky) 0o 0 (Ay)) = (T (7 (AR)) 0 DT (f N (A,)) =

(T H TR (AR) NN T (f 1 (AR))) = 0 (Ae) NN Y (Ag,)) -0

Let (X, A, ) be a probability space, ¥ € N and f, : X — {0,1,....k — 1},
n € ZT, be a sequence of random variables, where on {0,1,...,k — 1} we consider
its Borel algebra as a discrete space. Let the random variables be independent and
identically distributed and suppose that pg(l) = p;, I = 0,1,....,k — 1, where pq is
their common distribution. The shift 7 on the product space {0, 1, ...,k — 1}Z+ with
the product measure is called the one-sided Bernulli shift on the space of sequences
on k symbols with probabilities py,...,px—1. Similarly, on the space {0,1, ...,k — 1}
of doubly infinite sequences on k symbols we have the two sided Bernulli shift with
probabilities pg,...,px_1, Which is an automorphism.

Note that the product space {0,1,...,k — 1}Z+ has a totally disconnected,
compact, abelian topological group structure and the shift is a continuous epi-
morphism. The Haar measure is the product measure coming from probabilities
po=p1 = ... = pr—1 = 1/k. So in this case the Bernulli shift is a particular case of
our first example.

Our third example are the volume preserving vector fields on oriented manifolds.
Let M be a compact, connected, smooth manifold, oriented by a volume element w,
whose integral on M is equal to 1. It follows from the Riesz representation theorem
that there exists a unique Borel probability measure p,, on M such that

/M F s = /M feo

for every continuous f : M — R. If h : M — M is an orientation preserving
diffeomorphism, then from the change of variables formula we have

[ tdna= [ go= [ W= [ (fony o= [ (7o mdue.

It follows from this that
te (h(A)) :/ Xh(A)dhes =/ (Xn(a) © h)dpipse, =/ XA = finew(A)
M M M

for every Borel set A C M. Since h is orientation preserving, there exists a unique
smooth function det,, hy : M — (0,+00) such that (h*w), = (dety, hy(z)) - w, for
every x € M. From the chain rule we have det,, (g o h), = ((det,, g«) o h) - (det,, hy).



6 CHAPTER 1. INTRODUCTION

Let now & be a smooth vector field on M. There exists a unique smooth function
div,€ : M — R, called the divergence of £ with respect to w, such that d(iew) =
(div,&)w. If (U,x!,..,2") is a system of local coodrinates on M, then w|U =
fdxz' A ... Adx™ for some smooth function f: U — R. If £ = (¢1,...,£") in the local
coordinates of U, then

div,é|U =

5 (f&")

oxk

|

k=1

Since the Lie derivative Lew = d(i¢w) + i¢(dw) = (divy,€)w, we have

dety Pps — 1

i = iy
where (¢¢)ier is the flow of . If z € M and ¢, (t) = dety, ¢(x), t € R, then
div€(z) = ¢ (0) and

'I,Z)/ (t) — lim detw ¢(t+s)*(x) — detw (bt*(x) _

s—0 S

lim (detw ¢8*(¢t(x))) : (detw ¢t* (1‘)) — det,, ¢t* (1')

s—0 S

= Vo () (0) - ¥a(t).

We conclude that div,¢ = 0 identically on M if and only if det, ¢ = 1 for every
t € R if and only if ¢pfw = w for every ¢t € R. In other words the divergenceless
smooth vector fields are preciesely the volume preserving ones.

1.2 Poincaré recurrence

It is clear from the definitions we gave that the notion of measurable dynamical
system is too general and in order to conclude useful properties we shall need a
minimum of additional information on the nature of a system. There is however a
general remarkable theorem due to H. Poincaré, which is qualitative in nature. We
prove it first in the measure theoretical setting.

1.2.1. Theorem (Poincaré-Gibbs). Let T be an endomorphism of a probability
space (X, A, ). Let A€ A and

Ag={z € A:T"(x) € A for infinitely many n > 0}.
Then, Ay € A and p(Ap) = u(A).

Proof. Let Cp, = {x € A:T™(z) ¢ A for every m > n}. Then, Ay = A\ U,—; Ch.
It suffices to prove that C),, € A and u(C,) = 0 for every n € N. We observe first
that

Co=A\ | T7™(4) = A\T (| T7™(4)).

m>n m>0
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Since T is an endomorphism, 77" (A) € A and thus C,, € A. Moreover,

cC.c | Jrmw\yyrm

m>0 m>n

and hence

U T™(A)) — w(T (| T7™(4))) = 0.0

We shall give now the topological version of Poincaré’s recurrence theorem in
the case of continuous time. A continuous flow on a metric space X is a continuous
one parameter group of homeomorphisms (¢;)er of X, that is the evaluation map
¢ : R x X — X is continuous. The set

LT(z) ={y € X : ¢, (x) — y for some t,, — +0o0}

is called the positive limit set of x and is closed and invariant under the flow. The
negative limit set L~ (x) is defined in the obvious way and has similar properties.
Let P ={z € X :x € L*(x)} and P = Pt N P~. The closure of P is called the
Birkhoff center of the flow. The points of P are called positively recurrent and of
P~ negatively recurrent.

1.2.2. Lemma. A point x € X is positively recurrent if and only if for every
neighbourhood V' of x there exists t > 1 such that ¢¢(x) € V.

Proof. Only the converse requires proof. Let {V,, : n € N} be a neighbourhood base
of z. According to the hypothesis, there exist ¢, > 1 such that ¢y, (z) € V,,, n € N.
Then, ¢y, (r) — x and either t,, — 400 or the sequence (t,)nen has a convergent
subsequence. In the second case there exists some ¢t > 1 such that ¢i(z) = =z,
because of the continuity of the flow, and therefore ¢,(x) = = for every n € N.
Hence in any case z € P*. [J

1.2.3. Theorem. Let (¢¢)er be a continuous flow on a separable metric space X,
which preserves a Borel probability measure p. Then P contains a Borel set of full
measure.

Proof. For any Borel set A C X, the sets

= A\ GAH%(A) and A~ = A\ GAmqﬁ_n(A)

n=1 n=1

are Borel. Obviously, (¢:(A))* = ¢:(AF) for every t € R. For every k > 1 > 0 we
have ¢p(AT) N @ (AT) = i1 (AT) N (AT) = @. Tt follows that

Zwﬁ = _n@n(A) = Um/ﬁ
= k=0
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This can happen only if u(A*) = 0. Similarly we have u(A~) = 0. Let now
{A, : n € N} be a countable base of the topology of X. Set B¥ = J, .y Ai and
B = BT U B~. According to the above remarks, u(B*) = u(B~) = 0 and thus
w(X \ B) = 1. So it suffices to prove that X \ B C P. Let z € X \ B and A; be
a basic open set containing z. Then, z € (X \ 4) N (X \ 4; ). Thus, there exist
m, n > 0 such that x € A; N ¢, (4;) Nd—n(A4;). Tt follows from Lemma 1.2.2 that
ze P O

1.2.4. Corollary. Let (¢¢)ier be continuous flow on a separable metric space X,
which preserves a Borel probability measure p. Then the support of u is contained
in the Birkhoff center of the flow.



Chapter 2

Classical mechanical systems

2.1 Hamiltonian systems

A symplectic vector space is a finite dimensional real vector space equiped with
a non-degenerate, antisymmetric, bilinear form w. Every symplectic vector space
(V,w) has even dimension, say 2n for some n € N, and a basis {ey, ..., en, €], ...,e5}
such that w(e;, e}) = d;; and w(e;, e5) = w(ej,ej) =0, for 1 <i,j < n. A linear map
f:V = V is called symplectic if w(f(u), f(v)) = w(u,v) for every u, v € V. Every
symplectic f is an isomorphism, (det f)? = 1 and is conjugate to (f~1)!. Thus, if
A € C is an eigenvalue of f, then A, 1/X and 1/) are also eigenvalues.

A symplectic manifold is a smooth manifold P equipped with a smooth, closed,
non-degenerate, 2-form w. Thus, the pair (7, P,w,) is a symplectic vector space for
every x € P. It follows that every symplectic manifold is even dimensional. The
simplest and perhaps most important example is the cotangent bundle of a smooth
manifold. Let M be a smooth manifold of any finite dimension and ¢ : T*M — M
be the cotangent bundle map. Let # be the 1-form on T%M defined by 6, = a 0 gxq
for a € T*M and w = —df. We shall describe 6 and w locally. To a system of
local coordinates (U, q",...,q") on M corresponds a local trivialization of ¢, which
gives local coordinates (¢~ 1(U),q",...,q", p1,...,pn) on T*M, such that if the local
coordinates of € U are (¢',...,¢"), then the local coordinates of a € ¢~ (U) are

(q17 ceey qnapla "'7pn)7 where

From the definition of § we have

%(a%) - a(qm<a%>> - %%) 0

and
Oul ) = e -)) = a(0) =0

This shows that

0= Zn:pidqi and w = Zn:dqi A dp;.
i=1 i=1
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In particular, w is non-degenerate and therefore (T*M,w) is a symplectic manifold.
By the theorem of Darboux, every symplectic 2n-manifold (P,w) can be coverd
by local coordinates (W, ¢, ...,¢",p1, ..., pn) such that

w|W = idqi A dp;.

In these Darboux local coordinates we have
WA . Aw= (—1)["/2} cnlodgt A Adg Adpy A ... A dpy,

where the wedge product on the left hand side is taken n times.
A smooth map f : P — P is called symplectic if f*w = w. It is evidently a
local diffecomorphism and preserves the volume element Q = ((—1)*/2 /nhwA ... Aw.

2..1.1. Definition. Let (P,w) be a symplectic manifold. A smooth vector field £
on P is call Hamiltonian if there exists a smooth function H : P — R, called the
hamiltonian, such that such dH = icw.

Since w is non-degenerate, every smooth function is the hamiltonian of a Hamil-
tonian vector field. The integral curves of a Hamiltonian vector field are locally
solutions of Hamilton’s differential equations. Let (W, q',...,q¢", p1, ..., pn) be Dar-
boux local coordinates. On the one hand on W we have

" OH . <~0H
dH = - - dq’ — - dp;
aql Q+Za p

=1 =1

and on the other hand
0 )
igw(5 ) qu N dpi) (€, 57 > = —dq'(57) - dpi(&) = —pi

and
0

Gpl qu A dpr)(&; 5 A) dg' (€) - dp"(a_m) =g

Z'gw

Thus, the equation dH = i¢w in the local coordinates of W is equivalent to

dg' + 5, Wi = > (=)' +)_ d'dpi
i=1 i-1 P i=1 i=1
or equivalently
. OH 45 0H <
= an ] — ——/—— 1 n
q apz pl 8ql I — — 9

which are Hamilton’s equations.

It is obvious that the hamiltonian H of a Hamiltonian vector field £ is a first
integral, since dH (¢) = w(&,€) = 0. Thus, the level sets H~!(c), ¢ € R, are invariant
under the flow of £ and the qualitative study of its flow falls into the study of the
restrictions on these level sets, the topology of the level sets themselves and the way
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they fill in P. If ¢ is a regular value of H, then H’l(c) is a submanifold of P. The
volume element €2 induces a natural volume element Q on H~!(c) defined by

Qm(uly "'au2n71) — Ql’(u,uh "'au2n71)

where z € HY(c), uy,...,u2n_1 € TyH 1(c) = kerdHz, and u € T, P is such that
dH (z)u = 1. The definition is clearly independent of w.

The local flow of the Hamiltonian vector field & consists of symplectic diffeomor-
phisms of open subsets of P, which therefore preserve the volume element Q. If ¢,
is a diffeomorphism of the local flow of £ for some ¢ € R, then

(D7) (tr, ooy tizn—1) = gy (1) (U, Gps (T U1, .., P () Uz —1)

where © € H 1(c), uy,...,usn1 € TpyH (c), and u € Ty, (x)P is such that
dH(¢¢(z))u = 1. Since ¢y(z) : To P — Ty, () P is a linear isomorphism, there is a
unique ug € T, P such that ¢y (z)ug = u. Differentiating the equation H o ¢, = H
we get dH (¢¢()) o ¢ (x) = dH(x). Therefore, dH (z)ug = 1 and

(Dr )z (ut,...;uzn—1) = (&1 Q)z (w0, ut, ..., u2n—1) = Qz(ug, ..., U2p—1)

which shows that ¢;Q = Q.

2.2 Mechanical systems on Riemannian manifolds

Let M be a n-dimensional Riemannian manifold with metric g. There is a natural
bundle isomorphism £ : TM — T*M, such that if v € T, M then L£(v) is the linear
form on T, M defined by L£(v)(w) = g(v,w). The inner product g, on T, M is thus
transfered to an inner product g; on 7M. If in local coordinates the matrix of
g is G = (gij), then in the dual local coordinates the matrix of g* is G=1 = (¢).
If w = —df is the standard symplectic 2-form on T*M, then L*w = —d(L*0) is a
symplectic 2-form on T'M.

2.2.1. Definition. A mechanical system on the Riemannian manifold M is a
Hamiltonian vector field £ on T'M with hamiltonian function of the form

1
E(v) = 5|l + V(x(v))
where V : M — R is a smooth function, called the potential energy, 7 : TM — M
is the tangent bundle projection and || - || is the norm on the fibers of the tangent
bundle defined by the Riemannian metric.

We shall find Hamilton’s equations of motion for a mechanical system on a
Riemannian manifold. First we must find local expressions for £*6 and L*w. Let
(U, q",...,q") be a system of local coordinates on M. Since L(x,v) = (,g:(v,")),

its Jacobian is
DL(z,v)=1| 0
%gl‘(va ) gl‘(a )
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DL(x,v) (:Z) = (((%gx(v,-);u ‘|‘9x("w)> '

(£76) () = B0t 50+ ) = g 0).

or explicitly
It follows that

This means that if (¢!, ...,¢", v!,...,o") are the corresponding local coordinates of
(U

7~ 1(U), then on 7 )we have
L0 = Z gijvjdqi
ij=1

and therefore

g . .
fw= Z gzjdq Adv? + Z Z] ~vldgt A dg.
i,j=1 i,5,k= 1

Note that the local coordinates on 7~ (U) are not Darboux. Next we have

Z g”v’vjdq + ngv’dv +Z g

i,5,k= 1 i,k=1

and

ie L w( % = ng]dv Z g”vjd Z k] v/ dg

i,j= 1 =1

e Lw Zglkdq 1<k <n.

If I is an open interval, then (g'(t),...,¢"(t),v'(t),...,o™(t)), t € I, is an integral
curve of £ if and only if it is a solution of the system of differential equations

> giwd = gt
i=1 =1

—ng]vﬂ+zag”“ Zag"”ﬂz Zagmlug‘g, 1<k<n.

5,j=1 1,7=1 5,j=1

It is obvious that the first n equations are equivalent to ¢* = v?, 1 < i < n. The rest
of them can be written

igkﬂ'}j:——zagm Zj Zagw Tt _ Zagk]]z_a;/];’ 1<k<n.
j=1

7]7 7]7 7]7
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or equivalently, since G is symmetric,

ka[

=1

8g gy ov - - oV
Z SV = Z St ]Z_a_ql :_ZFZU%]_ZQMB—(JW
i,j=1 1,j=1 i,y=1 =1
where I’fj are the Christofell symbols, because

1o dgjt | Ogui  0gij

Eo_ 2t Kl J i YYy

Pij_QZg <aqz‘ +aqj 3ql
=1

and thus

n n n ag’l 1 ag“
§ : ko i,J § : § : kl JL =Yy 1,
< Fijvv_{. g <8qi 28ql>vv'
i,j=1 1,j=1 =1

So Hamilton’s differential equations can be written locally

¢~ = ok,
n n
o 1%
ST S LA
ij—=1 i—1 q

which are equivalent to the system of second order differential equations

1
k
q+§ Id'q = gg’aql, 1<k<n
i,7=1 =1

These calculations prove the following.

2.2.2. Proposition. A smooth curve v : I — M in a Riemannian manifold M is
the projection of an integral curve in TM of the mechanical system with potential
energy V : M — R if and only if

V44 = —gradV.

The mechanical system with potential energy V' = 0 of a Riemannian manifold M
is called the geodesic vector field of M. The metric on M is by definition complete if
the geodesic vector field is complete on T'M and so defines a flow, called the geodesic
flow of M. The projected curves on M of the integral curves of the geodesic vector
field are the geodesics.

2.3 Jacobi’s theorem

Let M be a Riemannian manifold with metric g and let V : M — R be a smooth
function bounded from above. Let e € R be such that V(x) < e for every z € M.
On M we consider the new Riemannian metric g. = (e — V)g, called the Jacobi
metric. Let g* be the induced by £ metric on the fibers of the cotangent bundle
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q:T*M — M. If G is the matrix of g in some local coordinates, then the matrix of
g* is G™1. The induced Jacobi metric is thus
1
e—V
The mechanical system with potential energy V is equivalent to the Hamiltonian

vector field on T*M with hamiltonian

Ge = 9.

H(a) = 59°(,0) + V(g(a)

and the geodesic vector field of the Jacobi metric is equivalent to the Hamiltonian
vector field on T*M with hamiltonian

1 1 .
=3 V) ¢ @

Observe that H~1(e) = H_1(1).

e

H¢(a)

2.3.1. Lemma. Let (U,w) be a symplectic vector space and W be a vector subspace
of codimension 1. Then, the subspace K = {v € W : w(v,w) = 0 for every w € W'}
s at most 1-dimensional.

Proof. There exists u € U such that U = W @ (u). Since w is non-degenerate,
w(v,u) # 0 for every non-zero v € K. Hence the linear map w(-,u) : K — R is
one-to-one. [

2.3.2. Proposition. Let (P,w) be a symplectic manifold and Hy, Hy : P — R be
hamiltonians with correspomding Hamiltonian vector fields & and &. If ¢; € R is
a regular value of H;, fori=1,2 and S = Hfl(cl) = H;l(CQ), then there exizts a
smooth function f:S — R\ {0} such that &|S = f - (&1]9).

Proof. For every z € S and w € T,S we have 0 = dH;(z)w = w,(&(x),w) and so
&1(x) and &(x) are colinear by Lemma 2.3.1, and non-zero because ¢; is a regular
value of H;, i = 1,2. Therefore, there exists a function f : S — R\ {0} such that
&|S = f - (&1]S), which is easily seen to be smooth. [J

2.3.3. Lemma. Let M be a Riemannian manifold and & be the geodesic vector
1
field, which has mechanical energy E(v) = §HvH2

(a) Every ¢ > 0 is a regular value of E.
(b) For every ci, ca > 0 there exists a diffeomorphism h : E=1(c1) — E~Y(co)

such that
ha (€2 (1) = \ﬁ (B (e2)).

Proof. (a) In local coordinates (q', ..., q.,v", ...,v™) we have

1 & Haii . . n .
dE = 5 Z %Ulvjqu + Z gik,‘vldvk.
i,5,k=1 q i,k=1
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So for x € M and v € T, M with E(v) = ¢ we have dE(v)(0,v) = g, (v,v) = 2¢ > 0.
(b) If h: TM — TM is the diffeomorphism with h(v) = (, /C—2)v, then clearly h
C1

satisfies our requirements.[]

Summurizing now we have the following.

2.3.4. Theorem (Jacobi). Let M be a Riemannian manifold and V : M — R be
a smooth function for which there exists e € R such that V(x) < e for every x € M.
Let & be the mechanical system with potential function V. If e is a reqular value of

1
the mechanical energy E(v) = 5”?)]]2 + V(n(v)), then the restricted system on the

level of mechanical energy e is a reparametrization of the restricted geodesic flow on
the unit tangent bundle of M with respect to the Jacobi metric.

Recall that by Sard’s theorem the set of critical values of a smooth function has
Lebesgue measure zero. Thus, if the potential energy is bounded from above, we can
always find an upper bound which is a regular value of the mechanical energy. The
theorem of Jacobi reduces the theoretical study of mechanical systems to the study
of geodesic flows. In the sequel with the term geodesic flow we shall always mean
the dynamical system defined on the unit tangent bundle of a complete Riemannian
manifold by restriction of the geodesic vector field.

2.4 The Liouville measure

Let M be a complete Riemannian manifold with metric g and £ be the geodesic
vector field on TM. Let (U,q',...,q") be a system of local coordinates on M and
(x=Y(U),q", ...,q", v, ...,v™) be the corresponding system of local coordinates on
TM. As we saw in section 2 of this chapter, the symplectic 2-form in these local
coordinates of m~1(U) is

fw= Z gzjdq Adv? + Z gl] ~vldgt A dg.
7] 1 ,]k‘ 1
So & preserves
LYOA .. A LYw = c(det Q)dg' A ... Adg™ Adv' A ... A do™,

where c¢ is a constant depending only on the dimension of M. Let
1 * *
Q==-LON..NLw.
c

The induced volume element  on the unit tangent bundle T2 M, defines a Borel
probability measure preserved by the geodesic flow, called the Liouville measure on
T'M. We shall describe locally the volume element Q on T M. The part of T2 M
in the system of local coordinates we consider is described by the equation

ng s M = 1.

1,7=1
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For every (q',...,q") this equation describes an ellipsoid in {(¢',...,¢")} x R™. We
shall construct a new system of coordinates on w1 (U), which converts this ellipsoid
to a (n — 1)-sphere. Since the matrix G(q!,...,¢") is symmetric and positively
definite, it has positive eigenvalues and can be diagonalized. More precisely, there
exists an orthogonal matrix A(q',...,¢") = (a;j(q',...,¢")) such that A'GA = I,.
We consider now coordinates (¢!, ...,¢", u',...,u™) on 7~1(U) such that

n
v = Z aij(q', ..., g™,
j=1

and we have

n

n n n
1= Z gijvivj = Z Gij (Z aikuk> <Z ajlul> =
k=1 =1

ij=1 ij=1
n n n

kI k2

> <Z aikgijajl>u w=> (u),
Fi=1 Nij=1 k=1

It follows that in 7= 1(U) we have
Q= (det G)dg" A ... Ndq" Advt A ... A do™ =

(det G)(det A)dg" A ... Adg™ Adu A ... A du" =
Vdet Gdg' A ... Adg™ A dut A ... A du™.

This means that €2 is locally the product of the Riemannian volume element on
M with the euclidean volume element on the fibers of the tangent bundle. Hence
the Liouville measure is locally the product of the Riemannian measure with the
(n — 1)-spherical Lebesgue measure on the fibers of the unit tangent bundle.



Chapter 3

Dynamical systems on compact
metric spaces

3.1 Invariant measures on compact metric spaces

Let X be a compact metrizable space. Every Borel measure p on X is regular, that
is for every Borel set B C X and € > 0 there exist an open set V' C X and a closed
set C' C X such that C € B C V and p(V \ C) < e. Consequently,

pu(B) =sup{u(C) : C C B, C closed in X} = inf{u(V): BCV, V open in X}.

From the Riesz representation theorem follows that the set M(X) of all Borel prob-
ability measures on X is in a one-to-one, onto correspondence with the set of all
positive linear forms J : C(X) — R with J(1) = 1. The correspondence is defined
by the formula

J(f) = /X fdu, f€C(X) e M),

Since C(X) is separable, M(X) endowed with the weak topology becomes a
compact metrizable space.

3.1.1. Lemma. Let T : X — X be a continuous, onto map. A Borel measure
on X is T-invariant if and only if

/X(foT)du=/deu
for every f € C(X).

Proof. If pis T-invariant, then the conclusion is a direct consequence of the definition
of the integral. For the converse, since the measure is regular and 7" is continuous
and onto, it suffices to prove that pu(T~1(A)) = u(A) for every closed set A C X.
Indeed, if A is closed, there exists a decreasing sequence of continuous functions
fn: X —[0,1] such that f; (1) = A, for every n € N, which converges pointwise
to xa. Thus, we have

W(TL(A)) = /X Nty = /X (xaoT)du= lim [ (fuoT)du=

n—-+4o0o X

17



18 CHAPTER 3. DYNAMICAL SYSTEMS ON COMPACT METRIC SPACES

lim /fndu:/ xadp = pu(A).00
X X

n—-+o00

Every continuous, onto map 7" : X — X induces a continuous map T, : M(X) —
M(X) defined by

[ taru= [ (o secw,
X X
and p is T-invariant if and only if Ty = p.

3.1.2. Theorem. Every continuous, onto map T : X — X of a compact metrizable
space X has a T-invariant Borel probability measure.

Proof. Let pg € M(X). The sequence
1 n—1
Mn:EkZOTEMOa TLGN,

has a weakly convergent subsequence (pn, )ken to some p € M(X), since M(X) is
a compact metrizable space with respect to the weak topology. Then, we have

1
T*an = My = n_k (Tfk,U/O - MO)

and for every f € C(X) we get

[ gari = [ gl = | [ (o™~ [ sauo] <2151

It follows that
2
!/ de*u—/ fdp| < 21711 — 0,
X X ng

that is Typ = p. O

In the same way one can prove that every continuous flow (¢;)tcr on a compact
metrizable space X has an invariant Borel probability measure. In this case we get
the continuous flow ((¢¢)«)ter on M(X) and the measure p is invariant under the
flow on X if and only if it is a fixed point of this flow on M(X). The proof runs
along the lines of the proof of 3.1.2, considering the sequence

n—1
fin = —/ (¢¢)«podt, neN.
n Jo

It is obvious that the support of every flow invariant measure is a closed invariant
subset of X and is contained in the Birkhoff center, by 1.2.4.

In the sequel we shall denote by M7 (X) the set of T-invariant Borel probability
measures of a continuous, onto map 7" and by My(X) the set of invariant Borel
probability measures of a flow (¢¢)icr. In both cases it is evident that we have a
weakly compact convex set.
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3.2 Uniquely ergodic dynamical systems

Let X be a compact metrizable space. A continuous, onto map 17" : X — X is called
uniquely ergodic if there a unique T-invariant Borel probability measure, that is
Mrp(X) is a singleton. Similarly a continuous flow is called uniquely ergodic if it
has a unique invariant Borel probability measure.

3.2.1. Theorem. For a continuous, onto map T : X — X of a compact metrizable
space X, the following assertions are equivalent :

(i) T is uniquely ergodic.

(ii) For every f € C(X) the sequence of continuous functions

1 n—1
EZfoT’f, neN,
k=0

converges uniformly to a constant (the integral of f with respect to the unique in-
variant measure).
(iii) For every f € C(X) the sequence of continuous functions

1 n—1
=3 foT* meN,
" k=0

converges pointwise to a constant.

Proof. Suppose first that T is uniquely ergodic and p is the unique T-invariant Borel
probability measure. We shall prove (ii) by contradiction. If (ii) is not true, there
exists some f € C(X) for which there are ¢ > 0, n, — +oo and points z; € X,
k € N such that

nE—1

1 i
|n—k ;foT(xk)—/de,u{Ze, k eN.

For every k € N, the combination of Dirac point measures

nE—1

1
=— > op
o= 2 T (xy,)

is an element of M(X). So we may assume that the sequence (py)ren converges to

some v € M(X). Obviously,
[ g [ ganl = e
X X

and therefore v # . However, for every g € C(X) we have
ng

/X(goT)dV: lim iZ(goTi)(xk)

k—+o00 N, 4 ]
1=
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and
1 & ; 1 .
n—kZ(QOT)(x k) = gdﬂkJr—[(gOT (zx) — glzr)],
i=1
while ) 2” H
g
— Tk — — 0.
” [(g o T™ (x) — glay)| < nk
Hence

/(goT)dV: lim gd,uk:/ gdv,
X X

k—+o0 X

which means that v is another T-invariant Borel probability measure. It remains
to prove that if (iii) is true, then T is uniquely ergodic. If (iii) is true, then by the
Riesz representation theorem there exists a Borel probability measure p such that

dp= 1 T*
f = n¢$wn2f°

for every f € C(X). Obviously, u is T-invariant. Let now v € Mp(X). For every
feC(X) and n € N we have

/)(fduz/){(%:Z:foTk)dy

n—1

!—Z foTH)(@)| < |IfIl,

k=0

Since

for every z € X, by dominated convergence we have

foar= [ (i 25 sor)ar= [ ([ san)a= [ sonc

In the same way, replacing the sums with Riemann integrals and using Fubini’s
theorem one can prove the following.

3.2.2. Theorem. For a continuous flow (¢1)ier on a compact metrizable space X
the following are equivalent :

(i) The flow is uniquely ergodic.

(i1) For every f € C(X) we have

1 t
Jim 7 [ (rosois= [ fan

uniformly on X.
(iii) For every f € C(X) there is a constant ¢ € R such that for every x € X we

have
t—lgl:noo;/f(bs -
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The topological behavior of uniquely ergodic flows can be described as follows.

3.2.3. Proposition. Let (¢)ier be a uniquely ergodic flow on a compact metrizable
space X, with invariant Borel probability measure p with support suppu. Then,

(i) suppp C LT (x) N L™ (x) for every x € X,

(ii) suppp is a minimal set, that is it is non-empty, closed invariant and has no
proper subset with these properties, and

(iii) the restricted flow on suppp is uniquely ergodic.

Proof. Let z € suppp and W be an open neighbourhood of z in X. Since u(W) > 0
and the measure is regular, there is some C' C W closed in X with p(C) > 0. There
exists a continuous function f : X — [0,1] such that f~1(1) = C and f~1(0) =
X \ W. For every x € X we have from 3.2.2,

il = >
tgglm/ Fouads = [ fau> /fdu w(C) >0,
So, for every ty > 0 there are s < —tyg < 0 < tg < t such that ¢4(x), ¢(x) € W
This proves (i), while (ii) and (iii) are immediate consequences. [J

A similar proposition is true for uniquely ergodic homeomorphisms. Recall that
a closed invariant set is minimal if and only if every orbit in it is dense. In view
of 3.2.3, uniquely ergodic dynamical systems with dense orbits are of particular
interest.

3.2.4. Theorem. Let T : X — X be a continuous, onto map of the compact
metrizable space X . If

(i) the sequence {T* : k € 7} is equicontinuous, and

(1) there exists some xg € X such that {T*(zo) : k € ZT} = X,
then T is uniquely ergodic.

Proof. For every f € C(X) the sequence

n—1

1
n — Tka N,
f ano n e

is equicontinuous and uniformly bounded by ||f||. Thus, from Ascoli’s theorem,
there exists a subsequence ( fy,, )reny Which converges uniformly to some g € C(X).
Then,

N IR i
g(T(x)) = lim -~ E; (foT")(2) = g(x),

for every z € X. Our assumption (ii) implies now that g must be constant on X.
For every p € My (X) we have

nkl

/X fep = kgrn{loo ny ; / @ 1)y = hm / fru = 9(0).



22 CHAPTER 3. DYNAMICAL SYSTEMS ON COMPACT METRIC SPACES

This proves that Mrp(X) is a singleton. O

Note that if T is a homeomorphism, the sequence {T* : k € Z} is equicontinuous
if and only if 7" is an isometry with respect to some metric compatible with the
topology of X. Of course, a similar statement like 3.2.4 is true in the case of
continuous flows.

Let now G be a 1st countable, compact (Hausdorff) topological group. Then
G is metrizable and there is a compatible metric which is invariant under left and
right translations. For instance, in the case of the n-torus 7" = S' x ... x S! the
invariant metric is

d(.%',y) = Z ’1’1 - yi‘a
i=1

where = (1, ...,2,) and y = (y1,...,Yn). So, for any g € G, if T, : G — G is the
left translation Ty(x) = gz, then the sequence {T;g : k € Z} is equicontinuous and
leaves the Haar measure invariant.

3.2.5. Corollary. A left translation of a compact, mertizable topological group G
is uniquely ergodic if and only if it has a dense orbit in G.

Proof. If a left translation is uniquely ergodic, then the support of the Haar measure
is a minimal set, by 3.2.3. Therefore, every orbit is dense in G. The converse follows
immediately form 3.2.4. [J

Note that if a left translation of a compact metrizable topological group has a
dense orbit, then every orbit is dense and the group must be abelian. In the case
of the torus we have the following.

3.2.6. Theorem (Kronecker). If the real numbers 1, ay,...,a are linearly inde-
pendent over Q, then every orbit of the translation

g eeey

T(627rix1’ . 627rixk) — (627ri(a:1+a1) 627ri(acn+ak))

s dense in the k-torus and so T is uniquely ergodic.

We shall give an elementary proof which makes use of a couple of lemmas.

3.2.7. Lemma. If ay,...,ar are irrational numbers, then for every e > 0 there exist
s € N and by,...,by € Z such that |sa; — b;| < e, 1 <i<k.

Proof. Let n € N be such that 1/n < e. We consider the partition of the cube [0, 1]¥
into n* subcubes with edges of length 1/n. The points (maj —[may], ..., mag—[may)),

0 <m < nP, are n* + 1, and thus at least two of them belong to the same cube of
the partition, that is there are 0 < mo < my < nk such that

1
|(m1 — ma)a; — ([mia;] — [mea;])| < - <e, 1<i<k.

It suffices to take now s = m; — mgy and b; = [mya;] — [maea;], 1 <i < k. O
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3.2.8. Lemma. If a is an irrational number, then for every e > 0 and x € R there
exist n, m € Z such that lna —m — x| < €.

Proof. By 3.2.7, for every k € N there are s € N and by € 7Z such that
limg oo (sSga + bg) = 0. If tp = sxa + by, then tx # 0 for every k € N, because a
is irrational. Dividing = with tx, we find some [ € Z such that |z — litg| < |tg]
and therefore limg_, o |lgtx — x| = 0. Since lxtp = (lxsg)a + (Ixbx), we have the
conclusion. [

Proof of 3.2.6. 1t suffices to prove that the orbit of the point (1,...,1) is dense in
T*. We perform induction on k. The case k = 1 is precisely 3.2.8. Suppose that we
have proved the theorem in dimension k— 1. Our assumption says in particular that
ai,...,ar are irrational. By 3.2.7, for every € > 0 there exist s € N and by,....by € Z
such that |sa; — b;| <e€/2,1 <i<k. If

sa; — b;

a,=——=  1<i<k,

Saj — bk
then a) =1 and af,...,a},_,,1 are linearly independent over Q. Thus, by the induc-
tion hypothesis, for every x1,...,xx € R there are c¢y,...c; € Z such that

\cka;—ci—(xi—xka;)]<§, 1<i<k-1.

Substituting a} we find

‘ <M> (sai — bl) —C;, — Iy

S — bk

€
< = 1<i<k
27 ST1TSR,

because and for i = k we have cya), — ¢, — (@ — zpa)) = 0, since aj, = 1. Let now
N € Z be such that

'N_M <1,

say — by,

and set n = sN and m; = Nb; +¢;, 1 <1¢ < k. Then,
|na; —m; — x;| = |N(sa; — b;) — ¢; — x4
and

Ccr + X

IN(sai = bi) = 2 —

- (sa; — b)| < |sa; — b;l.
It follows that

cr + Tk € €

IN(sai — b)) — ¢; — x| < |sa; — by + (sai = bi) — & — x| < 2t3 ="

Sap — bk

for every 1 <+ < k. This proves the theorem. [J

3.2.9. Corollary. If a is irrational, then the rotation r4(z) = €™z of the unit
circle S' = {z € C : |z| = 1} is uniquely ergodic.

A rational rotation of the circle is never uniquely ergodic, because every point
is then periodic, and so the normalized sum of the Dirac point measures of the
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points of a periodic orbit is another invariant Borel probability measure, apart from
the Haar measure. In the next sections of this chapter we shall find more general
homeomorphisms of the circle that are uniquely ergodic, not necessarily preserving
the Haar measure.

We end this section remarking that the property of unique ergodicity is invariant
under topological conjugancies. Recall that two continuous onto maps 77, 75 : X —
X of the compact metrizable space X are topologically conjugate if there exists a
homeomorphism A : X — X such that T3 o h = h o T5. The homeomorphism A is
called topological conjugation. If h is only continuous and onto, then the maps are
called semi-conjugate and h is caled semi-conjugation.

3.3 Homeomorphisms of the circle

Let f:S' — S! be a homeomorphism. There is then a homeomorphism F : R — R
such that f(e?™) = 2™ F(®) for every t € R. Such an F is called a lift of f. Clearly,
any two lifts of f differ by an integer. The original homeomorphism f is orientation
preserving if and only if F' is increasing, and orientation reversing if F' is decreasing.
It is easy to see that in the later case F'(t + k) = F(t) — k for every k € Z, and f
has exactly two fixed points. We shall be concerned exclusively with orientation
preserving homeomorphisms f of S'. Then F(t + k) = F(t) + k for every k € Z or
equivalently F' — id is periodic with period 1. So we have a well defined continuous
function v : S1 — R with 1(e?™") = F(t) — t, the displacement function.

3.3.1. Lemma. Ifa = min{¢(z) : z € S'} and b = max{(z) : 2 € S'}, then
b—a<1.

Proof. If s,t e Rand s <t < s+ 1, then
Y(eX™) — (™) = F(s) —s — F(t)+t <t —s< 1,

because F is increasing. Therefore, ¥(e2™) < 1 + ¢(e*™) for every t € [s,s + 1).
Consequently, (e?™) < 1+ a for every s € R, and so b < 1 +a. [J

3.3.2. Proposition (Poincaré). There exists a constant p(F') € R such that
AU (PN
i " = id) = o)
uniformly on R.
Proof. Let u € M(S') and ¢, : S' — R be the induced continuous function
; 1
Yn(e¥™) = —(F"(t) — t).
n

Then, 1 =11 and
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n—l n—1
%Z (F - Zd)(Fk(t)) = %ZFkJrl(t) — Fk(t) = %(F”(t) —t) = wn(e%m’t).
k=0 k=0

Thus, the integral of v, is equal to the integral of ) and

/51 (nwn—n/SIzbdu>du:O.

Applying now 3.3.1 for f™, which lifts to F™ with displacement function ni,,, we
get

min{ny,(z) — n/ Ydp : 2 € S'} > ||ny, — n/ bdu|| — 1,
St St
and therefore 1
fon— [ vl < .
g1 n
for every n € N. Hence

lim wnzfsl i

n—-+o0o

uniformly on S'. [J

3.3.3. Remarks. (a) As the proof of 3.3.2 shows, for every u € M(S') we have

o(F) = [ .
Sl

(b) |F™ —id — np(F)|| < 1 for every n € N.

(c) If a = p(F), there exists some ty € R such that

F™(tg) — tg — na = nap, (e*m0) — n/ pdp = 0.
S1

So F™(tg) = Rpa(to), or in other words R_,, o F™ has a fixed point t, where
Ryq : R — R is the translation Ry, (t) =t + na.
(d) For every a € R we have p(R,) = a.
(e) Since Ry o F' = F o Ry, for every k € Z, we have
(RioF)" —id _ RuoF"—id _F"—id+nk _

F)+ k.
- - - p(F) +

It follows from 3.3.3(e) that the number p(f) = e*™*F) ¢ S' does not depend
on the particular lift /' of f. It is called the Poincaré rotation number of f.

3.3.4. Proposition. An orientation preserving homeomorphism f : S' — S' has
a periodic orbit if and only if p(f) € Q/Z.

Proof. Let F be a lift of f. If zy = e*™0 is a periodic point of f of period ¢, then
29 = fa(e20) = 2™ (to) and therefore p = F(to) — tg € Z. So we have
Fra(t) — to

p(F) = lim —— V"0 _ jyy PP
n—-+o0o nq n—-+o0o nq q
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Conversely, if p(F') = p/q € Q, then from 3.3.3(c), R_, o F9 has a fixed point t; € R
or equivalently F'(tg) =tg+p. O
As in the case of flows, if f: X — X is a homeomorphism of a metric space X,
the set
LT (z) ={y € X : f™(z) — y for some ny — +oc}

is called the positive limit set of the point x € X, and is a closed invariant set.
Similarly, the negative limit set L~ (x) is defined and has the same properties.

3.3.5. Proposition. If the orientation preserving homeomorphism f : S* — 81
has irrational rotation number, then there exists a compact f-invariant set K C S
with the following properties.

(i) LY (z) = L~ (z) = K for every x € S*, and in particular K is minimal.

(ii) Either K = S or K is a Cantor set.

(iii) suppp = K for every f-invariant Borel probability measure.

Proof. Let x € S' and K = L*(z). Since K is closed and invariant, we have
L*(y) UL (y) C K for every y € K. The connected components I,,, n € Z, of
S1\ K are permuted by f. Let now y € S'\ K. If LT(y) N (S'\ K) # &, there
are some n, k, | € Z with k > [ such that f*(y), f'(y) € I,. This means that y €
f7%(1,) N f74(I,) and therefore f*~!(I,) NI, # @. Then, f*~(I,) = I, and from
the intermediate value theorem f¥~! must have a fixed point in I,,. This contradicts
3.3.4, since f is supposed to have irrational rotation number. Hence L*(y) C K
and similarly L= (y) € K for every y € S'. In other words, we have shown that
LT (y)UL(y) C L*(x) for every x, y € S! and similarly L*(y) U L~ (y) C L™ ().
Thus L*(y) UL~ (y) € LT (x) N L~ (z) for every z, y € S*, and symmetrically we
get

LT (z)UL (z) CLT(y) N L™ (y) C LT (y) UL (y) C LT ()N L™ (2)

for every x, y € S'. Hence K = LT (y) = L™ (y) = L*(x) = L™ () for every z,
y € S'. It is clear now that K is a perfect set. If K is not totally disconnected,
it contains an open interval J C S'. Then, for every x € S' there exists n € Z
such that f*(x) € J, that is z € f~"(J) C K. This shows that K = S, if it is
not a Cantor set. Obviously, K = {z € S' : 2 € L™(2)}, and so from Poincaré’s
recurrence theorem we have suppp C K for every p € My (S 1), Since K is minimal,
we must have equality. [J

3.3.6. Lemma. Let f : S' — S be an orientation preserving homeomorphism
with irrational rotation number, F be a lift of f and a = p(F). Ift € R and
C(t) ={F"(t)+m:n,m € Z}, then the function F; : C(t) — Z + aZ with

F,(F™(t) +m) =m +an
1s strictly increasing, onto.
Proof. If F™(t) + m < F¥(t) + 1, then F**(t) < t 4+ 1 —m and therefore
F2=R @y <« FPFt 41 —m)=F"* @)+ (1 —m) < t+2(l —m).
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Inductively now we have
FI=k) () < Fr=F 4 (g = 1)1 —m) < t + q(l —m)

for every ¢ € N. Dividing by ¢ and taking the limit for ¢ — +o0o0, we find
(n —k)a <1 —m. Since a is irrational, we must have (n — k)a <l —m. O

3.3.7. Theorem (Poincaré). If f : S' — S is an orientation preserving
homeomorphism with irrational rotation number p(f) = €%, there exists an
orientation preserving, continuous, onto map h: S* — S' such that ho f =1, o h.
If f has a dense orbit in S*, then h is a homeomorphism.

Proof. Let K be the unique minimal set of f given by 3.3.5, and let zy = e?™ ¢ K.
Let F be a lift of f. If C is the orbit of g, the function H : p~*(C) — Z + aZ with
H(F™(tg)+m) = m+an is a bijection, by 3.3.6, where p : R — S is the exponential
map p(t) = e*™. Moreover, H(F"(tg) +m+1) =m+1+an = H(F"(to) +m)+1,
and

H(F(F"(to) +m)) = H(F""(to) +m) = m + (n+ 1)a = Ra(H(F"(ty) +m)),

or in other words H o F = R, o H. We extend H to p~1(C) setting

HE) =, | HE)

The right and left limits exist due to the monotonicity of H, and they are equal
because Z + aZ is dense in R, since a is irrational. Th function H is continuous and
increasing, but not necessarily strictly. Indeed, if I is a connected component of
R\ p~1(C), then H takes the same value at the endpoints of I. We can extend now
H continuously on R requiring H to take on a connected component I of R\ p~1(C)
the value it takes at its endpoints. Thus, we get a continuous, onto, increasing map
H :R — R such that H(t +1) = H(t) + 1 for every t € R and Ho F' = R, 0 H.
Therefore, h : ST — S! defined by h(e?™) = e2™H (®) is continuous, onto, preserves
the orientation of S' and ho f = r, o h. Moreover, h(K) = h(f(K)) = rqo(h(K)),
from which follows that h(K) = S!. Tt is evident from the construction of H that
if K = S', then H is strictly increasing and hence h is a homeomorphism. [

3.3.8. Theorem. An orientation preserving homeomorphism f : S' — S! is
uniquely ergodic if it has irrational rotation number.

Proof. Let € My (S D). According to 3.3.7, there exists an orientation preserving,

onto, continuous map h : S* — S! such that ho f = r, o h, where p(f) = >, For
every g € C(S!) we have

/51 (gora)dh*/uc:/s1 (goraoh)duz/sq (goho f)du=

/51 (goh)df*/uc:/s1 (goh)duz/glgdh*u7
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which means that h.u is invariant under r,. Hence h,p is the normalized Lebesgue
measure, by 3.2.9. If K = S', then h is a homeomorphism and so j is unique.
Suppose that K # S'. and ui, ps € .Mf(Sl). According to the above, h,u; =

1
hapta = hyp, where p = §(u1 + u2). It suffices to prove that uq (1) = po(I) for every

open interval I = (¢,s) in S'. First we observe that for every Borel set B C S! we
have

(5 (B)) = hupia(B) = hupia(B) = pa(h™1(B)) = pu(h™\(B)).
The set J = h(I) is an interval or a singleton. If I’ = h=!(J), then I’ is an interval
with endpoints ¢ < s’ containing I. Since h(I) = h(I') and h is monotonous, we
have h(t) = h(t') and h(s) = h(s’), which implies that (¢,t) U (s,s’) ¢ S'\ K.
Consequently,
p(I'\I) = p((t', 1) U (s,87) =0,

and therefore pi(I' \ I) = pa(I’ \ I) = 0. It follows that

pr(D) = (1) = pu (B () = pa(h™'(J) = pa(I) = po(I). O

3.4 Denjoy’s theorem

In this section and the next we shall study the bevavior of sufficiently smooth dif-
feomorphisms of the circle. Let f : S' — S! be an orientation preserving C?
diffeomorphism and F' be a lift of f. Then, DF(t) > 0 and DF(t — [t]) = DF(t) for

every t € R. Let D2F()|
D=F(t
c= sup{T(t) 1t e[0,1]}.

3.4.1. Lemma. Ift, s€ R and t < s, then

n n—1
8 D | < > IR0~ )

for every n € N.

Proof. From the chain rule we have

n—1

DF"(t) = [ DF(F¥(1)).
k=0

and by the mean value theorem

DF™(#)| =2
log ( )‘

n—1
DF(s)| < 2 |0s DF(FH (1) ~log DF(FH(s)) < - ) [F*(t) = F¥(s)|.0
k=0 k=0

The goal of this section is to prove the following.
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3.4.2. Theorem (Denjoy). An orientation preserving C? diffeomorphism
f:8Y — S with irrational rotation number p(f) = e*™@ is topologically conjugate
to the rotation r,.

Proof. In view of the results of the preceding section, it suffices to prove that the
unique minimal set K of f is equal to S'. We proceed to prove this by contradiction.
So suppose that K # S* and let I = p((to, 50)) be a connected component of S'\ K,
where p is the exponential map. Let [,, be the length of the interval p~1(f™(I))N|0, 1].
For every t, s € [tg, so] we have

n—1
DF™(t)
log <c I <c
DF"(s) kzo

from 3.4.1. It follows that DF"(t) < e*DF"™(s) for every t, s € [tg, so]. By the mean

value theorem we get
ln

o
for every t € [tg, sq]. Since f has no periodic point, the intervals p~!(f™(I)) N[0, 1],
n € Z, are disjoint and therefore

DF"™(t) < e

Zlngl.

nez

Hence lim, 1000, = 0 and lim, 1o DF™ = 0 uniformly on [tg,sp]. Let d =
lo/ceTL. Then for every n > 0 and every to — d < t < tg we have

DF™(t) < eDF"(to).

Indeed, this is trivial for n = 0. By induction, suppose that we have proven it for
all 0 < k <n. By 3.4.1, for all tg —d <t <ty we have

n n—1
1ogW(§j;))' <o 30 - Pl

From the mean value theorem, there exist uy € (¢,ty) such that

n—1
‘log %‘ < cdz DF*(uy),
k=0
and by the induction hypothesis,
D) =k = N
‘ gm‘écdekz_oDF (to) < cde ;]%SECde =1,

from which the inequality follows. The above imply now that

lo
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for every n € Nand t € [tg —d, so], and thus DF"™ — 0 uniformly on [ty —d, so]. Let
29 = 2™ and ny — +00 be such that f™(zg) — 2z9. There exists some k € N such

d
that DF"™(t) < 1/2 for every t € [to — d, s] and f™(zp) € p((to — 5,80)). Then,

d
[Fe(t) = F(t0)] < 5

for every t € [tg — d,to], by the mean value theorem, and there exists m € Z such
that

d
’Fnk(to) —i—m—to‘ < 5

Thus, |[F™(t) +m — to| < d for every t € [ty — d,tp]. This means that if J =
p([to — d, to]), then f™(J) C J. Since J is an interval, f™ must have a fixed point
in J. This contradiction proves the theorem. [

3.5 (! diffeomorphisms of Denjoy

In this section we shall show that 3.4.2 is not true for C'! diffeomorphisms by con-
structing an orientation preserving C' diffeomorphism f : S' — S! with irrational
rotation number which is not topologically conjugate to a rotation.

Let a € R\ Q and tp € R\ (Z+aZ). Since Z + aZ is dense in R, the same is true
for tg +Z + aZ. Let I, > 0, n € Z, be such that ) 1, = p, where 0 < p < 1. For
instance, I, = #(arctan(n + 1) — arctann). We consider the functions ¢ : R — R*
with

) = 0, iftéto+7Z+alZ
lp, ift=1tyg+m+ an for some m,n € Z.

and J : R — R defined by

J(t) = {(1 =P+ 2 0<e<i 4(9), %ft >0
(I =p)t = 2icscod(s), ifE<0.

3.5.1. Lemma The function J is strictly increasing, continuous except at the points
of the set tg + Z + aZ, where it is only right continuous and from the left has jump
Iy at the point tg + m + an. Moreover, it has the following properties.
(i) J(0) =0, J(t+1)=J(t) + 1 for every t € R, and so J(k) =k for k € Z.
(ii) The set C = J(R) is closed, perfect, totally disconnected and Ry(C) = C,
where Ry : R — R is the translation Ry(t) =t + 1.

(iii) u(C N [0,1]) =1 — p, where p is the Lebesgue measure.
Proof. Firstly J is strictly increasing, because if t; > to > 0, then

Jt)=1-pt1+ > a(s)>(L—pta+ > qls)=J(t),

0<s<t1 0<s<t2
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since tg 4+ Z + aZ is dense in R and so there exists s € tg + Z + aZ, with t; < s < ts.
Similarly, if t1 < to < 0, then

Jt)=1-pti— 3 als)<AL-pta— 3 als) = J(ta).

t1<s<0 ta<s<0

Finally, if t; < 0 < to, then

J(t) = (1=p)ti— > q(s) < (1=p)ts < (1=p)ta < (1—p)tat D> qls) = J(t2).

t1<s<0 0<s<tg

For the continuity of J, let ¢t > 0. If ¢; \ ¢, then

Jte) =0 =pte+ > als) A =pit+ Y als)=J(b),

0<s<ty, 0<s<t

which shows that J is right continuous at t. If t; ¢, then

J(te) =L =phti+ Y als) /A (L=p)t+ Y als)=J(t) —qlt).

0<s<ty, 0<s<t

Thus, if t ¢ tg + Z + aZ, then q(t) = 0 and J(tx) — J (), while if t = to + m + an,
then ¢(t) = I, and therefore J(t;) — J(t) — l,. This shows that J is left continuous
at every t > 0 with ¢t ¢ tg + Z + aZ, but at t = ty + m + an has jump [, from the
left. Similarly for ¢ < 0.

(i) Obviously, 0 ¢ to + Z + aZ, and so ¢(0) = 0. Hence J(0) = 0. Observe that for
every t € R and for every n € Z, in the interval (¢,¢+ 1] there exists a unique m € Z
such that to +m + an € (t,t + 1], because to + Z + aZ is dense in R and (¢,t + 1]
has unit length. Consequently, for every t € R we have

Z q(s):Zln: .

t<s<t+1 nez
If t > 0, then
JE+1)=1=pt+1)+ > als)=
0<s<t+1
I=pt+ > a&)+A=p)+ > qls)=JH)+1—p+p=J(t)+1.
0<s<t t<s<t+1

If -1 <t <0 then

JE+1)=1=p)t+1)+ > qls)=

0<s<t+1

L=pt— > as)+1A=-p)+ > qls)=JE)+1—p+p=J(t)+1.
t<s<0 t<s<t+1

Finally, if t < —1, then ¢t + 1 < 0 and

JE+1) =1-p)t+1)— > qls)=

t+1<s<0



32 CHAPTER 3. DYNAMICAL SYSTEMS ON COMPACT METRIC SPACES

I=pt— > a&)+A=p)+ > qls)=JH)+1—p+p=J(t)+1.
t<s<0 t<s<t+1

(ii) To show that C is perfect let ¢t € R. Since to + Z + aZ is dense in R, there are
tr € to + Z + aZ such that t; \,t and t; # t. By the right continuity of J we have
J(tg) N\ J(t) and J(tg) # J(t), since J is strictly increasing. Thus every point of
C' is an accumulation point. If C' contains an open interval I, then I N J(R) # &.
Let t € R be such that J(t) € I and tx € to + Z + aZ such that t; \, t. Then
J(tr) \¢ J(t) € I, and so there is some ky € N such that J(t) € I for every k > ko.
Let k > kqg. Since t;, € tg + Z + aZ, there exist m,n € Z such that t = tg +m + an.
Then @ # (J(tg)—ln, J(tx))NI C (R\C)NI, contradiction. Finally, from (i) we have
J(t+1)=J(t)+1, that is JoR; = R;oJ and hence J(R) = J(R1(R)) = R1(J(R)).
Thus,

C = J(R) = Ri(J(R)) = Ri(J(R)) = Ri(C).
(iii) We have
p(C N [01]) = p([0,1]) = w([0, 1\ C) =1~ > qls) =

0<s<1

1-— Z q(s)zl—Zlnzl—p. O

0<s<1 neZ

Recall that

JR) =R\ | J [J(to+m+an) — Ly, J(to + m + an))

n,meZ

and
C=JR)=R\ |J (J(to+m+an) —ln, J(to + m+ an)).

n,me”Z

Let I m = [J(to + m+an) — 1, J(to + m + an)], n,m € Z. Then,

R\C = | int(Inm).

nmezZ

Let H : R — R be the function defined by
H(z) = t, %fx:J(t) for some t € R
to+m+an, ifzel,p,.

3.5.2. Lemma. The function H continuous, increasing, HoJ = id and H(C) = R.
Moreover, the following hold.
(i) H(0) =0, H(x+1) = H(z) + 1 for every x € R, and so H(k) =k for k € Z.
(ii) For every x € J(RT) we have u(C' N |[0,z]) = (1 — p)H(z).

Proof.  From the definition of H it is clear that H o J = id. Therefore, H(C) =
H(J(R)) D H(J(R)) = R. The continuity of H follows easily from the definitions
and the fact that tg + Z + aZ is dense in R.
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(i) From the definition of H we have 0 = J(0) € J(R) and so H(0) = 0. To show that
H(xz+1) = H(z)+1 for every z € R, we consider cases. If z € J(R), and x = J(t)
for some t € R, then H(x +1) = H(J(t)+1) = H(J(t+1)) =t+ 1= H(z) + 1.
Consequently, H(x + 1) = H(x) + 1 for every x € C, by the continuity of o'WfHl.
If z € R\ C = U, mez int(Inm), there exist n,m € Z such that x € int(lym),
and so H(z) = to +m + an. The open interval R (int(I,,)) has right endpoint
J(to+m+an)+1 = J(tg+ (m + 1) + an), and is the connected component of
R\ C which contains = + 1. Since & + 1 € I,; s, 41, from the definition of H we have
Hzxz+1)=toy+(m+1)+an=to+m+an+1=H(z)+ 1.

(ii) If x € J(Z"), then from 3.5.1 we have u(C'N[0,1]) =1 —p and Ry(C) = C and
so u(CNJ0,z]) = (1 —p)z = (1 — p)H(x), because H(z) = z. If z € J(RT) with
0<z<1andz=J(t) for some ¢t > 0, we observe that

Z l, = Z l, = Z Q(S)a

{n,m€Z:I mC[0,x]} {n,m€Z:In mC[0,J(t)]} 0<s<t

because I, , C [0, 2] if and only if [J(to+m+an)—1,, J(to+m+an)] C [J(0), J(t)]
or equivalently 0 < tg +m + an < t. Therefore,

p(C N0, z]) = p([0,2]) — p([0,2] \ C) =

= Y L=J- Y als) =

{n,meZ:I mC[0,x]} 0<s<t
L=pt+ > als)— > aq(s)=(1—pt=(1-p)H(z)
0<s<t 0<s<t

if z € J(RT), then
p(CN0,2]) = w(C N[0, [z]]) + p(C N [la], z]) =

(1 =p)a] +u(C N[0,z —[z]]) = (1 = p)fa] + (1 — p)H(x — [z]) =

(1—p)H(a] +2— [¢]) = (1 - p)H(z). O

3.5.3. Proposition. If F' : R — R is an increasing homeomorphism such that
F(x+1)=F(x)+ 1 for every x € R, the following are equivalent.

(i) Ho F = R, 0 H, where R, : R — R is the translation Rq(z) = x + a.

(ii) F(x) = J(H(x) + a) for every z € J(R).

Proof. Suppose that H o F' = R, o H, that is H(F(z)) = H(z) + a for every xz € R.
Let g € J(R) be such that H(xg) ¢ to+Z+aZ, and so xg ¢ I, m, and in particular
xo # J(to+m+an) for every n,m € Z. Then H(F(zo)) = H(zo)+a ¢ to+Z+aZ.
So F(zp) € J(R) and F(xo) = J(H(xo)+a). Since H o F' = R, o H, inductively we
have H o F* = (R,)* o H = Ry, 0 H, that is H(F¥(x)) = H(x) + ka for every x € R
and k € Z. For every k, A € Z we have H(F*(xq))+\ = H(xo)+ka+\ ¢ to+Z+aZ
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and therefore F¥(z¢) + A € J(R). Moreover, F*(zg) + X\ = J(H(zo) + ak + \) for
every k,\ € Z. Let now x = J(t) for some ¢t € R. The set

H(xo)+Z+ aZ = {H(xo) + A+ ak : k,) € Z} = {H(F*(z0) + \) : k, ) € Z}

is dense in R. Since J is everywhere right continuous, the set {F*(z¢)+ X : k,\ € Z}
is dense in J(R), and so in C' also. Thus, there are k,, A, € Z, n € N, such that
H(zg) + A\ + ak, N\ t, and then

FF(20) + A\ = J(H(x0) + A + akyn) \, .

By the continuity and the monotonicity of H, the right continuity of J and since
H o J =1id we have

J(H(z) +a) = J(H( lim (FF(z0) + \p)) +a) =

n—-+4o0o

J( lim H(F*(z0) + \y) +a) = lim J(H(F* (x0) + \p) +a) =

n—+00 n—+00
ngrfoo J(H(xz0) + A\ + aky, +a) = ngrfoo J(H(x0) + A+ (kn + 1)a) =
i (P ) 4 A =l F((F () + M) =
F( lim (¥ () + M) = Fla).
Conversely, suppose that F(z) = J(H(z) + a) for every z € J(R). If

x € J(R), then H(F(z)) = H(J(H(z) + a)) = H(x) + a, and the same is
true for every x € C by continuity. If z € R\ C, then = € I,,, for some
n,m € Z. We observe that F(J(t)) = J(t + a) for every ¢ € R and therefore
F(J(R)) = J(R). Since F' is a homeomorphism we have F(C') = C. We also have
F(Inm) = Int1,m- Indeed, if z = J(to +m + an), then H(x) =ty + m + an and so
F(z)=J(H(z)+a) = J(to + m+ (n+ 1)a), which is the right endpoint of I, 41 .
Hence H(F(x)) =to+m+an+a=H(x)+a= Ry(H(x)) for every z € I, ,. O

3.5.4. Corollary. If F: R — R is an increasing homeomorphism with F(x + 1) =
F(z)+1and Ho F = R, 0 H, then

(i) F(C)=C, and

(ii) the set {F*(x) 4+ \: k,\ € Z} is dense in C for every x € C.

Proof. The first claim was proved in 3.5.3, where we also proved that if z € J(R)
and H(z) ¢ to+7Z+aZ, then the set {F¥(x)+\: k,\ € Z} is dense in C. It remains
to examine the following two cases. First, if x = J(to + m + an) for some n,m € Z,
then form 3.5.3 we have

FFx)+ A= J(H(z) +ka+)\) = J(H(J(to + m + an)) + ka + \) =

J(to+m+an+ka+X) = J(to+ (m+\) + (n+k)a) € J(to + Z + aZ).

But since the set tg + Z + aZ is dense in R and J is right continuous, it follows that
{Fk(x)+X:k,\ € Z} is dense in C. Let now z € C'\ J(R) = {J(tg+m +an) —1, :
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n,m € Z}. Since lim,, 10 l,, = 0, the set {J(to+m-+an)—1, : n,m € Z} is dense in
C and since F is a homeomorphism with F(C) = C, the set {F¥(z) + X : k,\ € Z}
is dense in C'. [J

For the rest of the section we make the additional assumption that

l l 1
lim 2 =1 and 22 > = for every n € Z.

n—+oo

This is true for I, = £

=(arctan(n + 1) — arctann).

3.5.5. Lemma. There exist C' diffeomorphisms Foo:lno— Iny10, n € Z, with
the following properties.
(i) F;L,O(J(to +an)—1,) = FAO(J(to +an)) =1.

(1) 0 < Fy o(z) <1+ 6\%—:1 — 1| for every x € Ing, n € Z, and

i (sup{|[F o) = 1] s € Tno}) = 0.

Proof. For simplicity in notation we set a,, = J(to + an) — l,,, b, = J(top + an) and

Cn = 6(%—:1 —1) > —4. Let F,, 0 : I,0 = I,41,0 be defined by

T Cn
Fao®) = ans1 + [ (14 50— a) b, — )y

n
Then F,, is obviously Ct, F,, o(a,) = a,41 and

bn

bn
Cn
Foo(ba) = ans1 + / dy+ [ (= )b — y)dy =

2
ln an

n bn_ n3

n

ln+1
In

ant1 +ln + g1 — by = apg1 + lyyp1 = bpy.

An+41 +ln + (

Also, F, g is strictly increasing, because for every x € I,, o we have

, Cn 4 4 12
Fn,o(:v):1+E(:U—an)(bn—x)>1—E(az—an)(bn—x) Zl—E-Z:O.

Since F},  is continuous and strictly increasing,
Fn,O(In,O) = Fn,O([ana bn]) = [an+1a bn+1] = In+1,0,

that is Fj, o is a C' diffeomorphism onto I 4+1,0. We also have

Frlz,O(J(tO +an) —lp) = ;z,o(bn —lp) = 7,1,0(&”) =1+ 5 (an —an)(bp —an) =1,
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and similarly, F} o(J(to + an)) = F}, o(bn) = 1. Finally, for every x € I,, o we have

o) — 1] = L@ a2y < 12l —a2=lol 2y

& & &

and hence sup,¢;, , |[F}, o(¥) — 1] = 0, for n — oo. O

3.5.6. Theorem. There exists an increasing C' diffeomorphism F : R — R such
that Ho F = R,0o H and F(x + 1) = F(x) + 1 for every x € R.

Proof. For every n € Z let Fp, o : In0 — Int1,0 be the C' diffeomorphism of 3.5.5
defined by
xr
c
Fao@) = ans1 + [ (14 50— a) b, — )y
Qn

n
For every m € 7Z, define F, , : Inm — Ing1,m by
Fom=Ry,o0F,g0R_,.

Then F, ,, is an increasing C! diffeomorphism and Fy, () = F) o(x —m) for every
x € I m. Let G: R — (0,+00), be defined by

1, ifxed
G(z) =19 .
(), ifx € Ly pm,n,m € Z.

Since sup,ey,, o [Fy, 0(2)—1] = 0 for n — Fo00, by 3.5.5, G'is continuous and bounded.
Let M > 1 be such that 0 < G(z) < M for every z € R. Let now F': R — R be
defined by

x
F(z) = J(a) +/ G(s)ds.
0
Then F is an increasing C'! diffeomorphism onto R, since G > 0. Moreover,
F(z)=J(H(z)+a)

for every z € J(R). Indeed, let z € J(R) and « > 0. If I,, ,, C [0, z], then

Gls)ds = [ Flp(sds= [ Flols) =
In,m In,m

In,O
b 3
" n n bn — Un
/ [1+;—2(s—an)(bn—s)]ds:ln—i-;—Q%:
ln+1

ln + ( - 1)ln = ln+1 = Q(tO +m+ (TL + 1)(1).

In
Consequently,

/x G(s)ds = u(C' N0, z]) +/ G(s)ds =
0

[0,z]\C

u(CN0,z]) + Z G(s)ds =

{n,meZ:I,mC[0,x]} In,m
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w(C N0, 2]) + > q(to +m +an+a) =
{n,meZ:In mC[0,x]}

(I=pH@E)+ > das+a)

Therefore,

0<s<a 0<s<H(z)
(I=p)(H@) +a)+ Y als)+ > qls)=
0<s<a a<s<H(z)+a
(I=—p)H@) +a)+ > q(s)=J(H(z)+a),
0<s<H(z)+a
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since g(a) = 0. Similarly, F(z) = J(H(z) + a) for every x € J(R) with z < 0.
Because of 3.5.2, it remains to prove that F'(z + 1) = F(z) + 1 for every x € R. We
consider cases. If x € J(R), then F(x +1)=J(H(z+1)+a)=J(H(z)+1+a) =
J(H(x)+a)+1= F(z)+1 and from the continuity of F' the same is true for z € C.

If x € I, for some n,m € Z, then

J(to+m+an)—ln
F(J(to +m+an) —1,) = J(a) + / G(s)ds
0

J(to+m+an)
J(a)+/ G(s)ds —
0

In,m

J(H(J(to+m+an))+a)—/ Fy (s)ds = J(to+m+an+a)—/ Ey (s)ds
In,m

In,m
J(to+m+an+a)—lpt1 = any1
and so

F(z) = apy1 +/ F,’%m(s)ds = Fpm(x).

It follows that

Flxa4+1)=Fym(z+1)=Rpp10Fho00oRopi(z+1) =

Foole —m)+m+1=F,,(z)+1=F(z)+1. O

The C! diffeomorphism F' : R — R of 3.5.6 is increasing and F(x + 1)

G(s)ds = F(J(to+m+an)) —/I Ey, (s)ds

F(x)+1 for every = € R. Moreover, the set C' is F-invariant, perfect, closed, totally
disconnected, has Lebesgue measure p(C'N[0,1]) = 1 — p and every orbit of F in C

is dense in it.

If we define f: S' — S by

f(e27rit) _ e27riF(t)
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then f is an orientation preserving C'! diffeomorphism with lift F' and has rotation
number p(f) = e*™4 since H o F = R, o H. The set K = p(C), is a minimal
Cantor set of f, because {F™(z) + m : n,m € Z} is dense in C for every z € C.
The normalized Lebesgue measure of K is u(K) = p(C N [0,1]) = 1 — p, but p is
not f-invariant.

3.6 Arnold families of circle diffeomorphisms

As we saw in Theorem 3.4.2, if f : S* — S is an orientation preserving C? diffeomor-
phism with irrational rotation number e?™® then there is an orientation preserving
homeomorphism h : S' — S which conjugates f to the rotation 7, by the angle
27a. The question arises whether i can be chosen to be a C'! diffeomorphism. This
section is devoted to giving a negative answer to this question. Actually, we shall
prove that even in the case where f is real analytic, it may be impossible to choose
an absolutely continuous conjugation h.

Let D denote the set of increasing homeomorphisms of R which commute with
integer translations. For every a € R we denote by 7T}, : R — R the translation by a.
Obviously, T, € D. Every f € D induces an orientation preserving homeomorphism
f: 8! — S'. In particular, the translation 7, induces the rotation r, : S* — S! by
the angle 2ma. Let H, denote the set of orientation preserving homeomorphisms of
the circle S'. Every f € H, has a lift f € D and any two such lifts of f differ by
an integer translation.

We fix an element f € D and the induced element f € Hy. Let p: R — R be
the function defined by

pla) =1(Tso f),

where 7 : D — R is the translation number function. If on D we consider the
distance

d(F,G) =sup{|F(t) — G(t)| : t € R} =sup{|F(t) — G(¢t)| : t € [0, 1]},

then 7 is continuous. Since |(T, o f)(t) — (T o f)(t)| = |a — b| for every ¢t € R and
a, b € R, it follows that p is continuous.

Note that f, = T, o f is a lift of r, o f. The following elementary observation
will be of fundamental importance in the sequel.

3.6.1. Lemma. Ifa >0, then f*(t) > f*(t) + a for every t € R and n € N.

Proof. This is true by definition for n = 1. Inductively, suppose that it holds for
n — 1. Then, for every t € R we have

fo@®) 2 fu(F7 N0 +a) > L @) = FUH ) +a= (D) +a. O
It follows from Lemma 3.6.1 that p is increasing, because for a > 0 we have

pla) = lim fa”_(t)z lim m: lim fn(t):p(O).

n—-+o0o n n—-+o0o n n—-+o0o n
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If a, b € R with a > 0, applying the above for fj in place of f we get pla+b) > p(b),
which means that p is increasing.

Suppose now that p(0) € R\ Q. This means that f has no periodic point and
has a unique minimal set X C S', which is the non-wandering set of f, such that
either K = S' or K is topologically a Cantor set. In any case K is uncountable
and so is K = exp }(K), where exp : R — S is the universal covering projection
exp(t) = e?™. Since K is uncountable, there exists some ty € K which can be
approximated from both sides by other points of K. So, there exist a sequence
(nk)ken of positive integers with np — +oo and a sequence (mg)ren of integers
such that kgrfoo (f”k(to) —my, —to) =0 and f”k(to) < tg + my for every k € N. If

a >0, there~ exists some N > 1 such that 0 < tg + my — f"k (to) < a and therefore
to+ mi < [ (to) + a < fI'*(to), by Lemma 1. In other words,

fnk(to) —tg—mp < 0< fgk(to) —tog — mg

and by the intermediate value theorem there exists some 0 < b < a such that
f7%(to) = to + my. Thus, p(b) € Q and since p(0) € R\ Q, we must have p(0) <
p(b) < p(a). As before, this implies that if = € R is such that p(z) € R\ Q, then
p(z) < p(y) for every x < y. Thus p is strictly increasing at points of R where it
takes on irrational values.

Since p is continuous and increasing, for each s € R the set p~!(s) is either a
singleton or a closed interval. It is certainly not empty, because p is onto R, as
plx + k)= p(z)+k for every x € R and k € Z.

3.6.2. Lemma. If f' # id for every a € R and every n € N, then the following
hold.
(a) Ifg € Q, where p € Z and q € N are such that ged(p,q) = 1, then p_l(g) s a

closed interval and has non-empty interior.
(b) The set R = p~1(R\ Q) is nowhere dense in R.

Proof. (a) If a € p—l(]_j), there exists some ¢y € R such that fI(tg) = to +p. We
q
define the sets
K,,={ac p ') fut)y > t+p forall teR},
q

K;/q:{aep’l(z—g):fg(t)gt—l—p for all ¢ e R}.
q

Our assumption f' # id for every a € R and every n € N implies that K:/qﬂ /g =

. Ifae KT,

o/q and b > a, then p(b) > p(a), because f, = Ty_q o f, and so

BO2 0+ b-a)2t+p+(b—a)>t+p

for every t € R and n € N, by Lemma 3.6.1. This implies that p(b) # b Similarly, if
q

a€ K, andb<a,then p(b) < p(a). These observations imply that K;r/q UK

P/q -
9p~ ! P .
14 (q)
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On the other hand, the set

Up/q:{aeR:fg(t1)<t1—|—p and  fI(ty) >to+p for some ty,ty € R}

is open in R and is contained in ,071(8), by continuity and the intermediate value
q

theorem. Since p_l(g) is the disjoint union of K;F/q, K, and Upq, it follows that

/q id the interior of pfl(z—g) and KT, UK
q

Y, p/q p/q

p = apfl(g). Thus, pfl(g) is a closed

interval with endpoints K1, and K, .
p/q p/q

(b) Suppose on the contrary that the set R contains an open interval (b, c), where
b < c. Then there exists b < a < ¢ such that p(a) € R\ Q and so p(a) < p(c). Let
r € Q be such that p(a) < r < p(c). By (a), p~1(r) is a closed interval contained
in (a,c). If J denotes its interior, then @ # J C (a,c¢) C R, which implies that
JNR # @, and at the same time J C p~*(Q). This contradiction proves the
assertion. [J

In the sequel we shall give an example of a family which satisfies the assumption
of Lemma 3.6.2. We shall assume now that we have such a family.

A function with the properties of p : R — R is often called a devil’s staircase.
The sets R and R have interesting topological properties, the description of which
will occupy the rest of this section.

It follows from Lemma 3.6.2(b) that the set R is closed and totally disconnected.
It is also perfect, because if a € R is an isolated point of R, there exists some
§ > 0 such that (a — d,a + 6) NR = {a} and so (a — 6,a) U (a,a + &) C p~ Q).
Since p is continuous and Q is totally disconnected, there exists r € Q such that
[a—6,a] C p~1(r). Hence [a—6,a+6] C p~1(r), which is impossible, because a € R.
The same reasoning shows that R is also perfect.

3.6.3. Lemma. The set R\ R is countable.

Proof. 1f a € R\ R, then p(a) € Q and I, = p~!(p(a)) is a closed interval, by
Lemma 1.2(a). Since a € R\ R, a is an endpoint of I,. Thus for each a € R\ R
there exists a closed interval I, such that a is an endpoint of I, and the interior of
I, does not intersect R \ R. This implies that R \ R is countable. [J

Note that R\ R = R N p~}(Q) is the set of the endpoints of the connected
components of p~(Q). In the notation of the proof of Lemma 3.6.2,

R\R=|J K UK,.
reQ

3.6.4. Lemma. If B is a dense subset of R, then RN p~!(B) is dense in R.

Proof. Suppose on the contrary that RN p~1(B) is not dense in R. Then there exist
real numbers a < b such that R N p~}(B) N (a,b) = @ and RN (a,b) # @. Thus,
p(a) < p(b) and since B is assumed to be dense in R, there exists some s € p~1(B)
such that p(a) < p(s) < p(b). There exists a strictly increasing sequence (a,)nen in



3.6. ARNOLD FAMILIES OF CIRCLE DIFFEOMORPHISMS 41

R\ Q converging to p(s). If (o~ (an))nen converges to s, then s € RNp~1(B)N(a,b),

contradiction. So, there exists some t < s such that (p~!(ay))nen converges to

t. Then, necessarily lirf an = p(t) = p(s) € Q and ¢ is the left endpoint of the
n—-+0oo

interval p~1(p(s)), according to Lemma 3.6.2(a). But now we arrive again at the
contradiction t € RN p~1(B) N (a,b). O

3.6.5. Corollary. The set R\ R is dense in R. O

Since R is a perfect complete metric space, hence a Baire Hausdorff space, and
R \ R is countable, it follows from the following general remark that R is a Baire
metric space.

3.6.6. Remark. If X is a Baire Hausdorff space and A C X is a countable set
such that X \ A is dense in X, then X \ A is a Baire space. To see this, first observe
that X \ {a,} is open and dense in X for every n € N, where A = {ay, a2, ...,an, ...}
is an enumeration of A. Let V,,, n € N be a countable family of open subsets of X
such that V,, N (X \ A) is dense in X \ A for every n € N. Then, X \ A C V,, and
therefore V,, is dense in X. Moreover, V;, N (X \ {a,}) is an open and dense subset
of X for every n € N. From the Baire property of X we conclude that

N Van (X \{a.}) = (X\A)n () Va
n=1 n=1

is dense in X and in X \ A as well. This proves that X \ A is a Baire space.
In particular, if X is a perfect Baire Hausdorff space and A C X is a countable
set, then X \ A is dense in X and therefore a Baire space.

Let now f : C — C be a holomorphic function. If f vanishes on the unit circle S!,
then f vanishes everywhere on C. Indeed, the mean value property of holomorphic

functions gives
1 f(©)
/) zm'/slg—z ¢
for |2/ < 1 and in particular f(™(0) = 0 for every integer n > 0. Hence

> f(n)
flz) = Z f (O)z” = 0 for every z € C.

n=0

3.6.7 Proposition. Let f: S' — S be an analytic orientation preserving diffeo-
morphism, which has an extension to a holomorphic map f: C — C. Let f be a lift

of f. If f4 =id on S' and T(f) = ]—9, where p and q are integers such that ¢ > 1
q

and ged(p,q) = 1, then f is the rational rotation by the angle 2771—).
q

Proof. Our assumption and the initial remark imply that f? = id on C. Since
fi 1o f =id, it follows that f is biholomorphic. This means that there exist a,
b € C with a # 0 such that f(z) = az + b for every z € C. However, necessarily
b=0and a € S', because f(S') = S'. Thus f is a rotation and the conclusion
follows. [
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1
For each A € R with 0 < |\| < o let fy : S' — S! be the analytic orientation
7T

preserving diffeomorphism induced by fy : R — R given by the formula
fa(t) =t + \sin 2nt.
Then we get the family f}\,a, a € R, given by the formula
Fralt) = a+t+ \sin 2nt.

It follows from Proposition 3.6.7 that the induced family {f), : @ € R} of ana-
lytic orientation preserving circle diffeomorphisms satisfy the hypothesis of Lemma
1
3.6.2 and therefore gives a devil’s staircase py : R — R for each 0 < [A| < —.

We shall prove now that there exists a dense subset D of R such that f, is
not topologically conjugate to the rotation by the angle 2mp(a) by an absolutely
continuous homeomorphism for every a € D. We shall need the following elementary
observation.

3.6.8. Lemma. Let H : R — R be an increasing homeomorphism such that for

every k € N there exists an open set A, C R with Lebesque measure A\(Ay) < Z and

1
ANH(Ag)) > 5 Then, H is not absolutely continuous.

1
Proof. Let § > 0 be any and let k € N be such that Z < 8. The corresponding

open set A, of the hypothesis is the disjoint union of at most countably many open
intervals (ay,by,), n € Z. Thus,

> (b —an) < 6.

nez

On the other hand, by assumption,

> (H(ba) — H(an)) = MH(Ay)) 2

nez

and so there exists some N € N such that

> (H(bn) — H(an)) > %

In|<N

This means that H is not absolutely continuous. [J

3.6.9. Theorem. There exists a dense subset D of R such that for each a € D
there exists no absolutely continuous homeomorphism h : St — S which conjugates
the analytic diffeomorphism f, to the rotation by the angle 2mwp(a).

Proof. For every k € N we consider the open subset

Dy ={a€R: thereexist an open set A C S' with M(A) <

el
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and some N € N with fN(S'\ A) c A}.

of R. By the Baire property of R and Lemma 3.6.8, it suffices to prove that each
Dy, is dense in R. Indeed, if a € D, there exists a sequence (Ag)ren of open subsets

1
of S such that A(A) < z and a sequence (Ng)ren of positive integers such that
TN (ST A) C Ay for every k € N. If H : R — R be an increasing homeomorphism
such that Ho fyo H™' =T, then A(H(Ay)) = )\(Tp"(a)(H(Ak))) = MNH(fJ(Ax)))
for every n € Z. In particular, we get

1= MH(A) = 1= MH(f(Ar))) = MHE (7 (S \ Ax))) < AH (Ap))

1
and so \(H(Ag)) > 3 By Lemma 3.6.8, H is not absolutely continuous.
It remains to prove that each Dy is dense in R. Let a € R. Arbitrarily close to

a we can find some b € Kpi/q, for some 2 € Q. Since fp is analytic, it has a finite

number of periodic points z1,..., Zm, all of period ¢, and the orbit Oy, (z;) of each z;
is attracting from one side and repelling from the other. Also the positive and the
negative limit set of any other orbit of f; is contained in Oy, (21)U- - -UOy, (2m). If Ay

1
is any open neighbourhood of the finite set Oy, (21)U---U Oy, (2m) with A(Ay)) < o

then there exists some Nj € N such that f/(S1\ Ag) C Ag for all n > Nj. Since
Ay, is open and S'\ Ay is compact, we have fN%(S1\ A;) C Ay for all ¢ sufficiently
close to b, by continuity. Thus, arbitrarily close to a there are points ¢ € Dy. This
proves that D;, is dense in R. [

For every a € R the diffeomorphism f, has a unique invariant Borel probability
measure f,. If h : S' — S' is an orientation preserving homeomorphism which
conjugates f, to the rotation by the angle 2mp(a), then hypu, is the (normalized)
Lebesgue measure on S' and £ is absolutely continuous if and only if i, is absolutely
continuous to the Lebesgue measure, because h lifts to an increasing homeomorphism

of R.
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Chapter 4

Ergodicity

4.1 Ergodic endomorphisms

Let (X, A, u) be a probability space. An endomorphism 7' : X — X is called
ergodic if for any A € A such that u(AAT1(A)) = 0 we have pu(A) =0 or 1.

4.1.1. Proposition. Let (X, A, ) be a probability space. For an endomorphism
T: X — X the following assertions are equivalent.

(i) T is ergodic.

(ii) (A) = 0 or 1, for every A € A such that T™1(A) = A.

(111) For every A, B € A such that u(A) > 0 and p(B) > 0 there exists n € Z"
such that w(T~"(A) N B) > 0.

Proof. 1t is trivial that (i) implies (ii). For the converse, let A € A be such

that u(AAT1(A)) = 0. It suffices to find B € A such that u(AAB) = 0 and
T~1(B) = B, because then from our assumption we have u(A) =0 or 1. Set

B = ﬁ G T7%(A).

n=0k=n
Then clearly T-'(B) = B, and
k—1 - A k—1 A
THA)LAC [T VAT H(A) = | T(T 1 (A)LA4).
i=0 i=0

Thus,
k—1
WTHA)DA) < 3 p(T (T (A)AL)) = k(T (A)AA) =0
=0

for every k € Z*. Moreover,

(fj T"%A)) AAC G THA)AA
k=n

k=n

45
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m < (Q T‘k(A)> AA) =0

for every n € ZT. It follows that

pAAB) = lim p ( (IQL Tk(A)> AA) =0.
)

and therefore

To prove that (i) implies (iii) let A, B € A be such that p(A) > 0 and ,u( ) > 0, but
w(T~(A) N B) = 0 for every n € ZT. If C = U2, T~"(A), then T~}(C) C C and
u(CNB) = 0. Hence u(C) = 0 or 1, because u(CAT~H(C)) = u(C) — u(T~HC)) =
0. On the other hand, u(C) > u(T~1(A)) = u(A) > 0, and we must have u(C) = 1.
But now u(C'U B) =1 also, and therefore

=u(CUB) =u(C)+puB) - u(CNB)=1+puB),

that is u(B) = 0, which contradicts the assumption. Finally, we prove that (iii)
implies (ii). Let A € A be such that T71(A) = A with 0 < p(A) < 1. If (iii)
is true and since p(A) > 0 and p(X \ A) > 0, there exists n € Z* such that
w(T~™(A) N (X \ A)) > 0. This is impossible, because T""(A) = A for every
neZt. O

Let (X,A, ) be a probability space and T : X — X be an endomorphism.
A measurable function f : X — R is called T-invariant p-almost everywhere if
f = foT p-almost everywhere. If f = f oT everywhere on X, then f is called T'-
invariant. If f is T-invariant py-almost everywhere, there is a measurable T-invariant
function ¢g : X — R such that g = f p-almost everywhere. Indeed, define g = f on
the set

ﬂT ({reX: flx)=f(T(2))})

and g = 0 everywhere else. If T is an automorphism, we take the intersection from
—0o0 to +o0.

4.1.2. Proposition. Let (X, A, u) be a probability space and T : X — X be an
endomorphism. The following are equivalent.

(i) T is ergodic.

(i) Every measurable T-invariant p-almost everywhere function is constant -
almost everywhere.

(iii) Every measurable T-invariant p-almost everywhere function in L*(pu) is
constant p-almost everywhere.

Proof. To prove that (i) implies (ii) let f : X — R be a measurable T-invariant
p-almost everywhere function. For every k € Z and n € Z™, let
E+1

AL b
By the invariance of f, we have M(A(k:,n)ATfl(A(k:,n)) = 0, and therefore
wu(A(k,n)) = 0 or 1, by the ergodicity of T. Since for every fixed n € Z* the

A(k,n) ={z e X : o= < f(z) <
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family {A(k,n) : k € Z} is a partition of X, there exists some k, € Z such that
wWAkn,n)) = 1. fY = N>, A(kp,n), then pu(Y) = 1 and f is constant on Y,
because for any z, y € Y we have |f(z) — f(y)| < 27" for every n € Z*. It remains
to prove that (iii) implies (i). Let A € A be such that u(AAT-(A)) = 0. Then,
x4 € L?(u) and is T-invariant p-almost everywhere. If (iii) is true, then y4 is
constant p-almost everywhere, which means exactly that pu(A4) =0or 1. O

In the above we have fixed a probability space and defined when an endomor-
phism will be called ergodic. Suppose that X is a compact metrizable space and
T : X — X is a continuous onto map. An element p € Mp(X) is called ergodic if
T is ergodic with respect to pu.

4.1.3. Proposition. If T : X — X is a continuous, onto map of the compact
metrizable space X, then the ergodic measures are precisely the extreme points of

Mo (X).

Proof. Let u € Mp(X) be non-ergodic. Then, there exists a Borel set A such that
T71(A) = A and 0 < pu(A) < 1. The Borel measures y; and pg defined by

_ AN B)

(B — p(X\ 4) 1 B)

w0 PP =T

belong to Mr(X), are different, and p = pu(A)p; + (1 — p(A))pe. Hence p is not an
extreme point of Mp(X). For the converse, suppose that u € Mp(X) is ergodic,
but is not an extreme point, that is there exist pi, puo € Mp(X) such that py # uo
and p = tpy + (1 — t)ug, for some 0 < ¢ < 1. Obviously, uq is absolutely continuous
with respect to u, and so the Radon-Nikodym derivative du;/dp exists. Let

Alz{xGX:%(:ﬂ)<1}, A2:{x€X:%(az)>1}.

dp s
Since d d
s G gy 0 =80 =
AINT~-1(Ay) GH ANT=1(4y) dH
_ dp di
1
o [ g [y,
e T\ A
we have d d
/ ﬂd,u:/ T ap,
ANT-1 Ay At T ANAr D
Moreover,

p(ANT7HA)) = (A1) — p(ANT™HA) =
p(THAL) = p(ArNT™HA)) = (T (A1) \ Ar).
If now p(A; \ T7(A1)) > 0, then

d d
PN T () > [ Tin= [ WL > (T (A1) \ A,
Al\Tfl(Al) /’[/ Tﬁl(Al)\Al ,LL
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This contradiction shows that we must necessarily have u(A; \ T71(4;)) =
w(T~1(A7) \ A1) = 0 or in other words u(A;AT(A1)) = 0. Hence u(A;) = 0
or 1, since p is assumed to be ergodic. If pu(A;) =1, then

d
1=u1(X):/ %du<u(fh):1-
Ay QR

This contradiction shows that (A;) = 0. Similarly, u(As) = 0. It follows that

i

=1
dp

p-almost everywhere, and therefore y = pq, contradiction. [

4.1.4. Corollary. If the continuous, onto map T : X — X of the compact metriz-
able space X s uniquely ergodic, then it is ergodic with respect to the unique T -
invariant Borel probability measure on X.

This gives our first example of an ergodic endomorphism. Namely, a left
translation of a compact, metrizable topological group, which has a dense orbit is
ergodic with respect to the Haar measure. In particular, from Kronecker’s theorem
we have the following.

4.1.5. Corollary. If the real numbers 1, aq,...,ar are linearly independent over Q,
the translation

T(627rz:v1’ " 627|'233k) _ (627rz(ml+a1) 627rz(mn+ak))

g eeey

of the k-torus is ergodic with respect to the Haar measure.

Recall that if X is a non-empty set, a class S of subsets of X is called a
semialgebra if (i) @ € S, (ii)) ANB € S for every A, B € § and (iii) for every A € S
there exist mutually disjoint F1,...,E, € S such that X \ A= F; U...UE,. A class
of subsets of X is called an algebra if it contains @ and is closed under finite unions
and complements. The intersection of algebras is an algebra. The smallest algebra
which contains a class C of subsets of X is called the algebra generated by C. The
algebra generated by a semialgebra S consists of sets of the form A; U ... U A,,
where Aj,...,A, € S are mutually disjoint. If (X, A, u) is a probability space and
the o-algebra A is generated by an algebra £, then for every A € A and € > 0 there
exists E € &€ such that u(AAFE) < e.

4.1.6. Lemma. Let (X, A, pn) be a probability space and T : X — X be an en-
domorphism. Then, T is ergodic, if there is a semialgebra S which generates the
o-algebra A such that

. 1
lim —
n—+oco n

n—1
S (T H(A) N B) = u(A)u(B)
k=0

for every A, B€ S.
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hypothesis extends to all members of A, because

then the conclusion is an immediate consequense of 4.1.1. Let £ be the algebra
generated by S. It is clear that the hypothesis is extended to all members of £. It
is also clear that £ generates A. Let A, B € A and € > 0. There exist £, G € £

such that u(AAFE) < e and pu(BA

G) < e. For every k € ZT we have

(T *A)NB)AT ™ E)NG) c (T7*A)AT*(E)) U (BAG),
and therefore
(T~ (A) N B) = w(TME) N G)| < u((T~H(A) N B)ATF(E)NG)) < 2.
It follows that o
E > WTHAY 0 B) = A u(B)] <
%(:Z:/L(T ZM “GH(—ZM NG) — p(E)uG)|

+|M

+|u(A)p

E)NG) —

1 n—1
de+[=> (T
k=0

Hence

Zu

lim { -
n—+oco'n

Let now (E, F,u) be a probability space and 7 : EZ*
S of all cylinders wi_ll(Ail)ﬂ...ﬂﬂijll

G) — W(E)WG)

(@) — M(A)H(B)| <

|+ [(BE)u(G) — p(A)u(G)]

(G) — u(A)u(B)| <

p(E)(G)] + p(AAE)W(G) + n(BAG)u(A) <

G) — u(E)u(G)).

B) = p(A)u(B)| < 4e. O

— E” be the shift. The set

(A; JAi;, € F,n €77, is asemialgebra.

in

)y Aiysen

If A=m"(A)N..Nm ' (Ay,) and B = 7 '(Bj,) N ... N7, ' (By,,), there exists
some kg € Z*1 such that
max{ji, ..., jm} < ko + min{iy, ..., i, },
and for every k > kg we have
TRA)NB = (A N0 (A 0 (By) N0 (B,
Obviously, %" (r7*(A) N B) = pZ" (A)u”" (B), for every k > ko. Hence
1 n—1 1 ko—1 1 n—1
+, +, + +
N @B = - W AN B) - Y (A (B) =
k=0 k=0 k=ko
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1= 3

- Z )N B) + 0 ()™ (B),

n =0 n

from which follows that
n—1
1 _

Jim =y W (e (A) N B) = W (A (B).

k=0

From 4.1.6 we conclude that the shift 7 is an ergodic endomorphism of the product
probability space (EZ+,]:Z+,,uZ+).

4.2 The ergodic theorem

In physics the orbit of a point under an endomorphism 7" : X — X of a probability
space (X, A, ) represents the history of a phase of the studied physical system. The
o-algebra A describes all the observable events and p the probability of occurence
of each event. The measurememt of a physical parameter is represented mathemati-
cally by a measurable function f : X — R. The measurement is carried out in many
succesive times and the time average

1 n—1
S3HTH@)
k=0

is of interest for large n. A basic problem is whether this average has a limit for
n — 4oo. If the limit exists, it is taken as the central value of f. In this section
we shall prove the celebrated ergodic theorem of G. Birkhoff, which assures the
existence of the limits of the time averages u-almost everywhere.

4.2.1. Theorem (Ergodic theorem of Birkhoff). Let (X, A, u) be a probability
space and T : X — X be an endomorphism. Then, for every f € L'(u) the limit

f*(x) = lim ZfT’“

n—+oo n

exists and is T-invariant u-almost everywhere. Moreover, f* € L*(u) and

/X frdp = /X f.

In particular for ergodic endomorphisms we have the following corollary, known
as the ergodic hypothesis in 19th century physics.

4.2.2. Corollary. Let (X, A, n) be a probability space and T : X — X be an ergodic
endomorphism. Then, for every f € L'(p),

I (TH(z)) =
. N Zf IRy R
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p-almost everywhere.

For convenience in the sequel we set

n—1

Suf(x) = f(TF(x)),

k=0
Sof =0 and S} f = max{Sif:0 <k < n}. We shall need the following.
4.2.3. Lemma (Maximal ergodic theorem). Let (X, A,u) be a probability

space, T : X — X be an endomorphism and f € L' (u). Then, for every n € Z* we
have

/ fdp > 0.
{zeX:S} f(z)>0}

Proof. Obviously, S, f, Sif € L'(u), and for every 0 < k < n we have S} f > Sif
and S’ f(T(x)) > Skf(T(x)) = Skr1f(x) — f(x). Thus, if S} f(z) > 0, then

Spf(T(x)) + f(x) = max{Sy.f(x) : 1 <k <n} =S5, f(z).

It follows that

/ fau> | Sutdn- | (S5) 0 Tdp =
{zeX:S; f(z)>0} {zxeX:Sy f(x)>0} {zeX:S; f(x)>0}

[ siran- | i) oTan> [ Siau- [ (sun)eTau=0. O
X {zeX:S; f(z)>0} X X

4.2.4. Corollary. Let (X, A, u) be a probability space, T : X — X be an endomor-
phism and f € LY(w). If
1
B,={reX: sup{ESnf(x) :n>1} > a},

then for every A € A such that T™'A = A we have

ap(AN B,) < /A g
MNBg

Proof. Suppose first that A = X. If g = f —a and G, = {x € X : S}g(z) > 0},
then G, C Gy41 and B, = U2 Gy, From 4.2.3 we have

/ gdp >0

for every n > 1 and therefore

/ gdp = lim gdyp > 0.
B n—-+4oo G
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The general case follows by applying the above to T|A. O

Proof of 4.2.1. Let

f*(w):limsuplSnf(x) and  f.(x) =liminf — Sf()

n—+oco 1 n—+00 1
Let also F = {x € X : f*(x) # f«(x)} and for every a, b € Q with a > b let
E(a,b) ={z € X : fi(z) <band f*(x) > a}. Then
E= |J E(.b
a,beQ,a>b

and to prove that the limit of the averages exists p-almost everywhere, it suffices to
prove that u(E(a,b)) = 0 for every a, b € Q with a > b. Since

%|Sn+1f($) — Spf(T(2))| = M,

n

it is obvious that f*oT = f* and f,oT = f,. It follows that F(a,b) = T~ *(E(a,b))
and from 4.2.4 we have

ap(E(a,b)) = au(B(a, b) N B,) < /E L

where B, is defines as in 4.2.4, since E(a,b) C B,. Applying this to —f and —b,
—a, we also have

—bu((E(ab)) < /E L, Chin

Therefore, (a — b)u(E(a,b)) < 0 and so necessarily ju(E(a,b)) = 0. That f* € L*(p)
follows now from Fatou’s lemma, since

/If |dp = /If*|du / hmlnf—|5nf|)d,u<

hmlnf—/ \Snf]d,u<hm1nf—2/ ’foTk’d,U— [ £1]1-

n—-+00
It remains to prove that the integral of f* is equal to the integral of f. For k € Z
and n € N let

A(k,n):{xeX:SSf()<E}

Then, for every € > 0 we have A(k,n) C Bx__, and from 4.2.4,
k
fp > (5~ ) Ak, n)).
A(k,n) n

It follows that k
[ = ).
A(k,n) n
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On the other hand, from the very definition of A(k,n) we have
. k+1 1
[ ran< S wAGe) < [ fdp uAon))
A(k,n) n A(k,n) n

Summing up over all k € Z, we get

/Xf*d,uﬁ/xfd,u%-%

/X frdp < /X Fd.

Applying this to —f we also have

Joerin= [ raau= [ oyaus [ =nan

/Xf*d,u:/deu. O

If in the ergodic theorem we start with a function f € LP(u), p > 1, then
f € L'(u) and the limit

for every n € N, and hence

and therefore

F@) = lim =

n—+oo n

n—1
> F(TH))
k=0

exists and is T-invariant p-almost everywhere. According to the following, the limit
exists also in LP(u) and is the same p-almost everywhere.

4.2.5. Corollary (L ergodic theorem of von Neumann). Let (X, A, u) be a
probability space, T : X — X be an endomorphism and f € LP(u), p > 1. Then
there exists a T-invariant p-almost everywhere f* € LP(u), such that

1 n—1
lim |- " — f*||, = 0.
SN DEEAS A

n—-+o00

Proof. Suppose first that f € L>°(u). Then, f € LP(u) for every p > 1, and by the
ergodic theorem, there exists f* € L!(u) such that

lim LS, f = f*

n—+oco n

p-almost everywhere. Of course, f* € L°(u). From the bounded convergence
theorem of Lebesgue we have

1 o
i (|8, f — ']l = 0.
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Thus, for every f € L>(u) and e > 0 there exists some N (e, f) € N such that

1 1

Hﬁsnf - m5n+kf”p <€

forn > N(e, f) and k € ZT. Let now f € LP(u) and € > 0. There exists g € L*(p)
such that [|g — f|l, < e. For n > N(e/3,9) and k € Z* we have

1 1
— - <
I250f = ——Sussfly <
HlS s | +1HS Snfllp + . [Sn+kf = Sntrgllp <
n ng n+k n+k9llp n ng nJ |lp n+k n+k n+kdllp =

€
3
By completeness of LP(u), there exists f* € LP(u) such that

1
+ ol =gl +f = gllp <e

n—-+o0o

1 n—1
lim |- Y, =0.
m 23" foT 1, =0
k=0
The T-invariance follows from the observation that

1 1
NS f = S o Tl = I/l

for every n € N, and so the sequences (%Snf)nEN and (%Snfo T)nen must have the
same limits in LP(p). O

4.2.6. Corollary (Strong law of large numbers). Let (X, A, 1) be a probability
space and f, : X — R, n € Z*, be a sequence of independent and identically
distributed random variables. Then,

1 n—1
A > = [ o
k=0
p-almost everywhere.

Proof. Let v = (fo)«u be the common distribution of f,, n € Z*. The product
measure v on (RZ+, BZ+) is invariant by the shift, where B denotes the o-algebra
of Borel subsets of R. From the ergodicity of the shift and the ergodic theorem, if

n—+oo n

n—1
1
K={yeR?: lim — Zﬂ'o(Tk(y)) :/ Tod” Y},
k=0 RZY

k

then 2" (K) = 1, where 7; is the projection to the i-th term. But mp o 7" = 7}, and

/ Tod? = / idpdy = / idrd(fo)up = / fodp.
RZ* R R X
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Hence

K={ye RZ": lim Zﬂ'k /X fodp}.

n——+oo n

If now f = (fn)nez+, then f: X — RZ" is measurable and

n—+oo n

FE) = fr e X lim ka )= [ s

while (£~ (K)) = (fup)(K) ="' (K) =1. O

There is a class of homeomorphisms of compact metrizable spaces, which satisfy
a strong form of the ergodic theorem for continuous functions. Let X be a compact
metrizable space and d be a compatible metric on X. A homeomorphism h : X — X
is called regular if its iterates {h" : n € Z} form an equicontinuous family. This
property is independent of the choice of metric, since X is compact, and is equivalent
to saying that h is an isometry with respect to some compatible metric on X. Such
a metric can be defined by

d*(z,y) = sup{d(h"(z),h"(y)) : n € Z}.

It is obvious that if & is regular, then y € L*(z) if and only if z € L™ (y). This
implies that the orbit closure of each point x € X coincides with Lt (z) and L™ (z),
and is a minimal set. It follows from 3.2.1 and 3.2.4 that the time averages of every
continuous function converge pointwise. In fact more is true.

4.2.7. Theorem. Let X be a compact metrizable space and h : X — X be a
reqular homeomorphism. Then for every continuous function f : X — R, there
exists a continuous function f*: X — R such that

*

= 1 %
n;ffmzfo

uniformly on X.

Proof. As we observed above, there exists a function f*: X — R such that

f*= lim Zfohk

n—+oo N

pointwise on X. Since h is regular, the time averages form an equicontinuous family
of functions, which is also uniformly bounded by ||f||. Thus, by Ascoli’s theorem,
some subsequence converges uniformly to f*. In particular f* is uniformly continu-
ous. It remains to prove uniform convergence. Let € > 0. By the uniform continuity
of f* and the equicontinuity of the time averages, there exists § > 0 such that if
d(z,y) < J, then

25, f(2) = 5 ()] < e
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and |f*(z) — f*(y)\ < e. Since X is compact, there are x1,...,x,, € X such that
X = 5(21,0) U...US(xm,0). There exists some ng € N such that

|%Snf(xi) — [H(wi)] <€

for every 1 < i < m and n > ng. If now x € X, there exists some 1 < i < m such
that x € S(z;,0) and therefore

%‘Snf(ﬁﬂ) — Spflxi)| + ‘%Snf(xi) — [ | 4 | (@) = [ (2)] < 3e

for every n > ng. O

4.3 FErgodic decomposition of invariant measures

Let X be a compact metrizable space and T : X — X be a continuous onto map.
A Borel set E C X is called of zero probability if u(E) = 0 for every p € Mz (X)
and of mazimum probability if u(E) = 1 for every p € Mp(X). A point z € X is
called quasi-regular if for every f € C'(X) the limit

li (T* (x
Jim - Z I

exists in R.

4.3.1. Theorem. The set QQ of all quasi-regular points is Borel, T-invariant and
of maximum probability.

Proof. The T-invariance of @ is obvious, since

n n—1
TS AR )~ -3 P @) = =)~ S < L
k=1 k=0

Let {f, : n € N} be a countable dense subset of C'(X) and for every n € N let

E,={reX: lim — Z fu(TH(z)) does not exist in R}.

r—-+4oo r

For every n, m, [ € N, the set

n1—1 na—1

Eymi={reX: ‘— Z Il Tk - Z Il Tk <— for every ny,ng > 1}

is closed and

0o 00
X\En: ﬂ UEn,m.l-

m=11=1
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Thus, E, is Borel for every n € N. It is also clear that if £ = U2 E),, then
@ C X \ E. From the ergodic theorem we have u(E,) = 0 for every n € N and
w € Mrp(X), and therefore E is a set of zero probability. So, it suffices to prove
that X\ F C Q. Let x € X\ E, f € C(X) and € > 0. There exists n € N such that
lf — full < €/3. Since x € X \ E,, there exists | € N such that

ni—1 ng—1

|n_12fnTk anTk

C.olm

for every ny,no > [, and then

ni—1 no—1

|—Zfﬂ D= — 3 (@) <
ni no =0

ni—1 ni—1 ni—1 ng—1

I 22 S0 = 3 AT+ 3 A ) - o 3

no—1 na—1

o 2 R - Y )] <
this shows that the limit
k
7ﬂanfT

exists in R. (O

It is obvious that for every = € @ the formula

polf) = tim sz

n—+oo n

defines a T-invariant positive linear functional u, : C(X) — R with p,(1) = 1. In
other words p,; € Mr(X) for every x € Q. We shall examine how p,, x € @, are
related to each other and to the other elements of M (X). Of course, p, = iy, if
y = T*(z), for some k € Z7.

4.3.2. Lemma. If f € C(X) and p € Mp(X), then

/X fu = /Q < /X fdum>du-

Proof. The function g : Q@ — R with g(x) = p.(f) is measurable, as it is the
pointwise limit of continuous functions. For every n € N we have

/)(fdpc:/)((%gfoT’“)du
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and by 4.3.1 and dominated convergence

. 1 n—1
(e e f (58w 1

Let u € Mp(X). By the ergodic theorem, for every bounded measurable func-
tion f: @ — R, the limit

f@)= lim ~

n—+oo n

n—1

> (T ()

k=0

exists p-almost everywhere. The set E(u) of all bounded, measurable functions

f:@Q — R such that
| s = @
X

p-almost everywhere is a vector space and contains C'(X), by 4.3.1. In order to
extent 4.3.2 to bounded, measurable functions, we shall need a series of lemmas.

4.3.3. Lemma. If (fn)nen is a uniformly bounded sequence of elements of E(u)
and fn, — [ pointwise, then f € E(u).

Proof. By dominated convergence we have

[ fdue= i [ fds = T Futa)

and from the ergodic theorem
J NP~ Faldu< [ 1F=Fobdn = [ 1f = fuldu >0
X X X

as n — +oo. Hence fn — fin L'(1) and there exists a subsequence ( Jnx)ken such
that f,, — f p-almost everywhere. It follows that

[ = i [ i = i (o) = o)
p-almost everywhere. [J
4.3.4. Lemma. If A C X is closed, then xa € E(u).

Proof. Since A is closed, there is a sequence of continuous functions f,, : X — [0, 1],
n € N, such that f,, — x4 pointwise and the conclusion is immediate from 4.3.3. [J

4.3.5. Lemma. If A C X is a Borel set, then xa € E(u).

Proof. By the regularity of u, there is a sequence of closed sets A1 C Ao C ... C A
such that

p(A\ | 4n) =0,
n=1
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Thus, x4, — x4 p-almost everywhere, and the sequence (x4, )nen is dominated by
x 4. From the ergodic theorem

/ XA, — Xaldp < / x4, — xaldp = / Ix4, — xaldp — 0
X X X

as n — +oo. Hence Y4, — X4 in L'(u) and there is a subsequence (XAnk)keN such
that y An, — XA p-almost everywhere. By dominated convergence we have

/ XAdpe > limsup / XAndpiz = limsup X4, (z) > Xa(z)
X X

n—-+o0o n—-+o0o

p-almost everywhere. Similarly we have

/X Xx\Adpe > Xx\a(T)

p-almost everywhere. Hence

/ XAdpy =1 — / Xx\Adpz <1 —Xx\a(®) = Xa()
X X
p-almost everywhere. [J

4.3.6. Proposition. If p € Mgp(X) and f : X — R is a bounded, measurable
function, then

/X fdus = f(z)

p-almost everywhere on X.

Proof. 1t suffices to prove that E(u) coincides with the space of all bounded
measurable real functions. Indeed, every positive, bounded, measurable function is
the pointwise limit of a sequence of linear combinations of characteristic functions
of Borel subsets of X, and therefore belongs to E(u), by 4.3.3 and 4.3.5. Finally,

every bounded, measurable function is the difference of two positive, bounded,
measurable functions. []

4.3.7. Corollary. If p € Mp(X) and f : X — R is a bounded, measurable

function, then
/X fu = /Q < /X fdu:r)du-

4.3.8. Proposition. If p € Mp(X) and f € C(X), then
[ 17 = F@)Pds =0
X

u-almost everywhere on Q.
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Proof. Since pi; € M7 (X) for z € @), we have

n—1
_ . 1 N . _
/X fdps = lim | (5 kEOf oT >dux = ngrfoo/x fdps = f().

Therefore,
[V = F@ P, = F@? = 2@ [ Faat [ Pl = [ P~ flo
X X X X
Integrating with respect to u, we get

/Q</X !f—f(x)\Qdux>du=/Q(/}(deM)du—/QFdM.

Since f: @ — R is bounded and measurable, so is f2. Thus, from 4.3.7 we have
/ (/ f - f(m)IQduac)du =0
Q \Jx

/ F — Fo)Pdp =0
X

p-almost everywhere on Q. [

and therefore

Let now U = {x € Q : 1z = j1y, p-almost for every y € Q}. Then,

U={zeQ: / |f — f(@)2dus = 0, for every f € C(X)}.
X
4.3.9. Theorem. The set U is T-invariant, Borel and of maximum probability.

Proof. The T-invariance of U is obvious. Let {f, : n € N} be a countable dense
subset of C(X). The set

B,={reQ: /X o — Ful)Pdua > 0}

is Borel and of zero probability, for every n € N, by 4.3.8 and so is the set £ =
U, E,. Clearly, U C Q\ E and it suffices to prove that Q\ E C U. Let x € Q\ E,
f € C(X) and € > 0. There esists n € N such that ||f — f,]| <e. Since z € Q \ E,,
we have

[ Vo= PPz =0,
X
while
’Jg_ f(x)‘Q < ‘f_ fn‘Q + ‘fn - fn(w)P + ‘fn(m) - Jg(x)’2
It follows that
/X |f — f(@)]Pdu, < 26%. O
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4.3.10. Theorem. If x € U, then u, is ergodic.

Proof. Let x € U. For every bounded, measurable function f: X — R we have

Fa) = [ fdus= [ fan, =

pz-almost for every y € Q. Let now A C X be a Borel set with A = T~!(A). Then,

Fla)pa(4) = /X xaf(@)dps = /X afdis =

. 1 n—1 . 1 n—1
JoxaGtm 5 rom = i D57 [ a0 TS o T =
k=0 k=0

n—1
1
lim — dpg = dpig,
k=0
because x4 oT = xa. In particular, for f = x4 we get
(1A = Ra(ha(A) = [ xadie = ().
Hence piz(A) =0or 1. O

4.3.11. Proposition. The set D = {z € Q : © € suppu,} is T-invariant, Borel
and of mazximum probability.

Proof. The T-invariance of D follows immediately from the continuity of 7" and the
T-invariance of u,. Let d be a compatible metric on X. For every m € N there exist
T1mse-sThy,m € X such that

1 1
X = S(z1m,—)U oo US(Zp s —).
(21, m) (Tky, m)

There are continuous functions f, », : X — [0,1] such that

Fita(©) = X\ S(nm =) and (1) = Sanm, ),

for 1 <n < ky,. Each set By, = {z € Q: fnm(ac) = 0} is T-invariant and Borel,
because fy, m @ @ — [0,1] is T-invariant and measurable. For every p € Mp(X) we
have

n,m n,m

n—1
~ 1
A f’ H n%+oonk:0 o (fv ) H 5 f, 12

1
E —)).
(B O S (@nms —))
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Consequently, the Borel set

oo  km

E = Q\ U U En,mms(xn,ma%)

m=1n=1

is of maximum probability. We shall prove that D = E. First let x € D. If
z € S(xpm, %) for some 1 < n < k,, and m € N, there exists ¢ > 0 such that
S(z,€) C S(Tpm, =) and pz(S(z,€)) > 0. Therefore,

Far@) = [ fuamii > 1S 0)) = a(S(a€)) > 0.

which means that x € Q \ Ep, N S(2p,m, %) This shows that D C E. Conversely,
if z ¢ @, there exists € > 0 such that u,(S(z,€)) = 0. There is some m € N and
some 1 < n <k, such that

1 2
x € S(xnm, E) C S(n,m, E) C S(z,€).

Hence

fn,m(m) = /an,mdﬂa: < pz(S(w,€)) =0,

which means that x € E,, ,, NS(2pm, %) O

So far we have proved that the set R = U N D is T-invariant, Borel and of
maximum probability. The points of R are called reqular. So, if x € @) is a regular
point, then pu, is ergodic and x € supppi,.

4.3.12. Theorem. If y € Mp(X), then every f € L'(u) is ps-integrable for
u-almost every € R and

/X fp = /X ( /X fdum>du-

Proof. If f € L'(p) is non-negative, then it is the pointwise limit of an increasing
sequence (fn)nen of bounded, measurable functions. Moreover,

[ o= i [ s = T Futa)

p-almost everywhere on X. The sequence (f,,)nen is also increasing and from 4.3.7
and monotone convergence we have

/X (/X f ) dp = lim /andﬂ = Jm /X fndp = /X Fdp.

If f is not non-negative, it is the difference of two non-negative elements of L' (1)
and the theorem follows. [
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4.3.13. Corollary. If A C X is a Borel set and p € Mp(X), then

p(A) = [ o)

4.3.14. Corollary. A Borel set E C X is of maximum probability if and only if
w(E) =1 for every ergodic p € Mp(X).

Proof. It (E) = 1 for every ergodic u € Mp(X), then p,(E) =1 for every z € R.
For any u € Mp(X) now we have

n(E) = [ neBydn =1,
R
by 4.3.13. O

4.3.15. Corollary. If u € Mp(X) is ergodic, there exists a T-invariant, Borel set
E C R such that p(E) =1 and p = py for every x € E.

Proof. The set F' = suppp is closed, T-invariant and u(F) = 1. Let {f, : n € N}
be a countable dense subset of C'(X). The function f, : R — R is measurable and
T-invariant for every n € N. Thus, fn is constant p-almost everywhere, since p is
ergodic. This means that there is a T-invariant, Borel set E, C F' N R such that
w(E,) = 1 and fn is constant on E,. The set E = N2, FE, is also T-invariant,
Borel and u(E) = 1. Let now f € C(X) and ¢ > 0. There exists n € N such that
|f — full < €/2. For every z, y € E we have

(@) = f)l < (@) = ful@)| + [ (y) = faly)] < e

So, f is constant on F, and since p is ergodic, for every x € FE we have

| tdue=F@) = [ fan. ©

4.3.16. Example. Let T : [0,1] — [0, 1] be the continuous onto map defined by

1
T(z) = 5(3: + z%).
For every 0 < z < 1 we have lim,,_, 1o 7" () = 0 and T(0) = 0, (1) = 1. So, for
every f € C([0,1]) and 0 < z < 1 we have
~ 1
f(z)= lim —

n—1

k
i S = 50
and obviously f(1) = f(1). Therefore, Q = [0,1] and p, = dy for every 0 < z < 1,
while p1 = 91. Moreover, U = [0,1] and R = {0,1}. From 4.3.15, the Dirac point
measures dy and 0; are the only ergodic elements of M7([0,1]). The latter is thus
the line segment in M (][0, 1]) with endpoints dyp and d;.
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4.4 FErgodicity of flows

A measurable flow (¢¢)icr on a probability space (X, A, ) is called ergodic if for
every A € A such that u(AA@(A)) = 0 for every t € R we have p(A) = 0 or
1. The theory of ergodic flows is similar to the theory of ergodic automorphisms.
A technical difficulty we face now is the fact that the time parameter varies in an
uncountable set.

A measurable function f: X — R is called ¢-invariant p-almost everywhere, if
for every t € R we have f o ¢, = f p-almost everywhere, and is called ¢-invariant if

f(ée(z)) = f(x) for every x € X.

4.4.1. Proposition. Let (¢;)ier be a measurable flow on a complete probability
space (X, A,p). If f: X — R is a ¢-invariant p-almost everywhere function, then
there exists a ¢-invariant, measurable function g : X — R such that g = f p-almost
everywhere.

Proof. Let E = {(t,x) e Rx X : f(¢(x)) # f(x)}. If we denote by dt the Lebesgue

measure on R, then

/X</RXEx(t)dt>dM:/R</XXEt(1')dM>dt:0,

by Fubini’s theorem, where B, = {t e R: (t,z) € E} and B, = {x € X : (t,z) € E}.
So, there exists some N € A such that u(N) =0 and

/ XEx(t)dt =0
R

for every x € X \ N. It follows that for every x € X \ N there exists a Borel
set N, C R of Lebesgue measure zero such that xg(t,z) = xg,(t) = 0 for every
t € R\ N, or in other words f(¢:(z)) = f(x). Let now z, y € X \ N be such that
y = ¢¢(x) for some ¢t € R. The Borel set (N, —t) U N, has Lebesgue measure zero
and so there is some s € R\ (N, —t) UN,. Then,

f(x) - f(¢s+t(x)) - f(¢s(y)) = f(y)

We define the function g : X — R as follows. If 2 € X \ N, we put g(z) = f(z).
If the orbit of z € N is contained entirely in N, we put g(z) = 0. If x € N and
there exists some ¢ € R such that y = ¢(z) € X \ N, we put g(z) = f(y). From the
above follows that in this case the definition of g(x) does not depend on the choice
of y. Evidently, g is ¢-invariant and it is measurable since the measure is assumed
to be complete. [

The proof of the following characterization of ergodic measurable flows is the
same as of 4.1.2.

4.4.2. Proposition. Let (X, A, u) be a probability space and (¢1)ier be a measur-
able flow on X. The following are equivalent.

(i) (¢¢)ter is ergodic.



4.4. ERGODICITY OF FLOWS 65

(ii) Every measurable ¢-invariant p-almost everywhere function is constant p-
almost everywhere.

(iii) Every measurable ¢-invariant u-almost everywhere function in L?(u) is con-
stant p-almost everywhere.

There is also a version of the ergodic theorem for flows, which is actually a
consequence of the ergodic theorem for endomorphisms.

4.4.3. Theorem (Ergodic theorem of Birkhoff for flows). Let (X, A, 1) be a
probability space and (¢¢)icr be a measurable flow on X. Then, for every f € L' (u)
the limit

f) = lim = /0 F(6s())ds

t—+oo t

exists and is ¢-invariant pu-almost everywhere. Moreover, f* € L'(p) and

/X frdp = /X F.

If f € LP(n) , p > 1, then we have convergence also in LP(u).

Proof. First observe that by Fubini’s theorem

/X (/Ot \f(%(x))]ds)du =t||f|l

for every t > 0. Thus for every n € N there exists A,, € A such that u(A,) =1 and

/On |F(6s(2))|ds < 4o

for every x € A,,. If now A = N2, A,, then

t [t]+1
[ @nis < [T outelds < +oc
0 0

for every x € A. This shows that

t
| #6.tanas
is well defined for every ¢ > 0 and x € A. Let F': X — R be defined by
1
Pla) = [ fonais

for x € A, and F(z) =0 for z € X \ A. Then,

Joietan< [ ([ 1560uias )= 151
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and thus F' € L'(p). From the ergodic theorem for endomorphisms, the limit

f() = lim ZF% )= Jim_+ [ (6.

n—+oo n n——+oo n

exists p-almost everywhere and f* € L(p). Similarly, the limit

fI(2) = lim / F(6s(a)lds

n—-+oo n

exists p-almost everywhere. For every ¢ > 0 we have

t [t] [t]+1 [t]
/O F(6u(2))ds — /O F(6a(x))ds| < /O | (s(a))ds — /0 | (6s(a))ds.

It follows that

n—+oco n

@) = lim /f% @—hm—/f@

For the ¢-invariance of f* we observe that for every 7 > 0 we have

< /V% )|ds,

which tends to zero as t — +00, p-almost everywhere. Hence

t+1
‘/ f ¢S+T ))ds_ 0 f(¢s dS

t t+T1

[ (ér(@) = lim = [ f0usrt@nas = tim 1 [ fouads = (@),

t—+oo t

p-almost everywhere. Similarly for 7 < 0. It remains to prove that if f € LP(u),
p > 1, then we have convergence in LP(u). From this it will follow that f* and f
have the same p-integral over X, because for p = 1 we will have

/Xf*dnz/ <tgr+noo;/ f(¢s(x ds)clu— EELOZ/ (/ f(gs(z ds)du_
s 3 [ (oot [ (o= [ s

the second equality being due to L'(u)-convergence. To prove LP(ju)-convergence,

we observe that
P + 1 v
i) < [ ([ rooppan)as = s,

(Aﬂv@mm

by the generalized Minkowski inequality, and therefore F' € LP(u). From the LP
ergodic theorem for endomorphisms we have

lim [ [ (¢ 0 62)ds = £l =

n—+oo N



4.4. ERGODICITY OF FLOWS 67

‘ /fqbs /qus
@(Hil/f“ ))lds - /|f¢s |ds>

11 [
v [ ey o - I s

Using the Minkowski inequality we have

1 [t 1 [
15 [ roodds—g ["(ross), <

However,

. 1 [t]+1 [t]
%H T /0 |f o ps|ds — 0 ] |f o ¢slds]p+
1 1

[t]+1 [
e [ e eddsl+ (- ||—/ 7 0 duldsl

It follows from the above that

. 1 [t 1 [t

This completes the proof. [J
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Chapter 5

Geodesic flows of hyperbolic
surfaces

5.1 The hyperbolic plane

Let H? = {z € C : Imz > 0} be the upper half plane. We shall use complex numbers
to denote the points of H?, as well as its tangent vectors. The hyperbolic metric on
H? is the complete Riemannian metric of constant negative curvature —1 defined by

(u+ ) (u' — ')

(utiv,u + ). =Re——q "5

where u + iv, u' +iv’ € TIH? and z € H2. Thus,

lu + 0|2 = (u? + %),

1
(Imz)?
and angles in the hyperbolic sense are the same as the euclidean. The hyperbolic
geodesics are either euclidean half lines orthogonal to the real axis or euclidean
semicircles with center on the real axis.

For every a, b, ¢, d € R with ad — bc = 1, the Md&bius transformation of the
Riemann sphere defined by

az+b
T =
(2) cz+d
has complex derivative
T'(z) = #
~ (cz+d)?

and ImT'(z) = |T"(z)|Imz. Hence T'(H?) = H2. Moreover, T is a hyperbolic isometry,
because for every z € H? and u + iv, v/ + iv' € T H? we have

, ) , PR T (2)(u + )T (2) (v + v’
(T"(2)(u +iv), T"(2)(u' +iv')) () = Re (2)( tlm)T(z())?( + ):

T()T'(2) , (u+iv)(u —iv')
TEP T (me)?

= (u+iv,u +iv'),.

69
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The group of real M&bius transformations is precisely the group of the orienta-
tion preserving hyperbolic isometries or in other words is the connected component
of the identity of the group of isometries of H? endowed with the compact-open
topology, and is isomorphic as a Lie group to PSL(2,R). Apart from itself, it has
only one other coset in the group of hyperbolic isometries, the one represented
by the reflection through the imaginary semiaxis. We shall identify the group of
orientation preserving hyperbolic isometries with PSL(2,R).

5.1.1. Proposition. (a) If I is the imaginary semiazis, then for every hyperbolic
geodesic C' there is some T € PSL(2,R) such that T(I) = C.

(b) For every zo € H? and every v € Ty, H? with ||v]l,, = 1 there is some
T € PSL(2,R) such that T(i) = zp and T"(i)i = v.

Proof. (a) If C = {2z € H? : Rez = b}, for some b € R, it suffices to take T'(z) = z+b.
Suppose that C' is a hyperbolic geodesic with endpoints x, z + r € R. The M&bius

transformation ;

z+1

maps I onto the hyperbolic geodesic with endpoints 0 and 1. Thus, if T5(z) = rz
and T3(z) = z + x, then it suffices to take 7' = T3 0T 0o T1.

(b) There exists a unique parametrized hyperbolic geodesic C' through zy with
velocity v at zp. By (a), there exists T} € PSL(2,R) such that T71(I) = C. Let
a > 0 be such that Ty(ai) = zp. Then (T7 ) (z0)v = +ai. If (T 1) (20)v = ai,
let To(z) = az. Then Ty(i) = ai and Tj(ai)i = ai. If (Ty 1) (20)v = —ai, let
To(z) = —a/z. In both cases it suffices to take T'= T} o Tp. O

Thus, PSL(2,R) acts transitively on the unit tangent bundle T'H? = H? x S,
and as we see easily, the isotropy group of (i,4) is trivial. It follows that the smooth
map 1 : PSL(2,R) — T'H? defined by ¢(T) = (T(i),T"(i)i) is one-to-one, onto,
and the proof of 5.1.1 shows that it is a diffeomorphism. An analytical formula of
its inverse can be given using the Iwasawa decomposition of SL(2,R). We consider
the following one parameter subgroups of SL(2,R) :

Tl(Z) =

cos sind
—sinf cosf

K:{k9:< ):0§9<2w}g51,

t
A:{at:<% 69t> :te R} =R,

1
N:{nt:<0 i):tGR}%R.

Observe that nias = agng—2s for every t, s € R. Therefore, NA = AN is a subgroup
of SL(2,R) consisting of upper triangular matrices and N <« NA. Obviously, ANN
and K N NA are trivial.

5.1.2. Lemma. For every g € SL(2,R) there exist unique kg € K, as € A and
ng € N such that g = niagsky.
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Proof. The equation

a b 1 t\ /e O cosf sinf
9= <c d) - <O 1> (O es> <—sin0 cos@)
is equivalent to the system of equations
a=e’cosh —te ®sinf
b=e’sinf +te” °cosf
c=—e °sinf
d=e"*cosf.

1
From the last two we get s = -3 log(c? + d?), and then from the first two we have

o _ac+bd
t=c¢e (C(Z‘i‘db)—m

and

S S
For the uniqueness, if nak = n’d’k’, where k, k' € K, a,a’ € A and n,n’ € N, then
kK'k=! = (n'a’)"!(na) € K N NA which is trivial. Hence k = k¥’ and na = n’a’. But
then a’a=! = n(n’)~! € AN N which is also trivial, and so a = @’ and n = n'. OJ

From 5.1.2 follows that the map x : T'H? — SL(2,R) defined by
X(Z7 (Imz)eze) = NRez a’% logImz ko

is a smooth diffeomorphism. The quotient map p : SL(2,R) — PSL(2,R) is a
double covering. If p(g) = T, then

=t ( O)
For g = naky, 0 < 6 < 2m, we have p~Y(T) = {nakg,nakg,,}. Consider now the
smooth, one-to-one, onto map ¢ : T'H? — PSL(2,R) defined by
(2, (Im2)e”) = p(nRe: - a1 165 1. * Koy2).
Let 2o =2 + 4y, z € Rand y > 0, and T = ¢(20,e"), that is

0
(cos =)z +sin —

T(z)=vy- 29 29 +z

(—sin 5)2 + cos 3

and
Y

0 0.,
[(—sin i)z + cos 5]2

T'(2) =

Therefore, T'(i) = zg and
T'(i)i = ylcos(d + g) +isin(0+ g)].

It follows that T = 1! (20, ye'*2)) and so (¥ 0 ¢) (20, ye?) = (20, ye"?*3)). Hence
1 and ¢ are smooth diffeomorphisms.
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5.2 The Haar measure on PSL(2,R)

The positive linear functional p : C.(SL(2,R)) — R defined by

) = [ 5 (2 7) asanas,

where ¢ # 0 and therefore a = 1+—57-, defines a Borel measure on SL(2,R). If

0
o BN\ [a b\ [a B
v o8] \e d)\vy ¢
then ,
(B8',7,0") = (aB + b, @ +vd, ¢+ 6d).
The Jacobian matrix of this transformation is
a 0 b
cy B _cl+5y)
c 0 d
and has determinant equal to
cf cB+dod ¥
— +d)(ad — bc) = = —.
(L + d)fad — be) = E220 = 2
Consequently,
1 1
—dB'dv'd§' = —dBdyds
|0'] 0]

and p is invariant by left translations in SL(2,R). Similarly, it is invariant by right
translations also. Hence p is the Haar measure on SL(2,R), modulo a constant, and
SL(2,R) is a unimodular connected Lie group. Moreover, p projects to the Haar
measure on PSL(2,R), which we shall also denote by . If f: PSL(2,R) > Ris a
continuous function with compact support, then the p-integral of f over PSL(2,R)
is the integral of f o p over a fundamental domain of the double covering map
p: SL(2,R) — PSL(2,R). Considering the Iwasawa decomposition of SL(2,R),
such a fundamental domain consists of all the elements of the form

(1 x> <y1/2 0 > cos% sin%
0 1 0 y U2 —sing cos 5

where z, y € R, y > 0 and 0 < 0 < 27. Then,

1/2 cosg)

0 0 0
(8,7,8) = (g% sin 5 + g2 cos &, —y /2 sim £y /% cos

2

and the Jacobian determinant of this transformation is (— cos g) . %yﬁr’/ 2. Tt follows

that 12
1 Y 0 1
COS 5

1
drdydf = — dzdydf.
4y
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This means that the Haar measure on PSL(2,R) is transformed by the smooth
diffemorphism ¢! : PSL(2,R) — T'H? of the preceding section to the Liouville
measure on T'H?, modulo a constant. In the rest of this section we shall give
alternative descriptions of the Haar measure on PSL(2,R) using other coordinate
systems on T'H? = H? x S*.

3

Let  +iy € H2, 0 < 6§ < 27 and £ € RU {oo} ~ S! be the positive end of the
parametrized hyperbolic geodesic C through x + iy, whose velocity at this point is
the unit tangent vector making angle § with the vertical half line at x 4 i¢y. Then,

0
tan - = — and §:x—ycot§.

2 x—-¢£

Therefore,

1 1
— dzdydf = 2sin® b, —dzdydé = dxdyd€.
y? 2y Y

|(z +iy) — £

¥ A

Let now 7 be the negative end of C' and s be the signed hyperbolic distance of
x + 1y from the highest point of C'. Obviously,

m™—0 0
n:x—i—ycot(T) ::U—|—ytan§.

Let T = ¢(z + iy, ye'), that is
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and in particular T(0) = n, T(i) = = + iy and T'(c0) = §. Thus, T maps the
imaginary semiaxis onto C and for every z € C there is a unique ¢ > 0 such that
T(it) = z. The hyperbolic distance of z from x + iy is equal to the hyperbolic
distance of it from i, and therefore equal to |logt|. If

az+f
T(z) —
then & = /v, n = /0 and
, (ayt? + B0) + it
T(it) = T
Hence "
which takes its maximum value for t = |§ /7| It follows that s = log|d/v| and so
_2 1
The Jacobian matrix of this trasformation is
1
50 =5
T
and has determinant —2/ 5372. Consequently,
———dnd&ds = dﬂdfydé
n 5 2 0]

Finally, consider the horocycle that passes through £ and = + iy. Let » > 0 be its
euclidean radius and s be the signed hyperbolic length of the arc on the horocycle
from = + iy to the highest point of the horocycle.

Since T'(i) = x + iy and T'(c0) = &, the horocycle is the image of the horocycle
{z € H? : Imz = 1} by T. In other words, the horocycle is the set {T'(t+1) : t € R}.

Now
1
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which takes its maximum value 1/42 for t = —§/v. Therefore r = 1/2y%. On the
other hand, since T is a hyperbolic isometry, s is equal to the signed hyperbolic

length of the euclidean line segment from i to ¢ — —, and this is 6/. Thus,
gl

1+8y 1 g)

(5,7’,8) :( ~o ’2—72’7

and the Jacobian matrix of this transformation is

1 _ 1 _ 148y
) 5Y2 452
0 —= 0
0 -5 1

Y Y

which has determinant —L. Hence
oyt
4 4 1

mdﬂd’ydé = 4y*dédrds = ﬁdfdrds.

5.3 The geodesic flow of the hyperbolic plane

Using the notations of section 5.1, the set p(A) is a one parameter subgroup of
PSL(2,R). For every t € R we have p(a;)(z) = €'z for every z € CU {oc}. The
formula

gi(z, (Imz2)e?) = ¢~ (o(2, (Imz)e®) oplays)), teR, (z (Imz)e') € TYH?

defines a smooth flow on the unit tangent bundle of H?. If we set T' = ¢(z, (Imz)e),
then T'(0) = n, T(c0) = £ and T(i) = z, according to the notations of section
5.2. Thus, g(z,(Imz)e?) defines the same parametrized hyperbolic geodesic as
(2, (Imz)e®). Moreover, the hyperbolic distance of (T o play2))(i) = T(e') from z
is |t|. This means that the point of application of the tangent vector g;(z, (Imz)e)
is the point on the parametrized geodesic defined by (z, (Imz)e?) after time ¢. This
shows that (g;)icr is the geodesic flow of H2. It is clear that in the coordinates
(n,€,s) for T'H? of section 5.2, the geodesic flow is the parallel flow given by

gt(n7§7 3) - (77757 s+ t)

and has global section the set of points of the form (7, &,0), n # &, which is smoothly
diffeomorphic to a cylinder.

gk(x,”,s) (’(:356)
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On PSL(2,R) there is also the one parameter group p(IN). For every ¢t € R we
have p(n;)(z) = z +t for every z € CU {oo}. The formula

he(z, (Im2)e®?) = ¢~ (p(z, Imz)e?) o p(ny)), teR, (z (Imz)e?) e T'H?

defines a smooth flow on the unit tangent bundle of H?. Now (z, (Imz)e) and
h¢(z,(Imz)e?) determine parametrized hyperbolic geodesics which are positively
asymptotic at £&. Moreover, since (T' o p(n))(i) = T(i +t), the points of application
of the tangent vectors (z, (Imz)e®) and hy(z, (Imz)e) are on the horocycle

T({w € H? : Imw = 1})

and the vectors are orthogonal to the horocycle. The hyperbolic length of the arc
on the horocycle from z to the point of application of h(z, (Imz)ew) is equal to the
hyperbolic length of the euclidean line segment from i to i + ¢, which is [¢|. Thus,
hi(z, (Imz)e'?) is taken by translating (2, (Imz)e?) along the horocycle it determines
with &, keeping it orthogonal to the horocycle, by a signed hyperbolic length ¢. The
flow (h¢)ier is called the horocycle flow of the hyperbolic plane. It is clear that in
the coordinates (&, r, u) of section 5.2 the horocycle flow is the parellel flow given by

he(§,ryu) = (&, ryu+t)

and has global section the set of points of the form (£, r,0) which is diffeomorphic
to a cylinder. Since nias = agns.—2s, we have

gs © ht = hte_s 0 s

for every t, s € R.

On PSL(2,R) there is also the one parameter group p(K), which de-
fines on the unit tangent bundle of H? the smooth flow Ry(z,(Imz)e) =
¢~ Ho(z, (Imz2)e®) o p(ky o)) = (2, (Imz)e'@*), t € R, (z, (Imz)e?) € T'H2. The
three flows are related as follows.

5.3.1. Proposition. Ift € R, then

hs = Rr_q 09t 0 Ror_q,
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t
where cota = f, 0<a<mands= 2sinh§.
. ot
Proof. Since sinh 3= cot a, we have
tan? g + (et? — e_t/Q)tang —-1=0

—t)2

from which follows that tan g =e , because 0 < a < 7. On the other hand, since

(Rr_o)™ ' = Ryyq, it suffices to prove that Ry 4 0hs = gs 0 Rox_q. Now Ryiq o0 hyg
is represented by the matrix

3 a a 3 a a a 3 a
(1 s) <—sm§ cos § >:<—sm§—scos§ cos§—ssm§>
a s a a s a
01 —Ccos5 —sing — oS5 —sin g
and gy o Ro,_, is represented by
—cosg sing et/? 0 _ —et/? cos 5 et/ gin 5
—sin% —cos? 0 e¥2) 7 \—et2gine —et/2¢os2)"
2 2 2 2
. a —t/2 S .
Since tan 5 =¢ and cota = oL the two matrices are equal. [J

5.4 The Poincaré disc model

Let D? = {z € C: |z| < 1}. The Cayley transformation

; 1
F(z) = 1z + '
Z+1
maps H? onto D? and has inverse
—tz+1
Fl(z) =
(2) = ——
with complex derivative
-2
FY ()= —=.
(F)() = o=

If we trasform the hyperbolic Riemannian metric on H? by F, we get on D? the

Riemannian metric 4
<’U,ZU>Z == WRG(U’E)

where v, w € T,D? and z € D?. The unit disc equipped with this metric is an

alternative model for the plane hyperbolic geometry. The hyperbolic area of a Borel

set A C D?is A
— dzdy.
/Au—\zmﬁ e

The hyperbolic geodesics in D? are the images by the Cayley transformation of the
hyperbolic geodesics in H?, and are either diameters of D? or euclidean circular
arcs orhogonal to the boundary circle 9D?. The orientation preserving hyperbolic
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isometries of D? are of the form F o T o F~!, where T is an orientation preserving
hyperbolic isometry of H2. This is precisely the set M of Mébius transformations
that preserve the unit disc. Thus, the elements of M are of the form

az + ¢

S =
(2) cz+a
where a, ¢ € C are such that |a|? — |¢|> = 1. The fact that S is a hyperbolic isometry
of D? is expressed by the equality

15(2)] 1

1—[S(2)]>  1—]zf

which is easily verified. The elements of M have the following useful properties.

5.4.1. Proposition. If S € M, then
(i) |S(z) = S(w)| = |S’(z)|1/2|5’(w)|1/2|z —w|, for every z, w € C, and
(i)

1y 1—|S(0)?
st =
for every & € OD?.
Proof. (i) Since
1oy 1

§(=) = (cz+a)?’
we have

|z — w|

15(2) = S(w)| =

ez +al - Jew + al B |S'(z)|1/2|5'(w)|1/2|z ~uk

(i) Applying (i) for z = S71(¢) and w = 0, we have

€ = SO)F = IS"(STHENI - 1S'(0)] - [STHE)* = (1= [S(0)),

1
(S=1)(9)]
since |S(0)| = 1 — |S(0)|2, because S is a hyperbolic isometry of D?. [J

The elements of the unit tangent bundle T'D? are determined by triples
(z,y,€"?), where 2 + iy is the point of application and 6 is the angle the tangent
vector forms with the horizontal axis. The derivative of the Cayley transforma-

tion transfers the geodesic and horocycle flows of H? to those of D?. The invariant
Liouville measure on T'D? is

4
T yQ)]dedde.

5.5 Ergodicity of geodesic flows of hyperbolic surfaces

A hyperbolic surface M is the quotient space of H? by a subgroup G of PSL(2,R)
which acts freely and properly discontinuously by hyperbolic isometries on H?Z.
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Then, M is an orientable, connected 2-manifold, and can be equipped with a
Riemannian metric that makes the quotient map ¢ : H> — M a local isometry.
Moreover, ¢ is the universal covering of M and (M) = G. Recall that any ori-
entable, connected, complete Riemannian 2-manifold of constant negative curvature
—1 arises in this way.

The action of G' on H? induces an action on T H? in the obvious way, which is
also free and properly discontinuous. The quotient space of T'H? by this action is
precisely T'M and the quotient map is the derivative of ¢. It is clear that T M is
smoothly diffeomorphic to the homogeneous space G\PSL(2,R) of right cosets of
G in PSL(2,R).

The geodesics in M are images of the hyperbolic geodesics in H? by ¢. Since
the geodesic flow of H? is invariant under hyperbolic isometries, it projects by ¢ to
the geodesic flow of M. Similarly, ¢ maps the horocycle flow of H? to a flow on
T'M, which we shall call horocycle flow of M. In terms of PSL(2,R), the geodesic
and horocycle flow of M can be described as follows, using the notations of section
5.1. The right action of the one parameter subgroup p(A) on PSL(2,R) commutes
with the left action of G on PSL(2,R), and therefore induces a smooth flow on
G\PSL(2,R), which is precisely (conjugate to) the geodesic flow of M. In the same
way, the horocycle flow of M is (conjugate to) the smooth flow on G\PSL(2,R) that
is induced by the right action of the one parameter subgroup p(N) of PSL(2,R).

The Liouville measure p on 7'M is obtained from the Liouville measure on
T'H2. If P is a Dirichlet polygon of G, then u(A) is the Liouville measure of
(Dq)~1(A) N (P x SY) in T'H?, for every Borel set A C T*M. If M is compact,
then P is a finite hyperbolic polygon, and so it has finite hyperbolic area. Thus, in
this case the Liouville measure on T M is finite.

In the sequel, we shall assume that M is compact and we shall denote by (g¢)er
the geodesic and by (h¢)ier the horocycle flow of M. Note that giohs = hy.—t0gy, by
the corresponding property of the geodesic and the horocycle flow of H?. We shall
also assume that y is the normalized Liouville measure on T M, that is u(T1 M) = 1.

5.5.1. Lemma. Let f : T'M — R be in L'(u). If f is invariant by the geodesic
flow, then it is p-almost everywhere invariant by the horocycle flow.

Proof. Let s € R. Since C(T'M) is dense in L'(u), there exists a sequence of
continuous functions f, : T'M — R, n € N, such that

lim |fr. — fldp = 0.
n—-+oo TLM

Thus, for every € > 0 there exists ng € N such that for n > ng we have

€
[ A= sidn <
T'M

and so

€

[ Awohcog—fohucogdn= [ |t fldu<
TM TM
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for every t € R. Since T'M is compact, there exists ty > 0 such that

€

/ ’fnoohse*togt_fnoogt’d:u<
1M 3

for every t > ty. It follows from these that

/ fohytog— fogldu<e
TIM

for every t > tg. But fohg-—tog = fogsohs = fohg, because f is invariant by
the geodesic flow. So we get

/ Fohy — fldu < e
TIM

for every € > 0, and the conclusion follows. [

Let now f : T'M — R be a measurable, invariant function by the geodesic flow,
and therefore p-almost everywhere invariant by the horocycle flow too. The same
are true for f o g, : T'H? — R, which is moreover invariant by the action of G. Let
¢ € RU {oo}. For every xg + iyo € H? there exists a unique hyperbolic geodesic
passing through z¢ + iy, having positive end &, and a unique horocycle passing
through x¢ + typ and £&. The hyperbolic geodesic passing through an arbitrary point
2’ + iy’ € H? and having positive end ¢ intersects the horocycle at a point x + iy,
which depends only on z’ and y'. Then,

(f oa )@y, &) = (foa)(@,y, &) = (f 0 q) (0,70, )

p-almost for every xg + iyg, ' + iy € HZ, since f is invariant by the geodesic
flow. Thus, we have a measurable function f : R U {co} — R defined by
f(&) = (f oq)(xo,y0,§), which is invariant by the action of G on R U {oo}.

5.5.2. Proposition. If the action of G on R U {oc} is ergodic with respect to the
Lebesgue measure, then the geodesic flow is ergodic with respect to the Liouville
measure.

Proof. Let f: T'M — R be a measurable function, invariant by the geodesic flow.
Let f be the measurable function defined above. If the action of G' on R U {co} is
ergodic, then f is constant almost everywhere with respect to the Lebesgue measure.
As we saw in section 5.2 the Liouville measure has the form

9
yl(z +iy) — &?

dxdyd&

modulo a constant. Consequently, f o ¢, must be almost everywhere constant with
respect to the Liouville measure on T'H? and so must be f on T'M. O

Thus, the ergodicity of the geodesic flow is reduced to the ergodicity of the
action of G on RU {oo} =~ S!. To study this, it is more convenient to work with
the Poincaré disc model. Thus, in the sequel we assume that G is a subgroup of M
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which acts freely and properly discontinuously on D?, and its orbit space is compact,
that is it has a Dirichlet polygon which is a compact subset of 2.

For every ¢ € S = OD?, one can define the harmonic function P(.,&) : D? — R+
by

1— |2
P(z,§) = 7—3>
=8 =g
which is called the Poisson kernel. For every g € M we have
L—g(=)* _  1g')IA—[=*)

Pl 98 = ey = g oF = W @Ng @ — ¢ ~ 7@

If f:S' — Risin L' of the Lebesgue measure, the function F : D> — R defined by

(2,€).

1
27

2
F(z) /0 P(z,e?)f(e)dd

is the Poisson integral of f and is harmonic, because it is the real part of the function

f(e®)do = Lo Lewf(e”)de L f(e®yado

1 27Fe’i9+Z
' 21 Jo €ef —z 27 Jo

21 Jo € —z

which is holomorphic in D?. For every g € M and z € D? we have

2
Pla(:)) = 5= [ Plate).e)r(e)in =
1 2 ) ) ) 1 2T ) )
oo [ PG @Dl A8 = 5 [ PG ) fg(e))d.

271'0 _%0

It follows from this that if fog= f, then Fog=F.
For every 0 <7 < 1let F, : S' — R be the function defined by F,.(¢) = F(r€).
Then, || < |[f] and
lim | = £l = 0,

5.5.3. Theorem. Let G be a subgroup of M, which acts freely and properly
discontinuously on D?. If the orbit space of the action is compact, then G acts
ergodically on S' = OD? with respect to the Lebesque measure.

Proof. Let f : S' — R be a measurable function, invariant by the action of G.
Then, the Poisson integral

1
27

2m
F(z) /0 P(z,e?)f(e?)dd

is a harmonic function on D? invariant under the action of G. Since the orbit space
of G is compact, G has a compact Dirichlet polygon @ in D?. It follows that F' takes
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on extreme values on @, and therefore in D?, because it is invariant under G. By
the Maximum Principle, F' must be constant and so

[ 1P© = 1=t |17, — £l =0,
St r—1
Hence f = F(0) almost everywhere with respect to the Lebesgue measure. [

5.5.4. Corollary. The geodesic flow of a compact hyperbolic surface is ergodic with
respect to the Liouville measure.

We shall now investigate the ergodicity of the horocycle flow. We shall need the
following.

5.5.5. Lemma. If f € L'(p), then lim, o ||f o Ry — f|l1 = 0.

Proof. Since C(T'M) is dense in L!'(u), there exists a sequence of continuous
functions f, : T'M — R, n € N, such that lim,_, o ||fn — f|l1 = 0. Let € > 0.
There exists ng € N such that ||f, — f[l1 < €/3, for n > ng. Since T'M is compact,
each f, is uniformly continuous, and therefore lim, ¢ || fn © Rq — fn|| = 0. Let 6 > 0
be such that || fn, © Ry — fn,ll < €/3 for |a| < §. Then,

1f o Ra = flls < [f o Ra = fro © Rallt + | fno © Ba = fuolls + 1o = fll1 <

€
1(f = fno) © Rallt + [ fno © Ra — froll1 + 3 <

2¢
||f_fnoH1 + 3 <e 0O

5.5.6. Theorem. The horocycle flow of a compact hyperbolic surface is ergodic
with respect to the Liouville measure.

Proof. Let f € L'(u) be invariant by the horocycle flow (hs)ser. Then, f = fohg =
foR;_qogto Rog_q, where cota = s/2, 0 < a < 7, and s = 2sinh(¢/2), by 5.3.1.
Thus, fo Ryog ¢ = fo Ry, For every I € L'(u) we have

/ (foRW_a)-ld,u:/ (foRy)-(logy)du
TM

T'M

and taking the limit we get

Jm [ pGoan= [ (7R tdn

because lim;_, o, @ = 0. Therefore,

1 t
lim - - - ldp.
i (Tle <logs>du)ds [, Gora) tan
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Since the geodesic flow is ergodic, by Fubini’s theorem and dominated convergence,

we have
1 t
lim —/ < f-u ogs)d,u>ds = (/ fdu) (/ ld,u>.
t=+oo t Jo \Jrim TiM TiM

It follows that
/ l-(foRW—/ fd,u)d,u:O
TIM TIM

for every I € L'(u). Consequently,

JoR: = Jdp
TM

u-almost everywhere, and f is p-almost everywhere constant. [J
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Chapter 6

Horocycle flows of hyperbolic
surfaces

6.1 Horocycle flows and discrete subgroups of SL(2,R)

Let M be a compact hyperbolic surface, that is M is the quotient space of H?
by a subgroup G of PSL(2,R), which acts freely and properly discontinuously by
hyperbolic isometries on H?. As we saw in section 5.5, the unit tangent bundle 7'M
is smoothly diffeomorphic to the homogeneous space G\PSL(2,R) of right cosets
of G in PSL(2,R) and the Liouville measure is the projection of the Haar measure
on PSL(2,R), modulo a constant. If p : SL(2,R) — PSL(2,R) is the double
covering map, then I' = p~1(G) is a discrete subgroup of SL(2,R) and I'\SL(2,R)
is smoothly diffeomorphic to G\PSL(2,R), and the Liouville measure corresponds
to the induced by the Haar measure on SL(2,R). The latter is the unique Borel
measure on I'\SL(2, R) which is invariant by the right action of SL(2,R) such that
if f € C.(SL(2,R)) and f'' € C(I'\SL(2,R)) is defined by

fFTg)=>" f(vg),

vyel’

then the integral of f!" over I'\SL(2,R) is equal to the integral of f over SL(2,R).
The above diffeomorphism gives an isomorphism of the geodesic flow of M with
the right action of the one parameter subgroup A of SL(2,R) on I'\SL(2,R) defined
by
9:(Lg) =T(gasn), teR

and an isomorphism of the horocycle flow with the right action of the one parameter
subgroup N of SL(2,R) on I'\SL(2,R) defined by
hi(Tg) =T(gny), teR.

Recall that g; o hgy = hg.—t 0 g¢ for every t, s € R.

In the next section we shall prove that the horocycle flow of a compact hyperbolic
surface is minimal. The compactness assumption is essential for minimality. If M
has merely finite hyperbolic area, but is not compact, then G contains at least one

85
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parabolic element of the form p(gn:;g~!), for some t € R, ¢t # 0, and g € SL(2,R),
and then

h(Tg) =T(gnig 'g) =Tg.

In other words, I'g is a periodic point.

The geodesic flow is not minimal, even when M is compact. If T is a hyperbolic
element of G, it has two different fixed points &, n € OH? and it leaves the hyperbolic
geodesic with positive end & and negative end 7 invariant. It follows that for every
s € R the point (&,7,s) in T'H? projects to a periodic point of the geodesic flow on
T'M.

6.1.1. Lemma. Let g € SL(2,R). The orbit of I'g under the horocycle flow is dense
in T\SL(2,R) if and only if the orbit of gN under the left action of T' on the ho-
mogeneous space SL(2,R)/N of left cosets of N in SL(2,R) is dense in SL(2,R)/N.

Proof. We observe that I'g has a dense orbit in I'\SL(2,R) under the horocycle flow
if and only if TgN = SL(2,R), because the quotient projection of SL(2,R) onto
IMN\SL(2,R) is a continuous, open map. For a similar reason, gN has a dense orbit
under the left action of I' if and only if TgN = SL(2,R). O

Thus, the horocycle flow is minimal if and only if the left action of I' on
SL(2,R)/N is minimal. We examine this action more closely. The natural ac-
tion of SL(2,R) on R? by evaluation has only two orbits, namely {(0,0)} and
R?\ {(0,0)}. The isotropy group of the vector e; is N. Therefore, the map
¢ : SL(2,R)/N — R2\ {(0,0)} defined by ¢(gN) = g(e1) is smooth, one-to-one
and onto. Actually, it is a diffeomorphism, since its inverse 1 is defined by

€ z_—yz
Y(x,y) = TIV)N.

Moreover, ¢ is an isomorphism of the left action of SL(2,R) on SL(2,R)/N to
the action of SL(2,R) on R?\{(0,0)} by evaluation. Thus, we arrive at the following.

6.1.2. Proposition. The horocycle flow is minimal if and only if the natural action
of T on R?\ {(0,0)} by evaluation is minimal.

6.2 Dynamics of discrete subgroups of SL(2,R)

Let T" be a discrete subgroup of SL(2,R) such that —Is € T', where I5 is the identity
2 x 2 matrix, and I'\SL(2,R) is compact. The first condition implies that if g € T,
then —g € T" also. We shall denote by p the normalized measure on I'\SL(2,R)
which is induced by the Haar measure on SL(2,R).

6.2.1. Lemma. For every g € SL(2,R) and every open neighbourhood V' of Iy in
SL(2,R) there exists n € N such that TNV g"V~1 #£ 2.

Proof.  Since the quotient map ¢ : SL(2,R) — T\SL(2,R) is a continuous,
open, onto map, and the Haar measure is positive on open sets, we have
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w(q(Vg®)) = u(q(V)) > 0 for every k € Z. Hence there are k, | € Z with k > [ such
that ¢(Vg*) N q(Vg') # @, because p is finite. This means that there are some z,
y € V such that zg*ly~t e T. O

6.2.2. Lemma. For everye > 0 andt > 0 there exists an open neighbourhood V' of
Iy in SL(2,R) such that for every s >t every element of asV has real eigenvalues
A1 > 1 and Ay = 1/A; with respective eigenvectors x1 and xp such that ||z;]| = 1
and ||z; —ejl| <€, j=1,2.

Proof. For every 6 > 0 we consider the set

Vo= (4 1) € SLC.R) max(la — 1l Il 4 - 11} < 3}

The family {V;5 : 0 < § < 1} is a basis of open neighbourhoods of I in SL(2,R).

Let
(el —=1)2 e —1

<
e?t+1 " et+1

a b
g_<c d>EV6’

0<d< <1,

so that 1+ 4 < e!(1 —4). If

then a, d > 0 and

1
for every s € R, which has eigenvalues A\j 2 = 5(&68 +de™* ++/(aes + de=5)2 — 4).

The quantity ae® + de™* is increasing with s > ¢, because

\/§< L+0 146 _ 4
a V1515 ¢

So, for every s > t we have ae® +de™* > ae' +de™t > (1-6)(e! +e7t) > 2. It follows
that \y2 € Rand A; > 1,0 < Ay =1/ < 1. An eigenvector of asg corresponding
to A\ is y1 = (A —de %, ce®). If 1 = y1/||y1||, then

A —de”? ) <
\/()\1 —de™5)2 4 (ce=5)2"

1
oy —er]* = 2(1 — —(y1,e1)) = 2(1 —

1]

A1 —de”* 2|cle™* 2|¢|
2(1 - _ —) = — s/ = AN
(M —de=%) + |cle=® (A —de=%) + |cle~® es(\ — de=9)

1
because A} —de™* > 5[(1 —0)e® — (1+6)e”®] > 0. But

1
e’(A\ —de %) = ies(aes —de™® +\/aes +de=)2 —4) > —(ae* — d) >

1

S(ac —d) > 1[(1 - 8)e* — (1+0)] = %[(e% ) — 614 MY > e 1.

DN | =
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Hence

I
et—1 et —1

It is obvious now that for every € > 0 there exists ¢ > 0 such that ||z; —e1]| < € for
every g € Vs and s > t. Similarly, there is a unit eigenvector xo for Ay such that
|ze —ea] <€ O

21— ex|” <

6.2.3. Lemma. Let g € SL(2,R) be an element with two real eigenvalues A; > 1
and 0 < Ao = 1/ < 1 with corresponding unit eigenvectors z; and zo. Then
for every € > 0 there exists an open neighbourhood V of Iy in SL(2,R) such
that for every n € N every element of g"V has two real eigenvalues \y > 1 and
0 < 5\2 = 1/5\1 < 1 with corresponding unit eigenvectors zZ; and Zy such that

Iz = Zill <& 7 =1,2.

Proof. Let 0 < € < 1. We observe first that there are 7' € SL(2,R) and ¢t > 0
such that TgT~! = a;. Thus, z; = ¢;T (e;), where ¢; = [T (e;)|| 7, 4 = 1,2.
Let ¢ = max{cy, c2}. There exists 0 < § < € such that |77 (y) — T71(e;)|| < €/2c,
whenever y € R?\ {(0,0)} and |ly — ¢;|| < 4, j = 1,2. By 6.2.2, there exists an
open neighbourhood W of I in SL(2,R) such that for every n € N every element of
(Tg"T~—1)W has eigenvalues A >1land0< Ny = 1/5\1 < 1 with corresponding unit
eigenvectors y; and ya such that |ly; —e;]| <4, j =1,2. Theset V =T"1WT is an
open neighbourhood of Iy and (T¢g"T~Y)W = T(g"V)T~! for every n € N. Thus,
for every h € g"V there exists some h' € (T'g"T~1)W such that h = T~'A'T, and
h has the same eigenvalues as h’ with corresponding eigenvectors z; = ch_l(yj),
j = 1,2. Therefore,

-1 —1 € €
e = 25l = & IT 7 ) = TN (el < 5, < 5
If now Z; = x;/ |}, j = 1,2, then

12j — 2]l < 2|75 — 2]l <e. O

6.2.4. Lemma. Let g € SL(2,R) be an element with two real eigenvalues
Al > 1 and 0 < A2 = 1/A\; < 1 with corresponding unit eigenvectors z; and zs.
Then for every € > 0 there exists an open neighbourhood W of Iy in SL(2,R)
such that for everyn € N every element of W g"W ~! satisfies the conclusion of 6.2.3.

Proof. Let § > 0 be such that 6(||z;|| + ) + 0 < €/2, j = 1,2, and let V be the
open neighbourhood given by 6.2.3 for §. Let W be an open neighbourhood of I5 in
SL(2,R) such that W = WL W.W C V and |h— I3|| < § for every h € W. If now
h € Wg"W =1, there are hy, hy € W such that h = hig"hy ' = hy(g"hy 'h1)h7?, and
h has the same eigenvalues with g"hy Lhi € ¢"V. If y; and ys are corresponding unit
eigenvectors of g"h, 'h1, then xzj = h1(y;), j = 1,2, are corresponding eigenvectors
of h, and

[ = 21| < [1ha(y) = y5ll + llys = 251l < [1h = L2lllly;ll +0 < 6|25l +0) +0 < e/2. O
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6.2.5. Proposition. For any pair of non-empty open sets Wi, Wo C R%\ {(0,0)}
there exists v € I' having two real different eigenvalues with corresponding eigen-
vectors x1 € W1 and xo € Ws.

Proof. There are z; € Wj, j = 1,2, such that {z1, 22} is a basis of the linear space
R?. Let € > 0 be such that S(z;,€) C Wj, j = 1,2. For every r > 1 there exists
g € SL(2,R) with eigenvalues r and 1/r, and corresponding eigenvectors z1, zo.
Let W be the open neighbourhood of I given by 6.2.4. From 6.2.1 there exists
v € T NWg"W~! for some n € N. Therefore v has two real different eigenvalues
with corresponding eigenvectors x; and xo such that ||z; — zj|| <€, j = 1,2. Hence
x1 € Wy and 9 € Wo. O

6.2.6. Theorem. The set D = {g € SL(2,R) : gTg~ ' N A # {I1}} is dense in
SL(2,R).

Proof. The map v : GLT(2,R) — (R%\ {(0,0)}) x (R?\ {(0,0)}) defined by
¥(g) = (g(e1),g(e2)) is a topological embedding of GL'(2,R) onto an open
subset of (R?\ {(0,0)}) x (R%\ {(0,0)}). Let Wy, Wy C R2\ {(0,0)} be two
non-empty open sets such that Wy x Wy C ¥(GLT(2,R)). By 6.2.5, there exists
v € I having two real different eigenvalues with corresponding eigenvectors
z1 € Wy and zo € Wy. Let g € GL(2,R) be such that g(e;) = z;, j = 1,2.
Then ¢ 'vg has the same eigenvalues with + and corresponding eigenvectors
e1 and es. Therefore g~'vg € A. Consequently, Do N (W7 x Wa) # &, where
Dy = {g € GL*(2,R) : gTg7' N A # {I}}. This shows that Dy is dense in
GL*(2,R). Recall now that the homomorphism r : GL*(2,R) — SL(2,R) with
r(g) = (det g)~'/2¢ is a retraction. Hence D = r(Dy) is dense in SL(2,R). O

6.2.7. Corollary. The geodesic flow on I'\SL(2,R) has a dense set of periodic
orbits.

Proof. A point I'g € T'\SL(2,R) is periodic with respect to the geodesic flow if and
only if there exists ¢t # 0 such that gat/zg_l € T or equivalently g7 'T'g N A # {I>}.
According to 6.2.6, the set of all such g is dense in SL(2,R). Therefore its image in
IMN\SL(2,R), which is the set of periodic points of the geodesic flow, is dense. [

By 6.2.6, for our purposes we may assume that ' N A # {I5}. Indeed, there
exists some g € SL(2,R) such that gT'g™' N A # {I5}, and T" = gl'g~! is a discrete
subgroup of SL(2,R) which contains —I5. Obviously, the action of I on R?\ {(0,0)}
is minimal if and only if the action of I" is.

As a first step to the main theorem of this section, we shall prove that I' acts
minimaly on S'. As action of I' on S' we mean the restriction of the action of
SL(2,R) on S* defined by

o 9@
lg()]]

Concerning this action we make two remarks. Let 21, 2o € S! be linearly indepen-
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dent. If we consider them as columns and d = det(z1,22), then g = (21, Ezg) €
SL(2,R) and g- ey = z1, g - e2 = £25.

If 2 = (z,y) € S' with y > 0 and t = —x/y, then n; - 2 = ey. If y < 0, then
nz = —ea.

6.2.8. Lemma. If Wi, Wy C S! are two non-empty open sets, then for every yi,
yo € S! there erists g € SL(2,R) such that £g-y; € W1 and g~ -y € Wh.

Proof. There exists a rotation g; such that e; € g1 - W5 and g1 - y1 # +e;. From the
second remark above, there exists go € N such that (g2g1) - y1 = *es. Since ey is
fixed by N, we also have e; € (g291) - Wa. Applying the first remark to yo and any
other point z € Wy, which is linearly independent to ¥, there exists g3 € SL(2,R)
such that g3 - e; = yo and (g3g291) - y1 = *z. It follows that yo € g - Wy and
+g-y1 € Wi, where g = g3ga2g1. U

6.2.9. Proposition. The action of I' on S is minimal.

Proof. Let z € S' and W C S! be a non-empty open set. The set
1 1
J={(a,b) €S :a,b>§}

is an open interval. By 6.2.8, there exists some g € SL(2,R) such that +g-e; € W
and z € g-J. Hence z = a(g - e1) + b(g - e2) for some a, b > 0. By continuity,
there exists an open neighbourhood V; of g - ¢; in S1 such that every z; € V; and
zo € Vo are linearly independent and z = cz1 + dzy for some ¢, d > 0. From 6.2.5,
there exists 7 € I" with real eigenvalues A > 1 and 0 < 1/\ < 1, and corresponding
eigenvectors z1 € Vi, z9 € V5. Thus, there are ¢, d > 0 such that z = cz; 4+ dzy and
for every n € N we have v"(z) = cA\"21 + dA\""23. Therefore

. n . cA"z1 +dA "z
lim A" -2z= lim =
n—s-+o00 n—-+o0o Hc)\"zl + d)\fnZQH

21,

because ¢ > 0 and A > 1. If g-e; € W, then choosing V; C W we have
" -z € W eventually. If —g-e; € W, then we choose —V; C W, and so
limy, oo (—7") -2 = —21 € W, while —" € T, since —I, € T". O

6.2.10. Lemma. If for every pair of non-empty open sets Wy, Wo C R%\ {(0,0)}
there exists v € T’ such that v(W1) N Wy # &, then there exists a dense orbit of T’

in R2\ {(0,0)}.

Proof. Let {V,, : n € N} be a countable basis of open sets of R?\ {(0,0)}. A
point z € R?\ {(0,0)} has a dense otbit under T' if and only if x € N, U,,
where U,, = Uyery(Vy,). Since U, is non-empty, open, invariant by I' and dense in
R2\ {(0,0)}, by our assumption, it follows from the Baire theorem that N, U, is
dense in R?\ {(0,0)}. O
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6.2.11. Proposition. There ezists at least one dense orbit of T' in R?\ {(0,0)}.

Proof. Because of 6.2.10, it suffices to prove that for every pair of non-empty open
sets V1, Vo in R2\ {(0,0)} there exists some v € I' such that v(V3) N Vo # @.
With no loss of generality we may assume that Vi, V5 are open discs. Let
r:R2\ {(0,0)} — S! be the retraction. Let y € Va. From 6.2.9, there exists some
70 € I such that (70(y)) = 7(0(r(y))) € r(V1), and so r(y0(y)) € r(Vi)Nr(10(V2)),
which means that r(V1)Nr(y0(V2)) # @. Applying 6.2.5, there exists v € I' with two
real eigenvalues A > 1 and 0 < 1/XA < 1 and corresponding eigenvectors x1, xo € V7,
such that {tx1 : t > 0} N~(V2) # @. Denoting by [z1,x2] the straight line segment
with endpoints z1 and x3, we have Y™ ([z1, z2]) = [Y"(x1), 7" (x2)] = [A"@1, A" "z2]
for every n € N. It follows that every point of the halfline {tx; : ¢ > 0} is the
limit of some sequence (yn)nen, Where y, € [AN"z1, A\ 23], n € N. Since vo(V2) is
open, this implies that there exists some ng € N such that vo(V2) Ny ([x1, 22]) # @
for every m > ng. Since [x1,29] C Vi, because V; is convex, we conclude that

(o 'YWV NVe # 2. O

6.2.12. Corollary. There exists at least one point in S whose orbit is dense in

R\ {(0,0)}-
Proof. If x € R%\ {(0,0)} has a dense orbit, then so does x/||z||. O
6.2.13. Lemma. The vector ey has a dense orbit in R?\ {(0,0)}.

Proof. By 6.2.12 there exists some xg € S with a dense orbit in R?\ {(0,0)}, and by
6.2.9 there exists a sequence (v, )nen in I' such that lim, oo 7(vn(€1)) = xo. Since
we assume that I'N A # {I5}, there is some diagonal 79 € I' N A with eigenvalues
A>1and 0 <1/X < 1. For every n € N, there exists some k,, € Z such that 1 <
Men|lyn(e1)]| < A, or in other words 1 < ||y,75" (e1)|| < A. Passing to a subsequence
if necessary, we may assume by compactness that there is some y € R2\ {(0,0)}
with 1 <||y|| < A such that lim, 4 %ﬁg"(el)) = y. It follows that

y=lim Ny, (en)|r(vm(en)) = [lylzo-

Hence ||y||zo € T'(e1), and by linearity R? \ {(0,0)} = T'(||ly|lzo) C T'(e1). O
We consider now a 0 < 0y < 7/6, and for every 0 < € < 1 we set

Jo = {(cos0,sinf) € S' : |0] < b}

The family {J. : 0 < € < 1} is a neighbourhood base of open intervals of e; in S*.

6.2.14. Lemma. If v € I'N A, v # Iy, then for every e > 0 there exists k(e) € N
such that r(v*(z)) € J. for every x € R?\ {(0,0)} with r(z) € Jy and k > k(e).

Proof. This follows easily, since « is diagonal with eigenvalues some A > 1 and
0 < 1/X < 1. Indeed, if r(x) € Jy, then r(z) = (cosf,sinf) for some |0] < 6y,
and v¥(z) = ||z[|(\¥cos@, \"¥sinf) = (tcosby,tysinby), where t, > 0 and
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tanfy = A 2¥tanf. Therefore, |0;] < [tanf;| = A~2|tand| < A~2*|tanfy|.
Consequently, there exists some k(e) € N with |0;| < €y for every k > k(e), and
then r(7*(x)) = (cos O, sinby) € J.. O

6.2.15. Lemma. Let x € S' and L, = {||y(z)| : v € T is such that 7(y(x)) € J;}.
There exists a compact set K, C (0,400) such that (0,+00) = {ts:t € L,,s € K, }.

Proof. By 6.2.9, the action of I' on S! is minimal and so S* = U,ery- Ji.
By compactness of S!, there is a finite set ' = {v1,...,7,} C I such that
St =~ - JJU..U~x,-J1. Let D(z, 1) = {y € T : v-2 € J1}. For every
v € T there is some ~; € F such that v(x) € ~;(Jp), that is v € v,D(z, J1).
Thus, I' = FD(z,J;). On the other hand, since I'\SL(2,R) is compact, there
exists a compact set C C SL(2,R) such that SL(2,R) = CT = CFD(z,J1).
The set Cy = C'F is compact, and for every g € SL(2,R) there are o € Cj and
v € D(z,J1) such that g = 0. So |g(@)[| = [v(@)| - [o(r(v(x)))[|. From the
definitions ||y(x)|| € Ly, the set K, = {|lo(y)]| : 0 € Cp and y € J;} is compact,
and we have ||g(x)| € LK, for every g € SL(2,R). Observe now that for ev-
ery t > 0 there exists g € SL(2,R) such that g(x) = tx and sot = ||g(z)|| € L. K,. O

6.2.16. Corollary. For every x € S' and every e > 0 there exists v € I' such that
r(y(z)) € J1 and 0 < ||v(z)|| < e.

Proof. From 6.2.15 we have R = log(L,) + log(K) and log(K) is compact. Hence
inf L, = 0 and the conclusion is immediate from the definition of L,. [

6.2.17. Theorem. The natural action of T' on R?\ {(0,0)} by evaluation is
manimal.

Proof. By linearity of the action, it suffices to prove that T'(z) = R?\{(0,0)} for every
r € Sl Let 49 € T'NA, v # I, be diagonal with eigenvalues A > 1 and 0 < 1/ < 1.
For every = € S! and € > 0 there exists k(¢) € N such that r(y5v(x)) € J. for every
v € I with r(y(x)) € J1 and k > k(e), by 6.2.14. From 6.2.16, there exists some
v € T such that 7(y(z)) € J; and 0 < ||y(x)|| < A%, Moreover, there exists k € Z
such that 1 < M|y(z)|| < A. We have now 0 < klog A + log ||v(z)|| < log\ and
log ||v(z)|| < —k(€)log A, and therefore

—log [[y(z)]
—_— < k.
k(e) < Tog A <k

If ve = 78, then r(ve(2)) € Je and [lye()|| = [|v(@)]| - 17§ (r(v(2)))]. On the other
hand, if r(vy(x)) = (21, 22), then 1/2 < z; < 1 and |23] < 1/2, from the definition of
J1. Now

1 1
§Ak < MNezy <V (r(v(2)| = \/)\Zkz% + A72k23 <Ak 4 1< PLEE]

and therefore

11 e
5 < 5A @) < Ire@)ll < [v@)I (" +1) < A+ A9 <A+ 1.
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This shows that for every ¢ > 0, the point 7.(z) lies in the compact set
{(tcosB,tsinf) : 1/2 < t < XA+ 1,|0] < €|fp|}. So there are ¢, \, 0 and

1/2 < s < A+ 1 such that lim, o7, () = se;. It follows that se; € I'(z),
and consequently

R\ {(0,0)} = Tex) = + (sen) € - T2),

by 6.2.13. Hence R?\ {(0,0)} =T'(z). O

From 6.1.2 and 6.2.17 we get the main result of this section.

6.2.18. Theorem. The horocycle flow of a compact hyperbolic surface is minimal.

6.3 Inheritance of minimality

In this section we shall make a small digression to topological dynamics. More
precisely, we shall examine whether the minimality of a continuous flow is inherited
by some homeomorphism of its one parameter group. Let X be a compact metrizable
space carrying a continuous flow (¢¢)icr. Let tg > 0 and S = ¢pZ. Then, R =
S + [—to, to]. If x € X, the set

S, ={s € R: ¢s(x) € Sz},

where Sz = {¢y(x) : t € S}, is a closed monoid and S C S,. Actually, S, is
a subgroup of R. Indeed, if s € S,, there exist s; € S and [t;| < tp such that
—s = s1+1t;. Inductively, there exist sequences (s, )nen in S and (¢, )nen in [—to, to]
such that —s + t, = sp41 + tpy1 for every n € N. By compactness, there is a
convergent subsequence (t,, )ren. Now

=8+ ty, — 75,%+1 =Spu4+1+ S+ Sppa2+ ... +5+ Snpy1—1s
and therefore

8= kgrfoo Snp+1 TS+ Sppp2+ o+ S5+ Sngpr—1 € o,

because S, is closed. Note also that S,z = Sz.

6.3.1. Lemma. If the flow is minimal, then Sx is minimal under ¢y, for every
e X.

Proof. Let , y € X be such that y € Sz. Since the flow is minimal, we have x €
C(y) = ¢([—to, to] x Sy), where ¢ is the flow map. By compactness and continuity
of the flow, we have

d([—to, to] X Sy) C d([—to, to] x Sy) = ¢([—to, to] x Sy) = d([—to, to] x Sy)

C ¢([—to, to] x Sy).



94 CHAPTER 6. HOROCYCLE FLOWS OF HYPERBOLIC SURFACES

It follows that = € ¢([—to,to] x Sy) and there exists s € [—to,?o] such that ¢5(z) €
Sy C Sz. In other words, s € S, and S¢s(z) C Sy C Sz. But

Sos(x) = ¢s(Sx) = ¢5(Sx) = ¢s(Spw) = ¢ps(Spw) = Spwr = Sw.
Hence Sy = Sz. O

6.3.2. Theorem. If (¢¢)ier is a minimal flow on a compact metrizable space X,
there exists some t > 0 such that ¢; is a minimal homeomorphism of X.

Proof. Suppose that ¢; is not minimal for every t € R. By 6.3.1, for every t5 > 0
and x € X, the set

Aty () = {dnto(x) :n € Z}

is minimal under ¢, and by our hypothesis Ay (x) # X. The family of A (z),
x € X, is a decomposition of X into uncountably many ¢;,-minimal sets. Indeed,
for s1, so € R we have Ay (¢s, (x)) = Ay (ds,(x)) if and only if s; — s9 € S, that
is 1+ Sy = s2+ S, in R/S,. Since Ay, (z) # X and S, is a closed subgroup of R,
there exists sg > 0 such that S, = s¢Z, and therefore R/S, is homeomorphic to S*,
which is uncountable. If now s > 0 and As(z) = Ay, (), then s € S, and so s is a
rational multiple of tg. Moreover, all such s are bounded away from zero. Thus,

so =min{s > 0: As(z) = Ay (x)} >0
and A, (z) = Ay (). Let fs, : C(x) — S be the function defined by

fso (¢T(.%')) — 627FiT/so .

If y € X and (¢p)nen, (Th)nen are such that

y= lim ¢ (x)= lim o7, (),

n—-+4o0o n—-+400

T, —1tn

S0
passing to a subsequence if necessary, that y = ¢,(2) = ¢(2’) for some z, 2/ €

As, (), where

then the fractional part of tends to 0 or 1. For otherwise, we may assume,

t t
—}) and 7/ = lim so(— — [—"]),
n——+0oo S0 S0
so that 0 < 7—7’ < so. But then, ¢,_,/(z) = 2/, which means that r—7' € S, = S,
and S,z = S,x. This contradicts the choice of sg. Since S' is compact, we may
thus extend fs, to a continuous function f : X — S* such that

floe(y)) = f(y)e%it/so

for every y € X and t € R. Note that f(y) = 1 for y € Ay (x). Conversely, if
fly)=1and y = lim;,_, 4 ¢¢, (z), then
. In Za
Jmso( = |2 =0 0r s
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It follows that
m @i, /0] () = y or d_g(y).

n—-+o0o

Therefore, f~(1) = Ay, (x) = Ay (z). In this way, we have associated to each set
Ay (x) an eigenfunction of the flow, and from the above, in a one to one manner.
Note that sy depends on x, but the set of all such so(x), x € X, is countable, as it is
a subset of {to/n : n € N}. If f; is the eigenfunction associated to Ay (x;), j = 1,2,
then

mi(— L 1
11 = foll = sup{| fi(z1)e”™ 5ot "5 — fo(2y)| : ¢ € R},

If so(x1) # so(x2), then || fi — fa]| = 2. So far we had a fixed ¢y. Varying now tg in
an uncountable set I C R such that tQN#'Q = @ for ¢, t’ € I with ¢t # t/, we get an
uncountable set of eigenfunctions of the flow with different eigenvalues. From the
above, this set is discrete. This however contradicts the separability of C(X). O

6.4 Unique ergodicity of horocycle flows

Let M be a compact hyperbolic surface and (ht)icg be the horocycle flow on
T M, which is minimal by 6.2.18. In this section we shall prove that it is uniquely
ergodic, the Liouville measure being the unique invariant measure. Since a
continuous flow on a compact metrizable space is uniquely ergodic if and only if
some reparametrization of it by a positive constant is, we may assume with no loss
of generality that the time one map h; is a minimal smooth diffeomorphism of
T'M, by 6.3.2. Recall that if (g;);cr is the geodesic flow, then g; o hy = hge—t 0 g
for every t, s € R.

6.4.1. Lemma. Lett, — +oco and R, : C(T*M) — C(T*M), n € N, be the
sequence of operators defined by

on

Ry f(x) = f(hs(g—t, (x)))ds,

on
for f € C(T*M) and x € T*M. If for every f € C(T'*M) the sequence (R, f)nen
has a subsequence which converges uniformly to a constant, then the horocycle flow
18 uniquely ergodic.

Proof. Let f € C(T'M). According to the hypothesis, there exist a constant ¢ € R
and ny — 400 such that R, f — ¢ uniformly on T’ M. Thus for every € > 0 there
is a ko € N such that |Ry, f(z) — ¢| < € for every z € T'M and k > ko. For every
x € T'M and n, m € N we have

m—1

1
— Ry f(gt,, (han(
m

7=0

1 2 L em
> / f(hs(z))ds = /0 f(hs(z))ds.

n . n
2mj:0 " 2"m

= o Z/f@wswp
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Let k > ko. For every t > 2™ such that 2" || f|| < te, there exists 0 < r < 2™ such
that t = 2" m + r, for some m € N. Now we have

‘%/Otf(hs(x))ds—c‘ < E/Oznkmf(h (x)) s—c‘ —i—‘t /anmf(hs(x))ds <

m—1

Z"k r
=" BuF(gh, (horij (@) = ¢ + I <
7=0

. mel
‘E(l—z Ry f (9t (honi j () —C‘+€§
7=0

,_.

m— m—1

1 1 r

— > R (G, (@) = €l — - 237 R Fgh, (o (@) + € <
7=0 7=0

1 1
—me + —mefH + € < 3e.
m mt

This shows that

lim - / f(hs(x))ds = ¢
t—+oo t
uniformly for every x € T'M. Therefore, (h¢)ier is uniquely ergodic. [
In the sequel we take t

n = log 2™, and so t,4y = t, + &y, for every n, m € N.

6.4.2. Lemma. For everyn, m € N and f € C(T'M) we have

2m—1

Ryimf = Z Rofohjogi,.

Proof. From the definition of R,,, for every x € T'M we have

1 [

gn
Rnf(x) = 2_n 0 f(g—tn(hse_t”( )))dS = 2% f(g tn( s2~ ”(x)))ds =
1
/0 F(g1, (ho(x)))ds
and
Rof (hj(g-1, (@ / F (G-t (s 5(91 (2))))ds =
Jj+1 Jj+1
/ (9t (hs(g—t,,(x))))ds = ‘ S (hgetn (gf(thrtm)(x)))ds =
J J
1 20+
on ' f(hs(gf(tn+tm)(x)))d5’

2nj
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Consequently,
; 2l 1 R=L G
g 2 Bl (50 = g 3 [ Hloun ()i =
=0 j=0 72"

I
o | IO @) = Ruinf(a). O

6.4.3. Proposition. If for every f € C(T*M) the sequence (R, f)nen is equicon-
tinuous, then the horocycle flow of M is uniquely ergodic.

Proof. By 6.4.1, it suffices to prove that for every f € C(T'M) the sequence
(R, f)nen has a subsequence which converges uniformly to a constant. Let ¢, be
the minimum value of R,,f on T'M. Then, ¢, < ||f| and Ry ymf(x) > ¢, for every
n, m € Nand x € T'M, by 6.4.2, that is ¢,y > ¢,. This means that the sequence
(¢n)nen is nondecreasing and bounded from above, hence converges to a limit ¢ € R.
The sequence of continuous functions (R, f)nen is obviously uniformly bounded by
I f|l. Tt follows from this and the equicontinuity that there are ' € C(T*M) and
ny — +o0o such that R,, f — F uniformly on T'M, by Ascoli’s theorem. Thus,
for every € > 0 there exists kg € N such that F'(z) —e < Ry, f(z) < F(z) + € for
every © € T'M and k > ko. In particular, n,, < F(x) + € for every z € T'M and
k > ko, which implies that ¢ — min{F(z) : + € T'M} < e. On the other hand,
min{F(x) : v € T'M} — e < Ry, f(z) every x € T*M and k > ko, and therefore
min{F(z) : 2 € T'M} — ¢ < ¢. Hence |¢ — min{F(z) : z € T'M}| < ¢ for every
€ >0, and so ¢ = min{F(z) : * € T'M}. If now m € N and

2m—1

1
Fn=gm ) Fohjogu,
j=0

then Ry, +mf — F, uniformly on T'M. Consequently,

min{F,,(z) : # € T'"M} = lim min{R,, mf(z): 2 € T'M} =c.
k—+o00
So, Fp(ym) = c for some y,, € T'M. This implies that F(h;(g—z,, (Ym))) = ¢ for
every 0 < j < 2™ — 1. Let &, = g_¢,, (ym). By compactness of T' M, the sequence
(Zm)men has at least one limit point z € T'M. Then, F(h;(z)) = c for every
j € Z*. Since now h; is a minimal homeomorphism of the compact space T M, it
follows that F is constant on T'M. This proves the proposition. [

Using the notations we have introduced above, in order to prove that the horo-
cycle flow is uniquely ergodic, it suffices to prove that for every f € C(T'M) the
sequence (R, f)nen is equicontinuous, by 6.4.3. We shall prove this using a conve-
nient local reparametrization of the horocycle flow, which we introduce first.

Let 2, y € T'H? and for every z € T'H? let H, denote the horocycle through the
point of application of z, that is tangent to OH? at the positive end of the hyperbolic
geodesic determined by z. The hyperbolic geodesic with positive end this point of



98 CHAPTER 6. HOROCYCLE FLOWS OF HYPERBOLIC SURFACES

tangency and negative end identical with the negative end of the hyperbolic geodesic
determined by y yields a unique element [y, 2] € T'H? with point of application its
intersection with H,, and such that [y, z] = h¢(z) for some unique ¢ € R.

In this way we get a function k,y(s) deternined by

hkzy(s) (z) = [hs(y)7x]'

We shall examine the properties of k,,, if y is close to . First of all we see that
kzy(s) = vay(s) + Ay and vgy(s) is strictly increasing. Conjugating with a suitable
orientation preserving hyperbolic isometry, we may assume that the ends of the
hyperbolic geodesic detremined by y are £, the positive, and 1, the negative. Let a
be the negative end of the hyperbolic geodesic determined by h(y).

The hyperbolic isometry

T(z) = P

maps § to oo and fixes 1 and a. It also maps the horocycle H, at £ with euclidean
radius r > 0 to the horocycle

(a+1=-8(z-1)+1-¢

(1-9a—-¢
2r

and the two hyperbolic geodesics determined by y and hs(y) to vertical lines at 1
and a, respectively. It follows that

Imz =

s_op._ a1
(1-8a=9)
Similarly,
ny(g) = 2t . CL——l
(I =mn)(a—n)

where 7 is the positive end of the hyperbolic geodesic detrmined by x and ¢ > 0
is the euclidean radius of the horocycle at n through the point of application of zx.
Solving with respect to a in the first and substituting in the second we find

—2t(1 — £)2s 2r(1 —mn)
E—n)(1 =& —n)s—2r(l—n)? E-ma-¢&

s #

Vgy(8) = (
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Of course t, r, £ and n depend only on x, ¥ and not on s. It is now evident from
this expression of vy (s) that lim, ., [k}, (s) — 1| = 0 and lim, ., |kyy(s) — s| = 0,
uniformly for every —1 < s < 1.

Since kuy(s) = ky(2)y(y)(s) for every vy € I and =z, y € T'H?, it follows that if x,
y € T'M are sufficiently close to each other then kyy(s) is well defined and has the
above properties. We are now ready to proceed with the proof of the main result
of this section.

6.4.4. Theorem. The horocycle flow of a compact hyperbolic surface is uniquely
ergodic.

Proof. Using the notations as above, let f € C(T*M), x € T*M and € > 0. If y is
sufficiently close to z, then

[f(g9-t(hs(y))) = F(g-t(hk,,(5) ()] <€

for every |s| < 1 and ¢ > 0. Moreover, we may assume that |k, (s) — s| < € and
|k, (s) — 1] < e for all |s| < 1. Note that

1
er@wiéf@4gmw@m»wd<e

and

1 1
IAf@mwm@@m%—Ak@@ﬂQM%MN@WMéﬂﬁ-

From the change of variables formula we have
1 kzy(1)
| b6 ama Gy @ds = [ fgor, (b))
0 kay(0)

and

Kay(1)

\/k o f(g-t,, (hs(2)))ds — B f ()| < |[f1[([Fay(0)] 4 [Fay (1) = 1]) < 2€[| £
Ty

It follows that
|R.f(y) — Ruf(z)| < (1 +3[f])e. O
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