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Abstract. We present an explicit formula for the Ruelle rotation of a non-
singular Killing vector field of a closed, oriented, Riemannian 3-manifold, with
respect to Riemannian volume.

Let M be a closed, oriented Riemannian 3-manifold and X be a non-
singular Killing vector field on M with trivial normal bundle. The plane
bundle E orthogonal to X is then spanned by two globally defined orthogo-
nal unit vector fields Y and Z, such that {X(x), Y (x), Z(x)} is a positively
oriented basis of the tangent space at x ∈M . Once we have chosen the unit
vector field Z orthogonal to X, there is only one choice of a unit vetor field
Y such that {X, Y, Z} is a positively oriented orthogonal frame on M . The
flow (φt)t∈R of X is a one-parameter group of isometries of M , and thus
φt∗(x)(Ex) = Eφt(x), for every t ∈ R and x ∈ M . The matrix of φt∗(x)|Ex
with respect to the bases {Y (x), Z(x)} and {Y (φt(x)), Z(φt(x))} is a rota-
tion, denoted by f(t, x). The resulting function f : R×M → SO(2,R) is a
smooth cocycle of the flow, by the chain rule, and can be lifted to a smooth
cocycle f̃ : R ×M → R. From the ergodic theorem for isometric systems
(see [4]), the limit

F (x) = lim
t→+∞

f̃(t, x)

t

exists uniformly for every x ∈ M . If ω is the normalized Riemannian
volume, the integral

ρ(X) =

∫
M

Fω =

∫
M

f̃(1, .)ω

is the Ruelle rotation number of X with respect to the trivializaton {Y, Z}
of E. If {Ȳ , Z̄} is another trivialization of E as above and ρ̄(X) is the
corresponding Ruelle rotation number of X, it follows from Proposition 3.4
in [2] that

ρ(X)− ρ̄(X) =

∫
M

h∗(
dθ

2π
) ∧ iXω,

where
dθ

2π
is the natural representative of the standard generator of

H1(SO(2,R); Z) and h : M → SO(2,R) is the smooth function such that
the matrix h(x) gives the change of basis from {Y (x), Z(x)} to {Ȳ (x), Z̄(x)}
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in Ex. Since X preserves the Riemannian volume, iXω is closed. If it is
exact, X is called homologically trivial, and in this case ρ(X) = ρ̄(X), that
is the Ruelle rotation number of X does not depend on the trivialization of
E.

D. Ruelle defined the Ruelle rotation in [5] for any nowhere vanishing
smooth vector field with trivial normal bundle on a closed, oriented, smooth
3-manifold, with respect to a trivialization of the normal bundle and an
invariant Borel probability measure. If the manifold is a homology 3-sphere,
then the Ruelle rotation does not depend on the choice of the tivialization
of the normal bundle [2].

In this note we present an explicit formula for ρ(X) and make some
remarks. More precisely, we prove the following.

Theorem. Let X be a nonsingular Killing vector field with trivial nor-
mal bundle E on an oriented, Riemannian, closed 3-manifold M with nor-
malized Riemannian volume element ω. Let {Y, Z} be an orthonormal frame
trivializing E such that {X, Y, Z} is a positively oriented orthogonal frame
on M . Then, the Ruelle rotation number of X with respect to the given
trivialization of E is given by the formula

ρ(X) =
1

2π

∫
M

〈[X,Z], Y 〉ω.

Proof. Let (φt)t∈R be the flow of X. For every t ∈ R we have

φt∗(x)Y (x) = cos 2πf̃(t, x)Y (φt(x)) + sin 2πf̃(t, x)Z(φt(x)),

φt∗(x)Z(x) = − sin 2πf̃(t, x)Y (φt(x)) + cos 2πf̃(t, x)Z(φt(x)).

From [3], p. 235 and p. 245, we have

τ t0 ◦ φt∗(x) = exp(t(∇.X)x),

where τ t0 is the parallel translation along the orbit of x from φt(x) to x. So,

cos 2πf̃(t, x) = 〈exp(t(∇.X)x)Y (x), τ t0(Y (φt(x)))〉,

sin 2πf̃(t, x) = 〈exp(t(∇.X)x)Y (x), τ t0(Z(φt(x)))〉.

Differentiating the second equation with respect to t we get

f̃ ′(t, x) =
1

2π〈φt∗(x)Y (x), Y (φt(x))〉
· d
dt
〈exp(t(∇.X)x)Y (x), τ t0(Z(φt(x)))〉,

for t ∈ R with 〈φt∗(x)Y (x), Y (φt(x))〉 6= 0 and

d

dt
〈exp(t(∇.X)x)Y (x), τ t0(Z(φt(x)))〉 =

〈exp(t(∇.X)x)(∇Y (x)X), τ t0(Z(φt(x)))〉+〈exp(t(∇.X)x)Y (x),
d

dt
(τ t0(Z(φt(x))))〉 =
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〈(τ t0 ◦φt∗(x))(∇Y (x)X), τ t0(Z(φt(x)))〉+ 〈(τ t0 ◦φt∗(x))Y (x), τ t0(∇X(φt(x))Z)〉 =

〈φt∗(x)(∇Y (x)X), Z(φt(x))〉+ 〈φt∗(x)Y (x),∇X(φt(x))Z〉.

So we have

f̃ ′(t, x) =
〈φt∗(x)(∇Y (x)X,Z(φt(x))〉+ 〈φt∗(x)Y (x),∇X(φt(x))Z〉

2π〈φt∗(x)Y (x), Y (φt(x))〉
.

Since Z has constant unit length, 2〈∇XZ,Z〉 = X〈Z,Z〉 = 0. Therefore

∇XZ = 〈∇XZ, Y 〉Y +
〈∇XZ,X〉
‖X‖2

X

and

〈φt∗(x)Y (x),∇X(φt(x))Z〉 = 〈∇X(φt(x))Z, Y (φt(x))〉 · 〈φt∗(x)Y (x), Y (φt(x))〉.

It follows that

f̃ ′(t, x) =
〈φt∗(x)(∇Y (x)X), Z(φt(x))〉
2π〈φt∗(x)Y (x), Y (φt(x))〉

+
1

2π
〈∇X(φt(x))Z, Y (φt(x))〉.

for t ∈ R with 〈φt∗(x)Y (x), Y (φt(x))〉 6= 0. If we differentiate the first
equation with respect to t and use the fact 〈∇XY, Z〉 = −〈∇XZ, Y 〉, we get

f̃ ′(t, x) = −
〈φt∗(x)(∇Y (x)X), Y (φt(x))〉
2π〈φt∗(x)Y (x), Z(φt(x))〉

+
1

2π
〈∇X(φt(x))Z, Y (φt(x))〉.

for t ∈ R with 〈φt∗(x)Y (x), Z(φt(x))〉 6= 0. The two last formulas are the
same for t ∈ R with 〈φt∗(x)Y (x), Y (φt(x))〉 · 〈φt∗(x)Y (x), Z(φt(x))〉 6= 0,
because

〈φt∗(x)Y (x), Y (φt(x))〉 · 〈φt∗(x)(∇Y (x)X), Y (φt(x))〉

+〈φt∗(x)Y (x), Z(φt(x))〉 · 〈φt∗(x)(∇Y (x)X), Z(φt(x))〉 =

〈φt∗(x)(∇Y (x)X), φt∗(x)Y (x)〉 = 〈∇Y (x)X, Y (x)〉 = 0,

since X is Killing. Now φt∗Y = 〈φt∗Y, Y 〉Y + 〈φt∗Y, Z〉Z and so

1

〈φt∗Y, Y 〉
∇φt∗YX = ∇YX +

〈φt∗Y, Z〉
〈φt∗Y, Y 〉

∇ZX,

from which follows that

〈∇φt∗YX,Z〉
〈φt∗Y, Y 〉

= 〈∇YX,Z〉 = −〈∇ZX, Y 〉 = −〈∇φt∗YX, Y 〉
〈φt∗Y, Z〉

= 〈[X,Z]−∇XZ, Y 〉,

since X is a Killing vector field. It follows that for every t ∈ R we have

f̃ ′(t, x) =
1

2π
〈[X,Z](φt(x)), Y (φt(x))〉,
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and so

f̃(t, x) =
1

2π

∫ t

0

〈[X,Z](φs(x)), Y (φs(x))〉ds.

Hence

F (x) = lim
t→+∞

1

2πt

∫ t

0

〈[X,Z](φs(x)), Y (φs(x))〉ds.

By Fubini’s theorem and the invariance of the Riemannian volume we
get

ρ(X) =
1

2π

∫
M

〈[X,Z], Y 〉ω.

Remark 1. Note that since X is a Killing vector field, we have

〈[X,Z], X〉 = 〈∇XZ,X〉+ 〈∇XX,Z〉 = X〈Z,X〉 = 0

and

〈[X,Z], Z〉 = 〈∇XZ,Z〉 − 〈∇ZX,Z〉 =
1

2
X(‖Z‖2) = 0.

So [X,Z] = 〈[X,Z], Y 〉Y and if for every x ∈M we let

ε(x) =


+1, if ωx(X(x), [X,Z](x), Z(x)) > 0

−1, if ωx(X(x), [X,Z](x), Z(x)) < 0

0, if [X,Z](x) = 0,

then

ρ(X) =
1

2π

∫
M

(ε · ‖[X,Z]‖)ω.

If η is the dual 1-form of Z with respect to the Riemannian metric, then
it is not hard to see that ‖X‖ · η ∧ dη = vol(M)〈[X,Z], Y 〉ω. Therefore

ρ(X) =
1

2πvol(M)

∫
M

‖X‖ · η ∧ dη.

Remark 2. If H1(M ; Z) = 0, the function F does not depend on
the trivialization {Y, Z} of E. Indeed, let {Y1, Z1} and {Y2, Z2} be two
trivializations of E as in the beginning. There exists a smooth function g :
M → SO(2,R) such that Y2(x) = g(x)(Y1(x)) and Z2(x) = g(x)(Z1(x)) for
every x ∈ M . Since H1(M ; Z) = 0, there is a smooth function θ : M → R
such that g(x) is the rotation by the angle θ(x). Thus,

Y2(x) = cos θ(x) · Y1(x) + sin θ(x) · Z1(x)

Z2(x) = − sin θ(x) · Y1(x) + cos θ(x) · Z1(x),

and

〈[X,Z2], Y2〉 = 〈− sin θ[X, Y1]−X(sin θ)Y1+cos θ[X,Z1]+X(cos θ)Z1, cos θY1+sin θZ1〉 =

〈[X,Z1], Y1〉 −X(θ) = 〈[X,Z1], Y1〉 −
∂(θ ◦ φ)

∂t
.
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If f1 and f2 are the corresponding cocycles, we get

f̃ ′1 − f̃ ′2 =
1

2π
· ∂(θ ◦ φ)

∂t

and

f̃1(t, x)− f̃2(t, x) =
1

2π
[θ(φt(x))− θ(x)],

that is, the two cocycles are cohomologous, and therefore F1 = F2.
According to the topological classification of nonsingular Killing vector

fields on Riemannian 3-manifolds given in [1], if M is a homology 3-sphere,
the orbits of X are periodic and M is a Seifert manifold. If T (x) > 0 denotes
the period of the orbit of x, then

F (x) =
1

2πT (x)

∫ T (x)

0

〈[X,Z](φs(x)), Y (φs(x))〉ds

and F is smooth except at a finite number of orbits, the exceptional fibers
of the Seifert fibration.
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