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1 Preliminaries from Harmonic Analysis

Let (G,+) be an abelian group. A function f : G→ C is said to be positive definite if

n
∑

j,k=1

λj λ̄kf(xj − xk) ≥ 0

for every x1,..., xn ∈ G, λ1,..., λn ∈ C and every n ∈ N. Some basic properties of the
positive definite functions are summarized in the following.

Proposition 1.1. If G is an abelian group and f : G → C is a positive definite
function, then
(a) f(0) ≥ 0,
(b) f(x) = f(−x),
(c) |f(x)| ≤ f(0) for every x ∈ G, and
(d) |f(x)− f(y)|2 ≤ 2f(0)[f(0) − Ref(x− y)] for every x, y ∈ G.
(e) |f(x+ y)− f(y)|2 ≤ 2f(0)[f(0)− Ref(x)] for every x, y ∈ G.

Proof. To prove (a) it suffices to take n = 1 and x1 = 0, λ1 = 1. The second property
(b) follows from the elementary observation that if a, b ∈ C are such that az + bz̄ ∈ R

for every z ∈ C, then a = b̄. Indeed, if we take n = 2, x1 = x, x2 = 0, then

(|λ1|
2 + |λ2|

2)f(0) + λ1λ̄2f(x) + λ̄1λ2f(−x) ≥ 0

and in particular λ1λ̄2f(x) + λ̄1λ2f(−x) ∈ R for every λ1, λ2 ∈ C. Taking the values

λ1 = 1, λ2 = −
|f(x)|

f(x)

in the above inequality yields (c), since if f(x) = 0, there is nothing to prove by (a).
Property (d) is trivial if f(x) − f(y) = 0. Otherwise, we take n = 3, x1 = 0, x2 = x,
x3 = y and then

(|λ1|
2 + |λ2|

2 + |λ3|
2)f(0) + λ̄1λ2f(x) + λ1λ̄2f(x) + λ̄1λ3f(y) + λ1λ̄3f(y)

+λ2λ̄3f(x− y) + λ̄2λ3f(x− y) ≥ 0

for every λ1, λ2, λ3 ∈ C, by (b). Taking the special values

λ1 = 1, λ2 = t
|f(x)− f(y)|

f(x)− f(y)
, t ∈ R, λ3 = −λ2,
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we get
2[f(0)− Ref(x− y)]t2 + 2|f(x)− f(y)|t+ f(0) ≥ 0

for all t ∈ R, and thus necessarily

4|f(x)− f(y)|2 − 8f(0)[f(0) − Ref(x− y)] ≤ 0.

The last property (e) is a restatement of (d). �

Corollary 1.2. If G is an abelian group and f : G → C is a positive definite function,
then G0 = {x ∈ G : f(x) = f(0)} is a subgroup of G and f is constant on each of its
cosets in G. �

Corollary 1.3. If a positive definite function f : R → C is continuous at 0, then it is
uniformly continuous. �

Examples 1.4. (i) A trivial example of a positive definite function f : R → C is f(0) = 1
and f(x) = 0 for x 6= 0.
(ii) The cosine cos : R → R ⊂ C is a positive definite function because

n
∑

j,k=1

λjλ̄k cos(xj − xk) =

∣

∣

∣

∣

n
∑

j=1

λj cosxj

∣

∣

∣

∣

2

+

∣

∣

∣

∣

n
∑

j=1

λj sinxj

∣

∣

∣

∣

2

≥ 0.

(iii) For every ξ ∈ R the function f : R → C defined by f(x) = eiξx is positive definite
since

n
∑

j,k=1

λjλ̄ke
iξ(xj−xk) =

∣

∣

∣

∣

n
∑

j=1

λje
iξxj

∣

∣

∣

∣

2

≥ 0.

(iv) Let H be a Hilbert space and let U : H → H be a unitary operator. For every x ∈ H
the double sequence an = 〈Un(x), x〉, n ∈ Z, is positive definite, since

n
∑

j,k=1

λjλ̄kaj−k =

∥

∥

∥

∥

n
∑

j=1

λjU
j(x)

∥

∥

∥

∥

2

≥ 0

for every λ1,..., λn ∈ C and every n ∈ N.
(v) Let µ be a non-negative finite Borel measure on S1 and let

an =

∫

S1

zndµ, n ∈ Z,

be the double sequence of its Fourier coefficients. The so defined function a : Z → C is
positive definite, because

n
∑

j,k=1

λj λ̄k

∫

S1

zj−kdµ =

∫

S1

∣

∣

∣

∣

n
∑

k=1

λkz
k

∣

∣

∣

∣

2

dµ ≥ 0.

(vi) Let µ be a non-negative finite Borel measure on R. The Fourier-Stieltjies transform
µ̂ of µ is the positive definite function

µ̂(ξ) =

∫

R

e−iξxdµ(x), ξ ∈ R,
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since
n
∑

j,k=1

λjλ̄kµ̂(ξj − ξk) =

∫

R

∣

∣

∣

∣

n
∑

k=1

λke
−iξkx

∣

∣

∣

∣

2

dµ(x) ≥ 0.

The last two examples are the easy parts of the following two famous theorems of
Harmonic Analysis, whose proofs can be found in [4]. The first one is due to G. Herglotz
and its continuous version is due to S. Bochner.

Theorem 1.5. (Herglotz) A double sequence (an)n∈Z of complex numbers is positive
definite if and only if there exists a non-negative finite Borel measure µ on S1 such that

an =

∫

S1

zndµ, n ∈ Z. �

Theorem 1.6. (Bochner) For a function f : R → C the following are equivalent:
(i) f is positive definite and continuous.
(ii) f is the Fourier-Stieltjies transform of a non-negative finite Borel measure µ on R,
that is

f(ξ) =

∫

R

e−iξxdµ(x), ξ ∈ R. �

If f : S1 → R is in L1 (with respect to Lebesgue measure), then f is said to be
positive definite in the integral sense if

∫∫

S1×S1

f(xȳ)u(x)u(y)dxdy ≥ 0

for every continuous function u : S1 → C. This implies that f̂ ≥ 0. The following
characterization is proved in [2].

Proposition 1.7. A continuous function f : S1 → C is positive definite in the integral
sense if and only if it is positive definite. �

A positive definite L1 (locally bounded) function can be reconstructed from its
Fourier transform according to the following theorem of S. Bochner whose proof can be
found in [2].

Theorem 1.8. (Bochner) If the L1 function f : R → C is positive definite and essentially
bounded in some neighbourhood of 1 ∈ S1, then

f(z) =
∑

n∈Z

f̂(n)zn

for almost every z ∈ S1, so that f is equal almost everywhere to a continuous positive
definite function. �

In the above we take S1 = R/2πZ and a function f : S1 → R can be considered as
a 2π-periodic function of a real variable. In the general real variable case, a bounded
measurable function f : R → C is said to be positive definite in the integral sense if

∫∫

R2

f(x− y)u(x)u(y)dxdy ≥ 0
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for every u ∈ L1 (with respect to Lebesgue measure). A continuous positive definite
function f : R → C is positive definite in the integral sense. This follows from Bochner’s
theorem, but it can also be proved directly although not so easily. Bochner’s theorem
was generalized by F. Riesz in [5] as follows.

Theorem 1.9. If a bounded measurable function f : R → C is positive definite in the
integral sense, then there exists a non-negative, finite Borel measure µ on R such that

f(ξ) =

∫

R

e−iξxdµ(x)

for almost every ξ ∈ R. �

Corollary 1.10. A bounded measurable and positive definite function f : R → C is
equal almost everywhere to a continuous positive definite function. �.

2 Distributions of multiplicative cocycles

Let X be a compact metric space and let (an)n∈N be a sequence of points of X. A Borel
measure µ on X is called the distribution of this sequence if

∫

X

φdµ = lim
n→+∞

1

n

n
∑

k=1

φ(ak)

for every φ ∈ C(X). Then µ is necessarily positive and a probability measure on X. As
it is expected, most sequences in X have no distribution.

Let (X,A, µ, T ) be a measurable dynamical system, that is (X,A) is a measurable
space, µ is a probability measure on the σ-algebra A and T : X → X is an invertible
bimeasurable map. A multiplicative cocycle is a function F : Z × X → S1 such that
F (n, .) : X → S1 is measurable for every n ∈ Z and

F (m+ n, x) = F (m,x)F (n, Tm(x))

for µ-almost every x ∈ X and every n ∈ Z. The cocycle F is called a coboundary if
there exists a measurable function q : X → S1 such that

F (n, x) =
q(T n(x))

q(x)

for µ-almost every x ∈ X and every n ∈ Z.
From a multiplicative cocycle F as above we can define a measurable dynamical

systems S : S1 ×X → S1 ×X by

S(z, x) = (zF (1, x), T (x))

which is called the corresponding skew product of F . Inductively,

Sn(z, x) = (zF (n, x), T n(x))
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for every (z, x) ∈ §1 ×X and n ∈ Z. It is obvious that S is a bimeasurable bijection and

preserves the product probability measure
1

2π
dz × µ on S1 ×X. Indeed, if U ⊂ S1 is a

Borel set and V ∈ A, from Fubini’s theorem we get

∫∫

S1×X

(χU×V ◦ S)dzdµ =

∫∫

S1×X

χU (zF (1, x))χV (T (x))dzdµ(x)

=

∫

X

(
∫

S1

χU(zF (1, x))dz

)

χV (T (x))dµ(x) =

∫

X

(
∫

S1

χU (z)dz

)

χV (T (x))dµ(x)

=

(
∫

S1

χU (z)dz

)

·

(
∫

X

χV dµ

)

.

Using the corresponding skew product S we can show that the multiplicative cocycle
F is uniquely determined by the measurable function F (1, .) : X → S1, since F (0, x) = 1
and inductively

F (n, x) =

n−1
∏

k=0

F (1, T k(x))

for µ-almost every x ∈ X and n ∈ N. Conversely, if f : X → S1 is a measurable function,
then the formula

F (n, x) =

n−1
∏

k=0

f(T k(x))

defines a multiplicative cocycle. To see this, we consider the skew product transforma-
tion S(z, x) = (zf(x), T (x)), so that Sn(z, x) = (zF (n, x), T n(x)), and now the formula
Sn+m = Sn ◦ Sm yields the cocycle condition for F .

Theorem 2.1. If F is a multiplicative cocycle for T , then for µ-almost every x ∈ X
the sequence (F (n, x))n∈N in S1 has a distribution.

Proof. Firstly we observe that the Ergodic Theorem applied to f(z, x) = z gives that
the limit

f∗(z, x) = lim
n→+∞

1

n

n−1
∑

k=0

f(Sk(z, x)) = lim
n→+∞

1

n

n−1
∑

k=0

zF (k, x)

exists for almost every (z, x) ∈ S1 ×X and hence the limit

lim
n→+∞

1

n

n
∑

k=1

F (k, x)

exists for µ-almost every x ∈ X.
Since for every m ∈ Z the function Fm is again a multiplicative cocycle, the above

observation implies that the limit

lim
n→+∞

1

n

n
∑

k=1

(F (k, x))m
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exists for every m ∈ Z and for µ-almost every x ∈ X. For each fixed n ∈ N and x ∈ X
the double sequence ((F (n, x))m)m∈Z is positive definite, because for every N ∈ N and
λ1,..., λN ∈ C we have

N
∑

j,k=1

λj λ̄k(F (n, x))
j−k =

∣

∣

∣

∣

N
∑

j+1

λj(F (n, x))
j

∣

∣

∣

∣

2

≥ 0.

Thus, if x ∈ X is a point for which the limit

lim
n→+∞

1

n

n
∑

k=1

(F (k, x))m

exists for every m ∈ Z, then the sequence

(

lim
n→+∞

1

n

n
∑

k=1

(F (k, x))m
)

m∈Z

is positive definite. It follows now from Theorem 1.5 that the exists a non-negative finite
Borel measure νx on S1 such that

∫

S1

zmdνx(z) = lim
n→+∞

1

n

n
∑

k=1

(F (k, x))m

for all m ∈ Z. This means that νx is a distribution of the sequence (F (n, x))n∈N of points
of S1. �

3 Schmidt’s criterion for additive cocycles

An additive cocycle with respect to a measurable dynamical system (X,A, µ, T ) is a
function A : Z×X → R such that A(n, .) : X → R is measurable for every n ∈ Z and

A(m+ n, x) = A(m,x) +A(n, Tm(x))

for µ-almost every x ∈ X and every n ∈ Z. The cocycle a is called a coboundary if there
exists a measurable function u : X → R such that

A(n, x) = u(T n(x))− u(x)

for µ-almost every x ∈ X and every n ∈ Z.
An additive cocycle A is determined by the measurable function f = A(1, .) : X → R,

because A(0, x) = 0 and

A(n, x) =
n−1
∑

k=0

A(1, T k(x)) = Snf(x)

for every x ∈ X and n ∈ N. A similar formula holds for negative integers. More precisely,

A(−n, x) =
n−1
∑

k=0

A(−1, T−k(x))
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and A(1, x)+A(−1, T (x)) = A(1−1, x) = 0, which means that A(−1, x) = A(1, T−1(x))
for all x ∈ X. Hence

A(−n, x) =

n
∑

k=1

f(T−k(x))

for all n ∈ N and x ∈ X.
Obviously, the additive cocycle A is a coboundary if and only if there exists a

measurable function u : X → R such that f(x) = A(1, x) = u(T (x))− u(x) for µ-almost
every x ∈ X. We shall make no distinction between f and the corresponding cocycle
A(n, x) = Snf(x). A necessary condition for an integrable function to be a coboundary
is the following ( [1]).

Proposition 3.1. Let (X,A, µ, T ) be a measurable dynamical system and f ∈ L1(µ). If
f is a coboundary, then

∫

X

fdµ = 0.

Proof. Suppose that

∫

X

fdµ > ǫ > 0 and u : X → R be a measurable function such that

f(x) = u(T (x)) − u(x) for µ-almost every x ∈ X. If

M = {x ∈ X : lim
n→+∞

1

n
Snf(x) > ǫ}.

Then, M ∈ A and µ(M) > ǫ from the Ergodic Theorem. For each n ∈ N we put

Mn =
∞
⋂

m=n

{x ∈ X :
1

m
Smf(x) > ǫ}.

Obviously, Mn ∈ A and M ⊂

∞
⋃

n=1

Mn. Thus, there exists n ∈ N such that µ(Mn) > 0.

If Mn,l = Mn ∩ u−1([l, l + 1)), l ∈ Z, then Mn =
⋃

l∈Z

Mn,l and so there exists l ∈ Z such

that µ(Mn,l) > 0. By Poincaré Recurrence, there exist infinitely many m ∈ N such that

µ(Tm(Mn,l) ∩Mn,l) = µ(Mn,l) > 0.

We pick such a m large enough so that
1

m
< ǫ. Thus, there exists x ∈ X such that u(x),

u(Tm(x)) ∈ [l.l + 1) and
1

m
(u(Tm(x))− u(x)) > ǫ.

This means that |u(x)−u(Tm(x))| < 1 and at the same time u(Tm(x))−u(x) > mǫ > 1.
This contradiction proves the assertion. �

Let (an)n∈N be a sequence of real numbers. A non-negative finite Borel measure µ
on R is said to be the distribution of the sequence if

∫

R

e−iξxdµ(x) = lim
n→+∞

1

n

n
∑

k=1

e−iξak

7



for almost all ξ ∈ R (with respect to the Lebesque measure). Unlike the compact case,
the distribution of a real sequence may be the zero measure.

Example 3.2. Let an = n, n ∈ N. If ξ ∈ R is such that
ξ

2π
is irrational, then

lim
n→+∞

1

n

n
∑

k=1

e−iξk =
1

2π

∫ 2π

0
e−itdt = 0.

This implies that the sequence does have a distribution, but it is the zero measure.

Suppose that the limit of the right hand side exists for almost all ξ ∈ R. Then, the so
defined function f : R → C is bounded, measurable and positive definite in the integral
sense, because

∫∫

R2

f(x− y)u(x)u(y)dxdy = lim
n→+∞

1

n

n
∑

k=1

|û(ak)|
2 ≥ 0

for every u ∈ L1(R). It follows from Theorem 1.9 that there exists a non-negative, finite
Borel measure µ on R such that

∫

R

e−iξxdµ(x) = f(ξ) = lim
n→+∞

1

n

n
∑

k=1

e−iξak

for almost all ξ ∈ R. Moreover, for every g ∈ L1(R), if we multiply and integrate, from
Fubini’s theorem and dominated convergence we get

∫

R

ĝdµ = lim
n→+∞

1

n

n
∑

k=1

ĝ(ak).

Since the image of the Fourier transform is uniformly dense in C0(R), we conclude that

∫

R

hdµ = lim
n→+∞

1

n

n
∑

k=1

h(ak)

for every h ∈ C0(R).

Proposition 3.3. For every measurable function f : X → R the sequence (Snf(x))n∈N
has a distribution for µ-almost every x ∈ X.

Proof. For each ξ ∈ R the function Fξ : Z × X → S1 defined by Fξ(n, x) = e−iξSnf(x)

is a multiplicative cocycle. By Theorem 2.1, for µ-almost every x ∈ X the sequence
(Fξ(n, x))n∈N has a distribution. In particular, for µ-almost every x ∈ X the limit

lim
n→+∞

1

n

n
∑

k=1

e−iξSkf(x)

exists. Let

E = {(ξ, x) ∈ R×X : lim
n→+∞

1

n

n
∑

k=1

e−iξSkf(x) does not exist}.
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If Ex = {ξ ∈ R : (ξ, x) ∈ E} and Eξ = {x ∈ X : (ξ, x) ∈ E}, form Fubini’s theorem we
have

∫

X

(
∫

R

χEx(ξ)dξ

)

dµ =

∫∫

R×X

χEdξdµ =

∫

R

(
∫

X

χEξ
(x)dµ

)

dξ = 0.

Therefore, there exists a measurable set M ⊂ X with µ(M) = 1 such that

∫

R

χEx(ξ)dξ = 0

for all x ∈ M . Thus, for every x ∈ M we have χE(ξ, x) = χEx(ξ) = 0 for almost every
ξ ∈ R. In other words, for µ-almost every x ∈ X the limit

lim
n→+∞

1

n

n
∑

k=1

e−iξSkf(x)

exists for almost every ξ ∈ R. From the preceding considerations, this implies the
conclusion. �

The above theorem says that for µ-almost every x ∈ X there exists a non-negative
finite Borel measure µx on R such that

∫

R

gdµx = lim
n→+∞

1

n

n
∑

k=1

g(Skf(x))

for every g ∈ C0(R). Since

∫

R

gdµT (x) = lim
n→+∞

1

n

n
∑

k=1

g(Sk+1f(x)− f(x))

or equivalently

∫

R

g(t+ f(x))dµT (x)(t) = lim
n→+∞

1

n

n
∑

k=1

g(Sk+1f(x)) =

∫

R

g(t)dµx(t)

for every g ∈ C0(R), it follows that µT (x)(A− f(x)) = µx(A) for every Borel set A ⊂ R.
In particular, µT (x)(R) = µx(R) and T

−1({x ∈ X : µx = 0}) = {x ∈ X : µx = 0}. This
implies that if T is ergodic, then either µx = 0 for µ-almost every x ∈ X or µx 6= 0 for
µ-almost every x ∈ X.

Theorem 3.4. A measurable function f : X → R is a coboundary if and only if µx 6= 0
for µ-almost every x ∈ X.

Proof. Suppose that there exists a measurable function u : X → R such that f = u−u◦T
µ-almost everywhere on X. For convenience we put

h(ξ, x) = lim
n→+∞

1

n

n
∑

k=1

e−iξSkf(x).

9



We know that for µ-almost every x ∈ the limit h(ξ, x) exists for almost every ξ ∈ R.
Obviously,

h(ξ, x) = e−iξu(x) · lim
n→+∞

1

n

n
∑

k=1

eiξu(T
k(x)).

Let G = {x ∈ X : h(ξ, x) = 0 for almost all ξ ∈ R}. An easy computation shows that
h(ξ, T (x)) = e−iξf(x)h(ξ, x), which implies that T (G) = G. If now g ∈ L1(R) is such
that ĝ > 0, then

lim
n→+∞

1

n

n
∑

k=1

ĝ(u(T k(x))) = 0

for all x ∈ G and integrating over G we arrive at
∫

G

(ĝ ◦ u)dµ = 0.

This means that necessarily µ(G) = 0.
Conversely, if µx 6= 0 for µ-almost every x ∈ X, then µT (x)(R) = µx(R) > 0 for

µ-almost every x ∈ X. Let u : X → R be defined by

u(x) = sup{t ∈ R : µx((−∞, t)) ≤
1

2
µx(R)}.

We have

u(T (x)) = sup{t ∈ R : µx((−∞, t+ f(x))) ≤
1

2
µx(R)} = u(x) + f(x)

and it only remains to prove that u is measurable. Let t ∈ R be fixed. There exists a
non-decreasing sequence (gn)n∈N in C0(R) converging pointwise to χ(−∞,t) and so

µx((−∞, t)) = sup{

∫

R

gndµx : n ∈ N} = lim
m→+∞

(

lim
n→+∞

1

n

n
∑

k=1

gm(Skf(x))

)

.

Hence the function ψ : X → R defined by

ψ(x) = µx((−∞, t))−
1

2
µx(R)

is measurable and u−1([t,+∞)) = ψ−1((−∞, 0]) is a measurable set. �

The following characterization of measurable coboundaries through a growth
criterion is due to K. Schmidt.

Theorem 3.5. A measurable function f : X → R is a coboundary if and only if for
every ǫ > 0 there exists M > 0 such that for every n ∈ N there exists a measurable set
Fn ⊂ X with µ(Fn) > 1− ǫ and such that |Snf(x)| ≤M for every x ∈ Fn.

Proof. Suppose that there exists a measurable function u : X → R such that f =
u ◦ T − u µ-almost everywhere on X and let ǫ > 0. There exists N ∈ N such that

0 ≤ 1− µ(u−1((−n, n))) <
ǫ

2
for every n ≥ N . Thus, if we put

Fn = u−1((−n, n)) ∩ T−n(u−1((−n, n))),
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then µ(X \ Fn) < ǫ and |Snf(x)| = |u(T n(x))− u(x)| ≤ 2N for every x ∈ Fn.
For the converse we assume that f is not a coboundary. From Theorem 3.4, there

exists a measurable set F ⊂ X with µ(F ) > 0 such that for every x ∈ F we have

lim
n→+∞

1

n

n
∑

k=1

e−iξSkf(x) = 0

for almost every ξ ∈ R. Applying our assumption for the choice ǫ =
1

2
µ(F ), there exists

some M > 0 such that for every n ∈ N there exists a measurable set Fn ⊂ X with

µ(Fn) > 1−
1

2
µ(F ) and |Snf(x)| ≤ M for every x ∈ Fn. Then, µ(F ∩ Fn) >

1

2
µ(F ).

The Fourier transform of the Fejer kernel K2M is the continuous function

K̂2M (t) = max

{

0, 1−
|t|

2M

}

(see page 139 in [4]). Multiplying with K2M (ξ) and integrating with respect to ξ we
arrive at

lim
n→+∞

1

n

n
∑

k=1

max

{

0, 1−
|Skf(x)|

2M

}

= 0.

However, the integral of the average in the limit is

1

n

n
∑

k=1

∫

X

max

{

0, 1 −
|Skf(x)|

2M

}

dµ ≥
1

n

n
∑

k=1

∫

F∩Fn

max

{

0, 1−
|Skf(x)|

2M

}

dµ

≥
1

n

n
∑

k=1

∫

F∩Fk

1

2
dµ ≥

1

4
µ(F ) > 0

for every n ∈ N. This contradiction concludes the proof. �

In the ergodic case the above growth condition can be somewhat weakened.

Theorem 3.6. Let T be ergodic and let f : X → R be a measurable function. For n ∈ N

and M > 0 let En,M = {x ∈ X : |Snf(x)| > M}. Then, f is a coboundary if and only if
there exists some M > 0 such that

lim inf
n→+∞

1

n

n
∑

k=1

µ(Ek,M) < 1.

Proof. The necessity is obvious from Schmidt’s criterion because if f is a coboundary,
then for every ǫ > 0 there exists M > 0 such that µ(En,M ) < ǫ for every n ∈ N. For
the sufficiency suppose that f is not a coboundary and le M > 0 be any. There exists a
measurable set F ⊂ X such that µ(F ) > 0 and µx = 0 for all x ∈ F , by Theorem 3.4.
Since T is assume to be ergodic, we have µx = 0 for µ-almost every x ∈ X and thus

lim
n→+∞

1

n

n
∑

k=1

g(Skf(x)) = 0

11



for every g ∈ C0(R). We choose any g ∈ C0(R) such that g ≥ 0 and g(t) = 1 for |t| ≤M .
Integrating,

0 = lim
n→+∞

1

n

n
∑

k=1

∫

X

g(Skf(x))dµ = lim
n→+∞

1

n

n
∑

k=1

(
∫

Ek,M

g(Skf(x))dµ + 1− µ(Ek,M )

)

and therefore

1− lim
n→+∞

1

n

n
∑

k=1

µ(Ek,M) = 0. �
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