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1 Preliminaries from Harmonic Analysis

Let (G, +) be an abelian group. A function f: G — C is said to be positive definite if

Z MRS () — xx) >

J,k=1

for every xz1,..., xn € G, A1,..., A\p € C and every n € N. Some basic properties of the
positive definite functions are summarized in the following.

Proposition 1.1. If G is an abelian group and f : G — C is a positive definite
function, then

(a) £(0) >0

(b) f(zx) = f(—2),

(c) |f(x)] < f(0) for every x € G, and

(d) |f(z) = f(W)I? < 2f(0)[f(0) — Ref(z — y)] for every z, y € G.

(e) |f(z+y) = f(W)I? < 2f(0)[f(0) — Ref(x)] for every x, y € G.

Proof. To prove (a) it suffices to take n = 1 and x1 = 0, Ay = 1. The second property
(b) follows from the elementary observation that if a, b € C are such that az + bz € R
for every z € C, then a = b. Indeed, if we take n = 2, 1 = z, zo = 0, then

(M + A2l)£(0) + e f () + Adaf (=) = 0
and in particular A Aaf(z) + M2 f(—x) € R for every A1, Ay € C. Taking the values
L, @)
f(x)

in the above inequality yields (c), since if f(x) = 0, there is nothing to prove by (a).
Property (d) is trivial if f(z) — f(y) = 0. Otherwise, we take n = 3, x1 = 0, x93 = x
x3 = y and then

(A1 + [X2l® + [As?) £(0) + Adaf () + MAaf (@) + MAsf (y) + MAsf(y)

+hodsf (@ —y) + Aedsf(x —y) >0
for every A1, A2, A3 € C, by (b). Taking the special values

|f(x) = f(Y)

M= =T )

,tGR, )\32—)\2,



we get
2(f(0) — Ref(z — y)It* + 2|f (z) — F(W)lt + f(0) > 0

for all t € R, and thus necessarily

Alf (@) = fFW)I* = 8 (0)[£(0) — Ref(x — y)] < 0.
The last property (e) is a restatement of (d). O
Corollary 1.2. If G is an abelian group and f : G — C is a positive definite function,

then Go = {x € G : f(x) = f(0)} is a subgroup of G and f is constant on each of its
cosets in G. O

Corollary 1.3. If a positive definite function f : R — C is continuous at 0, then it is
uniformly continuous. [

Examples 1.4. (i) A trivial example of a positive definite function f : R — Cis f(0) =1
and f(z) =0 for z # 0.

(ii) The cosine cos : R — R C C is a positive definite function because

n n
E Ajcosx; E Ajsinz;
j=1 j=1

(iii) For every & € R the function f : R — C defined by f(z) = €% is positive definite

since
n
€T
E Aje
Jj=1

(iv) Let H be a Hilbert space and let U : H — H be a unitary operator. For every x € H
the double sequence a,, = (U™ (z),x), n € Z, is positive definite, since

Z )\jj\kaj_k == Z)\JUJ(x)
j=1

jk=1

2

n 2
Z AjAgcos(zj —xp) = + > 0.
jh=1

n 2
Z )\jj\keig(xj_$k) = Z 0.

jk=1

2
>0

for every Aq,..., A, € C and every n € N.
(v) Let u be a non-negative finite Borel measure on S! and let

an:/ 2"dp, n €7,
Sl

be the double sequence of its Fourier coefficients. The so defined function a : Z — C is
positive definite, because

Z )\jjxk/lzjkd,u: /Sl

jk=1 S

2
du > 0.

n
>t
k=1

(vi) Let u be a non-negative finite Borel measure on R. The Fourier-Stieltjies transform
i1 of p is the positive definite function

(€)= [ e dnta), €er
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since
n

Z AjAkfi(&) — &) = /R

jk=1

2
du(x) > 0.

n
Z )\kefigkm

k=1

The last two examples are the easy parts of the following two famous theorems of
Harmonic Analysis, whose proofs can be found in [4]. The first one is due to G. Herglotz
and its continuous version is due to S. Bochner.

Theorem 1.5. (Herglotz) A double sequence (an)nez of complex numbers is positive
definite if and only if there exists a non-negative finite Borel measure ju on S such that

an:/ 2"dp, nez. O
Sl

Theorem 1.6. (Bochner) For a function f : R — C the following are equivalent:

(i) f is positive definite and continuous.

(ii) f is the Fourier-Stieltjies transform of a non-negative finite Borel measure p on R,
that is

f(§):A€_i§$du(x), EecR. O

If f:S8' - Risin L' (with respect to Lebesgue measure), then f is said to be
positive definite in the integral sense if

/ /Slxsl fa@g)u(z)u(y)dedy > 0

for every continuous function u : S — C. This implies that f > 0. The following
characterization is proved in [2].

Proposition 1.7. A continuous function f : S' — C is positive definite in the integral
sense if and only if it is positive definite. [

A positive definite L' (locally bounded) function can be reconstructed from its
Fourier transform according to the following theorem of S. Bochner whose proof can be
found in [2].

Theorem 1.8. (Bochner) If the L' function f : R — C is positive definite and essentially
bounded in some neighbourhood of 1 € S*, then

fz) =2 f(n)z"
nez
for almost every z € S, so that f is equal almost everywhere to a continuous positive

definite function. [

In the above we take S' = R/27Z and a function f : S — R can be considered as
a 2m-periodic function of a real variable. In the general real variable case, a bounded
measurable function f: R — C is said to be positive definite in the integral sense if

/Rz f@ = y)u(x)uly)dedy > 0
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for every u € L' (with respect to Lebesgue measure). A continuous positive definite
function f : R — C is positive definite in the integral sense. This follows from Bochner’s
theorem, but it can also be proved directly although not so easily. Bochner’s theorem
was generalized by F. Riesz in [5] as follows.

Theorem 1.9. If a bounded measurable function f : R — C is positive definite in the
integral sense, then there exists a non-negative, finite Borel measure i on R such that

— 7Z£:Bd
1€ = [ e duto)
for almost every £ € R. [J

Corollary 1.10. A bounded measurable and positive definite function f : R — C is
equal almost everywhere to a continuous positive definite function. [J.

2 Distributions of multiplicative cocycles

Let X be a compact metric space and let (a,)nen be a sequence of points of X. A Borel
measure p on X is called the distribution of this sequence if

L
/X ddp= lim — ; (ar)

for every ¢ € C(X). Then u is necessarily positive and a probability measure on X. As
it is expected, most sequences in X have no distribution.

Let (X, A, u,T) be a measurable dynamical system, that is (X,.4) is a measurable
space, p is a probability measure on the o-algebra A and T : X — X is an invertible
bimeasurable map. A multiplicative cocycle is a function F' : Z x X — S' such that
F(n,.): X — S' is measurable for every n € Z and

Fm+n,z) = F(m,z)F(n,T"(x))

for p-almost every z € X and every n € Z. The cocycle F is called a coboundary if
there exists a measurable function ¢ : X — S! such that

Fin) = 1070

for p-almost every x € X and every n € Z.
From a multiplicative cocycle F' as above we can define a measurable dynamical
systems S : ST x X — S x X by

S(z,x) = (zF(1,2),T(x))
which is called the corresponding skew product of F'. Inductively,

S"(z,x) = (2F(n,z), T"(x))



for every (z,x) € §* x X and n € Z. It is obvious that S is a bimeasurable bijection and

1

preserves the product probability measure 2—dz x pron St x X. Indeed, if U C St is a
i

Borel set and V' € A, from Fubini’s theorem we get

//Slxx (xuxv o S)dzdu = //SX xv(zF(1,2))xv (T (z))dzdu(z)

— /X < /5 1 XU(zF(l,x))dz)XV(T(m))d,u(x): /X ( /S 1 XU(z)dz>xv(T(w))du(x)
= (/Sl XU(Z)dZ> : (/X deu>-

Using the corresponding skew product S we can show that the multiplicative cocycle
F is uniquely determined by the measurable function F(1,.) : X — S*, since F(0,z) = 1

and inductively
n—1

F(n,z) = [[ F(L,T%(x))

k=0

for p-almost every = € X and n € N. Conversely, if f : X — S is a measurable function,

then the formula )
=[] 1@ @)
k=0

defines a multiplicative cocycle. To see this, we consider the skew product transforma-
tion S(z,x) = (2f(z),T(x)), so that S™(z,x) = (2F(n,x),T"(z)), and now the formula
Sntm — G o §™ vields the cocycle condition for F.

Theorem 2.1. If F is a multiplicative cocycle for T, then for p-almost every x € X
the sequence (F(n,z))nen in S' has a distribution.

Proof. Firstly we observe that the Ergodic Theorem applied to f(z,x) = z gives that
the limit

n—1

1
1 F(z,z)) = lim — F(k
F1) = RE&WEZfSZx i 7 2 2 (ko)

exists for almost every (z,2) € S! x X and hence the limit

1 F k,
7J%n2 z)

exists for p-almost every x € X.
Since for every m € 7Z the function F™ is again a multiplicative cocycle, the above
observation implies that the limit

lim = 57 (F(k,z)™
ngglmn];( (k,z))



exists for every m € Z and for p-almost every x € X. For each fixed n € Nand z € X
the double sequence ((F(n,x))™)mez is positive definite, because for every N € N and
A,...; An € C we have

2

N ' N :
> NAk(F(n,2)) 7 =Y N(F(n, x))

> 0.
k=1 j+1
Thus, if z € X is a point for which the limit
lim f:(F(k )™
n—rtoo m £ ’

exists for every m € Z, then the sequence

(2 ,; (F (k)"

is positive definite. It follows now from Theorem 1.5 that the exists a non-negative finite
Borel measure v, on S' such that

meZ

n

m _ . 1 m
/S1 2Mdv,(z) = ngrfoo - Z (F(k,x))

for all m € Z. This means that v, is a distribution of the sequence (F(n, z))n,en of points
of $1. O

3 Schmidt’s criterion for additive cocycles

An additive cocycle with respect to a measurable dynamical system (X, A, u,T) is a
function A : Z x X — R such that A(n,.) : X — R is measurable for every n € Z and

A(m+n,x) = A(m,x) + A(n, T™(z))

for p-almost every = € X and every n € Z. The cocycle a is called a coboundary if there
exists a measurable function u : X — R such that

A(n, x) = u(T"(z)) — u(z)

for p-almost every x € X and every n € Z.
An additive cocycle A is determined by the measurable function f = A(1,.) : X — R,
because A(0,z) = 0 and

n—1

A(TL,:C) = ZA(l’Tk(x)) = Snf(x)

k=0
for every x € X and n € N. A similar formula holds for negative integers. More precisely,

n—1

A(=n,z) = > A(-1,T7*(x))

k=0
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and A(1,z)+ A(—1,T(x)) = A(1—1,z) = 0, which means that A(—1,z) = A(1,T~(x))
for all x € X. Hence

A(=n,z) =Y f(T ()
k=1

for all n € N and z € X.

Obviously, the additive cocycle A is a coboundary if and only if there exists a
measurable function v : X — R such that f(x) = A(1,2) = w(T(x)) — u(x) for p-almost
every x € X. We shall make no distinction between f and the corresponding cocycle
A(n,z) = Spf(z). A necessary condition for an integrable function to be a coboundary
is the following ( [1]).

Proposition 3.1. Let (X, A, u, T) be a measurable dynamical system and f € L*(pn). If
f is a coboundary, then
/ fdu=0.
X

Proof. Suppose that / fdu >e€>0and u: X — R be a measurable function such that
X
f(x) =u(T(x)) — u(x) for p-almost every z € X. If

M={zeX: lim 1 wf(x) > €}

n—+oo n

Then, M € A and p(M) > e from the Ergodic Theorem. For each n € N we put

M, = ) {meX:% f(z) > €.

m=n

o

Obviously, M,, € A and M C U M,,. Thus, there exists n € N such that u(M,) > 0.
n=1

If My, =M, Nu"Y([l,l +1)), 1€ Z, then M,, = U M, ; and so there exists | € Z such

leZ
that (M, ;) > 0. By Poincaré Recurrence, there exist infinitely many m € N such that

,u(Tm(Mn,l) N Mn,l) = ,u(MnJ) > 0.

1
We pick such a m large enough so that — < e. Thus, there exists € X such that u(x),
m
u(T™(x)) € [I.L+ 1) and
1
—(u(T™ — .
—((I™(2)) —u(z)) > e
This means that |u(z) —u(T™(z))| < 1 and at the same time u(7™(z)) —u(z) > me > 1.
This contradiction proves the assertion. [

Let (an)nen be a sequence of real numbers. A non-negative finite Borel measure p
on R is said to be the distribution of the sequence if

n

. 1 .
—ilx - I - —ifag
[t = i 15



for almost all £ € R (with respect to the Lebesque measure). Unlike the compact case,
the distribution of a real sequence may be the zero measure.

Example 3.2. Let a, =n, n € N. If £ € R is such that ; is irrational, then
0

1o —itk |
li — E = — dt = 0.
n 11m " £ e 2 /0 e O

This implies that the sequence does have a distribution, but it is the zero measure.

Suppose that the limit of the right hand side exists for almost all £ € R. Then, the so
defined function f : R — C is bounded, measurable and positive definite in the integral
sense, because

/Wf@—ymwﬁ@mMyzggQ%;;mmezo

for every u € L*(R). It follows from Theorem 1.9 that there exists a non-negative, finite
Borel measure i on R such that

n

. 1 4
/Relgmd,u(ﬂ:) = f(§) = nEI_IFlOO - Z e iEax

for almost all £ € R. Moreover, for every g € L'(R), if we multiply and integrate, from
Fubini’s theorem and dominated convergence we get

1 n
Gdp = lim =S d(ay).
/RQM njrfmngg(ak)

Since the image of the Fourier transform is uniformly dense in Cy(R), we conclude that

RS
T W
for every h € Cy(R).

Proposition 3.3. For every measurable function f: X — R the sequence (S f(x))nen
has a distribution for pu-almost every x € X.

Proof. For each { € R the function F; : Z x X — S1 defined by Fe(n,z) = e~ Snf(2)
is a multiplicative cocycle. By Theorem 2.1, for p-almost every = € X the sequence
(F¢(n,x))nen has a distribution. In particular, for y-almost every x € X the limit

n

_ —itSyf(z)
s 2

exists. Let

E={(¢)eRx X: lim —

n—+oo n

n
Z e~ f(@) does not exist}.
k=1
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IfE, ={{ecR:({z) € E} and Ef = {z € X : ({,z) € £}, form Fubini’s theorem we

/x</RXE’C(§)d§>d”://RX)(XEdﬁdM:/R</X XEg(x)dﬂ>d§=0.

Therefore, there exists a measurable set M C X with u(M) = 1 such that

/ X (€)dE = 0
R

for all x € M. Thus, for every © € M we have xg({,z) = xg,(§) = 0 for almost every
¢ € R. In other words, for p-almost every x € X the limit

n

lim  ~ 3 S

n—-+4oo 1
k=1

exists for almost every £ € R. From the preceding considerations, this implies the
conclusion. [

The above theorem says that for pu-almost every & € X there exists a non-negative
finite Borel measure p,; on R such that

/Rgdﬂx— lim Zg (Skf(z

for every g € Cp(R). Since

/R gipiry = lim Zg Ski1f(@) — £(x))

n—+oon

or equivalently

/R gt + F(@))dppg () = lim ngkﬂf / 9(t)dpua (t)

n—4+oco n,

for every g € Co(R), it follows that up(, (A f(z)) = pug(A) for every Borel set A C R.
In particular, ppe)(R) = p(R) and T 'z € X :ppy =0}) = {x € X : u, = 0}. This
implies that if T is ergodic, then either u, = 0 for py-almost every x € X or u, # 0 for
p-almost every xz € X.

Theorem 3.4. A measurable function f: X — R is a coboundary if and only if . # 0
for p-almost every r € X.

Proof. Suppose that there exists a measurable function v : X — R such that f = u—wuoT
p-almost everywhere on X. For convenience we put

n

1 .
h(&,z) = lim —Ze_lgs’“f(x).

n—-+4oo 1
k=1



We know that for p-almost every z € the limit h(€,x) exists for almost every £ € R.
Obviously,

n

hE,x) = e €@ . fim L Y eftuT @),

n—+oo n
k=1

Let G={x € X : h(¢,2) =0 for almost all ¢ € R}. An easy computation shows that
h(€,T(z)) = e /@ n(¢, x), which implies that T(G) = G. If now g € L'(R) is such
that g > 0, then

. 1
lim —
n—+oco n

> g(u(T*(x)) =0
k=1

for all x € G and integrating over G we arrive at

/G(gou)d,u 0.

This means that necessarily u(G) = 0.
Conversely, if p, # 0 for p-almost every x € X, then upe)(R) = p(R) > 0 for
p-almost every x € X. Let u : X — R be defined by

u() = sup{t € R : pa((~00,1)) < £ p1a(R)}.

We have

1
u(T(z)) = sup{t € R pig((—00,t + f(2))) < Spa(R)} = u(@) + f(2)
and it only remains to prove that u is measurable. Let ¢ € R be fixed. There exists a
non-decreasing sequence (g, )nen in Co(R) converging pointwise to X (o) and so

pa((=o,0) = sup{ [ gudir i€} =l (ngglm%];gmwkf(a:))).

Hence the function 9 : X — R defined by

9() = ral(~00,1)) = 11a(R)

is measurable and u 1 ([t, +00)) = ¥~ !((—00,0]) is a measurable set. [J

The following characterization of measurable coboundaries through a growth
criterion is due to K. Schmidt.

Theorem 3.5. A measurable function f : X — R is a coboundary if and only if for
every € > 0 there exists M > 0 such that for every n € N there exists a measurable set

F, C X with u(F,) > 1 — € and such that |S,, f(x)| < M for every x € F,.

Proof. Suppose that there exists a measurable function v : X — R such that f =
uoT —u p-almost everywhere on X and let ¢ > 0. There exists N € N such that

0<1—pu(ut((-n,n))) < % for every n > N. Thus, if we put
Fo = u ™ ((—nym) N T (),
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then (X \ F,,) < e and |S,, f(x)| = [u(T"(x)) — u(z)| < 2N for every = € F,.
For the converse we assume that f is not a coboundary. From Theorem 3.4, there
exists a measurable set F' C X with u(F') > 0 such that for every x € F' we have

n

lim L et Z g

n—+oco n
k=1

1
for almost every £ € R. Applying our assumption for the choice € = 3 wu(F), there exists
some M > 0 such that for every n € N there exists a measurable set F,, C X with
1 1
w(Fy) >1— §M(F) and |S,f(z)] < M for every x € F,. Then, u(FNF,) > §M(F)

The Fourier transform of the Fejer kernel Ksjs is the continuous function

N t
Kop(t) = maX{O, 1-— %}

(see page 139 in [4]). Multiplying with Ksp/(§) and integrating with respect to & we

arrive at
|Skf (@)
li g 0,1— =0.
nirw{loo n max{ 21%

However, the integral of the average in the limit is

_Z/ max{O 1—%} Z/Fanmax{O,l—%}du

Z / S > () >0
FNF, 2
for every n € N. This contradiction concludes the proof. [J

In the ergodic case the above growth condition can be somewhat weakened.

Theorem 3.6. Let T be ergodic and let f: X — R be a measurable function. Forn € N
and M > 0 let E, v = {z € X : |Spf(x)| > M}. Then, f is a coboundary if and only if
there exists some M > 0 such that

hmmf—z,u Epm) <

n—+oo N

Proof. The necessity is obvious from Schmidt’s criterion because if f is a coboundary,
then for every € > 0 there exists M > 0 such that p(E, ) < € for every n € N. For
the sufficiency suppose that f is not a coboundary and le M > 0 be any. There exists a
measurable set F' C X such that u(F) > 0 and p, = 0 for all z € F, by Theorem 3.4.
Since T is assume to be ergodic, we have u; = 0 for p-almost every z € X and thus

lim Zg Sk f(z

n—+oo n

11



for every g € Cy(R). We choose any g € Cy(R) such that g > 0 and g(¢) = 1 for |t| < M.
Integrating,

n

. 1

=1 k,M

9(Sef ())d + 1~ u(Ek,m)

and therefore

1— lim ZMEkM =0. O

n—+oo N
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