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An interesting problem in the theory of dynamical systems is to determine the
global structure of a flow from properties of characteristic invariant subsets of the
phase space such as minimal sets or Poisson stable orbit closures. For flows on
manifolds of dimension greater than two, the behaviour of the flow near such sets is
far from being well understood. In this note we give a characterization of Denjoy
flows on the torus, that is, suspensions of orientation preserving homeomorphisms of
the unit circle onto itself with a Cantor minimal set, via conditions referring to the
asymptotic behaviour of the orbits near a strictly Poisson stable orbit closure. More
precisely, we prove the following.

THEOREM 1.1. A flow (U,M,f) on a closed 2-manifold M is topologically
equivalent to a Denjoy or irrational flow if and only if there is a strictly Poisson stable
orbit C{x) and an open invariant neighbourhood V of C(x) such that L+(y) = L~(y)for
every yeV.

This theorem is first proved in the particular case where the strictly Poisson stable
orbit is contained in a non-trivial minimal set, using the description of the flow near
non-trivial minimal sets on 2-manifolds given in [2]. The general case is proved using
this and a cutting and pasting technique.

Let (U, M,f) denote a (continuous) flow on a metric space M. We shall use the
convenient notation/(/, x) = tx and f(Ix A) = IA, if /<= U and A <= M. The orbit of
the point XGM will be denoted by C(x). We recall that

L+(x) = {yeM:tnx^y for some /n-> + oo}
is the positive limit set of the point xeM. The negative limit set L~(x) is defined
analogously.

The orbit C(x) is called Poisson stable if x€L+(x) f] L~(x). A Poisson stable orbit
is called strictly Poisson stable if it is not singular or periodic. A set A c M is called
minimal if it is non-empty, closed, invariant and has no proper subset with these
properties. A minimal set is called trivial if it consists of only one orbit or is
homeomorphic to the torus T2.

We also recall that two flows (U,M,f) and (U,N,g) are topologically equivalent
if there is a homeomorphism h:M^> N sending orbits onto orbits preserving their
time orientation. The reader is referred to [3] for the undefined terms used in the
sequel.
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PROPOSITION 2.1. Let (U, M,f) be a flow on a connected 2-manifold. If there exists
a non-trivial compact minimal set A which has an open invariant neighbourhood V such
that L+(y) 0 L~(y) # 0 for every yeV, then the flow is topologically equivalent to a
Denjoy flow.

Proof According to [2, Theorem 1.1], there is a connected, open, invariant
neighbourhood E of A such that if yeE then L+(y) U L~(y) c A U dE and
L+(y) = A or L~(y) = A. Therefore, our assumption and the minimality of A imply
that L+(y) = L~(y) = A for every yeE. If E is not compact then the flow on E can
be extended to a continuous flow on the one-point-compactiflcation E U {oo} of
E that fixes oo. Since L+(y) = L~(y) = A for every yeE, the singleton {oo} is a
saddle set, and by [3, Corollary 6.11] there exist points y1,y2eE such that
co eL+(yx) fl L~(y2), a contradiction. This shows that E must be compact. Since
M is connected, M = E. Therefore M is compact and the flow has no singular or
periodic orbits. It follows from [6, Chapter I, Theorem 4.3.3] that the flow is
topologically equivalent to a Denjoy flow on the torus.

Let F denote the set of singular points of a given flow and G the set of points
whose orbits are homeomorphic to U.

LEMMA 2.2. Let (M,M,f) be a flow on a closed 2-manifold which is not
topologically equivalent to a Denjoy or irrational flow. Let C(x) be a strictly
Poisson stable orbit such that C(x) has an open, invariant neighbourhood V such that
L+(y) = L~{y)for every yeV. Then G n Qx) ? 0 and the set (G U F) fl Cfjcj is not
closed.

Proof Since C(x) is a strictly Poisson stable orbit closure, it does not contain
periodic orbits. Assume that G n C(x) = 0. Then every orbit in C{x) is either strictly
Poisson stable or singular, by our assumption. If the point yeC(x) is strictly
Poisson stable, then C(y) — C(x) by the Structure Theorem in [4]. Thus, necessarily
F n C{x) =£ 0, because otherwise C(x) would be a non-trivial minimal set or a
torus, and by Proposition 2.1 the flow would be topologically equivalent to a
Denjoy or irrational flow. This means that the set X = (M—F) ft C(x) is a non-
compact, locally compact invariant subspace of M carrying a minimal flow such that
L+

X{y) = L~x(y) for every yeX, where Lx denotes limit set with respect to X. This,
however, contradicts [7, Theorem 3]. So we have proved that G n C(x) is not empty.
If now (G U F) n C(x) were closed, then the set Y = (M-G U F) n C(x) would be
a non-compact, locally compact invariant subspace of M carrying a minimal flow
and we should have a contradiction as before.

Proof of Theorem 1.1. Let (R,M,f) be a flow on a closed 2-manifold M with a
strictly Poisson stable orbit C(x) such that C(x) has an open invariant neighbourhood
V with the property L+(y) = L~(y) for every yeV. We shall assume that the flow is
not topologically equivalent to a Denjoy or irrational flow, and arrive at a
contradiction.

The connected component Af of V—F n C(x) containing C(x) is a 2-manifold of
finite genus. Hence, its end-point-compactification is a closed 2-manifold N+. The



A CHARACTERIZATION OF DENJOY FLOWS 85

ends of N constitute a totally disconnected compact subset of N+ and correspond to
boundary components of Win M. The flow on iVcan be extended to a continuous flow
on N+ that fixes the ends [1, Section 2].

Lemma 2.2 implies that there exists a sequence {xn:«eN} of points of G 0 C(x)
converging to some strictly Poisson stable point yeC(x). By the Structure Theorem
of [4] we have C(x) = C{y) and we may therefore assume that x = y. Each point xn

is non-wandering and thus L+(xn) = L~(xn) <= F 0 C(x) by our assumption and [9,
Proposition 5]. So we may assume that C(xn) 0 C(xm) = 0 if n # m. The limit set
L+(xn) is a compact connected subset of the set F 0 C(x) and hence reduces to a point
in N+ with respect to the extended flow. It follows that the set Cn = C(xn) is a simple
closed curve in N+, where the closure is taken in N+.

One can prove that the simple closed curves Cn, n e N, do not separate N+ for large
enough values of n, using an argument similar to that used in the proof of Lemma 6
in [8]. Thus, we may assume that none of them separates N+. If Cn D Cm = 0 for
infinitely many n ^ m, then there are three mutually different indices ij, k such that
each pair of the simple closed curves C(, Cp Ck bound an annulus [5, Appendix]. This
means that one of them lies in the interior of the annulus bounded by the other two.
Let Ct, C} bound the annulus K and Ck <= int K. Then int K is an open invariant
neighbourhood of Ck and therefore C(x) <= int AT, because xkeL+(x). This, however,
contradicts the Poincare-Bendixson Theorem.

So we may assume that Cn n Cm # 0 for all n,meN. Hence, there is a singular
point ZEN+ such that Cn 0 Cm = {z} for n^m. Since the simple closed curve Cx does
not separate W~+, the set Â + — Cx is a connected 2-manifold with one or two ends and
its end-point-compactification Nx is a closed 2-manifold of genus smaller than the
genus of JV+. The flow on N+ — C1 can be extended to a flow on A^ that fixes the ends
of N+ — Cv Passing to a subsequence if necessary, we may assume that L+(xn) =
L~(xn) = {/?} or L+(xn) = {/?} and L~(xn) = {q} in Nx for all n > 1, where p, q are the
ends of N + - Cv Let Cn = C(xn) in the first case and C'n = C(xn) U C(x2), n > 2, in the
second, where the closures are taken in Nx. Since C(x) lies in 7V+ — Cx and xn -*• x, in
either case the simple closed curves C'n, n > 2, do not separate Nx for large values of
n. Consequently, we may assume that N± — C'z is a connected 2-manifold with one or
two ends, and its end-point-compactification is a closed 2-manifold of genus smaller
than the genus of Nv Continuing this process we arrive after a finite number of steps
at a flow on a 2-manifold of genus zero carrying C(x), which contradicts the
Poincare-Bendixson Theorem.
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