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Preface

These notes are divided into three parts. The first two parts correspond to
the one-semester introductory course on differentiable manifolds that I have taught
several times in the graduate program of the Department of Mathematics of the
University of Crete. They are written for graduate students who during their un-
dergraduate studies have built a solid background in Algebra and Analysis. More
precisely, the reader is required to be familiar with basic Algebra, basic Topology
and advanced Calculus of functions of several variables, including the basic theory
of Ordinary Differential Equations.

The first two chapters are devoted to the presentation of the basic notions. The
third chapter is concerned with the basic theory of Riemannian manifolds, the Levi-
Civita connection and the basic theory of geodesics, including geodesic convexity
from which the existence of admissible open covers is derived. The fourth, fifth
and sixth chapters are concentrated on differential forms and de Rham cohomology.
This theory can be considered as a generalization of vector analysis from R3 to
higher dimensional and non-euclidean spaces, on the one hand, and as the geometric
viewpoint of the part of Algebraic Topology called (co-)homology theory, on the
other. In particular the fifth and sixth chapters are essentially a crash course on
Algebraic Topology using Calculus.

The third part of these notes is an introduction to vector bundles and the ge-
ometry of characteristic classes via Chern-Weil theory. It corresponds to a part of
the content of a one-semester advanced course on characteristic classes that I have
taught twice in the form of learning seminar in the Department of Mathematics of
the University of Crete.

K. Athanassopoulos
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Chapter 1

Manifolds

1.1 Topological and smooth manifolds

Problems of Classical Physics lead to the need for the development of differential and
integral calculus on subsets of the phase space, like for instance level sets of constant
energy, which are not open subsets of any euclidean space. Since differentiability of
a function at a given point depends only on its local behaviour near the point, it
is reasonable to try to develop differential calculus on topological spaces which are
locally like euclidean space.

A topological space M is said to be a topological n-manifold, where n ∈ Z+, if
it is a Hausdorff space with a countable basis for its topology and has the following
property: there exists an open cover U of M every element of which is homeomor-
phic to some open subset of Rn. Since the topology of M is assumed to have a
countable basis, there exists a countable open cover U of M every element of which
is homeomorphic to Rn. If U ∈ U , a homeomorphism φ : U → φ(U), where φ(U) is
an open subset of Rn, is called a chart of M and is usually denoted by (U, φ). The
non-negative integer n is the dimension on M .

A topological manifold is a locally compact space, hence regular, and it follows
from Uryshn’s theorem that its topology is defined by some metric.

If now f :M → R is a continuous function, it is reasonable to call f differentiable
at a point p ∈ M , if there exists a chart φ : U → φ(U) ⊂ Rn with p ∈ U such that
f ◦ φ−1 : φ(U) → R is differentiable at φ(p).

U R

φ(U)

f

φ−1

f◦φ−1

However, in order such a definition to be good it must be independent of the
choice of the chart φ. If ψ : V → ψ(V ) ⊂ Rn is another chart with p ∈ V , we have

f ◦ φ−1 = (f ◦ ψ−1) ◦ (ψ ◦ φ−1).

3



4 CHAPTER 1. MANIFOLDS

Therefore, in order the differentiability of f ◦ φ−1 at φ(p) to be equivalent to that
of f ◦ ψ−1 at ψ(p) it suffices ψ ◦ φ−1 to be differentiable at φ(p) and φ ◦ ψ−1 to be
differentiable at ψ(p). We are thus led to the following.

Definition 1.1.1. Two charts (U, φU ) and (V, φV ) of a topological n-manifold M
are called smoothly related if U ∩ V 6= ∅ and the transition map

φV ◦ φ−1
U : φU (U ∩ V ) → φV (U ∩ V )

is a smooth diffeomorphism of open subsets of Rn.

Definition 1.1.2. A smooth atlas of a topological n-manifold M is a family
A = {(U, φU ) : U ∈ U} consisting of smoothly related charts of M such that U is
an open cover of M .

Two smooth atlases of M are called equivalent if their union is again a smooth
atlas. Evidently, this is an equivalence relation on the set of smooth atlases of M .
Every smooth atlas is contained in a unique maximal smooth atlas, which is the
union of all smooth atlases in its equivalence class.

Definition 1.1.3. A smooth structure on a topological n-manifold is a maximal
smooth atlas A of M . In this case the couple (M,A) is called a smooth n-manifold.
The smooth atlas A is usually omitted if it is clear which one is considered. The
elements of A are called the smooth charts of M .

It is clear from the above that a smooth structure on a topological manifold
can be described by a single, not necessarily maximal, smooth atlas. So, we can
describe a smooth structure by defining a smooth atlas of minimum cardinality.

Examples 1.1.4. (a) The trivial example of a smooth n-manifold is an open subset
M of Rn, whose smooth structure is defined by the smooth atlas A = {(M, idM )}.
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Also, if M is a smooth manifold, then any open set X ⊂ M is a smooth manifold.
If A is the smooth structure of M , the smooth structure of X is

A|X = {(X ∩ U, φ|X∩U ) : (U, φ) ∈ A}.

(b) The n-sphere SnR = {Z ∈ Rn+1 : ‖Z‖ = R} of radius R > 0 is a smooth
n-manifold. Its smooth structure is defined by the smooth atlas consisting of the
stereographic projections with respect to the north and the south poles. More
precisely, the stereographic projection with respect to the north pole is the homeo-
morphism π+ : SnR \ {Ren+1} → Rn defined by

π+(Z1, ..., Zn, Zn+1) =
R

R− Zn+1
· (Z1, ..., Zn)

and the stereographic projection with respect to the south pole is the homeomor-
phism π− : SnR \ {−Ren+1} → Rn defined by

π−(Z1, ..., Zn, Zn+1) =
R

R+ Zn+1
· (Z1, ..., Zn).

Since the inverse π−1
+ is given by the formula

π−1
+ (z1, ..., zn) =

(
2R2z1

R2 +
∑n

j=1 z
2
j

, ...,
2R2zn

R2 +
∑n

j=1 z
2
j

,
R
(
−R2 +

∑n
j=1 z

2
j

)

R2 +
∑n

j=1 z
2
j

)
,

the transition map π− ◦ π−1
+ : Rn \ {0} → Rn \ {0} is given by

(π− ◦ π−1
+ )(z) =

R2

‖z‖2 · z.

In other words, π− ◦ π−1
+ is the inversion with respect to Sn−1

R and is of course a
smooth diffeomorphism. The standard smooth structure of SnR is defined by the
smooth atlas A = {(SnR \ {Ren+1}, π+), (SnR \ {−Ren+1}, π−)}. In case R = 1, we
usually write Sn instead of Sn1 .

(c) If M1 is a smooth n1-manifold and M2 is a smooth n2-manifold, then their
product M1 ×M2 is a smooth (n1 + n2)-manifold. Indeed, if Aj is a smooth atlas
of Mj, j = 1, 2, then

A = {(U × V, φ× ψ) : (U, φ) ∈ A1, (V, ψ) ∈ A2}
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is a smooth atlas of M1 ×M2.
In particular, the n-dimensional torus T n = S1 × S1 × · · · × S1 (n times) is a

smooth n-manifold.

(d) The complex projective space CPn, n ∈ Z+, is the quotient space of the equiva-
lence relation ∼ in Cn+1 \{0} such that z ∼ w if and only if there exists λ ∈ C \{0}
with w = λz. In other words, the equivalence classes of ∼ are the complex 1-
dimensional linear subspaces of Cn+1 minus 0 ∈ Cn+1. Alternatively, CPn, can
be defined as the quotient space of the equivalence relation ∼ on S2n+1 such that
z ∼ w if and only if there exists λ ∈ S1 with w = λz. Thus, CPn is the or-
bit space of the continuous action of the unit circle S1 on the (2n + 1)-sphere
S2n+1 by scalar multiplication, whose orbits are great circles. The quotient map
π : S2n+1 → CPn is a continuous, open, surjection and is called the Hopf map.
We usually write π(z0, z1, ..., zn) = [z0, z1, ..., zn] and call the complex numbers z0,
z1,..., zn the homogeneous coordinates od the point [z0, z1, ..., zn] ∈ CPn. Obviously,
[z0, z1, ..., zn] = [w0, w1, ..., wn] if and only if

∣∣∣∣
zj wj
zk wk

∣∣∣∣ = 0

for every j, k = 0, 1, ..., n.
If [z0, z1, ..., zn] 6= [w0, w1, ..., wn], there exist 0 ≤ j, k ≤ n such that zjwk 6= zkwj .

The sets

U = {[u0, u1, ..., un] ∈ CPn : |ukzj − ujzk| < |ukwj − ujwk|},

W = {[u0, u1, ..., un] ∈ CPn : |ukzj − ujzk| > |ukwj − ujwk|}
are open, disjoint and [z0, z1, ..., zn] ∈ U , [w0, w1, ..., wn] ∈W . This shows that CPn

is a Hausdorff space. Since the Hopf map is a continuous, open surjection, CPn is a
connected, compact space with a countable basis for its topology, hence metrizable.

For every integer 0 ≤ k ≤ n the set

Uk = {[z0, z1, ..., zn] ∈ CPn : zk 6= 0}

is open and the map φk : Uk → Cn with

φk([z0, z1, ..., zn]) =
(z0
zk
, ...,

zk−1

zk
,
zk+1

zk
, ...,

zn
zk

)

is a homeomorphism whose inverse is given by

φ−1
k (t1, ..., tn) = [t1, ..., tk−1, 1, tk, ..., tn].

Thus, CPn is a topological 2n-manifold, since

CPn = U0 ∪ U1 ∪ · · · ∪ Un.

Moreover, if Uj ∩ Uk 6= ∅ and j 6= k, then

φk(Uj ∩ Uk) =
{
{(t1, ..tn) ∈ Cn : tj 6= 0} if j < k

{(t1, ..tn) ∈ Cn : tj−1 6= 0} if j > k.
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Thus, for j < k we have

(φj ◦ φ−1
k )(t1, ..., tn) =

( t1
tj
, ...,

tj−1

tj
,
tj+1

tj
, ...,

tk−1

tj
,
1

tj
,
tk
tj
, ...,

tn
tj

)

and for j > k we have

(φj ◦ φ−1
k )(t1, ..., tn) =

( t1
tj−1

, ...,
tk−1

tj−1
,

1

tj−1
,
tk
tj−1

, ...,
tj−2

tj−1
,
tj
tj−1

, , ...,
tn
tj−1

)
.

So, A = {(Uk, φk) : k = 0, 1, ...n} is a smooth atlas which defines a smooth structure
and is called the canonical atlas of CPn.

(e) The real projective space RPn, n ∈ Z+, is defined in the same way simply
by replacing the field C with the field R. Now RPn is the quotient space of the
equivalence relation ∼ on Sn such that x ∼ −x for every x ∈ Sn. Again RPn is a
connected, compact metrizable space and a smooth n-manifold.

Definition 1.1.5. Let M be a smooth m-manifold and N be a smooth n-manifold.
A continuous map f : M → N is clalled smooth if for every p ∈ M there exist a
smooth chart (U, φ) of M and smooth chart (V, ψ) of N such that p ∈ U , f(U) ⊂ V
and ψ ◦f ◦φ−1 : φ(U) → ψ(V ) is a smooth map of open subsets of euclidean spaces.
We call ψ ◦ f ◦ φ−1 the local representation of f with respect to the smooth charts
(U, φ) and (V, ψ).

The sbove definition is independent of the choice of the smooth charts (U, φ) and
(V, ψ), because if (U1, φ1) and (V1, ψ1) is another pair of smooth charts with p ∈ U1

and f(U1) ⊂ V1, then

ψ1 ◦ f ◦ φ−1
1 = (ψ1 ◦ ψ−1) ◦ (ψ ◦ f ◦ φ−1) ◦ (φ ◦ φ−1

1 )

and thus ψ ◦ f ◦ φ−1 is smooth if and only if ψ1 ◦ f ◦ φ−1
1 .

The class of smooth manifolds are the objects of a category whose morphisms
are the smooth maps between smooth manifolds. The isomorphisms in the category
are called diffeomorphisms. More precisely, a smooth map f : M → N as in
Definition 1.1.5 is called a smooth diffeomorphism if there exists a smooth map
g : N →M such that g ◦ f = idM and f ◦ g = idN .

Definition 1.1.6. Two smooth manifolds M and N are called (smoothly) diffeo-
morphic if there exists a smooth diffeomorphism f :M → N .

Obviously, two diffeomorphic manifolds must have the same dimension. If (U, φ)
is a smooth chart of a smooth manifold M , then φ : U → φ(U) is a smooth diffeo-
morphism.

It is not true in general that any topological manifold admits a smooth structure.
Also, a topological manifold may carry many non-diffeomorphic smooth structures
(with the same underlying topology). J. Milnor proved in 1956 that on the 7-
sphere S7 there are non-diffeomorphic smooth structures. His work was the birth
of Differential Topology. In 1982 S. Donaldson showed that already on R4 there
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exist uncountably many non-diffeomorphic smooth structures. On any topological
n-manifold for n = 1, 2, 3 there exists a unique up to diffeomorphism smooth struc-
ture. In dimension 1 this is easy to prove. In dimension 2 this follows from the
classification of topological surfaces and the uniformization theorem. In dimension
3 it was proved by J. Munkres in 1960. In both cases of dimensions 2 and 3 an im-
portant step in the proof is the non-trivial fact that topological 2- and 3-manifolds
can be triangulated.

1.2 The tangent space

In order to define the derivative of a smooth map between manifolds, we shall
describe the derivative of a map defined on a open subset of euclidean space in a
suitable way that it can be carried over to smooth manifolds.

Let A ⊂ Rn be an open set and p = (p1, ..., pn) ∈ A. We denote by C∞(A, p) the
set of smooth real functions defined on some open neighbourhood of p contained in
A. Let also

S(A, p) = {γ|γ : (−ǫ, ǫ) → A is smooth for some ǫ > 0, with γ(0) = p}.

Two curves γ1, γ2 ∈ S(A, p) are tangent at p if and only if (f ◦ γ1)′(0) = (f ◦ γ2)′(0)
for every f ∈ C∞(A, p). Tangency at p is an equivalence relation ∼p on S(A, p).
The quotient set TpA = S(A, p)/ ∼p is called the tangent space of A at p and carries
a vector space structure which is defined as follows. If [γ1]p, [γ2]p ∈ TpA and λ1,
λ2 ∈ R, then λ1[γ1]p + λ2[γ2]p is the element of TpA represented by

γ(t) = λ1γ1(t) + λ2γ2(t)− (λ1 + λ2 − 1)p.

The zero element of TpA is represented by the constant curve at p. The elements
of TpA are called tangent vectors of A at p. If γj(t) = p + tej , j = 1, 2, ..., n, then
{[γ1]p, [γ2]p, ...[γn]p} is a basis of TpA.

We shall give an alternative ”algebraic” description of the tangent space. To
every tangent vector [γ]p ∈ TpA corresponds a linear operator D[γ]p : C

∞(A, p) → R
which is defined by

D[γ]p(f) = (f ◦ γ)′(0).

This is a fancy way to consider the directional derivative with respect to the velocity
of γ at p. Recall that two functions f , g ∈ C∞(A, p) are said to define the same
germ at p if they agree on some small neighbourhood of p and this is an equivalence
relation on C∞(A, p) whose classes are called the germs of smooth functions at
p. Note that if two functions f , g ∈ C∞(A, p) define the same germ at p, then
D[γ]p(f) = D[γ]p(g).

The set Gp of germs of smooth functions at p can be endowed with the structure
of a commutative, associative real algebra with a unity in the obvious way. The
unity is the germ of the constant function with value 1. It is evident now that to
every tangent vector [γ]p ∈ TpA corresponds a linear operator D[γ]p : Gp → R, as
above, and this correspondence is injective by definition. Moreover, it satisfies the
Leibniz rule for the derivative of a product of functions. Thus, we are led to the
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following.

Definition 1.2.1. A derivation on the algebra Gp of germs of smooth functions at
p is a linear operator D : Gp → R which satisfies the Leibniz rule

D(α · β) = ep(β)D(a) + ep(α)D(β)

for every α, β ∈ Gp, where ep : Gp → R denotes the evaluation at p.

A derivation of Gp vanishes on the germs of constant functions, because

D(1) = D(1 · 1) = 1 ·D(1) + 1 ·D(1) = 2D(1).

The set Tp of all derivations of Gp is obviously a linear subspace of the algebraic
dual of the vector space Gp and the map F : TpA→ Tp defined by

F ([γ]p) = D[γ]p

is a linear monomorphism, because if Dj,p = F ([γj ]p), then

Dj,p(f) =
∂f

∂xj
(p)

for j = 1, 2, ..., n and the set {D1,p,D2,p, ...,Dn,p} is linearly independent, since

Dj,p(x
k) = δjk

where xk : Rn → R denotes the projection onto the k-th coordinate.
It is a non-trivial fact that F is actually a linear isomorphism. Its proof is based

on the following lemma from advanced calculus.

Lemma 1.2.2. For every f ∈ C∞(A, p) there exist g1,..., gn ∈ C∞(A, p) and a
convex open neighbourhood W of p such that

f(x) = f(p) +

n∑

k=1

(xk − pk)gk(x)

for every x = (x1, ..., xn) ∈W , and

gk(p) =
∂f

∂xk
(p)

for every k = 1, 2, ..., n.

Proof. Let W be any convex open neighbourhood of p on which f is defined and let

gk(x) =

∫ 1

0

∂f

∂xk
(tx+ (1− t)p)dt

for every x = (x1, ..., xn) ∈ W and k = 1, 2, ...n. From the Fundamental Theorem
of Calculus and the chain rule we have

f(x)− f(p) =

∫ 1

0

d

dt
(f(tx+ (1− t)p))dt
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=

∫ 1

0

[ n∑

k=1

(xk − pk)
∂f

∂xk
(tx+ (1− t)p)

]
dt =

n∑

k=1

(xk − pk)gk(x).

The rest is obvious. �

Proposition 1.2.3. The set {D1,p,D2,p, ...,Dn,p} is a basis of Tp and therefore F
is a linear isomorphism.

Proof. It suffices to prove that {D1,p,D2,p, ...,Dn,p} generates Tp. Let D ∈ Tp and
ak = D(xk), k = 1, 2, ..., n. For every f ∈ C∞(A, p) we apply Lemma 1.2.2 and then
we have

D(f) = D(f(p))+
n∑

k=1

D((xk − xk(p))gk) =
n∑

k=1

D(xk)gk(p)+
n∑

k=1

(xk(p)− xk(p))D(g)

=

n∑

k=1

ak
∂f

∂xk
(p) =

( n∑

k=1

akDk,p

)
(f). �

Thus, henceforth we shall identify the linear space Tp with TpA.
Let now f = (f1, f2, ..., fm) : A → Rm be a smooth map. The linear map

f∗ : TpA→ Tf(p)Rm defined by

f∗([γ]p) = [f ◦ γ]f(p)
is just the derivative of f at p, since (f ◦γ)′(0) = Df(p) ·γ′(0) for every γ ∈ S(A, p).
This is a convenient way to consider the derivative of a smooth function that can
be carried over to smooth manifolds.

Let M be a smooth n-manifold and p ∈M . We can define

S(M,p) = {γ|γ : (−ǫ, ǫ) →M is smooth for some ǫ > 0, with γ(0) = p}
and consider the set C∞(M,p) of smooth real functions defined on some open
neighbourhood of p in M . As before we call γ1, γ2 ∈ S(M,p) tangent at p if
(f ◦ γ1)′(0) = (f ◦ γ2)′(0) for every f ∈ C∞(M,p) and define the tangent space
TpM of M at p to be the quotient set of this equivalence relation. Let (U, φU )

be a smooth chart of M such that p ∈ U . The map φ̃U : TpM → TφU (p)φ(U)

defined by φ̃U ([γ]p) = [φU ◦ γ]φU (p) is a bijection whose inverse is given by

φ̃U
−1

([ζ]φU (p)) = [φ−1
U ◦ ζ]p. We transfer the vector space structure of TφU (p)φU (U)

to TpM so that φ̃U becomes a linear isomorphism. This vector space structure does
not depend on the choice of the smooth chart (U, φU ), because if (V, φV ) is another
smooth chart of M with p ∈ V , then φ̃U ◦ φ̃−1

V = (φU ◦φ−1
V )∗φV (p) is a linear isomor-

phism, since it is the derivative at φV (p) of the transition map φU ◦ φ−1
V , which is a

smooth diffeomorphism.

TpM TpM

TφV (p)φV (V ) TφU (p)φU (U)

id

φ̃V φ̃U

(φU◦φ−1
V )∗φV (p)
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The elements of the tangent space TpM are called tangent vectors of M at the
point p. From the above discussion, the tangent vectors ofM at p can be considered
as derivations of the algebra of germs Gp(M) of real smooth functions defined on
some open neighbourhood of p in M . If (U, φU ) is a smooth chart of M , where
φU = (x1, x2, ..., xn), and

(
∂

∂xj

)

p

= φ̃U
−1

(Dj,φU (p))

for j = 1, 2, ..., n, then the set of tangent vectors

{(
∂

∂x1

)

p

,

(
∂

∂x2

)

p

, ...,

(
∂

∂xn

)

p

}

is a basis of TpM which depends on φU and is called the canonical basis of TpM
with respect to the chart φU .

If now f :M → P is a smooth map into a smooth m-manifold P , the derivative
of f at the point p ∈M is defined to be the linear map f∗p : TpM → Tf(p)P with

f∗p([γ]p) = [f ◦ γ]f)p)

for every [γ]p ∈ TpM . In particular, φ̃U = (φU )∗p by definition.

Let (U, φ) be a smooth chart of M with p ∈ U and (W,ψ) be a smooth chart of
P with f(U) ⊂W . If φ = (x1, x2, ..., xn) and ψ = (y1, y2, ..., ym), then

ψ∗f(p)

(
f∗p

((
∂

∂xj

)

p

))
= (ψ ◦ f ◦ φ−1)∗φ(p)(Dj,φ(p))

for j = 1, 2, ..., n and therefore the matrix of f∗p with respect to the ordered basis

[(
∂

∂x1

)

p

,

(
∂

∂x2

)

p

, ...,

(
∂

∂xn

)

p

]

of TpM and [(
∂

∂y1

)

p

,

(
∂

∂y2

)

p

, ...,

(
∂

∂ym

)

p

]

of Tf(p)P is the Jacobian matrix at φ(p) of the local representation ψ ◦ f ◦ φ−1 of f .

TpM Tf(p)P

Tφ(p)φ(U) Tψ(f(p))ψ(W )

f∗p

φ∗p ψ∗f(p)

(ψ◦f◦φ−1)∗φ(p)
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1.3 Submanifolds

Let M be a smooth m-manifold and 0 ≤ n ≤ m be an integer. A set N ⊂M is said
to be a (regular or embedded) n-dimensional smooth submanifold of M if for every
p ∈ N there exists smooth chart (U, φ) of M such that p ∈ N and

φ(N ∩ U) = Q ∩ (Rn × {0})

for some open set Q ⊂ Rm. The smooth chart (U, φ) of M is said to be N -
straightening.

If we denote by π : Rm = Rn × Rm−n → Rn the projection onto the first n
coordinates and by i : Rn → Rn × {0} ⊂ Rm the inclusion, then the map

(π ◦ |N∩U )
−1 = φ−1 ◦ i : i−1(Q) →M

is smooth and is usually called local parametrization of N .
Obviously, a n-dimensional smooth submanifold N of M is a topological n-

manifold, with respect to the subspace topology which it inherits fromM . Moreover,

A|N = {(N ∩ U, π ◦ φ|N∩U ) : (U, φ) is a N -straightening smooth chart of M}

is a smooth atlas of N . If (U, φ) and (V, ψ) are two N -straightening smooth charts
of M with N ∩ U ∩ V 6= ∅, the transition map of the corresponding elements of
A|N is π ◦ (ψ ◦φ−1) ◦ i defined on an open subset of Rn. Thus N becomes a smooth
n-manifold.

The local representation of the inclusion iN : N →֒ M with respect to a N -
straightening smooth chart (U, φ) of M and the corresponding smooth chart of N
in A|N , as above, is

φ ◦ iN ◦ (π ◦ φ|N∩U )
−1 = i|i−1(Q) : i

−1(Q) → Rm.

Therefore, iN is smooth and its derivative at every point of N is a linear monomor-
phism. Generalizing, we give the following.
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Definition 1.3.1. Let N be a smooth n-manifold and M be a smooth m-manifold,
with n ≤ m. A smooth map f : N → M is called immersion if its derivative
f∗q : TqN → Tf(q)M is a linear monomorphism for every q ∈ N . If moreover f is a
topological embedding, then f is called a smooth embedding.

Perhaps the most important examples of submanifolds are the level sets of
smooth maps. Conditions which ensure that this kind of subsets of a given
smooth manifold are smooth submanifolds are provided from the Implicit Function
Theorem or the more general Constant Rank Theorem of advanced calculus, which
we shall prove as a consequence of the Inverse Map Theorem.

Theorem 1.3.2. Let A ⊂ Rn be an open set and let f : A→ Rm be a smooth map.
If p ∈ A and the Jacobian matrix Df(x) has constant rank k for every x in some
open neighbourhood of p in A, then there exist an open neighbourhood U ⊂ A of p
and a smooth diffeomorphism φ : U → φ(U) onto an open set φ(U) ⊂ Rn, and an
open neighbourhood V of f(p) and a smooth diffeomorphism ψ : V → ψ(V ) onto an
open set ψ(V ) ⊂ Rm such that the smooth map

ψ ◦ f ◦ φ−1 : φ(U) → ψ(V ) ⊂ Rm

is given by the formula

(ψ ◦ f ◦ φ−1)(x1, ..., xk , xk+1, ..., xn) = (x1, ..., xk, 0, ..., 0)

for every (x1, .., xn) ∈ φ(U).

Proof. Up to translations and linear isomorphisms of Rn and Rm, which are of
course diffeomorphisms, we may assume that p = 0, f(p) = 0 and

∣∣∣∣∣∣∣∣∣

∂f1
∂x1

· · · ∂f1
∂xk

∂f2
∂x1 · · · ∂f2

∂xk
...

...
∂fk
∂x1 · · · ∂fk

∂xk

∣∣∣∣∣∣∣∣∣
6= 0

on an open neighbourhood A0 ⊂ A of 0, where f = (f1, ..., fk, fk+1, ..., fm).
We consider the smooth map F : A0 → Rn defined by

F (x1, ..., xn) = (f1(x
1, ..., xn), ..., fk(x

1, ..., xn), xk+1, ..., xn).

Then, F (0) = 0 and

detDF (0) =

∣∣∣∣∣∣∣∣∣

∂f1
∂x1

(0) · · · ∂f1
∂xk

(0)
∂f2
∂x1

(0) · · · ∂f2
∂xk

(0)
...

...
∂fk
∂x1

(0) · · · ∂fk
∂xk

(0)

∣∣∣∣∣∣∣∣∣
6= 0.

Applying the Inverse Map Theorem, there exist an open neighbourhood U0 ⊂ A0 of
0 such that F (U0) is an open subset of Rn and φ = F |U0 is a smooth diffeomorphism.
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Shrinking, we can take U0 such that φ(U0) is an open cube in Rn with center 0. Now
there exist smooth functions gk+1,..., gm : φ(U0) → R such that

(f ◦ φ−1)(z1, ..., zn) = (z1, ..., zk, gk+1(z
1, ..., zn), ..., gm(z1, ..., zn))

for every (z1, ..., zn) ∈ φ(U0) and gk+1(0) = · · · = gm(0) = 0. Moreover,

Df(φ−1(z))·D(φ−1)(z) = D(f◦φ−1)(z) =




1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
...

...
...

0 0 · · · 1 0 · · · 0

∗ ∗ · · · ∗ ∂gk+1

∂xk+1 (z) · · · ∂gk+1

∂xn (z)
...

...
...

...
...

∗ ∗ · · · ∗ ∂gm
∂xk+1 (z) · · · ∂gm

∂xn (z)




for every z = (z1, ..., zn) ∈ φ(U0). Since Df(φ−1(z)) has constant rank k and
D(φ−1)(z) is invertible for every z = (z1, ..., zn) ∈ φ(U0), we must have

∂gj
∂xl

= 0

on φ(U0) for every j = k+1, ...,m and l = k+1, ..., n. This implies that the smooth
functions gk+1,..., gm do not depend on the variables xk+1,.., xn and descent to
smooth functions (again denoted by) gk+1,..., gm : P → R, where the open cube
P ⊂ Rk is the image of φ(U0) under the projection onto the first k coordinates.

If now ψ : P × Rm−k → Rm is the smooth map defined by

ψ(y1, ..., ym) = (y1, ..., yk, yk+1 − gk+1(y
1, ..., yk), ..., ym − gm(y

1, ..., yk)),

then

Dψ(0) =

(
Ik 0
∗ Im−k

)

and by the Inverse Map Theorem there exists an open neighbourhood V of 0 in
Rm such that ψ(V ) is an open neighbourhood of ψ(0) = 0 and ψ|V is a smooth
diffeomorphism. Let U ⊂ U0 be an open neighbourhood of 0 such that f(U) ⊂ V .
Then,

(ψ ◦ f ◦ φ−1)(z1, ..., zk, zk+1, ..., zn) = (z1, ..., zk , 0, ..., 0)

for every (z1, .., zn) ∈ φ(U). �

Corollary 1.3.3. Let N be a smooth n-manifold, M be a smooth m-manifold, with
n ≤ m, and let f : N → M be an immersion. Then, for every p ∈ N there exist a
smooth chart (U, φ) of N with p ∈ U and a smooth chart (V, ψ) of M with f(U) ⊂ V
such that the corresponding local representation of f is

(ψ ◦ f ◦ φ−1)(x1, ..., xn) = (x1, ..., xn, 0, ..., 0). �

Corollary 1.3.4. Let N be a smooth n-manifold and M be a smooth m-manifold,
with n ≤ m. If f : N → M is a smooth embedding, then f(N) is a n-dimensional
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smooth submanifold of M . �

Let M be a smooth m-manifold, P be a smooth n-manifold, with n ≤ m,
and let f : M → P be a smooth map. We call p ∈ M a critical point of f if the
derivative f∗p : TpM → Tf(p)P is not a linear epimorphism. Note that if p ∈M is a
non-critical point of f , then f∗q has constant maximal rank n for every point q in
some open neighbourhood of p in M . A point c ∈ P is called a regular value of f if
the level set f−1(c) does not contain any critical point of f .

Corollary 1.3.5. Let M be a smooth m-manifold, P be a smooth n-manifold, with
n ≤ m, and let f : M → P be a smooth map. If c ∈ P is a regular value of f , then
the level set f−1(c) is a (m−n)-dimensional smooth submanifold ofM , if non-empty.

Proof. By Theorem 1.3.2, for every point p ∈ f−1(c) there exists a smooth chart
(U, φ) of M with p ∈ U and a smooth chart (V, ψ) of P with f(U) ⊂ V such that
the corresponding local representation of f is

(ψ ◦ f ◦ φ−1)(x1, ..., xm) = (x1, ..., xn)

for every (x1, .., xm) ∈ φ(U). Now we have

φ(f−1(c) ∩ U) = φ(U) ∩ ({ψ(c)} × Rm−n)

and therefore (U, φ) is a f−1(c)-straightening chart of M . �

Definition 1.3.6. Let M be a smooth m-manifold and P be a smooth n-manifold,
with n ≤ m. A smooth map f :M → P onto P is called submersion if its derivative
f∗p : TpM → Tf(p)P is a linear epimorphism for every p ∈M .

Thus, if f : M → P is a submersion, then f−1(c) is a (m − n)-dimensional
smooth submanifold of M for every c ∈ P .

Example 1.3.7. The determinant is a smooth function det : Rn×n → R and the
general linear group GL(n,R) = {A ∈ Rn×n : detA 6= 0} is an open subset of Rn×n.
Let A ∈ GL(n,R) and γ(t) = (1 + t)A. Then, γ(0) = A and

(det)∗A([γ]A) = [det ◦γ]detA.

Also, (det ◦γ)(t) = (1 + t)n detA, and so (det ◦γ)′(0) = n detA 6= 0. This
implies that (det)∗A is non-zero, and hence an epimorphism. This shows that
det : GL(n,R) → R is a submersion. In particular, the special linear group
SL(n,R) = {A ∈ Rn×n : detA = 1} is a (n2 − 1)-dimensional smooth submani-
fold of Rn×n.

1.4 Smooth partitions of unity

Our requirement a smooth manifold to have a countable basis for its topology
implies the existence of technically very useful families of smooth functions, the
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construction of which will be the subject of this section.

Definition 1.4.1. Let M be a smooth manifold and let U be an open cover of
M . A smooth partition of unity subordinated to U is a family of smooth functions
fU :M → [0, 1], U ∈ U , with the following properties:
(i) suppfU = {p ∈M : fU (p) 6= 0} ⊂ U for every U ∈ U .
(ii) The family {suppfU : U ∈ U} of closed subsets of M is a locally finite cover of
M .
(iii)

∑

U∈U
fU (p) = 1 for every p ∈M .

Recall that a family F of subsets of a topological space X is called locally finite
if every point x ∈ X has an open neighbourhood V in X such that the set

{F ∈ F : F ∩ V 6= ∅}

is finite. A family S of subsets of X is called a refinement of F if for every F ∈ F
there exists some S ∈ S such that S ⊂ F .

In order to prove the existence of smooth partitions of unity we shall need some
preliminary lemmas. In the sequel we shall denote by B(x, r) the open ball in Rn

with center x ∈ Rn and radius r > 0.

Lemma 1.4.2. For every 0 < ρ < r there exists a smooth function f : Rn → [0, 1]
such that B(0, ρ) ⊂ f−1(1) and Rn \B(0, r) ⊂ f−1(0).

Proof. It suffices to consider the smooth function g : R → R with

g(t) =

{
e−

1
t , if t > 0,

0, if t ≤ 0

and take f : Rn → [0, 1] defined by

f(x) =
g(r2 − ‖x‖2)

g(r2 − ‖x‖2) + g(‖x‖2 − ρ2)
. �

Functions like f in Lemma 1.4.2 are usually called bump functions.

Lemma 1.4.3. Let M be a smooth n-manifold and let U be an open cover of M .
There exists a countable smooth atlas A of M with the following properties:
(a) The open cover V = {V : (V, φV ) ∈ A} is a locally finite refinement of U .
(b) φV (V ) = B(0, 3) ⊂ Rn, for every (V, φV ) ∈ A.
(c) {φ−1

V (B(0, 1)) : (V, φV ) ∈ A} is an open cover of M .

Proof. There exists a countable open cover {Ak : k ∈ N} of M such that Ak ⊂ Ak+1

and Ak is compact for every k ∈ N , because M is locally compact and its topology
has a countable basis. This sort of cover can be constructed inductively, starting
with any countable open cover {Ck : k ∈ N} such that Ck is compact for every
k ∈ N . First we choose any open set A1 ⊂ M with compact closure such that
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C1 ⊂ A1 and once Ak−1 has been defined we choose Ak ⊂ M to be any open set
with compact closure such that Ak−1 ∪ Ck ⊂ Ak.

The set Ak+1 \ Ak is compact and contained in the open set Ak+2 \ Ak−1. For
every p ∈ Ak+1 \ Ak there exist Up ∈ U and a smooth chart (Vk,p, φVk,p) of M such

that p ∈ Vk,p ⊂ Up ∩ Ak+2 \ Ak−1 and φVk,p(Vk,p) = B(0, 3) with φVk,p(p) = 0. By

compactness of Ak+1 \Ak, there exist p1,...,pmk ∈ Ak+1 \Ak, for some mk ∈ N, such
that

Ak+1 \Ak ⊂ φ−1
Vk,p1

(B(0, 1)) ∪ · · · ∪ φ−1
Vk,pmk

(B(0, 1)).

It suffices now to take

A =
∞⋃

k=1

{(Vk,p1 , φVk,p1 ), ..., (Vk,pmk , φVk,pmk )}. �

Theorem 1.4.4. If M is a smooth n-manifold and U is an open cover of M , then
there exists a smooth partition of unity subordinated to U .

Proof. Let A be the smooth atlas of M provided by Lemma 1.4.3. By Lemma
1.4.2, there exists a smooth function f : Rn → [0, 1] such that B(0, 1) ⊂ f−1(1)
and Rn \B(0, 2) ⊂ f−1(0). For every (V, φV ) ∈ A we consider the smooth function
gV :M → [0, 1] defined by

gV (p) =

{
f(φV (p)), if p ∈ V ,

0, if p ∈M \ V .

According to Lemma 1.4.3, V = {V : (V, φV ) ∈ A} is a locally finite open cover of

M . So the function
∑

V ∈V
gV :M → [0,+∞) is well defined and smooth. Since V is

also a refinement of U , there exists a function σ : V → U such that V ⊂ σ(V ) for
every V ∈ V. For every U ∈ U we define now

fU =
1∑

V ∈V gV
·
∑

σ(V )=U

gV :M → [0, 1].

In case σ−1(U) = ∅ we put fU = 0. It follows from Lemma 1.4.3(c) that fU is a
well defined smooth function Obviously,

suppfU ⊂
⋃

σ(V )=U

suppgV ⊂
⋃

σ(V )=U

V ⊂ U.

and {suppfU : U ∈ U} is locally finite, because V is locally finite. Finally,

∑

U∈U
fU =

1∑
V ∈V gV

·
∑

U∈U

∑

σ(V )=U

gV =
1∑

V ∈V gV
·
∑

V ∈V
gV = 1. �

Corollary 1.4.5. Let M be a smooth manifold and F ⊂ A ⊂M , where F is closed
in M and A is open in M . Then, then exists a smooth function f :M → [0, 1] such
that F ⊂ f−1(1) and M \ A ⊂ f−1(0).
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Proof. From Theorem 1.4.4, there exists a smooth partition of unity {fM\F , fA}
subordinated to the open cover {M \ F,A} of M . It suffices to take f = fA. �

As an application of the existence of smooth partitions of unity we shall give
a partial answer to the following question. Is a smooth manifold diffeomorphic to
a smooth submanifold of some RN for sufficiently large N ∈ N and what is the
minimum value of N for which this is possible?

Theorem 1.4.6. If M is a compact smooth n-manifold, there exist N ∈ N and a
smooth embedding g :M → RN .

Proof. From Lemma 1.4.3 and the compactness of M , there exist some m ∈ N,
a finite family {(Ui, φi) : 1 ≤ i ≤ m} of smooth charts of M and a finite family
{Vi : 1 ≤ i ≤ m} of open subsets of M such that V i ⊂ Ui for all 1 ≤ i ≤ m and

M = U1 ∪ · · · ∪ Um = V1 ∪ · · · ∪ Vm.

For each 1 ≤ i ≤ m there exists a smooth function fi : M → [0, 1] such that
V i ⊂ f−1

i (1) and suppfi ⊂ Ui, from Corollary 1.4.5. The map ψi :M → Rn defined
by

ψi(p) =

{
fi(p)φi(p), if p ∈ Ui,

0, otherwise,

is smooth. The map g :M → (Rn)m × Rm defined by

g(p) = (ψ1(p), ..., ψm(p), f1(p), ..., fm(p))

is smooth and actually an immersion, because for every p ∈ M there exists some
1 ≤ i ≤ m with p ∈ Vi and ψi|Vi = φi|Vi maps Vi diffeomorphically onto an open
subset of Rn. To see that g is injective, let p, q ∈ M be such that g(p) = g(q).
Then, ψi(p) = ψi(q) and fi(p) = fi(q) for every 1 ≤ i ≤ m. There exists however
some 1 ≤ j ≤ m with p ∈ Vj and so fj(q) = fj(p) = 1. Therefore, q ∈ Uj and
φj(p) = ψj(p) = ψj(q) = φj(q), hence p = q. Finally, g is a topological embedding,
since M is compact. �

It has been proved by H. Whitney that a compact smooth n-manifold can be
smoothly embedded in R2n. Also any smooth n-manifold can be embedded in R2n+1

as a closed subset. The presentation of these topics are beyond the scope of these
notes.

1.5 Covering topological dimension of manifolds

A Hausdorff topological space X is said to have covering topological dimension at
most m ∈ Z+ if every open cover of X has an open refinement such that every
point of X is contained in at most m + 1 of its elements. In this case we write
dimX ≤ m. This property is obviously topologically invariant. If dimX ≤ m and
dimX � m − 1, we say that X has covering topological dimension m and write
dimX = m.
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Obviously, if Y is a closed subset of X and dimX ≤ m, then dimY ≤ m.

Lemma 1.5.1. If X is a compact subset of Rm, then dimX ≤ m.

Proof. Since X is compact, it is contained in a cube C and is suffices to prove that
dimC ≤ m. Indeed, if U is an open cover of C, there exists a brick decomposition
of C which refines U so that each point of C is contained in at most m+ 1 bricks.
We can thicken the bricks to get an open refinement of U by open bricks such that
each point of C is contained in at most m+ 1 of its elements. �.

The following lemma is useful in the estimation of covering topological dimen-
sions.

Lemma 1.5.2. Let X be a Hausdorff topological space, m ∈ Z+ and let {An : n ∈ N}
be a sequence of closed subsets of X with the following properties:
(i) An ⊂ intAn+1 for every n ∈ N.

(ii) X =
∞⋃

n=1

An.

(iii) dimA1 ≤ m and dimAn+1 \ An ≤ m for every n ∈ N.
Then dimX ≤ m.

Proof. Let B be an open cover of X. There exists an open refinement B0 of B
such that every element of B0 which intersects An is contained in An+1. Since
dimA1 ≤ m, there exists an open refinement B1 of B0 such that every point of A1

is contained in at most m+ 1 elements of

B1|A1 = {U ∩A1 : U ∈ B1}.

Putting A0 = ∅ we proceed inductively. Suppose that an open cover Bn has been
defined such that every point of An is contained in at most m+ 1 elements of

Bn|An = {U ∩An : U ∈ Bn}.

Since dimAn+1 \ An ≤ m, there exists an open refinement C of Bn such that every
point of An+1 \ An is contained in at most m+ 1 elements of

C|
An+1\An = {U ∩ An+1 \An : U ∈ C}.
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We define an open cover Bn+1 of X as follows. If U ∈ Bn and U ∩ An−1 6= ∅, then
U ∈ Bn+1. If U ∈ Bn and U ∩An 6= ∅ but U ∩An−1 = ∅, then we take

⋃
{V ∈ C : V ⊂ U and V ∩An 6= ∅} ∈ Bn+1.

Finally, V ∈ Bn+1 for every V ∈ C. Then Bn+1 is an open cover of X which an open
refinement of Bn and is such that every point of An+1 is contained in at most m+1
elements of Bn+1|An+1 . It suffices now to take

B′ = {U ⊂ X : U ∈ Bn for every n ∈ N except for finitely many}

and then B′ is an open refinement of B such that every point of X is contained in
at most m+ of its elements. �

Corollary 1.5.3. Let X is a Hausdorff topological space and X1, X2 ⊂ X be two
closed sets. If dimX1 ≤ m and dimX2 ≤ m, then dim(X1 ∪X2) ≤ m.

Proof. We apply the preceding Lemma 1.5.2 for A1 = X1 and An = X2 for all
n ≥ 2. �

Theorem 1.5.4. If M is a topological m-manifold, then dimM ≤ m.

Proof. There exists a countable locally finite cover B = {Xn : n ∈ N} each element
of which is homeomorphic to a compact subset of Rm. We shall apply Lemma 1.5.2.
Let A1 = X1. There exists p2 > 1 such that A1 ⊂ int(X1 ∪ · · · ∪Xp2) and we take
A2 = X1 ∪ · · · ∪ Xp2 . Proceeding inductively in this way we construct a sequence
An = X1 ∪ · · · ∪Xpn , n ∈ N of compact subsets of M with the following properties:
(i) An ⊂ intAn+1 for every n ∈ N.

(ii) X =
∞⋃

n=1

An.

(iii) dimA1 ≤ m and An+1 \ An ⊂ Xpn+1 ∪ · · · ∪Xpn+1 , hence dimAn+1 \An ≤ m
for every n ∈ N, by Lemma 1.5.1 and Corollary 1.5.3.

It follows from Lemma 1.5.2 that dimM ≤ m. �

1.6 Exercises

1. On R we consider the smooth structure B defined by the smooth atlas {(R, ψ)},
where ψ : R → R is the map ψ(t) = t3. Let A denote the standard smooth structure
of R.
(a) Prove that A 6= B.
(b) Prove that id : (R,A) → (R,B) is not a smooth diffeomorphism.
(c) Are the smooth 1-manifolds (R,A), (R,B) diffeomorphic?

2. For every t > 0 we consider the map ht : R → R with ht(x) = x, if x ≤ 0 and
ht(x) = tx, if x ≥ 0. Let At be the smooth structure on R defined by the smooth
atlas {(R, ht)}, t > 0.
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(a) Prove that At 6= As for t 6= s.
(b) Are the smooth 1-manifolds (R,At) and (R,As) diffeomorphic for all t, s > 0?

3. Let U+
i = {(x1, ..., xn+1) ∈ Sn : xi > 0}, U−

i = {(x1, ..., xn+1) ∈ Sn : xi < 0},
and let h±i : U±

i → Rn be the map with

h±i (x1, ..., xn+1) = (x1, ..., xi−1, xi+1, ..., xn+1), 1 ≤ i ≤ n+ 1.

(a) Prove that B = {(U±
i , h

±
i ) : 1 ≤ i ≤ n+ 1} is a smooth atlas on Sn.

(b) Prove that B is equivalent to the smooth atlas

A = {(Sn \ {en+1}, π+), (Sn \ {−en+1}, π−)},

where π± : Sn \ {±en+1} → Rn is the stereographic projection.

4. Let (V, 〈, 〉) be a finite dimensional inner product real vector space and let

S(V ) = {x ∈ V : ‖x‖ = 1},

where ‖x‖ = 〈x, x〉1/2.
(a) If p ∈ S(V ), prove that for every x ∈ S(V ) \ {p} the intersection point of the
line through p and x with the orthogonal complement 〈p〉⊥ is

φ(x) =
x− 〈x, p〉p
1− 〈x, p〉 .

The map φ : S(V ) \ {p} → 〈p〉⊥ is the stereographic projection with respect to p.
(b) Compute φ−1 : 〈p〉⊥ → S(V ) \ {p}.
(c) If ψ : S(V ) \ {−p} → 〈p〉⊥ is the stereographic projection with respect to −p,
compute ψ ◦ φ−1 : 〈p〉⊥ → 〈p〉⊥.

5. Consider the canonical smooth atlas {(U0, φ0), (U1, φ1)} of CP 1 and observe that
CP 1 \ U0 = {[0, 1]} and CP 1 \ U1 = {[1, 0]}. Prove that g : CP 1 → S2 defined by

g[z0, z1] =

{
(π−1

+ ◦ φ0)[z0, z1], if z0 6= 0

(0, 0, 1), if z0 = 0.

is a smooth diffeomorphism, where π+ : S2 \ {(0, 0, 1)} → C denotes the stereo-
graphic projection with respect to the north pole.

6. Let X be a Hausdorff topological space and H(X) be the group of the home-
omorphisms of X onto itself. A subgroup G of H(X) defines on X the following
equivalence relation: x ∼ y if and only if there exists some g ∈ G with y = g(x).
The equivalence classes are called the orbits of G. Let π : X → X/G denote the
quotient map. We say that G acts properly discontinuously on X if every point
x ∈ X has some open neighbourhood U in X such that U ∩ g(U) = ∅, for every
g ∈ G, g 6= id.
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(a) If G acts properly discontinuously, prove that every point [x] ∈ X/G has an
open neighbourhood V ∗ such that

π−1(V ∗) =
⋃

g∈G
g(V ),

where V is a suitable open neighbourhood of x ∈ X, so that g1(V )∩ g2(V ) = ∅, for
g1 6= g2 and π|V : V → V ∗ is a homeomorphism.
(b) Let M be a smooth n-manifold and G be a group of smooth diffeomorphisms
which acts properly discontinuously on M . If the quotient space M/G is Hausdorff,
prove that it is a smooth n-manifold.
(c) Let M be a smooth n-manifold and G be a finite group of smooth diffeomor-
phisms of M . If g(x) 6= x for every x ∈ M , g ∈ G, g 6= id, prove that G acts
properly discontinuously on M , the quotient space M/G is Hausdorff and therefore
a smooth n-manifold.
(d) On Sn the antipodal map a : Sn → Sn with a(x) = −x is a smooth diffeomor-
phism. If G = {id, a}, determine the smooth n-manifold Sn/G.
(e) On the 2-torus T 2 = S1 × S1 let f : T 2 → T 2 be the map

f(e2πix, e2πiy) = (e−2πix,−e2πiy).

If G = {id, f}, Prove that K2 = T 2/G is a smooth 2-manifold. This manifold is
called Klein bottle.
(f) Prove that the group of translations by vectors with integer coordinates, which is
isomorphic to Zn, acts properly discontinuously on Rn and Rn/Zn is diffeomorphic
to the n-torus T n.

7. Prove that the 1-dimensional real projective space RP 1 is deffeomorphic to the
circle S1.

8. Let f :M → N be a bijective smooth map of smooth manifolds. If its derivative
f∗p : TpM → Tf(p)N is a linear isomorphism for every p ∈ M , prove that f is a
smooth diffeomorphism.

9. Let f : M → Q be a smooth map of smooth manifolds and q ∈ Q be a regular
value of f with N = f−1(q) 6= ∅. If iN : N →֒ M is the inclusion, show that
(iN )∗p(TpN) = Kerf∗p for every p ∈ N .

10. Prove that TpS
n = {[γ]p ∈ TpRn+1 : 〈γ′(0), p〉 = 0} for every p ∈ Sn, where 〈, 〉

is the euclidean inner product.

11. Let n > 1 and p : Rn → R be a homogeneous polynomial of degree m ∈ N.
Prove that p−1(c) is a (n−1)-dimensional smooth submanifold of Rn for every c 6= 0.

12. Let M be a smooth m-manifold, N be a smooth n-manifold and let f :M → N
be a smooth map. If q ∈ N is such that f−1(q) 6= ∅ and f has constant rank
k on some open neighbourhood of f−1(q), prove that the level set f−1(q) is a
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(m− k)-dimensional smooth submanifld of M .

13. Prove that the set N = {A ∈ R2×2 : A has rank 1} is a 3-dimensional smooth
submanifold of R2×2.

14. The set S of all real n× n symmetric matrices is a vector subspace of Rn×n of
dimension n(n+ 1)/2. Let f : GL(n,R) → S be the map f(A) = A · At.
(a) Prove that f∗A(H) = AHt +HAt for every H ∈ TAGL(n,R), A ∈ GL(n,R).
(b) Prove that the identity In ∈ S is a regular value of f .

(c) Prove that the orthogonal group O(n,R) is a n(n−1)
2 -dimensional smooth

submanifold of GL(n,R).
(d) Prove that TInO(n,R) = {H ∈ Rn×n : H +Ht = 0}.

15. Prove that the map g : T 2 → R3 with

g(e2πiφ, e2πiθ) = ((2 + cos θ) cosφ, (2 + cos θ) sinφ, sin θ)

is an embedding of the 2-torus T 2 into R3 and its image is

g(T 2) = {(x, y, z) ∈ R3 : (
√
x2 + y2 − 2)2 + z2 = 1}.

16. Prove that the map f : S2 → R6 with

f(x, y, z) = (x2, y2, z2,
√
2yz,

√
2zx,

√
2xy)

an immersion which induces an embedding of the real projective plane RP 2 into
R6.

17. Prove that the map f : RP 2 → R3 with f([x, y, z]) = (yz, zx, xy) is an
immersion and the map g : RP 2 → R4 with g([x, y, z]) = (yz, zx, xy, x2 +2y2 +3z2)
is an embedding.

18. Let M , N be two smooth n-manifolds and let f :M → N be an immersion.
(a) Prove that f is an open map.
(b) If M is compact and N is connected, prove that f(M) = N .

19. Let J : R2n → R2n be the orthogonal transformation (complex structure of R2n)
with J(x, y) = (−y, x) for every (x, y) ∈ R2n = Rn ×Rn.
(a) Prove that the set S = {A ∈ R2n×2n : AtJA = J} is a smooth submanifold of
R2n×2n.
(b) Describe TI2nS as a vector subspace of R2n×2n.
(c) Find the dimension of S.
(Hint : Prove that J ∈ R2n×2n is a regular value of the smooth map
f : GL(2n,R) → {H ∈ R2n×2n : H +Ht = 0} with f(A) = AtJA.)

20. Let d ∈ N, n ≥ 2 and denote by V 2n
d the set of points (z0, z1, ..., zn) ∈ Cn+1 \{0}

which are solutions of the equation

zd0 + z21 + · · ·+ z2n = 0.
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(a) Prove that V 2n
d is a smooth 2n-manifold.

(b) Prove that the set W 2n−1
d = V 2n

d ∩S2n+1 is a smooth (2n− 1)-manifold. W 2n−1
d

is called Brieskorn manifold.

21. The unit tangent bundle of the 2-sphere S2 is the subset

T 1S2 = {(p, v) ∈ R3 × R3 : ‖p‖ = 1, ‖v‖ = 1, 〈p, v〉 = 0}

of R6, where 〈, 〉 is the euclidean inner product on R3.
(a) Prove that T 1S2 is a 3-dimensional smooth submanifold of R6.
(b) Prove that F : SO(3,R) → T 1S2 with F (A) = (Ae3, Ae1) is a smooth diffeo-
morphism.
(c) Let D3 = {x ∈ R3 : ‖x‖ ≤ 1} and let g : D3 → SO(3,R) be the map with
g(0) = I3 and such that if x ∈ D3 \ {0} then g(x) is the rotation with respect
to the axis generated by x by the angle ‖x‖ · π. Prove that g induces a smooth
diffeomorphism from RP 3 onto SO(3,R).
(Hint : Observe that T 1S2 = f−1(0), where f : R3 × R3 → R3 is the smooth map
f(p, v) = (‖p‖2 − 1, ‖v‖2 − 1, 〈p, v〉).)



Chapter 2

Vector fields

2.1 The tangent bundle and vector fields

In this section we shall define the notion of vector field on a smooth manifold, which
is a generalization and globalization of the notion o ordinary differential equation
on an open subset of euclidean space. A continuous vector field is a map which to a
point p assigns a tangent vector with point of application p and varies continuously
with p. So, first we need to consider the set of all tangent vectors.

Let M be a smooth n-manifold and consider the disjoint union of all tangent
spaces at points of M , that is the set

TM =
⋃

p∈M
{p} × TpM.

Let π : TM → M denote the natural projection π(p, v) = p, for v ∈ TpM , p ∈ M .
We shall endow TM with the structure of a smooth manifold, so that π becomes
smooth and a submersion.

If A is a smooth atlas of M , we define the class

Ã = {(π−1(U), φ̃U ) : (U, φU ) ∈ A}

where φ̃U : π−1(U) → φU (U)× Rn is the bijection defined by

φ̃U (p, v) = (φU (p), (φU )∗p(v))

for every p ∈ U , v ∈ TpM . In other words, if φU = (x1, ..., xn), then for p ∈M and

v =
n∑

k=1

vk
(

∂

∂xk

)

p

∈ TpM

we have φ̃U (v, v) = (x1(p), ..., xn(p), v1, ..., vn).

If now (U, φU ), (V, φV ) ∈ A are such that U ∩ V 6= ∅, then the transition map
φ̃U ◦ φ̃−1

V : φV (U ∩ V )× Rn → φU (U ∩ V )× Rn is given by the formula

(φ̃U ◦ φ̃−1
V )(x, y) = ((φU ◦ φ−1

V )(x),D(φU ◦ φ−1
V )(x)(y))

25
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and is thus a smooth diffeomorphism. This means that Ã would be a smooth atlas
of TM , if we had a topology on TM making it a topological 2n-manifold in such
a way the the sets π−1(U) were open and the maps φ̃U homeomorphisms. This
topology is provided by the following.

Lemma 2.1.1. Let X be a non-empty set and U be a family of subsets of X which
covers X. We assume that for every U ∈ U there exist a topological space XU and a
bijection ψU : U → XU such that for U , V ∈ U with U ∩ V 6= ∅ the set ψV (U ∩ V )
is open in XV and the map ψU ◦ ψ−1

V : ψV (U ∩ V ) → XU is continuous.
Then there exists a unique topology on X with respect to which every element of

U becomes an open set and every map ψU becomes a homeomorphism.

Proof. Our assumptions imply that ψU ◦ ψ−1
V : ψV (U ∩ V ) → ψU (U ∩ V ) is a

homeomorphism for every U , V ∈ U with U ∩ V 6= ∅. The family

T = {A ⊂ X : ψU (U ∩A) is open in XU for every U ∈ U}

is a topology on X which contains the family U . By the definition of T , each ψU is
an open map. For the continuity of ψU let W ⊂ XU be an open set. Then,

(ψU ◦ ψ−1
V )(ψV (ψ

−1
U (W ) ∩ V )) =W ∩ ψU (U ∩ V )

is open in XU for every U , V ∈ U with U ∩ V 6= ∅. Since ψU ◦ ψ−1
V is a homeomor-

phism, ψV (ψ
−1
U (W ) ∩ V )) must be open in XV . This shows that ψ−1

U (W ) ∈ T and
that ψU is continuous. The uniqueness of the topology T is obvious. �

Applying now Lemma 2.1.1, we obtain a unique topology on TM with re-
spect to which each set π−1(U) is open and each map φ̃U is a homeomorphism
for (U, φU ) ∈ A. Since M and Rn are Hausdorff spaces and have countable
basis for their topologies, the same is true for TM . Thus, TM becomes a
smooth 2n-manifold. For every (U, φU ) ∈ A the corresponding local representation
φU ◦ π ◦ φ̃−1

U : φU (U)×Rn → φU (U) of π is the projection (φU ◦ π ◦ φ̃−1
U )(x, y) = x.

Hence π is a submersion.
The triple (TM,π,M) is the tangent bundle of M . The natural projection π

is the bundle map and M is the base space of the bundle. The total space of the
bundle is TM . Abusing terminology, we shall also use the term tangent bundle for
TM itself.

Definition 2.1.2. A smooth vector field on a smooth n-manifold M is a smooth
map X : M → TM which to every p ∈ M assigns a tangent vector X(p) ∈ TpM .
Briefly, X ◦ π = idM or in other words X is a smooth section of π.

The set X (M) of all smooth vector fields of a smooth manifold M is an infi-
nite dimensional real vector space. It is also a module over the commutative ring
C∞(M) of all real valued smooth functions defined on M . Every smooth diffeo-
morphism f : M → M induces a linear isomorphism f∗ : X (M) → X (M) defined
by (f∗X)(f(p)) = f∗p(X(p)) for every p ∈ M . The smooth vector field X of M is
called f -invariant if f∗X = X.
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Let X be a smooth vector field on a smooth n-manifold M . If A is a smooth
atlas of M anf Ã is the corresponding smooth atlas of TM , then X(U) ⊂ π−1(U)
for every (U, φU ) ∈ A. There exists a smooth map FU : φU (U) → Rn, which is
called the principal part of X with respect to (U, φU ), such that the corresponding
local representation φ̃U ◦X ◦ φ−1

U : φU (U) → φU (U)× Rn of X is

(φ̃U ◦X ◦ φ−1
U )(x) = (x, FU (x)).

Thus, if φU = (x1, ..., xn) and FU = (F 1, ...Fn), then

X(p) =

n∑

k=1

F k(φ(p))

(
∂

∂xk

)

p

for every p ∈ U and the smoothness of X is equivalent to the smoothness of FU . In
particular, on U we have the basic smooth vector fields

∂

∂x1
,
∂

∂x2
, ...,

∂

∂xn

defined by the smooth chart φU .

Apart for the notion of tangent vector field on a smooth manifold we need to
have a notion of tangent vector field along a smooth curve.

Definition 2.1.3. A smooth vector field along a smooth curve γ : I → M on a
smooth n-manifold M , for I ⊂ R an open interval, is a smooth map X : I → TM
which to every s ∈ I assigns a tangent vector X(s) ∈ Tγ(s)M .

If γ : I →M is a smooth curve on a smooth n-manifold M , then for every s ∈ I
the tangent vector

γ̇(s) = γ∗s

((
d

dt

)

s

)

is the velocity of γ at γ(s), where
d

dt
is the basic vector field on R. Thus, γ̇ : I → TM

is a smooth vector field along γ, which is called the velocity field of γ.

Recall that

(
d

dt

)

s

is the usual derivation at s. Using the notation of section

1.4, note that [γ]p and γ̇(0) denote one and the same vector in TpM for p ∈M and
γ ∈ S(M,p), namely the velocity of γ at p = γ(0).

If γ(I) ⊂ U for the smooth chart (U, φU ) of M and φU ◦ γ = (γ1, ..., γn) is the
corresponding local representation of γ, then

γ̇(s) =

n∑

k=1

(γk)′(s)

(
∂

∂xk

)

γ(s)

for every s ∈ I.
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2.2 Flows of smooth vector fields

LetM be a smooth n-manifold and let X be a smooth vector field onM . An integral
curve of X is a smooth curve γ : I → M , defined on an open interval I ⊂ R, such
that

γ̇(s) = X(γ(s))

for every s ∈ I.

If (U, φU ) is a smooth chart of M with φU = (x1, ..., xn) and FU = (F 1, ..., Fn)
is the principal part of X on U with respect to φU , the discussion in the preceding
section 2.1 shows that a smooth curve γ : I → U is an integral curve of X on U if and
only if its local representation φU ◦ γ = (γ1, ..., γn) is a solution of the autonomous
n-dimensional ordinary differential equation x′(s) = FU (x(s)), which means that it
satisfies the system of ordinary differential equations

(γk)′(s) = F kU ((γ
1(s), ..., γn(s)), s ∈ I, k = 1, 2, ..., n.

Thus, locally on M the integral curves of smooth vector fields on M are the so-
lutions of autonomous ordinary differential equations. The standard existence and
uniqueness theorems combined with continuous and differentiable dependence on
initial conditions imply that if X is a smooth vector field onM , then for every point
p ∈ M there exist an open neighbourhood V of p in M , some ǫ > 0 and a smooth
map ΦV : (−ǫ, ǫ)× V →M such that ΦV (0, q) = q for every q ∈ V and

∂ΦV

∂t
(s, q) = X(ΦV (s, q))

for every (s, q) ∈ (−ǫ, ǫ) × V . Moreover, the map ΦV is unique, in the sense that
if W , δ > 0 and ΦW : (−δ, δ) ×W → M is another triple like V , ǫ and ΦV , then
ΦV = ΦW on (−ǫ, ǫ) × V ∩ (−δ, δ) ×W . Thus, for every q ∈ V the smooth curve
ΦV (·, q) : (−ǫ, ǫ) → M is the unique integral curve of X defined on the interval
(−ǫ, ǫ) and satisfying the initial condition ΦV (0, q) = q. The map ΦV is called the
local flow of X on the open set V .

The existence of maximal integral curves globally on M can be established in
the usual way.

Proposition 2.2.1. If X is a smooth vector field on M , then for every p ∈ M
there exist ap < 0 < bp and a maximal integral curve Φp : (ap, bp) → M of X with
Φp(00 = p in the sense that if γ : I → M is any other integral curve of X defined
on an open interval I ⊂ R which contains 0 such that γ(0) = p then I ⊂ (ap, bp)
and γ = Φp|I .

Proof. Let γj : Ij → M , j = 1, 2, be integral curves of X defined on open intervals
such that 0 ∈ I1 ∩ I2, with γ1(0) = γ(0) = p. Then, I1 ∩ I2 is a non-empty open
interval and the set I∗ = {s ∈ I1 ∩ I2 : γ1(s) = γ2(s)} is non-empty and closed in
I1 ∩ I2, by continuity. If s ∈ I∗, there exists δ > 0 such hat (s − δ, s + δ) ⊂ I1 ∩ I2.
The smooth curves βj : (−δ, δ) → M defined by βj(t) = γ(t + s), j = 1, 2, are
integral curves of X with β1(0) = γ1(s) = γ2(s) = β2(0). By uniqueness of
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solutions, there exists some 0 < η ≤ δ such hat β1 = β2 on (−η, η). Therefore,
(s−η, s+η) ⊂ I∗, which shows that I∗ is open in I1∩ I2. By connectedness now we
must have I∗ = I1 ∩ I2. This shows that the union of all open intervals I containing
0 on which there is an integral curve γ : I → M of X with γ(0) = p, is an open
interval (ap, bp) on which a maximal integral curve Φp : (ap, bp) → M of X with
Φp(00 = p is well defined. �

Recall that the open interval on which a maximal integral curve is defined is
not necessarily the whole real line R. For instance, the maximal solution of the
autonomous ordinary differential equation x′(s) = (x(s))2 on R with initial condition
x(0) = 1 is Φ : (−∞, 1) → R given by the formula

Φ(s) =
1

1− s
.

Lemma 2.2.2. Let p ∈ M and Φp : (ap, bp) → M be a maximal integral curve
of a smooth vector field X om M with Φp(0) = p. If t ∈ (ap, bp) and q ∈ Φp(t),
then the maximal integral curve Φq with Φq(0) = q is defined on the open interval
(ap − t, bp − t) and Φq(s) = Φp(s+ t).

Proof. Since the smooth curve γ : (ap − t, bp − t) → M with γ(s) = Φp(s + t) is an
integral curve of X with γ(0) = q, the maximal integral curve Φq with Φq(0) = q is
defined at least on (ap − t, bp − t). Conversely, if the interval of definition of Φq is
the open interval (aq, bq), then aq ≤ ap − t, bp − t ≤ bq and δ : (aq + t, bq + t) →M
defined by δ(s) = Φq(s − t) is an integral curve with δ(0) = p. Hence ap ≤ aq + t,
bq + t ≤ ap. �

Using the notation of Lemma 2.2.2 for a smooth vector field X on M , we define

D =
⋃

p∈M
(ap, bp)× {p}

and Φ : D →M by Φ(s, p) = Φp(s), which has the following properties:
(i) Φ(0, p) = p for every p ∈M and
(ii) Φ(t,Φ(s, p)) = Φ(t + s, p) for every p ∈ M and s, t ∈ R such that at least one
side of this equality is defined.

Theorem 2.2.3. The set D is open in R×M and Φ : D →M is smooth.

Proof. For p ∈M we consider the set I∗ consisting of all ap < t < bp for which there
exist δ > 0 and an open neighbourhood U of p in M such that (t− δ, t+ δ)×U ⊂ D
and Φ is smooth on (t− δ, t+ δ)× U . Then, 0 ∈ I∗ and I∗ is an open set. Thus, it
suffices to prove that I∗ is closed in the interval (ap, bp), by connectedness. Suppose
that ap < s < bp lies in the closure of I∗. There exist an open neighbourhood
V of Φ(s.p) in M , some ǫ > 0 and a local flow ΦV : (−ǫ, ǫ) × V → M , so that

ΦV = Φ|(−ǫ,ǫ)×V . By continuity, there exists some t ∈ I∗ with |t− s| < ǫ

3
and

Φ(t, p) ∈ V . Since t ∈ I∗, there exist 0 < δ <
ǫ

3
and an open neighbourhood U of
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p in M such that (t − δ, t + δ) × U ⊂ D and Φ is smooth on (t − δ, t + δ) × U . By
continuity of Φ(t, .) : U →M and the fact that Φ(t, p) ∈ V , shrinking U if necessary,
we may take U so that Φ({t} × U) ⊂ V . So, from Lemma 2.2.2 we have

(−ǫ, ǫ) ⊂ (aΦ(t,q), bΦ(t,q)) = (aq − t, bq − t)

for every q ∈ U , which implies that (t − ǫ, t + ǫ) × U ⊂ D, and Φ is smooth on
(t− ǫ, t+ ǫ)× U , because

Φ(r, q) = ΦV (r − t,Φ(t, q))

for every (r, q) ∈ (t− ǫ, t+ ǫ)× U . Now

(s, p) ∈ (s − δ, s + δ) × U ⊂ (t− ǫ, t+ ǫ)× U ⊂ D,

which means that s ∈ I∗. �

The fact that D is an open subset of R ×M is equivalent to saying that the
function a : M → [−∞, 0) is upper semicontinuous and b : M → (0,+∞] is lower
semicontinuous.

The smooth map Φ : D → M is called the flow of the smooth vector field X.
The vector field X can be reconstructed from its flow by setting

X(p) =
∂Φ

∂t
(0, p)

for every p ∈ M . The image Φ((ap, bp) × {p}) of the maximal integral curve of X
through the point p ∈M is called the orbit of p with respect to X.

A smooth vector field X on M is called complete if every maximal integral curve
of X is defined on the whole real line R or D = R ×M , using the above notation.
In this case, the flow Φ : R ×M → M is a smooth action of the additive group of
real numbers R on M . For every t ∈ R the map Φt = Φ(t, .) : M →M is a smooth
diffeomorphism. Moreover, Φ0 = idM and Φt ◦Φs = Φt+s for every t, s ∈ R and the
family (Φt)t∈R is called the one-parameter group of diffeomorphisms defined by X.
For every t ∈ R and p ∈M we have

(Φt)∗p(X(p)) = (Φt)∗p

(
∂Φ

∂t
(0, p)

)
=
∂(Φt ◦Φp)

∂t
(0).

However,
(Φt ◦Φp)(s) = Φ(t,Φ(s, p)) = Φ(t+ s, p) = Φ(s,Φ(t, p))

for every s ∈ R and therefore

(Φt)∗p(X(p)) = X(Φt(p)).

This means that X is Φt-invariant for every t ∈ R.
In case the smooth vector field X is not complete, the smooth diffeomorphisms

Φt are defined on suitable open subsets of M .
The integral curves of a smooth vector field X which are not defined on the

whole real line must necessarily explode at infinity. This is made more precise in
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the following.

Lemma 2.2.4. Let X be a smooth vector field with flow Φ : D → M and p ∈ M .
If bp < +∞, then for every compact set K ⊂ M there exists 0 < T < bp such that
Φ(t, p) ∈M \K for every T < t < bp.

Proof. For every q ∈ K there exist δq > 0 and an open neighbourhood Vq of q
such that (−δq, δq) × Vq ⊂ D. By compactness of K, there exist q1,..., qm ∈ K,
for some m ∈ N, such that K ⊂ Vq1 ∪ · · · ∪ Vqm . If now δ = min{δq1 , ..., δqm}, then
(−δ, δ) ×K ⊂ D. Thus, if there exists a sequence tk ր bp such that Φ(tk, p) ∈ K
for every k ∈ N, we arrive at the contradiction 0 < δ < bp − tk for all k ∈ N. �

This implies the following important fact.

Corollary 2.2.5. Every smooth vector field on a compact smooth manifold is
complete. �

It is possible to find all integral curves of a given smooth vector field only in very
rare cases. The aim of the qualitative (or geometric) theory of dynamical systems
is to find the distribution of the time oriented orbits of vector fields studying their
asymptotic behaviour. In this point of view, we may replace X with f · X where
f : M → (0,+∞) is a smooth function, because both vector fields have the same
orbits. Indeed, if Φ : D → M is the flow of X, for every p ∈ M the smooth map
h : (ap, bp) → R defined by

h(s, p) =

∫ s

0

1

f(Φ(t, p))
dt

is strictly increasing and h((ap, bp)) is an open interval. Also, (h−1)′(s) =
f(Φ(h−1(s)), p). It follows now that the maximal integral curve of f ·X through p
is just Φp ◦ h−1 : h((ap, bp)) → M . In other words, the maximal integral curves of
f ·X are reparametrizations of the maximal integral curves of X.

The following can be obtained as a consequence of the existence of smooth
partitions of unity.

Theorem 2.2.6. If X is a smooth vector field of a smooth manifold M , then there
exists a smooth function f : M → (0, 1] such that the smooth vector field f · X is
complete.

Proof. Let Φ : D → M be the flow of X as above. Since D is an open subset of
R×M , the function g :M → (0, 1] defined by

g(p) = min{1,−ap, bp}

is lower semicontinuous. Thus, every p ∈ M has an open neighbourhood Wp such

that g(q) >
1

2
g(p) for every q ∈ Wp. By Theorem 1.4.4, there exists a smooth
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partition of unity {fp : p ∈M} subordinated to the open cover {Wp : p ∈M}. The
function f :M → (0, 1] defined by

f(q) =
1

2

∑

p∈M
g(p)fp(q)

is smooth and for every q ∈M there exist p1,..., pk ∈M , for some k ∈ N, such that
q ∈ suppfp1 ∩ · · · ∩ suppfpk and fp(q) = 0 for p 6= p1, ..., pk. It follows that

f(q) =
1

2

k∑

j=1

g(pj)fpj(q) <
k∑

j=1

g(q)fpj(q) = g(q) = min{1,−aq, bq}

for every q ∈M .

Let now ψ : D → R be the smooth function defined by

ψ(s, p) =

∫ s

0

1

f(Φ(t, p))
dt.

The smooth map h : D → R ×M with h(s, p) = (ψ(s, p), p) is obviously injective,
since

∂ψ

∂t
(s, p) =

1

f(Φ(s, p))
≥ 1.

Moreover, ψ(s, p) ≥ s for 0 ≤ s < bp and ψ(s, p) ≤ s for ap < s ≤ 0. Thus,
lim
s→bp

ψ(s, p) = +∞, if bp = +∞. In case bp < +∞, for every 0 < s < bp we have

ψ(s, p) >

∫ s

0

1

bΦ(t,p)
dt =

∫ s

0

1

bp − t
dt = − log

(
1− s

bp

)

and therefore again lim
s→bp

ψ(s, p) = +∞. Similarly, lim
s→ap

ψ(s, p) = −∞ for all p ∈M .

This shows that h is surjective.

Since h is a bijection and its derivative h∗(s,p) is a linear isomorphism at every
point (s, p) ∈ D, it follows from the Inverse Map Theorem that h is a smooth
diffeomorphism.

D R×M

M

h

Φ Ψ

The proof is now concluded by the observation that Ψ = Φ ◦ h−1 : R×M →M
is the flow of f ·X, because

∂Ψ

∂t
(0, p) = f(Φ(h−1(0, p))) · ∂Φ

∂t
(h−1(0, p)) = f(p) · ∂Φ

∂t
(0, p) = f(p) ·X(p)

for every p ∈M . �
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2.3 The Lie bracket

Let M be a smooth n-manifold and let X be a smooth vector field on M . At every
point p ∈ M the value X(p) ∈ TpM of X is a derivation on the algebra of germs
Gp(M) of smooth functions defined on neighbourhoods of p and

X(p)(f) = lim
t→0

f(Φ(t, p))− f(p)

t

for every smooth function f which is defined on some open neighbourhood of p in
M , where Φ is the flow of X.

Apart from functions, it is possible to define a special kind of derivation of
another smooth vector field Y with respect to X, by transporting Y along the
integral curves of X by the flow of X. The result can be defined in a purely algebraic
way as follows.

Let p ∈ M . If f ∈ C∞(M,p), then Y f(q) = Y (q)(f) is a smooth function
Y f ∈ C∞(M,p) for every Y ∈ X (M). We define

[X,Y ](p)(f) = X(p)(Y f)− Y (p)(Xf)

for every f ∈ C∞(M,p) and X, Y ∈ X (M). We observe that

[X,Y ](p)(f · g) = X(p)(f · Y g + g · Y f)− Y (p)(f ·Xf + g ·Xf)

= f(p)X(p)(Y g) + Y (p)(g)X(p)(f) + Y (p)(f)X(p)(g) + g(p)X(p)(Y f)

−f(p)Y (p)(Xg) − Y (p)(f)X(p)(g) − Y (p)(g)X(p)(f) − g(p)Y (p)(Xf)

= f(p) · [X,Y ](p)(g) + g(p) · [X,Y ](p)(f).

Therefore, [X,Y ](p) is a derivation of the algebra of germs Gp(M) and so is a tangent
vector in TpM .

Let (U, φ) be a smooth chart of M with φ = (x1, ..., xn). Then

[
∂

∂xi
,
∂

∂xj

]
=

∂

∂xi

(
∂

∂xj

)
− ∂

∂xj

(
∂

∂xi

)
= 0

on U for all i, j = 1, 2, ..., n. If now X, Y ∈ X (U) and

X =

n∑

i=1

Xi ∂

∂xi
, Y =

n∑

j=1

Y j ∂

∂xj
,

then for every p ∈ U and f ∈ C∞(M,p) we have

[X,Y ](p)(f) =

n∑

i,j=1

Xi(p)

(
∂

∂xi

)

p

(
Y j ∂f

∂xj

)
−

n∑

i,j=1

Y j(p)(p)

(
∂

∂xj

)

p

(
Xi ∂f

∂xi

)

=
n∑

i,j=1

Xi(p)
∂Y j

∂xi
(p)

∂f

∂xj
(p) +

n∑

i,j=1

Xi(p)Y j(p)
∂

∂xi

(
∂f

∂xj

)
(p)
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−
n∑

i,j=1

Y j(p)
∂Xi

∂xj
(p)

∂f

∂xi
(p)−

n∑

i,j=1

Y j(p)Xi(p)
∂

∂xj

(
∂f

∂xi

)
(p)

=
n∑

j=1

( n∑

i=1

Xi(p)
∂Y j

∂xi
(p)− Y i(p)

∂Xj

∂xi
(p)

)
∂f

∂xj
(p).

This means that

[X,Y ] =

n∑

j=1

( n∑

i=1

Xi ∂Y
j

∂xi
− Y i ∂X

j

∂xi

)
∂

∂xj

on U .
The above show that [X,Y ] ∈ X (M) for every X, Y ∈ X (M), and is called the

Lie derivative of Y with respect to X. The so defined function

[., .] : X (M)× X (M) → X (M)

is called the Lie bracket and has the following rather obvious properties:
(i) It is bilinear and alternating.
(ii) It satisfies the Jacobi identity, that is

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

for every X, Y , Z ∈ X (M).
(iii) [X, fY ] = f [X,Y ] +Xf · Y for every f ∈ C∞(M) and X, Y ∈ X (M).
(iv) If F : M → M is a smooth diffeomorphism, then [F∗X,F∗Y ] = F∗[X,Y ] for
every X, Y ∈ X (M). More generally, letM be a smooth n-manifold, L be a smooth
k-manifold, k ≤ n, and let g : L→M be an injective immersion. Let X, Y ∈ X (M)
be such that X(g(x)), Y (g(x)) ∈ g∗x(TxL) for every x ∈ L. Then, there exist unique
X̃(x), Ỹ (x) ∈ TxL such that g∗x(X̃(x)) = X(g(x)) and g∗x(Ỹ (x)) = Y (g(x)) and it
follows from the local presentation of immersions provided by the Constant Rank
Theorem 1.3.2 that X̃ , Ỹ ∈ X (L). Now we have

g∗x([X̃, Ỹ ](x)) = [X,Y ](g(x))

for every x ∈ L. Indeed, let x ∈ L and let f be a smooth function defined on some
open neighbourhood of g(x). Note first that the chain rule implies that

Ỹ (f ◦ g) = Y f ◦ g.

From the definitions now we have

g∗x([X̃, Ỹ ](x))f = [X̃, Ỹ ](x)(f ◦ g) = X̃(x)(Ỹ (f ◦ g))− Ỹ (x)(X̃(f ◦ g))

= X̃(x)(Y f ◦ g) − Ỹ (x)(Xf ◦ g) = X(g(x))(Y f)− Y (g(x))(Xf) = [X,Y ](g(x))f.

The structure on a vector space E imposed by an alternating, bilinear map
[., .] : E × E → E, which satisfies the Jacobi identity is called a Lie algebra. The
following formula reveals the true nature of the Lie bracket.
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Theorem 2.3.1. Let M be a smooth n-manifold and X, Y ∈ X (M). If Φ : D →M
is the flow of X, then

[X,Y ](p) = lim
t→0

1

t

(
(Φ−t)∗Φ(t,p)(Y (Φ(t, p))− Y (p)

)

for every p ∈M .

For the proof we shall need the following technical lemma.

Lemma 2.3.2. Let U , V ⊂ M be two open neighbourhoods of the point p ∈ M
for which there exists ǫ > 0 such that Φ((−ǫ, ǫ) × V ) ⊂ U . Then, for every smooth
function f : U → R there exists a smooth function g : (−ǫ, ǫ) × V → R with the
following properties:
(i) f(Φ(−t, q)) = f(q)− tg(t, q) for every (t, q) ∈ (−ǫ, ǫ)× V .
(ii) X(q)(f) = g(0, q) for every q ∈ V .

Proof. If h : (−ǫ, ǫ) × V → R is the smooth function defined by h(s, q) =
f(Φ(−s, q))− f(q), and if we define g : (−ǫ, ǫ)× V → R by

g(t, q) = −
∫ 1

0

∂h

∂s
(ts, q)ds,

then

−tg(t, q) =
∫ t

0

∂h

∂s
(s, q)ds = h(t, q).

By continuity, we also have

g(0, q) = lim
t→0

g(t, q) = lim
t→0

f(Φ(−t, q))− f(q)

−t = X(q)(f). �

Proof of Theorem 2.3.1. Let f : U → R be a smooth function defined on an open
neighbourhood U of the point p ∈ M . There exist an open neighbourhood V of p
and ǫ > 0 such that Φ((−ǫ, ǫ)× V ) ⊂ U . Let g be the smooth function supplied by
Lemma 2.3.2 and let gt = g(t, .). Then, Xf = g0 and

lim
t→0

1

t

(
(Φ−t)∗Φ(t,p)(Y (Φ(t, p))− Y (p)

)
(f)

= lim
t→0

1

t

[
f∗p
(
(Φ−t)∗Φ(t,p)(Y (Φ(t, p)))

)
− Y (p)(f)

]

= lim
t→0

1

t

[
Y (Φ(t, p))(f ◦ Φ−t)− Y (p)(f)

]

= lim
t→0

1

t

[
Y (Φ(t, p))(f − tgt)− Y (p)(f)

]

= lim
t→0

1

t

[
Y (Φ(t, p))(f)− Y (p)(f)

]
− lim
t→0

Y (Φ(t, p))(gt)
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= lim
t→0

1

t

[
Y f(Φ(t, p))− Y f(p)

]
− Y (p)(Xf)

= X(p)(Y f)− Y (p)(Xf) = [X,Y ](p)(f). �

Definition 2.3.3. Two complete smooth vector fields X, Y on a smooth manifold
M commute if [X,Y ] = 0.

This terminology is justified by the following.

Proposition 2.3.4. Let X and Y be two smooth vector fields on a smooth manifold
M . Let (Φt)t∈R be the one-parameter group of smooth diffeomorphisms of M defined
by the flow of X and (Ψt)t∈R be the one-parameter group of smooth diffeomorphisms
defined by the flow of Y . Then [X,Y ] = 0 if and only if Φt ◦Ψs = Ψs ◦Φt for every
t, s ∈ R.

Proof. If Φt ◦ Ψs = Ψs ◦ Φt for every t, s ∈ R, differentiating with respect to s at
0, we get (Φt)∗Y = Y for every t ∈ R. It follows now from Theorem 2.3.1 that
[X,Y ] = 0.

Conversely, let [X,Y ] = 0 and let p ∈M and s ∈ R. The velocity of the smooth
curve γ : R → TΨs(p)M defined by γ(t) = (Φ−t)∗Φt(Ψs(p))(Y ((Φt(Ψs(p)))) is

γ̇(t) = lim
h→0

1

h

[
(Φ−t+h)∗Φt+h(Ψs(p))(Y (Φt+h(Ψs(p)))− (Φ−t)∗Φt(Ψs(p))(Y ((Φt(Ψs(p))))

]

= (Φ−t)∗Φt(Ψs(p))

(
lim
h→0

1

h

[
(Φ−h)∗Φt+h(Ψs(p))(Y (Φh(Φt(Ψs(p))))) − Y (Φt(Ψs(p)))

])

= (Φ−t)∗Φt(Ψs(p))([X,Y ](Φt(Ψs(p)))) = 0.

Thus, γ is constant, which means that (Φ−t)∗Φt(Ψs(p))(Y ((Φt(Ψs(p)))) = Y (Ψs(p))
or equivalently

Y (Φt(Ψs(p))) = (Φt)∗Ψs(p)(Y (Ψs(p)))

for every p ∈ M and t, s ∈ R. In other words, Y is Φt-invariant for every t ∈ R.
This implies that Φt ◦ Ψp is an integral curve of Y and since (Φt ◦ Ψp)(0) = Φt(p),
we must necessarily have Φt ◦Ψp = ΨΦt(p), hence Φt(Ψs(p)) = Ψs(Φt(p)). �

If X and Y are two commuting complete smooth vector fields on a smooth
manifold M with corresponding one-parameter groups of smooth diffeomorphisms
(Φt)t∈R and (Ψt)t∈R, respectively, then F : R2 ×M →M defined by

F (t, s, p) = (Φt ◦Ψs)(p)

is a smooth action of the abelian group (R2,+) onM . More generally, a finite family
of mutually commuting complete smooth vector fields X1,..., Xk with corresponding
one-parameter groups of smooth diffeomorphisms (Φ1

t )t∈R,..., (Φ
k
t )t∈R, respectively,

defines a smooth action F : Rk × M → M of the abelian group (Rk,+) by the
formula

F (t1, ..., tk, p) = (Φ1
t1 ◦ · · ·Φ

k
tk
)(p).
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2.4 Geometric distributions

Let M be a smooth n-manifold and let D ⊂ TM be such that Dp = D ∩ TpM 6= ∅
for every p ∈M . We denote by XD(M) the vector space of all smooth vector fields
of M with values in D and by XD

loc(M) the set of all smooth vector fields defined on
open subsets of M with values in D. We shall call D a geometric distribution on M
if it has the following two properties:
(i) Dp is a vector subspace of TpM for every p ∈M .
(ii) For every p ∈M and v ∈ Dp there exists X ∈ XD(M) such that X(p) = v.

The non-negative integer k(p) = dimDp is called the rank of D at p. Note that
k is a lower semicontinuous function of p, because condition (ii) implies that every
p ∈M has an open neighbourhood V such that k(q) ≥ k(p) for every q ∈ V .

An integral manifold of D is a pair (L, g) where L is a connected smooth
manifold and g : L → M is an injective immersion such that g∗x(TxL) = Dg(x) for
every x ∈ L. In particular the rank of D is constant along an integral manifold.
The geometric distribution D is called integrable if for every p ∈ M there exists an
integral manifold (L, g) of D with p ∈ g(L).

Examples 2.4.1. (a) Every X ∈ X (M) generates a geometric distribution D
so that Dp = R · X(p) for every p ∈ M . The maximal integral curves of X give
integral manifolds of D which fill out M and so M is integrable. More precisely,
let Φ : D → M be the flow of X. If X(p) = 0, then the integral manifold through
p is ({0},Φp) and the rank at p is 0. If X(p) 6= 0 and the maximal integral
curve Φp : (ap, bp) → M is not injective, it is not hard to see that (ap, bp) = R
and Φp is periodic of period T = min{t > 0 : Φp(t) = p} > 0. In this case Φp

induces the embedding Φ̃p : S1 → M well defined by Φ̃p(e2πit) = Φp(tT ) and
(S1, Φ̃p) is the integral manifold through p. In any other case the maximal integral
curve Φp : (ap, bp) → M is an injective immersion and ((ap, bp),Φ

p) is the integral
manifold through p.

(b) Let M be a smooth n-manifold and P be a smooth k-manifold with n ≥ k. If
f : M → P is a smooth submersion then D = Kerf∗ is a geometric distribution
of constant rank n − k, which is integrable. From Corollary 1.3.5, the connected
components of the level sets of f are the integral manifolds of D.

(c) On R2 let D be the geometric distribution globally defined by the smooth vector
fields

∂

∂x
, y

∂

∂y
.

The rank of D at points of the horizontal axis is 1 and it is 2 everywhere else.
Obviously, D is integrable and has only three integral manifolds, These are the
horizontal axis, the open upper half plane and the open lower half plane.

(d) Let D be the geometric distribution globally defined by the smooth vector fields

∂

∂x
, x

∂

∂y
.
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The rank at points of the vertical axis is 1 and everywhere else it is 2. This time D
is not integrable, because the only possible integral manifold through (0, 0) must be
an open interval in the vertical axis, since the rank remains constant along integral
manifolds. This contradicts the fact that D(0,0) is not tangent to the vertical axis.

Let D be an integrable geometric distribution and let (L, g) be an integral man-
ifold. We recall that if X, Y ∈ XD(M), there are unique X̃ , Ỹ ∈ X (L) such that
g∗x(X̃(x)) = X(g(x)), g∗x(Ỹ (x)) = Y (g(x)) and

[X,Y ](g(x)) = g∗x([X̃, Ỹ ](x)) ∈ g∗x(TxL) = Dg(x)

for every x ∈ L. This leads to the following.

Definition 2.4.2. A geometric distribution D on a smooth manifold M is called
involutive if XD(M) is a Lie subalgebra of X (M), that is [X,Y ] ∈ XD(M) for every
X, Y ∈ X (M).

According to the above, every integrable geometric distribution is involutive.

Examples 2.4.3. (a) The geometric distribution defined by a smooth vector field
is involutive.

(b) The geometric distribution on R2 of Example 2.4.1(c) is involutive, since

[
∂

∂x
, y

∂

∂y

]
= 0

but the one of Example 2.4.1(d) is not, because

[
∂

∂x
, x

∂

∂y

]
=

∂

∂y
.

(c) The Heisenberg distribution on R3 is the constant rank 2 geometric distribution
which is globally generated by the smooth vector fields

X =
∂

∂x
− 1

2
y
∂

∂z
, Y =

∂

∂y
+

1

2
x
∂

∂z

that is not invilutive since [X,Y ] =
∂

∂z
.

The question arises whether an involutive geometric distribution is integrable.
In order to study this, we shall need the following two notions. First, a geometric
distribution D on a smooth manifold M is said to be homogeneous if it is invariant
by the flow of every X ∈ XD

loc(M). The second notion is given in the following.

Definition 2.4.4. Let D be a geometric distribution on a smooth n-manifold M .
Let p ∈ M and k = dimDp. A smooth chart (U, φ) of M where φ = (x1, ..., xn) is
said to be D-adapted at the point p if the following conditions are satisfied.
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(i) φ(U) = Rn and φ(p) = 0.

(ii)
∂

∂x1
, ...,

∂

∂xk
∈ XD

loc(M).

(iii) The rank of D is constant along the slices φ−1(Rk × {c}), c ∈ Rn−k.

In the particular case of a constant rank k geometric distribution D condition
(iii) is trivial and D|U is integrable with integral manifolds the slices φ−1(Rk×{c}),
c ∈ Rn−k.

The adapted charts are the higher dimensional analogues of flow boxes in the
theory of dynamical systems.

Proposition 2.4.5. Let X be a smooth vector field on a smooth n-manifold M .
If p ∈ M is such that X(p) 6= 0, there exists a smooth chart (U, φ) of M with

φ = (x1, ..., xn) such that p ∈ U and X|U =
∂

∂x1
.

Proof. Let Φ : D → M be the flow of X. There exists a smooth chart (W,ψ)

of M with ψ(p) = 0 and X(p) =

(
∂

∂y1

)

p

, where ψ = (y1, ..., yn). There exists

an open neighbourhood V ⊂ W of p and ǫ > 0 such that (−ǫ, ǫ) × V ⊂ D and
Φ((−ǫ, ǫ) × V ) ⊂ W . The set S = ψ(V ) ∩ ({0} × Rn−1) is an open neighbourhood
of 0 in Rn−1. If F : (−ǫ, ǫ)× S →M is the smooth map defined by

F (t, x) = Φ(t, ψ−1(x))

we have F∗(0,0)(e1) = X(p) and F∗(0,0)(ej) =

(
∂

∂yj

)

p

for 2 ≤ j ≤ n. This means

that F∗(0,0) is a linear isomorphism and from the Inverse Map Theorem there exists
an open neighbourhood A ⊂ (−ǫ, ǫ) × S of (0, 0) such that U = F (A) is an open
neighbourhood of p = F (0, 0) and F |A : A → U is a diffeomorphism. Therefore,
if φ = (F |A)−1, then (U, φ) is a smooth chart of M with φ(p) = 0 ∈ Rn and

X|U =
∂

∂x1
, where φ = (x1, ..., xn). �

The following characterization of integrable geometric distributions is due to P.
Stefan and H.J. Sussman.

Theorem 2.4.6. For a geometric distribution D on a smooth n-manifold M the
following statements are equivalent:
(a) D is integrable.
(b) D is involutive and has constant rank along the maximal integral curves of every
X ∈ XD

loc(M).
(c) D is homogeneous.
(d) At every point of M there exists some D-adapted chart.

Proof. We have already shown above that (a) implies (b). In order to prove that
(b) implies (c), we show first that every point p ∈M has an open neighbourhood U
such that if X ∈ XD

loc(M) is defined on U with flow Φ, then (Φt)∗p(Dp) = DΦt(p) for
all t for which Φt(p) is defined.
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If k = dimDp, there is an open neighbourhood U of p and Y1,..., Yk ∈ X (U) such
that {Y1(p), ..., Yk(p)} is a basis of Dp and {Y1(q), ..., Yk(q)} is a linearly independent
subset of Dq for every q ∈ U . LetX ∈ XD

loc(M) be defined on U with flow Φ : D → U .
As in the proof of Proposition 3.3.4 we consider the smooth parametrized curves
γi : (ap, bp) → TpM , 1 ≤ i ≤ k, defined by

γi(t) = (Φ−t)∗Φt(p)(Yi(Φt(p))

where (ap, bp) is the interval of definition of the maximal integral curve of X through
p. If we show that the linearly independent set {γ1(t), ..., γk(t)} ⊂ TpM is contained
in Dp, we will have (Φt)∗p(Dp) ⊂ DΦt(p) and hence (Φt)∗p(Dp) = DΦt(p), by our
assumption that the rank of D remains constant along the integral curves of the
elements of XD

loc(M). From Theorem 2.3.1, the velocity field of γi is

γ̇i(t) = (Φ−t)∗Φt(p)([X,Yi](Φt(p))), ap < t < bp.

Since by assumption the rank of D is constant along the integral curves of X, the set
{Y1(Φt(p)), ..., Yk(Φt(p))} is a basis of DΦt(p) and since D is involutive, there exist
unique smooth functions λji : (ap, bp) → R, 1 ≤ i, j ≤ k such that

[X,Yi](Φt(p)) =
k∑

j=1

λji(t)Yj(Φt(p))

for every ap < t < bp and 1 ≤ i ≤ k. Thus, γ1,..., γk satisfy the system of linear
ordinary differential equations

γ̇i(t) =

k∑

j=1

λji(t)γj(t), ap < t < bp, 1 ≤ i ≤ k.

From the existence and uniqueness of solutions and since γi(0) ∈ Dp, 1 ≤ i ≤ k, we
conclude that γi(t) ∈ Dp for every t ∈ (ap, bp) and 1 ≤ i ≤ k.

Let now X ∈ XD
loc(M) be defined on an arbitrary open set A ⊂ M with flow

Φ : D → A and let (t, p) ∈ D. By compactness of Φ([0, t] × {p}) and the above,
there exists a partition {0 = t0 < · · · < tm = t} of [0, t], for some m ∈ N, such that
(Φs)∗Φti (p)(DΦti (p)

) = DΦti+s(p)
for every 0 ≤ s ≤ ti+1 − ti, 0 ≤ i < m. Therefore,

(Φt)∗p(Dp) = (Φt−tm−1 ◦ · · · ◦ Φt1)∗p(Dp) = DΦt(p).

In order to prove that (c) implies (d) we generalize the proof of Proposition
2.4.5. on the existence of flow boxes for smooth vector fields. Let p ∈ M and
suppose that k = dimDp. As before, there is an open neighbourhood U of p and
Y1,..., Yk ∈ X (U) such that {Y1(p), ..., Yk(p)} is a basis of Dp and {Y1(q), ..., Yk(q)} is
a linearly independent subset of Dq for every q ∈ U . There are Yk+1,..., Yn ∈ X (U)
such that {Y1(q), ..., Yk(q)} is a basis of TqM for every q ∈ U . There exists ǫ > 0
such that the smooth mao Ψ : (−ǫ, ǫ)n →M with

Ψ(t1, ..., tn) = (ΨY1
t1 ◦ · · · ◦ΨYn

tn )(p)
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is defined, where ΨYi denotes the flow of Yi, 1 ≤ i ≤ n. Since Ψ∗0(ei) = Yi(p),
1 ≤ i ≤ n, by the Inverse Map Theorem, we can choose ǫ > 0 so that Ψ is a
smooth diffeomorphism onto an open subset V of M . If ψ = Ψ−1, then (V, ψ) is
a smooth chart of M with ψ(p) = 0. Suppose that ψ = (x1, ..., xn). If q ∈ V and
ψ(q) = (t1, ..., tn), then

(
∂

∂xi

)

q

= (ΨY1
t1 ◦ · · · ◦ΨYi

ti
)∗Yi((Ψ

Yi+1

ti+1 ◦ · · · ◦ΨYn
tn )(p))

belongs to Dq for 1 ≤ i ≤ k, by our assumption that D is homogeneous. Finally, D
has constant rank on each slice ψ−1((−ǫ, ǫ)k ×{c}), because D is homogeneous and
every point q ∈ ψ−1((−ǫ, ǫ)k × {c}) can be joined to Ψ(0, c) with the concatenation
of paths of integral curves of Y1,... Yk.

Obviously, (d) implies integrability. �.

In the particular case of a geometric distribution of constant rank the preceding
integrability criterion is known as the Frobenius’ Theorem, although it had been
originally proven by A. Clebsch in the context of partial differential equations.

Corollary 2.4.7. A geometric distribution of constant rank on a smooth manifold
is integrable if and only if it is involutive.

In the rest of this section we shall restrict ourselves to the case of integrable
geometric distributions of constant rank and be concerned with the existence and
uniqueness of maximal integral manifolds. Two integral manifolds (L, g) and (K,h)
of an integrable geometric distribution D of constant rank are called equivalent
if there exists a diffeomorphism f : K → L such that h = g ◦ f . In other words,
equivalent integral manifolds are ”reparametrizations” to each other. An integral
manifold (L, g) is called maximal if there does not exist an integral manifold (K,h)
such that g(L) is a proper subset of h(K).

Lemma 2.4.8. Let D be an integrable geometric distribution of constant rank k on
a smooth n-manifold M and let (L, g) be an integral manifold. If p ∈ L and (U, φ)
is a D-adapted chart at p, then the connected components of g(L)∩U are countably
many and each one of them is contained in a slice φ−1(Rk×{c}) for some c ∈ Rn−k.

Proof. Let C be a connected component of g(L)∩U and let π : Rk ×Rn−k → Rn−k

denote the projection. Since the topology of L has a countable basis and g(L) ∩ U
is a union of slices, (π ◦ φ)(g(L) ∩ U) is a countable set. Thus, (π ◦ φ)(C) is a
connected subset of a countable subset of Rn−k, hence a singleton. �

Proposition 2.4.9. Let D be an integrable geometric distribution of constant rank
k on a smooth n-manifold M and let (L, g) be an integral manifold. If N is a smooth
manifold and f : N →M is a smooth map such that f(N) ⊂ g(L), there is a unique
smooth map f̃ : N → L such that g ◦ f̃ = f .
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L

N M

g
f̃

f

Proof. Since g is an injective immersion, there is a unique map f̃ : N → L such
that g ◦ f̃ = f and it suffices to show that f is continuous. Let V ⊂ L be an open
set, x ∈ V and y ∈ f̃−1(x). Since D is integrable, there exists a D-adapted chart
(U, φ) at g(x), so that g−1(φ−1(Rk×{0})) is an open neighbourhood of x contained
in V . Since N is a manifold, hence locally connected, the connected component W
of f−1(V ) which contains y is open in N . To prove that f̃ is continuous, it suffices
to show that f̃(W ) ⊂ g−1(φ−1(Rk × {0})) or equivalently f(W ) ⊂ φ−1(Rk × {0}).
Indeed, since f(W ) is connected, it is contained in a connected component of
g(L) ∩ U . It follows form Lemma 2.4.8 that f(W ) ⊂ φ−1(Rk × {0}), because
f(y) ∈ φ−1(Rk × {0}). �

Theorem 2.4.10. If D is an integrable geometric distribution of constant rank k
on a smooth n-manifold M , then for every p ∈ M there exists a unique maximal
integral manifold (L, g) of D such that p ∈ g(L) and for any other integral manifold
(K,h) such that p ∈ h(K) we have h(K) ⊂ g(L).

Proof. First we shall show the existence of maximal integral manifolds through the
points of M . Let p ∈M and let L be the set of all points in M which can be joined
to p by a concatenation of smooth paths on integral curves of elements of XD

loc(M).
Since the topology of M has a countable basis and D is integrable, there exists a
countable smooth atlas A of M consisting of D-adapted charts. Thus, for every
q ∈ L there exists a D-adapted chart (U, φ) ∈ A such that q ∈ φ−1(Rk × {c}) ⊂ L,
for some c ∈ Rn−k. Applying Lemma 2.1.1, there is a unique topology on L with
respect to which all such slices become open subsets of L and is therefore finer than
the subspace topology. It is clear that with this topology L will become a smooth
k-manifold as soon as we show that it has a countable basis. For this it suffices to
show that given (U, φ) ∈ A only a countable number of the slices φ−1(Rk×{c}) ⊂ L,
c ∈ Rn−k can be contained in L. Each point of U ∩ L can be joined to p with a
piecewise smooth path which is a concatenation of smooth paths on integral curves
of elements of XD

loc(M) and so can be covered (not uniquely) by a finite sequence of
D-adapted charts in A. Since there are only countably many such finite sequences,
it suffices to show that only countably many of the slices φ−1(Rk × {c}) ⊂ L,
c ∈ Rn−k, are reachable in this way. This is true because such a slice can intersect
at most countably many analogous slices in another D-adapted chart in A. Indeed,
if S = φ−1(Rk × {c}) and (V, ψ) ∈ A, then S ∩ V is open in S and so consists of
countably many connected components each of which is an integral manifold of D
in V and hence contained in a slice of (V, ψ).

If now g : L→M is the inclusion, then g is an injective immersion and (L, g) is
an integral manifold of D by construction. In order to prove that is is maximal, let
(K,h) be another integral manifold of D such that p ∈ h(K). For every q ∈ h(K)
there exists a piecewise smooth path γ : [0, 1] → K from h−1(p) to h−1(q) and
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h◦γ : [0, 1] → h(K) is a piecewise smooth path from p to q which is a concatenation
of paths on integral curves of elements of XD

loc(M). Hence q ∈ L.

The uniqueness of (L, g) is a consequence of the preceding Proposition 2.4.9. If
(K,h) is another maximal integral manifold of D and p ∈ h(K), then h(K) ⊂ L, as
we showed above, and actually h(K) = L, by maximality. From Proposition 2.4.9,
there exists a unique smooth map h̃ : K → L such that g ◦ h̃ = h.

L

K M

gh̃

h

Since h̃ is a bijective immersion between smooth manifolds of the same dimension
k, it is a diffeomorphism. Hence (K,h) is equivalent to (L, g). �

2.5 Exercises

1. Let M be a smooth n-manifold, A = {(Ui, φi) : i ∈ I} be a smooth atlas of M
and Ā = {(π−1(Ui), φ̄i) : i ∈ I} be the corresponding smooth atlas of TM , where
π : TM →M is the tangent bundle projection. Prove that

detD(φ̄i ◦ φ̄−1
j )(x, v) > 0

for every i, j ∈ I with Ui ∩ Uj 6= ∅ and (x, v) ∈ φj(Ui ∩ Uj)× Rn.

2. Let M be a smooth manifold and G be a group of diffeomorphisms of M which
acts properly discontinuously on M . If X ∈ X (M) and g∗X = X for every g ∈ G,
prove that there exists a unique X̃ ∈ X (M/G) such that p∗p(X(p)) = X̃(π(p)))
for every p ∈ M , where π : M → M/G is the quotient map. Construct a smooth
vector field on the real projective plane RP 2, which vanishes at exactly one point
and every other maximal integral curve is periodic.

3. A smooth n-manifoldM is called parallelizable if there are X1,X2,...,Xn ∈ X (M)
such that {X1(p),X2(p), ...,Xn(p)} is a basis of TpM for every p ∈ M . Prove that
M is parellelizable if and only if its tangent bundle is trivial, which means that there
exists a smooth diffeomorphism f : TM →M ×Rn such that the following diagram
commutes

TM M × Rn

M

f

π projection

and f maps linearly TpM onto {p} × Rn for every p ∈ M . Prove that the circle S1

and the n-torus T n are parallelizable.
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4. On R2n the nowhere vanishing smooth vector field

X = x2
∂

∂x1
− x1

∂

∂x2
+ ...+ x2n

∂

∂x2n−1
− x2n−1 ∂

∂x2n

is tangent to S2n−1. In case n = 2, complete this vector field with two other vector
fields to prove that the 3-sphere S3 are parallelizable.

5. Let M be a smooth manifold and f : M → M be a diffeomorphism. If
X ∈ X (M) has flow Φ : D → M , prove that the flow Ψ of f∗X is given by the
formula Ψ(t, f(p)) = f(Φ(t, p)).

6. Let h : [0, 1] → [0, π] be a smooth function with h−1(0) = [0, 1/5] ∪ [4/5, 1] and
h−1(π/2) = [2/5, 3/5]. We extend h on R periodically by h(x + 1) = h(x). Prove
that the smooth vector fields

X(t) = t2 cos2 h(t)
d

dt
and Y (t) = t2 sin2 h(t)

d

dt

on R are complete, but X + Y is not complete.

7. Let M be a smooth manifold, X ∈ X (M) with flow φ : D →M , where

D =
⋃

p∈M
(ap, bp)× {p}.

If f : M → (0, 1] is a smooth function such that f(p) < min{−ap, bp} for every
p ∈M , prove that the smooth vector field f ·X is complete.

8. On R3 we consider the smooth vector fields

X = z
∂

∂y
− y

∂

∂z
, Y = x

∂

∂z
− z

∂

∂x
, Z = y

∂

∂x
− x

∂

∂y
.

(a) Prove that the map g : R3 → X (R3) with

g(a, b, c) = aX + bY + cZ

is a linear monomorphism which has the additional property g(A×B) = [g(A), g(B)]
for every A, B ∈ R3, where × is the usual exterior product on R3.
(b) Prove that the vector fields X, Y and Z generate a geometric distribution of
constant rank 2 on R3 \ {0} which is integrable. What are its maximal integral
manifolds?

9. LetM be a smooth manifold and X, Y ∈ X (M) be complete with flows Φ and Ψ,
respectively. If there exists a smooth function h : M → R such that [X,Y ] = hX,
prove

(Ψt ◦ Φs)(p) = (ΦTp(t,s) ◦Ψt)(p)

for every p ∈M , t, s ∈ R, where Tp : R× R → R is the smooth function

Tp(t, s) =

∫ s

0

(
exp
(∫ t

0
h(ψτ (φσ(p)))dτ

))
dσ.



Chapter 3

Riemannian manifolds

3.1 Connections

A straight line segment in euclidean n-space Rn is the unique piecewise smooth
curve of minimum length between its endpoints. Equivalently, straight lines in Rn

are the smooth curves whose acceleration vanishes identically. One way to define
a notion of ”straight line” on a smooth manifold is by defining first the notion of
acceleration. The difficulty now lies in the fact that if M is a smooth manifold,
I ⊂ R is an open interval and γ : I → M is a smooth curve, the velocity vectors
γ̇(t) and γ̇(s) belong to different vector spaces for t 6= s and their difference has no
meaning. This difference can become meaningful if we have a way to connect the
tangent spaces of M at the points γ(t), t ∈ I. This requires the endowment of M
with an extra structure. This structure can be described elegantly in an algebraic
way.

Definition 3.1.1. A (linear) connection on a smooth n-manifold M is a map

∇ : X (M)× X (M) → X (M)

with the following properties, writing ∇XY instead of ∇(X,Y ):
(i)∇f1X1+f2X2Y = f1∇X1Y + f2∇X2Y , for every f1, f2 ∈ C∞(M) and X1, X2,
Y ∈ X (M).
(ii) ∇X(a1Y1 + a2Y2) = a1∇XY1 + a2∇XY2 for every a1, a2 ∈ R and X, Y1,
Y2 ∈ X (M).
(iii) ∇X(fY ) = f∇XY +Xf · Y for every f ∈ C∞(M) and X, Y ∈ X (M).

The smooth vector field ∇XY is called the covariant derivative of Y in the
direction of X. Some immediate consequences of the above definition are given in
the following lemmas.

Lemma 3.1.2. If ∇ is a connection on a smooth n-manifold M and p ∈ M , then
for every X, Y ∈ X (M) the vector (∇XY )(p) ∈ TpM depends only on the values of
X and Y in arbitrarily small open neighbourhoods of p.

45



46 CHAPTER 3. RIEMANNIAN MANIFOLDS

Proof. By bilinearity, it suffices to prove that (∇XY )(p) = 0 in case there exists
an open neighbourhood V of p such that X|V = 0 or Y |V = 0. By Corollary 1.4.5,
there exists a smooth function f :M → [0, 1] such that f(p) = 1 and suppf ⊂ V .

If Y |V = 0, then fY = 0 on M and so

0 = ∇X(fY )(p) = f(p)(∇XY )(p) + (Xf)(p) · Y (p) = (∇XY )(p).

If X|V = 0, we have fX = 0 on M , and

0 = (∇fXY )(p) = f(p)(∇XY )(p) = (∇XY )(p). �

Lemma 3.1.3. If ∇ is a connection on a smooth n-manifold M and p ∈ M , then
for every X, Y ∈ X (M) the vector (∇XY )(p) ∈ TpM depends only on the tangent
vector X(p) and the values of Y in arbitrarily small open neighbourhoods of p.

Proof. It suffices to prove that (∇XY )(p) = 0 if X(p) = 0. In view of the preceding
Lemma 3.1.2, we can work locally in the domain of a smooth chart (U, φ) of M with
p ∈ U . If φ = (x1, ..., xn), there exist X1,..., Xn ∈ C∞(U) such that

X|U =
n∑

k=1

Xk ∂

∂xk
.

If X(p) = 0, we have Xk(p) = 0 for 1 ≤ k ≤ n and

(∇XY )(p) =
n∑

k=1

Xk(p)
(
∇ ∂

∂xk
Y
)
(p) = 0. �

According to the above Lemma 3.1.3, it is legitimate to write henceforth ∇X(p)Y
instead of (∇XY )(p). The same argument of the proof shows that if

S : X (M)× · · · × X (M) → X (M)

is a C∞(M)-m-multilinear map, then for every X1,..., Xm ∈ X (M) and p ∈ M the
value S(X1, ...,Xm)(p) depends only on the values X1(p),..., Xm(p) and so we can
write S(X1(p), ...,Xm(p)) instead.

Lemma 3.1.4. If ∇ is a connection on a smooth n-manifold M and p ∈ M , then
for every X, Y ∈ X (M) the vector (∇XY )(p) ∈ TpM depends only on the tangent
vector X(p) and the values Y (γ(t)) for any smooth curve γ : (−ǫ, ǫ) → M , ǫ > 0,
such that γ(0) = p and γ̇(0) = X(p).

Proof. According to the preceding Lemmas 3.1.2 and 3.1.3, we may assume that
γ((−ǫ, ǫ)) ⊂ U for some smooth chart (U, φ) of M with p ∈ U . Let φ = (x1, ..., xn).
There exist Y 1,..., Y n ∈ C∞(U) such that

Y |U =

n∑

k=1

Y k ∂

∂xk



3.1. CONNECTIONS 47

and

∇X(p)Y =

n∑

k=1

Y k(p)∇X(p)
∂

∂xk
+

n∑

k=1

(Y k ◦ γ)′(0)
(

∂

∂xk

)

p

.

If Y (γ(t)) = 0 for all |t| < ǫ, then obviously ∇X(p)Y = 0. �

We can now find a local formula for a given connection ∇ in the domain of a
smooth chart (U, φ) of M with φ = (x1, ..., xn). There exist unique Γkij ∈ C∞(U),
1 ≤ i, j, k ≤ n, such that

∇ ∂

∂xi

∂

∂xj
=

n∑

k=1

Γkij
∂

∂xk

for every 1 ≤ i, j ≤ n. The smooth functions Γkij are called the Christoffel symbols
of ∇ with respect to the smooth chart (U, φ). If now

X =

n∑

k=1

Xk ∂

∂xk
and Y =

n∑

k=1

Y k ∂

∂xk
,

a routine computation shows that on U we have

∇XY =
n∑

k=1

(
X(Y k) +

n∑

i,j=1

ΓkijX
iY j

)
∂

∂xk
.

Conversely, given smooth functions Γkij : U → R, 1 ≤ i, j, k ≤ n, the above
formula defines a connection on U , because for every f ∈ C∞(U) we have

∇X(fY ) =
n∑

k=1

(
X(fY k) +

n∑

i,j=1

ΓkijX
ifY j

)
∂

∂xk

=
n∑

k=1

(
Xf · Y k + fX(Y k) + f

n∑

i,j=1

ΓkijX
iY j

)
∂

∂xk
= Xf · Y + f∇XY.

The connection on Rn with Christoffel symbols identically equal to zero is called
the euclidean connection and is given by the formula

∇XY =

n∑

k=1

X(Y k)
∂

∂xk
.

In other words, the covariant derivative of Y in the direction of X with respect to
the euclidean connection is the directional derivative of Y in the direction of X.

Example 3.1.5. A (n − 1)-dimensional smooth submanifold M of Rn is usually
called hypersurface. We identify the tangent space TpM at a point p ∈ M with
its image under the derivative of the inclusion and consider it a vector subspace of
TpRn. The euclidean connection ∇ on Rn induces a connection on any hypersurface
M in Rn. We observe first that if p ∈ M and (U, φ) is a M -straightening chart of
Rn with φ(U ∩M) ⊂ Rn−1 × {0} and p ∈ U ∩M , then for every X ∈ X (M) there
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exists an extension X̃ ∈ X (U), that is X̃|U∩M = X|U∩M . For every X, Y ∈ X (M)
we put now

∇X(p)Y = πp(∇X(p)Ỹ )

where πp : TpRn → TpM is the projection with respect to the orthogonal splitting
TpRn = TpM ⊕ (TpM)⊥. By Lemma 3.1.4, this definition does not depend on the
choice of the extension Ỹ . Obviously, ∇ is a connection on M and is called the
euclidean connection of the hypersurface M .

Proposition 3.1.6. On every smooth manifold M there are connections.

Proof. From the above, there are connections locally onM . Let A be a smooth atlas
of M . For every (U, φU ) ∈ A there is a connection ∇U on U . Let {fU : (U, φU ) ∈ A}
be a smooth partition of unity subordinated to the open cover {U : (U, φU ) ∈ A} of
M . Then, the formula

∇XY =
∑

(U,φU )∈A
fU∇U

XY

for X, Y ∈ X (M), defines a connection on M because if f ∈ C∞(M), we have

∇X(fY ) =
∑

(U,φU )∈A
fU∇U

X(fY ) =
∑

(U,φU )∈A
fU(Xf · Y + f∇U

XY )

=

( ∑

(U,φU )∈A
fU

)
Xf · Y + f

∑

(U,φU )∈A
fU∇U

XY = Xf · Y + f∇XY. �

In view of Lemma 3.1.4, given a connection it is possible to define a covariant
differentiation of smooth vector fields along a smooth curve. Let I ⊂ R be an open
interval and γ : I → M be a smooth curve. The set X (γ) of smooth vector fields
along γ is a vector space.

Proposition 3.1.7. Let ∇ be a connection on a smooth n-manifold M . For every
smooth curve γ : I →M there exists a unique linear operator

D

dt
: X (γ) → X (γ)

with the following properties:

(i)
D

dt
(fX) = f ′X + f

DX

dt
for every X ∈ X (γ) and smooth function f : I → R.

(ii) If X ∈ X (γ) has a smooth extension X̃ ∈ X (V ) on an open set V which contains
γ(I), then

DX

dt
(t) = ∇γ̇(t)X̃, t ∈ I.

The vector field
DX

dt
along γ is called the covariant derivative of X along γ.

Proof. We shall prove uniqueness first. As in the proof of Lemma 3.1.2 we see

that for every t0 ∈ I the value
DX

dt
(t0) depends only on the values of X on an
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arbitrarily small open interval with center t0. Let (U, φ) be a smooth chart of M
with φ = (x1, ..., xn) and γ(t0) ∈ U . There exist ǫ > 0 such that γ((t0−ǫ, t0+ǫ)) ⊂ U
and smooth functions X1,..., Xn : (t0 − ǫ, t0 + ǫ) → R such that

X(t) =
n∑

k=1

Xk(t)

(
∂

∂xk

)

γ(t)

for |t− t0| < ǫ. By linearity and properties (i), (ii) we compute

DX

dt
(t) =

n∑

k=1

(Xk)′(t)

(
∂

∂xk

)

γ(t)

+

n∑

k=1

Xk(t)∇γ̇(t)
∂

∂xk

=
n∑

k=1

(
(Xk)′(t) +

n∑

i,j=1

Γkij(γ(t))(γ
i)′(t)Xj(t)

)(
∂

∂xk

)

γ(t)

,

where (φ◦γ)(t) = (γ1(t), ..., γn(t)) for every |t− t0| < ǫ. This proves the uniqueness.

The existence follows covering γ(I) by the domains of smooth charts of M

and defining
D

dt
locally by the above formula. By uniqueness, the local definitions

coincide on overlapping intervals. �

In the rest of the section we shall see that the algebraic definition of a connection
indeed gives a mechanism of ”connecting” tangent spaces at various points of a
smooth manifold. Let ∇ be a connection on a smooth n-manifold M .

Definition 3.1.8. If γ : I → M is a smooth curve defined on an open interval

I ⊂ R, a smooth vector field X ∈ X (γ) is said to be parallel along γ, if
DX

dt
= 0 on

I. A smooth vector field X ∈ X (M) is called parallel if ∇YX = 0 on M for every
Y ∈ X (M).

Example 3.1.9. The parallel vector fields on Rn with respect to the euclidean
connection are the constant ones, that is the vector fields

n∑

k=1

ak
∂

∂xk

for a1,..., an ∈ R.

Let (U, φ) be a smooth chart of M with φ = (x1, ..., xn) and let γ : I → U be
a smooth curve with local representation φ ◦ γ = (γ1, ..., γn). From the formula of
the covariant differentiation along γ derived in the proof of Proposition 3.1.7 follows
that a smooth vector field

X(t) =

n∑

k=1

Xk(t)

(
∂

∂xk

)

γ(t)

, t ∈ I
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along γ is parallel if and only if the smooth functions X1,..., Xn satisfy the system
of linear ordinary differential equations

(Xk)′(t) = −
n∑

i,j=1

Γkij(γ(t))(γ
i)′(t)Xj(t), t ∈ I, 1 ≤ k ≤ n.

From the existence and uniqueness of solutions for linear ordinary differential
equations we have that for every t0 ∈ I and every v ∈ Tγ(t0)M there exists a unique
parallel vector field X along γ satisfying the initial condition X(t0) = v.

Proposition 3.1.10. Let I ⊂ R be an open interval and γ : I → M be a smooth
curve. For every t0 ∈ I and every v ∈ Tγ(t0)M there exists a unique parallel vector
field X along γ such that X(t0) = v.

Proof. From the above there exists b > t0 such that there exists a unique parallel
vector field along γ|[t0,b] with X(t0) = v. It suffices to prove that the supremum T
of all such b does not belong to I. Suppose that it does. Choosing a smooth chart
(V, ψ) ofM with γ(T ) ∈ V , there exists δ > 0 such that γ((T −δ, T +δ)) ⊂ V . From
the above, there exists a unique parallel vector field X̃ along γ|(T−δ,T+δ) satisfying
the initial condition X̃(T − δ

2
) = X(T − δ

2
). From the uniqueness of solutions we

get X̃ = X on (T − δ, T ) and so X has a smooth extension on [t0, T + δ). This
contradicts the definition of T . �

Let I ⊂ R be an open interval and γ : I →M be a smooth curve. The preceding
Proposition 5.1.9 implies that for every a, b ∈ I with a < b there is a well defined
map τb,a : Tγ(a)M → Tγ(b)M where τb,a(u) is the value X(b) of the unique parallel
vector field X along γ with X(a) = u. Since the parallel vector fields along γ
are the solutions of a system of linear ordinary differential equations, τb,a is a
linear isomorphism and it is called the parallel translation along γ form γ(a) to γ(b).

Theorem 3.1.11. If I ⊂ R be an open interval and γ : I →M is a smooth curve,
then for every X ∈ X (γ) and s ∈ I we have

DX

dt
(s) = lim

h→0

1

h
[τs,s+h(X(s + h)) −X(s)].

Proof. It suffices to prove the assertion in case there exists a smooth chart (U, φ)
and γ(I) ⊂ U . Since the parallel vector fields along γ are the solutions of a system
of linear ordinary differential equations, there are parallel vector fields E1,..., En
along γ such that {E1(t), ..., En(t)} is a basis of Tγ(t)M for every t ∈ I. Now there
are unique smooth functions f1,..., fn : I → R such that

X(t) =

n∑

k=1

fk(t)Ek(t), t ∈ I.

Therefore,

DX

dt
=

n∑

k=1

f ′k · Ek.
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On the other hand, τs,s+h(Ek(s + h)) = Ek(s), because Ek is parallel along γ,
1 ≤ k ≤ n, and hence

τs,s+h(X(s+ h)) −X(s) =

n∑

k=1

fk(s+ h)τs,s+h(Ek(s + h))−
n∑

k=1

fk(s)Ek(s)

=

n∑

k=1

(fk(s + h)− fk(s))Ek(s).

It follows that

lim
h→0

1

h
[τs,s+h(X(s+h))−X(s)] = lim

h→0

n∑

k=1

fk(s+ h)− fk(s)

h
·Ek(s) =

n∑

k=1

f ′k(s) ·Ek(s). �

3.2 Geodesics and exponential map

Let M be a smooth n-manifold and ∇ a connection on M . The acceleration of a
smooth curve γ : I → M , where I ⊂ R is an open interval, is the smooth vector

field
Dγ̇

dt
along γ.

Definition 3.2.1. A smooth curve γ : I →M , where I ⊂ R is an open interval, is

called geodesic of the connection ∇ if
Dγ̇

dt
= 0.

Note that the differential equation of geodesics is independent of local coordi-
nates of M . Its expression in the local coordinates of a smooth chart (U, φ) of M
with φ = (x1, ..., xn), where φ ◦ γ = (γ1, ..., γn), is

(γk)′′(t) +
n∑

i,j=1

Γkij(γ(t))(γ
i)′(t)(γj)′(t) = 0, 1 ≤ k ≤ n.

In the particular case of the euclidean connection on Rn, where the Christoffel
symbols vanish, it follows that the geodesics are the euclidean straight lines.

The geodesics in U are the projections under the tangent bundle projection
π : TM →M of the integral curves of the smooth vector field

n∑

k=1

vk
∂

∂xk
+

n∑

k=1

(
−

n∑

i,j=1

Γkijv
ivj
)

∂

∂vk

on π−1(U), where φ̃ = (x1, ..., xn, v1, ..., vn) is the smooth chart of TM corre-
sponding to (U, φ). Since the differential equation of geodesics does not depend
on smooth charts, we conclude that this is the local representation in the smooth
chart (π−1(U), φ̃) of a smooth vector field G which is globally defined on TM and
is called the geodesic vector field of the connection ∇. Its flow is called the geodesic
flow of ∇.

The homogeneity of the differential equation of geodesics implies the following
property.
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Lemma 3.2.2. If γ : I → M is the geodesic of the connection ∇ defined on the
open interval I and satisfying the initial conditions γ(0) = p and γ̇(0) = v, then for
every λ ∈ R\{0} the maximal geodesic γλ satisfying the initial conditions γλ(0) = p

and γ̇λ(0) = λv is defined on the open interval
1

λ
I and is given by γλ(t) = γ(λt).

Proof. Indeed γ̇λ = λγ̇ and therefore
Dγ̇λ
dt

= λ2
Dγ̇

dt
. Hence γλ is a geodesic if and

only if γ is. �

In the rest of the section we fix a connection ∇ on a smooth n-manifold M .
Let E ⊂ TM denote the set of all points (p, v) ∈ TM such that the geodesic γ(p,v)
from p with initial velocity v is defined on the unit interval [0, 1]. Let exp : E →M
be the smooth map exp(p, v) = γ(p,v)(1). From Lemma 3.2.2, for every p ∈ M
the set Ep = E ∩ TpM is an open neighbourhood of 0 ∈ TpM and the map
expp(v) = exp(p, v) is smooth.

Lemma 3.2.3. For every p ∈M the set Ep is star-shaped with respect to 0 ∈ TpM
and the geodesic γ(p,v) from p with initial velocity v is given by the formula

γ(p,v)(t) = expp(tv)

for all t ∈ R for which at least one of the two sides is defined.

Proof. From Lemma 3.2.2. we have γ(p,v)(t) = γ(p,v)(t · 1) = expp(tv) for every
t ∈ R such that at least one of the two sides is defined. Moreover, if v ∈ Ep, then
γ(p,v) is defined at least on [0, 1] and hence tv ∈ Ep for all 0 ≤ t ≤ 1. This means
that Ep is star-shaped with respect to 0 ∈ TpM . �

Proposition 3.2.4. For every point p ∈ M there exist an open neighbourhood V
of 0 ∈ TpM and an open neighbourhood U of p in M such that expp(V ) = U and
expp : V → U is a smooth diffeomorphism.

Proof. According to the Inverse Map Theorem it suffices to prove that the derivative
(expp)∗0 : T0(TpM) ∼= TpM → TpM is a linear isomorphism. If v ∈ TpM and
σ : R → TpM is the straight line σ(t) = tv, and γ(p,v) is the geodesic from p with
initial velocity v, we have

(expp)∗0(v) =
d

dt

∣∣∣∣
t=0

expp(σ(t)) = γ̇(p,v)(0) = v.

Hence (expp)∗0 = idTpM . �

Choosing a basis of TpM , that is a linear isomorphism h : TpM → Rn, the pair
(U, h ◦ (expp |V )−1) is a smooth chart of M and is called a normal chart of M at p
(with respect to the connection ∇). The neighbourhood U of p in Proposition 5.2.4 is
called normal. Observe that the local representations of geodesics emanating from p
with respect to a normal chart at p are straight lines through 0. Thus, if (γ1, ..., γn)



3.2. GEODESICS AND EXPONENTIAL MAP 53

is the local representation of any geodesic γ emanating from p with respect to a
normal chart at p, then

n∑

i,j=1

Γkij(p)(γ
i)′(0)γj)′(0) = 0, 1 ≤ k ≤ n.

This means that the polynomial

n∑

i,j=1

Γkij(p)v
ivj

vanishes identically on some open neighbourhood of 0 ∈ Rn. Therefore,

Γkij(p) + Γkji(p) = 0

for every 1 ≤ i, j, k ≤ n.

Given a connection ∇ on a smooth n-manifold M , we define its torsion to be
the C∞(M)-bilinear map T : X (M)× X (M) → X (M) with

T (X,Y ) = ∇XY −∇YX − [X,Y ].

Thus the value of T (X,Y ) at a point p ∈ M depends only on the values X(p) and
Y (p).

The connection ∇ is said to be symmetric if its torsion vanishes. This terminol-
ogy is justified as follows. Let (U, φ) be a smooth chart of M with φ = (x1, ..., xn).
If X, Y ∈ X (M) and

X|U =
n∑

k=1

Xk ∂

∂xk
and Y |U =

n∑

k=1

Y k ∂

∂xk
,

we have

T (X,Y )|U =

n∑

k=1

( n∑

i,j=1

(Γkij − Γkji)X
iY j
)

∂

∂xk
.

Hence ∇ is symmetric if and only if the Christoffel symbols with respect to any
smooth chart are symmetric with respect to the lower indices, that is Γkij = Γkji for
every 1 ≤ i, j, k ≤ n.

It follows from the above that if ∇ is a symmetric connection and p ∈ M ,
then the Christoffel symbols with respect to a normal chart at p vanish at the point p.

Proposition 3.3.5. For every connection ∇ on a smooth n-manifold M there
exists a unique symmetric connection ∇ on M which has the same geodesics as ∇.

Proof. If T is the torsion of ∇, we define the connection ∇ by

∇XY = ∇XY − 1

2
T (X,Y ).
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Since T (X,X) = 0 for every X ∈ X (M), it follows that ∇ and ∇ have the same
geodesics. The uniqueness is the fact that two symmetric connections with the same
geodesics coincide. Indeed, if ∇1 and ∇2 are two symmetric connections, then

S = ∇1 −∇2 : X (M)× X (M) → X (M)

is a symmetric C∞(M)-bilinear map. If ∇1 and ∇2 have the same geodesics,
S(X,X) = 0 for every X ∈ X (M) and therefore

2S(X,Y ) = S(X + Y,X + Y ) = 0

for every X, Y ∈ X (M). �

3.3 Riemannian metrics

A Riemannian metric on a smooth n-manifold M is a family g = (gp)p∈M of inner
products

gp : TpM × TpM → TpM

which depend smoothly on p in the sense that if U ⊂ M is an open set and X,
Y ∈ X (U), then the function f : U → R with f(p) = gp(X(p), Y (p)) is smooth. A
Riemannian manifold is a smooth manifold endowed with a Riemannian metric.

Let (M,g) and (N,h) be two Riemannian manifolds. A smooth map f :M → N
is called (Riemannian) isometry if it is a smooth diffeomorphism and its derivative
at each point preserves the Riemannian metrics, that is

hf(p)(f∗p(v), f∗p(w)) = gp(v,w)

for every v, w ∈ TpM and p ∈M . The isometries are the isomorphisms of the cate-
gory with objects the Riemannian manifolds and the aim of Riemannian Geometry
is the classification of Riemannian manifolds up to isometry.

In the sequel we shall use in any case the symbol 〈., .〉 to denote the Riemannian
metric and the symbol ‖.‖ for its corresponding norm on tangent spaces, if there is
no danger of confusion.

If M is a Riemannian manifold, the set I(M) of all isometries of M onto itself is
a subgroup of its group of diffeomorphisms and is called the isometry group of M .
If the action of I(M) on M by evaluation is transitive, M is called homogeneous.
Recall that the isotropy group (or stabilizer) at a point p is the subgroup

Ip(M) = {f |f ∈ I(M) and f(p) = p}

of I(M). The derivative of an element f ∈ Ip(M) is an orthogonal transformation,
that is linear isometry, f∗p : TpM → TpM . It follows from the chain rule, that
the assignment of f∗p to f ∈ Ip(M) is a homomorphism of Ip(M) into the group
of the orthogonal transformations of TpM which is usually called the isotropic
representation at p. The point p is called isotropic if the action of Ip(M) on the
unit sphere in TpM via the isotropic representation at p is transitive. Thus p ∈ M
is isotropic if for every v, w ∈ TpM with ‖v‖ = ‖w‖ = 1 there exists f ∈ Ip(M)
such that f∗p(v) = w. A Riamannian manifold M is called isotropic if every point
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of M is isotropic.

Example 3.3.1. On every open set M ⊂ Rn, n ≥ 1 the euclidean inner product
of Rn defines a Riemannian metric in the obvious way which is called the euclidean
Riamannian metric. Evidently, the euclidean n-space Rn is a homogeneous and
isotropic Riemannian manifold.

Proposition 3.3.2. On every smooth n-manifold there are Riemannian metrics.

Proof. Let M be a smooth n-manifold and let A be a smooth atlas of M . For every
(U, φU ) ∈ A there is a Riemannian metric gU on U defined by

gUp (v,w) = 〈(φU )∗p(v), (φU )∗p(w)〉

for v, w ∈ TpM , p ∈ U , where 〈., .〉 is the euclidean inner product in Rn. Let
{fU : (U, φU ) ∈ A} be a smooth partition of unity subordinated to the open cover
U = {U : (U, φU ) ∈ A} of M . For every p ∈M and v, w ∈ TpM we define

gp(v,w) =
∑

(U,φU )∈A
fU (p)g

U
p (v,w).

Since g is locally a convex combination of Riemannan metrics, it is a Riemannian
metric itself. �

In the rest of the section we shall give in some detail several examples of
Riemannian manifolds.

Example 3.3.3. Let (M,g) be a Riemannian manifold and let i : N → M be an
immersion of the smooth manifold N into M . There is an induced by i Riemannian
metric gN on N defined by

gNp (v,w) = gi(p)(i∗p(v), i∗p(w))

for every v, w ∈ TpN and p ∈ N . In particular, every smooth submanifold of M
inherits a Riemannian metric.

The n-sphere SnR = {p ∈ Rn+1 : ‖p‖ = R} of radius R > 0 inherits a Riamannian
metric from the euclidean Riemannian metric 〈., .〉 of Rn+1. Obviously, the orthog-
onal group O(n+1,R) is contained in the isometry group of I(SnR). Actually, it can
be proved that O(n + 1,R) coincides with I(SnR), but we will not need this for the
time being. We shall show that SnR is homogeneous and isotropic with one strike.
Let p ∈ SnR and let {E1, ..., En} be an orthonormal basis of TpS

n
R. Then,

{
E1, ..., En,

1

R
p}

is an orthonormal basis of TpRn+1 ∼= Rn+1 and there exists f ∈ O(n + 1,R) such
that

f(ek) = Ek, 1 ≤ k ≤ n, f(Ren+1) = p.
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This implies that SnR is homogeneous and isotropic, since every point p is the image
of the north pole Ren+1 and IRen+1(S

n
R) acts transitively on the set of orthonormal

basis of TRen+1S
n
R.

Example 3.3.4. The hyperbolic metric on the upper half plane

H2 = {z ∈ C : Imz > 0}

is defined by

gz(v,w) =
1

(Imz)2
〈v,w〉 = 1

(Imz)2
Re(vw)

for v, w ∈ TzH2, z ∈ H2, where 〈v,w〉 = Re(vw) is the euclidean inner product in
complex notation.

The reflection with respect to the imaginary semi-axis ℓ = {it : t > 0} is the
map τ : H2 → H2 with τ(z) = −z and is an orientation reversing isometry of H2.

If a, b, c, d ∈ R and ad− bc = 1, for the Möbius transformation T : Ĉ → Ĉ with

T (z) =
az + b

cz + d

we have

Im(T (z)) =
Imz

|cz + d|2

and

T ′(z) =
1

(cz + d)2
.

Therefore, T (H2) = H2 and

gT (z)(T∗z(v), T∗z(w)) = gT (z)(T
′(z)v, T ′(z)w) =

1

(ImT (z))2
Re(|T ′(z)|2vw)

=
1

(Imz)2
Re(vw) = gz(v,w)

for every v, w ∈ TzH2 and z ∈ H2. Therefore the group of Möbius transformations
with real coefficients, which is isomorphic to PSL(2,R), is a subgroup of the isom-
etry group I(H2). It can be proved that this is the group of orientation preserving
isometries of H2 and it has index 2 in I(H2), but we will not need this now.

The action of PSL(2,R) on H2 by Möbius transformations is transitive because
if z0 = a+ ib, a ∈ R, b > 0, then z0 = T (i), where T is the Möbius transformation

T (z) =

√
bz + a√

b

0z + 1√
b

= bz + a.

Thus, H2 is homogeneous. It is isotropic as well. Indeed, if v ∈ TiH2 and gi(v, v) = 1,
there exists 0 ≤ θ < 2π such that v = e−2iθ. If

T (z) =
cos θ · z − sin θ

sin θ · z + cos θ
,
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then T (i) = i and T ′(i) = e−2iθ. Hence v = T∗i(1).
The Riemannian manifold H2 is the Poincaré upper half-plane model of the

hyperbolic plane.

Example 3.3.5. We shall describe two models of the higher dimensional version
of the hyperbolic plane. The first one resembles the case of the sphere. Let n ≥ 2,
R > 0 and

Hn
R = {(x1, , , , .xn, xn+1) ∈ Rn+1 : x21 + · · · + x2n − x2n+1 = −R2, xn+1 > 0}

be the upper connected component of the two-sheeted hyperboloid in Rn+1. On Hn
R

we consider the Riemannian metric which on each tangent space is the restriction
of the Minkowski non-degenerate symmetric bilinear form

〈x, y〉 = −xn+1yn+1 +
n∑

k=1

xkyk

where x = (x1, ..., xn+1), y = (y1, ..., yn+1). Although the Minkowski form is not
positive definite, its restriction on each tangent space TpHn

R, p ∈ Hn
R, is. To see this,

suppose that p = (p1, ..., pn+1). If v = (v1, ..., vn+1) ∈ TpHn
R, then

p1v1 + · · · + xnvn − pn+1vn+1 = 0

and

〈v, v〉 =
n∑

k=1

v2k −
1

p2n+1

( n∑

k=1

pkvk

)2

≥
(
1− p2n+1 −R2

p2n+1

) n∑

k=1

v2k ≥ 0

from the Cauchy-Schwarz inequality, and 〈v, v〉 = 0 if and only if v1 = · · · = vn = 0
and therefore vn+1 = 0 as well, since pn+1 > 0.

The Riamannian manifold Hn
R is called the hyperbolic n-space of radius R > 0.

An alternative model is the upper half n-space, which we denote temporarily by
UnR = {(p1, ..., pn) ∈ Rn : pn > 0}, endowed with the Riemannian metric

gp(v,w) =
R2

p2n

n∑

k=1

vkwk

where p = (p1, ..., pn) ∈ UnR and v = (v1, ..., vn), w = (w1, ..., wn) ∈ TpUnR. A tedious
calculation shows that the map F : Hn

R → UnR defined by

F (x1, ..., xn, xn+1) =

(
x1(R + xn+1)

xn+1 − xn
, ...,

xn−1(R + xn+1)

xn+1 − xn
,

R2

xn+1 − xn

)

is an isometry. So we use henceforth the notation Hn
R for both models.

The group O+(n, 1) of linear automorphisms of Rn+1 which preserve the
Minkowski form and send Hn

R onto itself is contained in the isometry group I(Hn
R).

In this case too, it can be proved that this is the entire isometry group, but we
will not need this fact now. In a similar way as in the case of the n-sphere SnR
we can prove that Hn

R is homogeneous and isotropic. Let p = (p1, ..., pn) ∈ Hn
R,
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so 〈p, p〉 = −R2, pn+1 > 0. and let {E1, ..., En} be an orthonormal basis of TpHn
R.

Then, 〈Ek, p〉 = 0, 1 ≤ k ≤ n and so

{
E1, ..., En,

1

R
p}

is a basis of Rn+1. If now A ∈ O+(n, 1) is the matrix with columns E1,..., En,
1

R
p, then A(Ren+1) = p, which shows that O+(n, 1) acts transitively on Hn

R, and

Aek = Ek, 1 ≤ k ≤ n, which shows that Hn
R is isotropic, since {e1, ..., en} is an

orthonormal basis of TRen+1H
n
R.

Example 3.3.6. Let n ≥ 1 and π : Cn+1 \{0} → CPn be the quotient map. Recall
that in the canonical atlas {(Vj , φj) : 0 ≤ j ≤ n} of CPn we have

Vj = {[z0, ..., zn] ∈ CPn : zj 6= 0}

and
φj [z0, ..., zn] = (

z0
zj
, ...,

zj−1

zj
,
zj+1

zj
, ...,

zn
zj

).

The quotient map π is a submersion. To see this note first that its local represen-
tation φ0 ◦ π : π−1(V0) → Cn with respect to the smooth chart (V0, φ0) is given by
the formula

(φ0 ◦ π)(z0, ..., zn) = (
z1
z0
, ...,

zn
z0

).

Let z = (z0, ..., zn) ∈ π−1(V0) and v = (v0, ..., vn) ∈ TzCn+1 ∼= Cn+1 be non-zero.
Then v = γ̇(0), where γ(t) = z + tv, and

(φ0 ◦ π ◦ γ)(t) =
(
z1 + tv1
z0 + tv0

, ...,
zn + tvn
z0 + tv0

)

so that

(φ0 ◦ π ◦ γ)′(0) =
(
v1
z0

− z1v0
z20

, ...,
vn
z0

− znv0
z20

)
.

This implies that v ∈ Ker π∗z if and only if [v0, ..., vn] = [z0, ..., zn]. In other words
Ker π∗z = {λz : λ ∈ C}. Obviously, for every (ζ0, ..., ζn) ∈ Cn there exists v =
(v0, ..., vn) ∈ Cn+1 such that

ζj =
vj
z0

− zjv0
z20

.

Since the same holds for any other chart (Vj , φj) instead of (V0, φ0), this shows that
π is a submersion.

The inclusion S2n+1 →֒ Cn+1\{0} is an embedding and so its derivative at every
point of S2n+1 is a linear monomorphism. For every z ∈ S2n+1 we have

Ker(π|S2n+1)∗z = Kerπ∗z ∩ TzS2n+1 = {λz : λ ∈ C and Reλ = 0}

which is a real line. On the other hand, π−1(π(z))∩S2n+1 is the trace of the smooth
curve σ : R → S2n+1 with σ(t) = eitz for which σ(0) = z and σ̇(0) = iz. Therefore
Ker(π|S2n+1)∗z is generated by σ̇(0).
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Let h be the usual hermitian product on Cn+1. If

Wz = {η ∈ TzCn+1 : h(η, z) = 0},

then π∗z|Wz :Wz → T[z]CP
n is a linear isomorphism for every z ∈ Cn+1\{0}. Indeed,

for every v ∈ TzCn+1 there are unique λ ∈ C and η ∈ Wz such that v = λz + η.
Obviously,

λ =
h(v, z)

h(z, z)
, η = v − h(v, z)

h(z, z)
· z.

The restricted hermitian product on Wz can be transfered isomorphically by π∗z on
T[z]CPn. If now

g[z](v,w) = Re h((π∗z |Wz)
−1(v), (π∗z |Wz)

−1(w))

for v, w ∈ T[z]CPn, then g is Riemannian metric on CPn called the Fubini-Study
metric. If z ∈ S2n+1, then Wz = {v ∈ TzS

2n+1 : 〈v, σ̇(0)〉 = 0}.
Each element A ∈ U(n + 1) induces a diffeomorphism Ã : CPn → CPn. More-

over, A(Wz) = WA(z) for every z ∈ Cn+1 \ {0} and therefore Ã is an isometry of
the Fubini-Study metric. In this way, U(n + 1) acts on CPn by isometries. The
action is transitive and so CPn is a homogeneous Riemannian manifold with re-
spect to the Fubibi-Study metric. Indeed, U(n + 1) acts transitively on S2n+1,
because if z ∈ S2n+1, there exist E1, . . . En ∈ Cn+1 such that {E1, . . . En, z} is an
h-orthonormal basis of Cn+1. The matrix U with columns E1, . . . , En, z is an ele-
ment of U(n + 1) such that U(ej) = Ej for 1 ≤ j ≤ n and U(en+1) = z. This last
equality shows that U(n+ 1) acts transitively on CPn.

The isotropy group of [en+1] = [0, . . . , 0, 1] consists of all A ∈ U(n+1) such that
λA(en+1) = en+1 for some λ ∈ S1. This means that

λA =

(
B 0
0 1

)

for some B ∈ U(n). Since Ã = λ̃A, this implies that the isotropy group of [en+1]
is U(n), considered as a subgroup of U(n + 1) as above, and therefore CPn is
diffeomorphic to the homogeneous space U(n+ 1)/U(n).

If A ∈ U(n + 1), then detA ∈ S1 and taking a ∈ S1 such that an = detA we

have a−1A ∈ SU(n+ 1) and Ã = ã−1A. Hence SU(n + 1) acts also transitively on
CPn and CPn is diffeomorphic to SU(n + 1)/U(n), if we identify U(n) with the
subgroup of SU(n+ 1) consisting of matrices of the form

(
B 0
0 1

detB

)

for B ∈ U(n). If A ∈ SU(n+1) belongs to the isotropy group of [en+1] and λA has

the above form, then detB = λn+1 and putting B′ =
1

λ
B, we have now

A =

(
B′ 0
0 1

λ

)
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where detB′ = λ. Therefore A ∈ U(n), as a subgroup of SU(n+ 1).

Example 3.3.7. If (M,g) and (N,h) are two Riemannian manifolds, on the product
manifold M ×N there is a Riemannian metric 〈., .〉 defined by

〈v,w〉p = gp1(v1, w1) + hp2(v2, w2)

for v = (v1, v2), w = (w1, w2) ∈ Tp(M ×N) = Tp1M ⊕ Tp2N , p = (p1, p2) ∈M ×N ,
which is called the product Riemannian metric.

Example 3.3.8. Let M be a Riemannian manifold and let G be a subgroup of
its isometry group I(M) which acts properly discontinuously on M , that is every
point p ∈ M has an open neighbourhood U in M such that g(U) ∩ U = ∅ for all
g ∈ G, g 6= idM . If the orbit space M/G is Hausdorff, it is a smooth manifold and
the quotient map π : M → M/G is a smooth covering map, in particular a local
diffeomorphism as it maps each open neighbourhood like U above diffeomorphically
onto π(U).

Let p ∈ M , g ∈ G and q = g(p). Since π ◦ g = π, from the chain rule we have
π∗q ◦ g∗p = π∗p, and since g is an isometry, it follows that

〈π−1
∗q (v), π

−1
∗q (w)〉q = 〈g−1

∗p (π
−1
∗q (v)), g

−1
∗p (π

−1
∗q (w))〉p = 〈π−1

∗p (v), π
−1
∗p (w)〉p

for every v, w ∈ Tπ(p)(M/G). This means that there is a unique well defined
Riemannian metric g̃ on M/G with respect to which π becomes a local isometry, as
it maps each open neighbourhood U as above isometrically onto π(U).

In the special case M = Sn and G = {idSn , a} ∼= Z2, where a(x) = −x is the
antipodal map, we obtain a Riemannian metric on the real projective n-space RPn

which is locally isometric to the euclidean Riemannian metric on Sn. Similarly,
the group of translations of Rn by a vector in Zn is isomorphic to Zn and acts
properly discontinuously on Rn. The orbit space Rn/Zn is diffeomotphic to the n-
torus T n = S1 × · · · × S1, n-times. Since translations are euclidean isometries, we
obtain a Riemannian metric on T n such that the quotient map π : Rn → T n which
is given by

π(t1, ..., tn) = (eit1 , ..., eitn )

becomes a local isometry. The n-torus T n equipped with this Riemannian metric is
usually called flat n-torus.

3.4 The Levi-Civita connection

In this section we shall prove that on a Riemannian manifold there exists a unique
symmetric connection which is compatible with the Riemannian metric in the sense
that parallel translation along smooth curves with respect to this connection is a
linear isometry of inner product vector spaces. This result is sometimes called the
Fundamental Theorem of Riemannian Geometry. Connections on a Riamannian
manifold which are compatible with the Riemannian metric are characterized as
follows.
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Proposition 3.4.1. Let M be a Riemannian smooth n-manifold. For a connection
∇ on M the following statements are equivalent.
(i) X〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉 for every X, Y , Z ∈ X (M).
(ii) If I ⊂ R is an open interval and γ : I →M is a smooth curve, then

d

dt
〈V,W 〉 = 〈DV

dt
,W 〉+ 〈V, DW

dt
〉

for every V , W ∈ X (γ).
(iii) If a, b ∈ R, a < b, and γ : [a, b] → M is a smooth curve, then the parallel
translation τb,a : Tγ(a)M → Tγ(b)M from γ(a) to γ(b) along γ with respect to ∇ is a
linear isometry of inner product vector spaces.

Proof. The equivalence of (i) and (ii) is an immediate consequence of Lemma 5.1.4
and Proposition 3.1.7. If (ii) holds and V , W are parallel along γ then

d

dt
〈V,W 〉 = 0

and so 〈V,W 〉 is constant on [a, b]. This implies (iii). Conversely, there are parallel
E1,..., En ∈ X (γ) such that {E1(t0), ..., En(t0)} is n orthonormal basis of Tγ(t0)M
for some t0 ∈ I. If (iii) holds, {E1(t), ..., En(t)} is an orthonormal basis of Tγ(t)M
for every t ∈ I. If V , W ∈ X (γ), there are unique smooth functions fk, gk : I → R,
1 ≤ k ≤ n, such that

V =

n∑

k=1

fkEk and

n∑

k=1

gkEk.

Then, 〈V,W 〉 = f1g1 + · · · + fngn and

d

dt
〈V,W 〉 =

n∑

k=1

f ′kgk +
n∑

k=1

fkg
′
k = 〈DV

dt
,W 〉+ 〈V, DW

dt
〉. �

Corollary 3.4.2. Let M be a Riemannian smooth n-manifold and ∇ be a
connection on M . If ∇ is compatible with the Riemannian metric, then the velocity
field of each geodesic of ∇ has constant length.

Proof. Indeed, if γ is a geodesic of ∇ and the latter is compatible with the Rieman-
nian metric, we have

d

dt
‖γ̇‖2 = 〈Dγ̇

dt
, γ̇〉+ 〈γ̇, Dγ̇

dt
〉 = 0. �

For every c > 0 the set

T cM = {(p, v) ∈ TM : p ∈M,v ∈ TpM, ‖v‖ = c}

is a (2n − 1)-dimensional smooth submanifold of TM , by Corollary 1.3.5, because

T cM = f−1(
1

2
c2) and

1

2
c2 is a regular value of the kinetic energy f : TM → R

defined by

f(p, v) =
1

2
‖v‖2.
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Indeed, if (U, φ) is a smooth chart of M and (π−1(U), φ̃) is the corresponding chart
of TM , then the local representation of f is

(f ◦ φ̃−1)(x1, ..., xn, v1, ..., vn) =
1

2

n∑

i,j=1

gij(φ
−1(x1, ..., xn))vivj

and differentiating

∂(f ◦ φ̃−1)

∂vi
(x1, ..., xn, v1, ..., vn) =

n∑

j=1

gij(φ
−1(x1, ..., xn))vj

because the matrix (gij)1≤i,j≤n of the Riemannian metric is symmetric. Since it is
invertible at every point as well,

∂(f ◦ φ̃−1)

∂vi
(x1, ..., xn, v1, ..., vn) = 0

for all 1 ≤ i ≤ n if and only if v1 = · · · = vn = 0.

The tangent space T(p,v)T
cM is the Kerf∗(p,v) for every (p, v) ∈ T cM . Now

γ is a geodesic of a connection ∇ on M if and only if (γ, γ̇) is an integral curve
of the geodesic vector field G of ∇. If ∇ is compatible with the Riemannian
metric, Corollary 3.4.2 says that ‖γ̇‖ takes on a constant value c. If γ is not
constant, c > 0 and (γ, γ̇) lies entirely on the constant kinetic energy level set
T cM . Thus, the geodesic vector field is tangent to constant kinetic energy level
sets. In particular, T 1M is called the unit tangent bundle of M and from Lemma
3.2.2 every geodesic is a reparametrization of a geodesic whose velocities lie in T 1M .

Theorem 3.4.3. On every Riemannian smooth n-manifold M there exists a
unique symmetric connection which is compatible with the Riemannian metric.

Proof. We shall prove first the uniqueness by finding an explicit formula for such a
connection ∇. For every X, Y , Z ∈ X (M) we have

X〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉 = 〈∇XY,Z〉+ 〈Y,∇ZX〉+ 〈Y, [X,Z]〉

Y 〈Z,X〉 = 〈∇Y Z,X〉 + 〈Z,∇YX〉 = 〈∇Y Z,X〉 + 〈Z,∇XY 〉+ 〈Z, [Y,X]〉

Z〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉 = 〈∇ZX,Y 〉+ 〈X,∇Y Z〉+ 〈X, [Z, Y ]〉

since ∇ is symmetric and compatible with the Riemannian metric. From these we
get

X〈Y,Z〉+ Y 〈Z,X〉 −Z〈X,Y 〉 = 2〈∇XY,Z〉+ 〈Y, [X,Z]〉+ 〈Z, [Y,X]〉 − 〈X, [Z, Y ]〉.

This equality uniquely determines∇ because the Riemannian metric on each tangent
space is a non-degenerate symmetric bilinear form.

The existence of ∇ will be proved locally by providing the Christoffel symbols
from which it is determined. Due to uniqueness the local definitions will coincide on
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the overlapping domains. Let (U, φ) be a smooth chart of M with φ = (x1, ..., xn)
and let

gij =

〈
∂

∂xi
,
∂

∂xj

〉
, 1 ≤ i, j ≤ n.

By the above formula, a symmetric connection ∇ which is compatible with the
Riemannian metric must satisfy

n∑

k=1

Γkijgkm =

〈
∇ ∂

∂xi

∂

∂xj
,
∂

∂xm

〉
=

1

2

[
∂gjm
∂xi

+
∂gmi
∂xj

− ∂gij
∂xm

]

on U , for every 1 ≤ i, j,m ≤ n. The Christoffel symbols are uniquely determined
from the above linear systems, because the Riemannian metric on each tangent
space is a non-degenerate symmetric bilinear form and therefore the symmetric
matrix (gij)1≤i,j≤n is invertible at each point of U . If we denote by gij the entries of
the inverse matrix of the Riemannian metric (gij)

−1
1≤i,j≤n, the the Christoffel symbols

are

Γkij =
1

2

n∑

l=1

gkl
(
∂gjl
∂xi

+
∂gli
∂xj

− ∂gij
∂xl

)
1 ≤ i, j, k ≤ n.

It remains to show that the connection on ∇ on U whose Christoffel symbols
are the solutions of the above linear systems is symmetric and compatible with Rie-
mannian metric. The first is obvious, because the matrix (gij)1≤i,j≤n is symmetric
and so the (i, j) linear system is the same as the (j, i) one. To prove compatibility,
we let

X =
n∑

k=1

Xk ∂

∂xk
, Y =

n∑

k=1

Y k ∂

∂xk
, Z =

n∑

k=1

Zk
∂

∂xk
,

and then we have

〈∇XY,Z〉+ 〈Y,∇XZ〉

=
n∑

k,l=1

[
gkl
(
Z lX(Y k) + Y kX(Z l)

)
+

n∑

i,j=1

XiY jΓkijgklZ
l +

n∑

i,j=1

XiZjΓlijgklY
k

]
.

Since the matrix (gij)1≤i,j≤n is symmetric, substituting we compute

n∑

j,k,l=1

(Y jZ lΓkijgkl + ZjY kΓlijgkl) =

n∑

j,k,l=1

Y jZ lΓkijgkl +

n∑

j,k,l=1

Y kZjΓkijgkl

=
n∑

j,l=1

(Z lY j + Y lZj)

( n∑

k=1

Γkijgkl

)

=
1

2

n∑

j.l=1

Z lY j

(
∂gjl
∂xi

+
∂gli
∂xj

− ∂gij
∂xl

)
+

1

2

n∑

j,l=1

ZjY l

(
∂gjl
∂xi

+
∂gli
∂xj

− ∂gij
∂xl

)

=

n∑

j,l=1

Z lY j ∂gjl
∂xi

.
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Therefore,

〈∇XY,Z〉+ 〈Y,∇XZ〉 =
n∑

k,l=1

gkl
(
Z lX(Y k) + Y kX(Z l)

)
+

n∑

i,j,l=1

XiZ lY j ∂gjl
∂xi

= X

( n∑

k,l=1

gklY
kZ l
)

= X〈Y,Z〉. �

The unique connection of a Riemannian manifold M which is symmetric and
compatible with the Riemannian metric is called the Levi-Civita connection of M .
The geodesics of the Levi-Civita sonnection of M will be simply called geodesics of
M . It easy to see that if ∇ is a connection on M and f : M → M is a smooth
diffeomorphism, then the formula

∇XY = f−1
∗
(
∇f∗Xf∗Y

)

for X, Y ∈ X (M) defines a new connection on M . If ∇ is symmetric, so is ∇. If
∇ is compatible with the Riemannian metric of M and f is an isometry, then ∇ is
also compatible with the Riemannian metric. By uniqueness, if ∇ is the Levi-Civita
connection of M , it is preserved by isometries, that is

f∗(∇XY ) = ∇f∗Xf∗Y

for every X, Y ∈ X (M) and f ∈ I(M). In particular, every isometry sends
geodesics to geodesics. This observation is crucial for the determination of the
geodesics of a Riemennian manifold with sufficiently large isometry group.

Example 3.4.4. The Levi-Civita connection of the euclidean n-space Rn is
the euclidean connection with vanishing Christoffel symbols. If M ⊂ Rn is a
hypersurface, the induced euclidean connection on M defined in Example 3.1.5 is
the Levi-Civita connection of M for the restricted euclidean Riemannian metric, as
it is easily seen.

Example 3.4.5. We shall describe the geodesics on a n-sphere SnR of radius R > 0.
Let γ : I → SnR be the geodesic satisfying the initial conditions γ(0) = Ren+1 and
γ̇(0) = e1, defined on some open interval I ⊂ R containing zero. Suppose that
γ(t) = (γ1(t), ..., γn+1(t)) for t ∈ I. For 2 ≤ j ≤ n, the reflection aj : Rn+1 → Rn+1

with

aj(x
1, ..., xn+1) = (x1, ..., xj−1,−xj , xj+1, ..., xn+1)

is an isometry of SnR such that aj(Ren+1) = Ren+1 and

(aj)∗Ren+1(γ̇(0)) = aj(e1) = e1 = γ̇(0).

From the invariance of geodesics under isometries and uniqueness follows now that
aj ◦γ = γ and hence γj(y) = −γj(t), that is γj(t) = 0 for every t ∈ I and 2 ≤ j ≤ n.
This means that γ(I) is an arc on the great circle which is the intersection of SnR
with the plane generated by {e1, en+1}. Since SnR is homogeneous and isotropic,
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again the existence and uniqueness of geodesics implies that all geodesics are great
circles. In particular, the geodesic vector field on TSnR is complete.

As an illustration we shall write down the system of differential equations of
geodesics on S2 with respect to the spherical coordinates (θ, φ), where the point
(x, y, z) ∈ S2 is written

x = cosφ · sin θ, y = sinφ · sin θ, z = cos θ.

The basic vector fields are

∂

∂θ
=



cosφ cos θ
sinφ cos θ
− sin θ


 ,

∂

∂φ
=



− sinφ sin θ
cosφ sin θ

0




and so the matrix of the Riemannian metric is

(gij)1≤i,j≤2 =

(
1 0
0 sin2 θ

)
.

It follows that almost all Christoffel symbols vanish except

Γ1
22 = −1

2
sin 2θ, Γ2

12 = cot θ.

Therefore, the system of differential equations of geodesics in spherical coordinates
is

θ′′ − 1

2
sin 2θ · (φ′)2 = 0,

φ′′ + 2cot θ · φ′θ′ = 0.

The meridians are obvious solutions of this system.

Example 3.4.6. The matrix of the hyperbolic Riemannian metric on the upper
half plane H2 is

(gij)1≤i,j≤2 =

(
1
y2

0

0 1
y2

)

and so the Christoffel symbols are

Γ1
12 = −1

y
, Γ2

11 =
1

y
, Γ2

22 = −1

y
,



66 CHAPTER 3. RIEMANNIAN MANIFOLDS

and the rest are zero, at the point z = x + iy ∈ H2. So the system of differential
equations of geodesics is

x′′ − 2

y
x′y′ = 0,

y′′ +
1

y
[(x′)2 − (y′)2] = 0.

An obvious solution is ℓ(t) = iet, t ∈ R, whose image is the imaginary semi-axis.
Since H2 is homogeneous and isotropic with respect to the subgroup PSL(2,R)
of its isometry group which acts by Möbius transformations, the geodesics are
euclidean semi-circles with center on ∂H2 (the boundary taken in the Riemann
sphere Ĉ), because the Möbius transformations send circles onto circles on Ĉ and
preserve angles.

Let M be a Riemannian smooth n-manifold. On M we shall always consider
the Levi-Civita connection and all the related notions associated with it such as
parallel translation, geodesics and exponential map. Let p ∈M and U be a normal
neighbourhood of p, that is there exists an open neighbourhood V of 0 ∈ TpM in
TpM such that exp : V → U is a smooth diffeomorphism. We denote by Bp(0, ǫ)
the open ball in TpM of radius ǫ > 0 and center 0 ∈ TpM . There exists ǫ0 > 0 such

that Bp(0, ǫ0) ⊂ V . The set expp(Bp(0, ǫ)) will be called the closed geodesic ball of
radius 0 < ǫ ≤ ǫ0 and center p and its interior exp(Bp(0, ǫ)) open geodesic ball. Its
boundary expp(∂Bp(0, ǫ)) will be called geodesic sphere. Fixing an orthonormal basis
{E1, ..., En} of TpM we have a linear isometry of inner product spaces σ : Rn → TpM
with σ(ek) = Ek, 1 ≤ k ≤ n, and a normal chart (U, φ) where φ = σ−1 ◦ (expp |V )−1.
Let φ = (x1, ..., xn) and

gij =

〈
∂

∂xi
,
∂

∂xj

〉
, 1 ≤ i, j ≤ n.

Then gij(p) = δij , 1 ≤ i, j ≤ n, Since the Levi-Civita connection is symmetric, the
Christoffel symbols with respect to this normal chart vanish at p. From the formula
in the proof of Theorem 3.4.3 giving the Christoffel symbols we compute

n∑

k=1

Γkijgkl +

n∑

k=1

Γkilgkj =
∂gjl
∂xi

and in particular
∂gjl
∂xi

(p) = 0 for every 1 ≤ i, j, l ≤ n.

In order a normal neighbourhood of p, in particular a geodesic ball, to be useful
for local calculations near p, it is desirable to be a normal neighbourhood of nearby
points also. An open set W ⊂ M will be called uniformly normal if it is a normal
neighbourhood of all its points. More precisely, W is uniformly normal if there ex-
ists some δ > 0 such that W ⊂ expp(Bp(0, δ)) and expp : Bp(0, δ) → expp(Bp(0, δ))
is a smooth diffeomorphism onto the open set expp(Bp(0, δ)) ⊂M for every p ∈W .
In order to prove the existence of uniformly normal neighbourhoods we shall need
the following technical remark which is a parametrized version of the equivalence
of norms in finite dimensional real vector spaces.
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Lemma 3.4.7. If M is a Riemannian smooth n-manifold and p ∈ M , for every
open neighbourhood A ⊂ TM of (p, 0) there exists an open neighbourhood U of p in
M and some δ > 0 such that

Uδ = {(q, v) ∈ TM : q ∈ U, v ∈ Bq(0, δ)} ⊂ A.

Proof. Let (W,ψ) be a smooth chart of M with p ∈ W and ψ(p) = 0. Let
ψ = (x1, ..., xn). We denote by r the euclidean norm on Rn. If (π−1(W ), ψ̃) is the
corresponding smooth chart of TM , where π : TM → M is the tangent bundle
projection, we have ψ̃(p, 0) = 0 and we may assume that A ⊂ π−1(W ). Since
ψ̃(A) ⊂ Rn × Rn is open, there exists ǫ > 0 such that B(0, 2ǫ) × B(0, 2ǫ) ⊂ ψ̃(A).
The set

K =
{(
q,

n∑

k=1

vk

(
∂

∂xk

)

q

)
∈ π−1(W ) : r(ψ(q)) ≤ ǫ,

n∑

k=1

v2k = ǫ2
}

is compact and so there exist 0 < δ ≤ c such that

0 < δ2 ≤
n∑

i,j=1

gij(q)vivj ≤ c2

for
(
q,

n∑

k=1

vk

(
∂

∂xk

)

q

)
∈ K. If now r(ψ(q)) ≤ ǫ, then

(
q,

ǫ

(
∑n

k=1 v
2)1/2

·
n∑

k=1

vk

(
∂

∂xk

)

q

)
∈ K

and thus
δ

ǫ

( n∑

k=1

v2k

)1/2

≤
∥∥∥∥

n∑

k=1

vk

(
∂

∂xk

)

q

∥∥∥∥ ≤ c

ǫ

( n∑

k=1

v2k

)1/2

for every v1,..., vn ∈ R. If we take U = ψ−1(B(0, ǫ)), we have

Uδ ⊂ ψ̃−1(B(0, ǫ)×B(0, ǫ)) ⊂ A. �

Proposition 3.4.8. If M is a Riemannian smooth n-manifold and p ∈ M , then
every open neighbourhood of p contains a uniformly normal open neighbourhood of p.

Proof. Let E ⊂ TM be the domain of definition of the exponential map and let
F : E →M ×M be the smooth map

F (p, v) = (p, expp(v)).

For every p ∈M , the derivative F∗(p,0) is a linear isomorphism and from the Inverse
Map Theorem there exists an open neighbourhood A ⊂ E ⊂ TM of (p, 0) such that
F (A) ⊂ M ×M is open and F |A : A → F (A) is a smooth diffeomorphism. From
the preceding Lemma 3.4.7 there exists an open neighbourhood U of p and some
δ > 0 such that Uδ ⊂ A. Since F (p, 0) = (p.p), there exists an open neighbourhood
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W ⊂ U of p such that W ×W ⊂ F (Uδ). We shall show that W uniformly normal.
We observe first that expq is defined on Bq(0, δ) ⊂ TqM for all q ∈ W . Moreover,
(expq |Bq(0,δ))−1 = (F |{0}×Bq(0,δ))−1 is smooth for q ∈W . Finally, if (q, y) ∈W ×W ,
there exists v ∈ Bq(0, δ) such that (q, y) = F (q, v), that is y = expq(v). This shows
that W ⊂ expq(Bq(0, δ)) for every q ∈W . �

Note that if U is a (closed or open) geodesic ball with center p ∈ M , for every
q ∈ U there exists a unique geodesic path in U from p to q, but if p, q are two points
in a uniformly normal open set W , there exists a geodesic path from p to q, which
however may not lie entirely in W .

3.5 The Riemannian distance

On a Riemannian manifold M it is possible to define the length of curves as follows.
Let a, b ∈ R, a < b, and γ : [a, b] → M be a piecewise smooth parametrized curve.
The non-negative real number

L(γ) =

∫ b

a
‖γ̇(t)‖dt

is defined to be the length of γ with respect to the Riemennian metric. By the
change of variables formula, it is invariant by piecewise smooth reparametrizations.

If γ : I →M is a smooth parametrized curve defined on an open interval I ⊂ R
such that γ̇(t) 6= 0 for every t ∈ I, then taking any t0 ∈ I and putting

h(t) =

∫ t

t0

‖γ̇(s)‖ds

the smooth function h : I → R is strictly increasing and maps I diffeomorphically
onto an open interval h(I) ⊂ R. The smooth parametrized curve

σ = γ ◦ h−1 : h(I) →M

is a reparametriztion of γ such that ‖σ̇‖ = 1.
A smooth parametrized curve γ with ‖γ̇‖ = 1 is said to be parametrized

by arclength or unit speed. By Corollary 3.4.2, every non-constant geodesic is
parametrized proportionally to arclength and from Lemma 3.2.2 every such geodesic
can be reparametrized to a unit speed geodesic.

If M is connected, for every p, q ∈M the non-negative real number

d(p, q) = inf{L(γ)|γ : [a, b] →M is a piecewise smooth parametrized curve

with γ(a) = p and γ(b) = q for some a, b ∈ R, a < b}
is called the (Riemannian) distance of p and q. The function d : M ×M → R has
the following obvious properties:
(i) d(p, q) ≥ 0 and d(p, p) = 0,
(ii) d(p, q) = d(q, p) and
(ii) d(p, q) ≤ d(p, z) + d(z, q)
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for every p, q, z ∈ M . In other words, d is a pseudo-distance on M . It can be
proved directly that the topology defined by d coincides with the topology ofM and
hence d is actually a distance. However, we shall derive this from considerations
showing the strong connection of d with geodesics, at least locally. We shall need a
couple of lemmas, which are of independent interest.

Lemma 3.5.1. letM be a smooth n-manifold endowed with a symmetric connection
∇ and let A ⊂ R2 be an open set. If σ : A→M is a smooth map then

D

dt

(
∂σ

∂s

)
=
D

ds

(
∂σ

∂t

)
.

Proof. It suffices to prove the formula in case there is a smooth chart U, φ) of M
such that σ(A) ⊂ U . If φ = (x1, ..., xn) and φ ◦ σ = (σ1, ..., σn), we have

∂σ

∂s
=

n∑

k=1

∂σk
∂s

· ∂

∂xk

and
D

dt

(
∂σ

∂s

)
=

n∑

k=1

[
d

dt

(
∂σk
∂s

)
+

n∑

i,j=1

Γkij
∂σi
∂t

· ∂σj
∂s

]
∂

∂xk

and similarly

D

ds

(
∂σ

∂t

)
=

n∑

k=1

[
d

ds

(
∂σk
∂t

)
+

n∑

i,j=1

Γkij
∂σi
∂s

· ∂σj
∂t

]
∂

∂xk
.

Since ∇ is symmetric, Γkij = Γkji, 1 ≤ i, j, k ≤ n, and the result follows from
Schwartz’s theorem. �.

The next lemma is due to C.F. Gauss.

Lemma 3.5.2. Let M be a Riemannian smooth n-manifold, p ∈ M and let
V = expp(Bp(0, ǫ)) be an open geodesic ball of radius ǫ > 0 with center p. Then
every geodesic emanating from p intersects orthogonally the geodesic spheres
expp(∂Bp(0, δ)), 0 < δ < ǫ.

Proof. Let I ⊂ R be an open interval and let u : I → TpM be a smooth curve with
‖u(t)‖ = 1 for every t ∈ I. If σ : I × (−ǫ, ǫ) →M is the smooth map

σ(t, s) = expp(su(t)),

it suffices to prove that

〈
∂σ

∂t
,
∂σ

∂s

〉
= 0.

We compute

∂

∂s

〈
∂σ

∂t
,
∂σ

∂s

〉
=

〈
D

ds

(
∂σ

∂t

)
,
∂σ

∂s

〉
+

〈
∂σ

∂t
,
D

ds

(
∂σ

∂s

)〉
=

〈
D

dt

(
∂σ

∂s

)
,
∂σ

∂s

〉
+ 0
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by Lemma 3.5.1 and since σ(t, .) : (−ǫ, ǫ) → M is a geodesic for every t ∈ I. For
the same reason, ∥∥∥∥

∂σ

∂s

∥∥∥∥
2

= 1

by Corollary 3.4.2, and differentiating

2

〈
D

dt

(
∂σ

∂s

)
,
∂σ

∂s

〉
= 0.

Thus,
∂

∂s

〈
∂σ

∂t
,
∂σ

∂s

〉
= 0

and

〈
∂σ

∂t
,
∂σ

∂s

〉
is independent of s. However σ(t, 0) = p for all t ∈ I and so

∂σ

∂t
(., 0) = 0. Therefore,

〈
∂σ

∂t
(t, s),

∂σ

∂s
(t, s)

〉
=

〈
∂σ

∂t
(t, 0),

∂σ

∂s
(t, 0)

〉
= 0. �

As in the situation of the preceding Lemma 3.5.2, letM be a Riemannian smooth
n-manifold, p ∈M and V = expp(Bp(0, ǫ)) be an open geodesic ball of radius ǫ > 0
with center p. A piecewise smooth parametrized curve γ : [a, b] → V \ {p}, where a,
b ∈ R, a < b, is a the form

γ(t) = expp(r(t)u(t))

where r : [a, b] → (0, ǫ) is a unique piecewise smooth function and u : [a, b] → TpM is
a unique piecewise smooth parametrised curve with ‖u(t)‖ = 1 for t ∈ [a, b]. Using
the notation of the proof of Lemma 3.5.2 we have γ(t) = σ(t, r(t)) and

γ̇(t) =
∂σ

∂t
+ r′(t)

∂σ

∂s
.

From Lemma 3.5.2 we have

‖γ̇(t)‖2 =

∥∥∥∥
∂σ

∂t

∥∥∥∥
2

+ (r′(t))2
∥∥∥∥
∂σ

∂s

∥∥∥∥
2

≥ (r′(t))2

and the equality holds if and only if u is constant. This implies that

L(γ) ≥
∫ b

a
|r′(t)|dt ≥

∣∣∣∣
∫ b

a
r′(t)dt

∣∣∣∣ = |r(b)− r(a)|

and the equality holds if and only if u is constant and r is monotone.

Proposition 3.5.3. Let M be a Riemannian smooth n-manifold, p ∈ M and let
V = expp(Bp(0, ǫ)) be an open geodesic ball of radius ǫ > 0 with center p. Let
γ : [0, ℓ] → V be a geodesic from γ(0) = p to a point q = γ(ℓ) ∈ V . If a, b ∈ R,
a < b, and σ : [a, b] →M is any piecewise smooth curve from σ(a) = p to σ(b) = q,
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then L(γ) ≤ L(σ). Moreover, if L(γ) = L(σ), then σ([a, b]) = γ([0, ℓ]).

Proof. We may assume that γ is parametrized by arclength, so that ℓ = L(γ) and
γ is given by γ(t) = expp(tv), where v = γ̇(0) and ‖v‖ = 1. Obviously, ℓ < ǫ. We
shall prove first that L(σ) ≥ ℓ. Let 0 < δ < ℓ. By continuity and connectedness,
there exist a < c < d ≤ b such that σ(c) ∈ expp(∂Bp(0, δ)), σ(d) ∈ expp(∂Bp(0, ℓ))

and σ((c, d)) ⊂ expp(Bp(0, ℓ)) \ expp(Bp(0, δ)). Then,

L(σ) ≥ L(σ|[c,d]) ≥ ℓ− δ

from the above considerations and letting δ go to zero this implies that L(σ) ≥ ℓ.
This proves the first part.

Suppose now that L(σ) = ℓ. Applying what we have already proved to σ|[a,c] we
have L(σ|[a,c]) ≥ δ and therefore

L(σ|[c,d]) ≤ L(σ|[c,d]) + L(σ|[d,b]) = ℓ− L(σ|[a,c]) ≤ ℓ− δ.

Hence L(σ|[c,d]) = ℓ − δ and from the above the trace σ([c, d]) is the same as the
trace of a geodesic path expp(tv), δ ≤ t ≤ ℓ, for some v ∈ TpM with ‖v‖ = 1.
Letting again δ go to zero we get a geodesic expp(tv), 0 ≤ t ≤ ℓ whose trace is the
same as σ(|[a,d]. Thus, necessarily L(σ|[d,b]) = 0 and γ(l) = q = expp(lv). It follows
that γ(t) = expp(tv) for all 0 ≤ t ≤ ℓ. �

Corollary 3.5.4. Let M be a Riemannian smooth n-manifold with Riemannian
distance d. For every p ∈M there exists ǫ > 0 such hat

expp(Bp(0, δ)) = {q ∈M : d(p, q) < δ}

for every 0 < δ < ǫ.

Proof. By Proposition 3.2.4, there exists ǫ > 0 such that expp maps Bp(0, ǫ) ⊂ TpM
diffeomorphocally onto the open neighbourhood expp(Bp(0, ǫ)) of p. Obviously then

expp(Bp(0, δ)) ⊂ {q ∈M : d(p, q) < δ}

for every 0 < δ < ǫ, since each geodesic path in the open geodesic ball expp(Bp(0, δ))
emanating from p has length < δ.

Conversely, if q /∈ expp(Bp(0, δ)), then every piecewise smooth parametrized
curve σ from p to q intersects the geodesic sphere expp(∂Bp(0, ρ)) for all 0 < ρ < δ,
and so L(σ) ≥ ρ, by Proposition 3.5.3. Consequently, L(σ) ≥ δ. This shows that
d(p, q) ≥ δ. �

Corollary 3.5.5. On a Riemannian smooth manifold M the Riamannian distance
d induces the original manifold topology and the pair (M,d) is a metric space. �

In the sequel we shall denote by B(p, δ) the open d-ball in M with radius δ and
center p.. According to Proposition 3.5.3, for every p ∈ M there exists some ǫ > 0
such that B(p, δ) is the geodesic open ball of radius δ and center p and for each
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q ∈ B(p, δ) the distance d(p, q) is the length of the unique geodesic path in B(p, ǫ)
from p to q for all 0 < δ < ǫ. It follows from this that geodesics locally minimize
length.

Proposition 3.5.6. Let M be a Riamannian smooth manifold and γ : [a, b] → M ,
where a, b ∈ R, a < b, be a piecewise smooth parametrized curve from γ(a) = p to
γ(b) = q. If L(γ) = d(p, q), then γ([a, b]) is the trace of a geodesic path. In partic-
ular, if γ is parametrized by arclength, it is a geodesic path and in particular smooth.

Proof. Since being a geodesic is a local property, it suffices to show that the trace
of γ is locally the same as that of a geodesic. Let a < t0 < b. By Proposition
3.4.8, there exists a uniformly normal neighbourhood W of γ(t0). So there exists
ǫ > 0 such that W ⊂ expy(By(0, ǫ)) and expy |By(0,ǫ) is a diffeomorphism for every
y ∈ W . There exists η > 0 such that γ([[t0 − η, t0 + η]) ⊂ expγ(t0)(Bγ(t0)(0, ǫ)).
Our assumption implies that L(γ|[t0−η,t0+η]) = d(γ(t0 − η), γ(t0 + η)) and thus, by
Proposition 3.5.3, γ([t0 − η, t0 + η]) is the trace of a geodesic path. �

Definition 3.5.7. A geodesic path γ : [a, b] → M , a, b ∈ R, a < b, on a
Riemennian smooth manifold M with Riemannian distance d is called minimizing
if L(γ) = d(γ(a), γ(b)).

Note that if γ is a minimizing geodesic path as in the above definition, then
L(γ|[t,s]) = d(γ(t), γ(s)), that is γ|[t,s] is minimizing, for every a ≤ t < s ≤ b.
According to Proposition 3.5.3, every geodesic of a Riemannian manifold is locally
minimizing. However, the example of the sphere shows that on a Riemennian
manifold there may exist non-minimizing geodesic paths. The question now arises
whether any two points on a connected Riemennian manifold can be joined by a
minimizing geodesic path. This is answered by the following theorem which is due
to H. Hopf and his student W. Rinow. The proof we present here is due G. de Rham.

Theorem 3.5.8. Let M be a connected Riemannian smooth n-manifold. If the
geodesic vector field of M is complete, then any two given points of M can be joined
by a minimizing geodesic path.

Proof. Let p, q ∈M and r = d(p, q) > 0. According to Corollary 3.5.4, there exists
0 < ǫ < r such that expp(Bp(0, δ)) = B(p, δ) is a normal neighbourhood of p for
every 0 < δ < ǫ. Fixing such a δ, by compactness, there exists p0 ∈ expp(∂Bp(0, δ))
such that

d(p0, q) = inf{d(z, q) : z ∈ expp(∂Bp(0, δ))}.

Then, p0 = expp(δv) for some v ∈ TpM with ‖v‖ = 1 and the unit speed geodesic

γ(t) = expp(tv)

is defined on the entire real line R, because we assume the the geodesic vector field
is complete. It suffices to prove now that d(γ(t), q) = r − t for every δ ≤ t ≤ r,
because then for t = r we will get γ(r) = q and γ|[0,r] will be minimizing.
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Firstly, we have

r = d(p, q) ≤ d(p, γ(t)) + d(γ(t), q) ≤ t+ d(γ(t), q)

and hence d(γ(t), q) ≥ r − t for every 0 ≤ t ≤ r.
On the other hand we have

r ≥ inf{d(p, z) + d(z, q) : z ∈ expp(∂Bp(0, δ))} = δ + d(p0, q)

and so d(p0, q) ≤ r − δ. Hence d(γ(δ), q) = d(p0, q) = r − δ. Let

T = sup{t ∈ [δ, r] : d(γ(t), q) = r − t}.

By continuity, d(γ(T ), q) = r − T . Moreover, d(γ(t), q) = r − t for all δ ≤ t ≤ T ,
because

r − t ≤ d(γ(t), q) ≤ d(γ(t), γ(T )) + d(γ(T ), q) ≤ T − t+ r − t = r − t.

It remains to prove that T = r. Suppose that T < r. We apply what we have already
proved for p to γ(T ). Thus, there are some η > 0 and p′0 ∈ expγ(T )(∂Bγ(T )(0, η))
with

d(p′0, q) = inf{d(z, q) : z ∈ expγ(T )(∂Bγ(T )(0, η))}
and d(p′0, q) = d(γ(T ), q) − η = r − T − η. Therefore,

d(p, p′0) ≥ d(p, q)− d(p′0, q) = r − (r − T − η) = T + η.

However the piecewise smooth parametrized curve, which is the concatenation
of γ|0,T ] and the unique geodesic in expγ(T )(Bγ(T )(0, η)) from γ(T ) to p′0 has
length T + η, and from Proposition 5.5.6 its trace must be the trace of a geodesic
path. Since part of this path coincides with γ|0,T ], it follows from uniqueness
of geodesics that this geodesic path is γ|[0,T+η]. Hence p′0 = γ(T + η) and
d(γ(T + η), q) = r − (T + η). This contradicts the definition of T . �

A topological characterization of the completeness of the geodesic vector field
is given by the following theorem also due to H. Hopf and W. Rinow.

Theorem 3.5.9. For a connected Riemannian smooth manifold M with Rieman-
nian distance d the following statements are equivalent:
(i) The geodesic vector field of M is complete.
(ii) The metric space (M,d) is complete.

Proof. Suppose that the geodesic vector field of M is complete. In order to prove
that (M,d) is a complete metric space, it suffices to show that every d-bounded
set C ⊂ M is contained in a compact set. Let p ∈ M . Since C is bounded, there
exists c > 0 such that d(p, q) < c for every q ∈ C. From Theorem 3.5.8, there
exists some v ∈ TpM such that q = expp(v) and ‖v‖ = d(p, q). This shows that

C ⊂ expp(Bp(0, c)), and expp(Bp(0, c)) is compact, because expp is continuous.
Conversely, suppose that there exists a geodesic parametrized by arclength γ

whose maximal interval of definition is an open interval (a, b) for some a < b < +∞.
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Then, d(γ(t), γ(s)) ≤ |t − s| for every t, s ∈ (a, b). If (M,d) is complete, then
p = lim

t→b−
γ(t) exists in M . From Proposition 3.4.8 there exists a uniformly

normal open neighbourhood W of p, for which there exists some δ > 0 such that
W ⊂ expq(Bq(0, δ)) for every q ∈W . There exists b−δ < T < b such that γ(T ) ∈W
and then the geodesic form γ(T ) with initial velocity γ̇(T ) is defined at least on
the interval [0, δ). By uniqueness of geodesics, this implies that γ is defined at
least on (a, T+δ) and since T+δ > b this contradicts our assumption the b < +∞. �

If any of the two equivalent conditions of the preceding theorem is satisfied, we
shall call the Riemannian manifold M complete. As the proof shows, the following
also holds.

Corollary 3.5.10. A connected Riemannian smooth manifold M is complete if
and only if there exists a point p ∈ M such that expp is defined on the entire
tangent space TpM . �

Corollary 3.5.11. The geodesic vector field of a compact Riemannian smooth
manifold is complete. �

The fact that homogeneous Riemannian manifolds are complete is a consequence
of the following.

Proposition 3.5.12. Let (M,d) be a locally compact metric space. If it is
homogeneous in the sense that for every x, y ∈ M there exists a d-isometry
f :M →M such that f(x) = y, then it is complete.

Proof. Let p ∈ M . Since M is assumed to be locally compact, there exists some
r > 0 such that B(p, r) is compact. The homogeneity implies now that B(x, r)
is compact for every x ∈ M . If (xk)k∈N is a Cauchy sequence in M , there exists
some k0 ∈ N such that d(xk0 , xk) < r for every k ≥ k0. Hence the sequence
has a convergent subsequence, by compactness of B(xk0 , r), which implies that it
converges in M . �

Corollary 3.5.13. A homogeneous connected Riemannian smooth manifold is
complete. �

The euclidean space, the spheres and the hyperbolic spaces are all complete
Riemannian manifolds.

3.6 Geodesic convexity

Let M be a Riemannian smooth n-manifold and p ∈ M . By Proposition 3.4.8 and
Proposition 3.5.3, there exists a uniformly normal open neighbourhood W of p for
which there exists some δ > 0 such that W ⊂ expq(Bq(0, δ)), for every q ∈ W , and
for every q1, q2 ∈ W there exists a unique minimizing geodesic path from q1 to q2
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of length < δ. However this geodesic path may not lie entirely in W .

Definition 3.6.1. A subset C of a Riemannian smooth manifold is said to be
strongly (geodesically) convex if for every x, y ∈ C there exists a unique and
minimizing geodesic path γ : [a, b] → C, for some a, b ∈ R, a < b, from x = γ(a) to
y = γ(b) such that γ(t) ∈ C for a < t < b.

In this section we shall prove that sufficiently small geodesic balls with center
any given point on a Riemennian smooth manifold are strongly convex (and of
course uniformly normal). This result on the existence of strongly convex open
neighbourhoods is due to J.H.C. Whitehead and is based on the following.

Lemma 3.6.2. Let M be a Riemannian smooth n-manifold. For every p ∈ M
there exists some ǫ0 > 0 such that for 0 < δ < ǫ0 if I ⊂ R is an open interval and
γ : I → M is a geodesic which is tangent to the geodesic sphere expp(∂Bp(0, δ)) at
the point γ(t0), for some t0 ∈ I, then there exists some η > 0 such that

γ((t0 − η, t0 + η) \ {t0}) ⊂M \ expp(Bp(0, δ)).

Proof. There exists some ǫ > 0 such that expp maps Bp(0, ǫ) diffeomorphically onto
U = expp(Bp(0, δ)). Let 0 < δ < ǫ. We choose an orthonormal basis {E1, ..., En} of
TpM and consider the normal chart (U, φ) at p, where φ = h ◦ (expp |Bp(0,ǫ))−1 and
h : TpM → Rn is the linear isommetry with h(Ei) = ei, 1 ≤ i ≤ n. Let γ : I → U
be a geodesic which is tangent to the geodesic sphere expp(∂Bp(0, δ)) at the point
γ(t0). Suppose that φ = (x1, ..., xn) and φ◦γ = (γ1, ..., γn). We consider the smooth
function f : I → R with

f(t) =

n∑

k=1

(γk(t))2.

Since γ is tangent to expp(∂Bp(0, δ)) at γ(t0), we have

f ′(t0) = 2
n∑

k=1

γk(t0)(γ
k)′(t0) = 0.

Since γ is a geodesic,

(γk)′′(t) = −
n∑

i,j=1

Γkij(γ(t))(γ
i)′(t)(γj)′(t)

and substituting

f ′′(t) = 2
n∑

k=1

[((γk)′(t))2 + (γk)(t)(γk)′′(t)]

=
n∑

i,j=1

(
2δij − 2

n∑

k=1

Γkij(γ(t))γ
k(t)

)
(γi)′(t)(γj)′(t)
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for every t ∈ I. Since Γkij(p) = 0, 1 ≤ i, j, k ≤ n, there exists some 0 < ǫ0 < ǫ such
that the quadratic form

n∑

i,j=1

(
δij −

n∑

k=1

Γkij(q)x
k(q)

)
vivj

is positive definite for every q ∈ expp(Bp(0, ǫ0)). Thus, if 0 < δ < ǫ0, then f
′′(t0) > 0

and f has has a strict local minimum at t0, which means that there exists η > 0
such that f(t) > δ2 for t ∈ (t0 − η, t0 + η) \ {t0}. This proves the assertion. �

We shall also use the following remark. If p ∈M , for every open neighbourhood
U of p there exists an open neighbourhood V of (p, 0) in TM such that expq(tv) ∈ U
for every 0 ≤ t ≤ 1 and (q, v) ∈ V . To see this, it suffices to consider the smooth
map g : [0, 1] × E →M with g(t, q, v) = expq(tv), where E ⊂ TM is the domain of
definition of the exponential map and note that g(t, p, 0) = p for all 0 ≤ t ≤ 1. By
continuity, for every t ∈ [0, 1] there exists an open neighbourhood Vt ⊂ E of (p, 0)
and δt > 0 such that g((t− δt, t+ δt)×Vt) ⊂ U . By compactness of [0, 1], there exist
t1,..., tm ∈ [0, 1], for some m ∈ N, such that

[0, 1] =

m⋃

k=1

(tk − δtk , tk + δtk).

It suffices now to take V = Vt1 ∩ · · · ∩ Vtm .

Theorem 3.6.3. If M is a Riemannian smooth n-manifold, then for every p ∈ M
there exists some ǫ > 0 such that for every 0 < δ < ǫ the geodesic ball expp(Bp(0, δ))
is strongly convex.

Proof. Let ǫ0 > 0 be as in the preceding Lemma 3.6.2 and let F : E → M ×M be
the smooth map F (q, v) = (q, expq(v)), where E ⊂ TM is the domain of definition
of the exponential map. As in the proof of Proposition 3.4.8, there exists an open
neighbourhood V ⊂ TM of (p, 0) and some 0 < ǫ < ǫ0 such that F maps V
diffeomorphically onto expp(Bp(0, ǫ))×expp(Bp(0, ǫ)) and expq(tv) ∈ expp(Bp(0, ǫ0))
for every (q, v) ∈ V and 0 ≤ t ≤ 1, form the above remark. Moreover, there exists
some η > 0 such that expp(Bp(0, ǫ)) ⊂ expq(Bq(0, η)) for every q ∈ expp(Bp(0, ǫ)).

We shall prove that expp(Bp(0, δ)) is strongly convex for every 0 < δ < ǫ.

Let q1, q2 ∈ expp(Bp(0, δ)) = expp(Bp(0, δ)), Since (q1, q2) ∈ F (V ) there exists
v ∈ Tq1M such that q1 = expq1(v) and γ(t) = expq1(tv) ∈ expp(Bp(0, ǫ0)) for every
0 ≤ t ≤ 1. By Proposition 3.5.3, γ is the unique and minimizing geodesic path from
q1 to q2 in expq1(Bq1(0, η)), hence in expp(Bp(0, ǫ0)), and it suffices to show that
γ(t) ∈ expp(Bp(0, δ)) for 0 < t < 1. Let (γ1, ..., γn) be its local representation with
respect to the normal chart on expp(Bp(0, ǫ0)) and let again f : [0, 1] → R be the
smooth function

f(t) =

n∑

k=1

(γk(t))2
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as in the beginning of the proof of Lemma 3.6.2. If γ((0, 1)) has points outside
expp(Bp(0, δ)), then f takes its maximal value on [0, 1] at some 0 < t0 < 1 and

δ2 ≤ f(t0) < ǫ20

or equivalently γ([0, 1]) ∈ expp(Bp(0,
√
f(t0))). On the other hand, we must have

0 = f ′(t0) = 2
n∑

k=1

(γk)(t0)(γ
k)′(t0)

which means that the geodesic path γ((0, 1)) is tangent to the geodesic sphere
expp(∂Bp(0,

√
f(t0))). This contradicts Lemma 3.6.2. �

Corollary 3.6.4. If M is a Riemennian smooth manifold with Riemannian
distance d, then for every p ∈ M there exists some ǫ > 0 such that for every
0 < δ < ǫ the open d-ball B(p, δ) is the geodesic ball with center p and radius δ and
is uniformly normal and strongly convex. �

The existence of strongly convex geodesic balls can be applied to facilitate alge-
braic calculations on smooth manifolds involving de Rham and Čech cohomology,
as we shall see in chapters 5 and 6.

3.7 Exercises

1. Prove that the euclidean connection on Rn is the unique connection for which
∇XY = 0 for every X ∈ X (Rn) and every constant Y ∈ X (Rn).

2. Let ∇ be a connection on a smooth n-manifold M . A smooth diffeomorphism
f : M → M is called affine, if it preserves ∇, that is f∗(∇XY ) = ∇f∗Xf∗Y ,
for every X, Y ∈ X (M). The set of all affine diffeomorphisms of ∇ is a group.
Prove that in case M = Rn and ∇ is the euclidean connection, for every affine
diffeomorphism f there exist A ∈ GL(n,R) and b ∈ Rn such that f(x) = Ax+ b for
every x ∈ Rn.

3. A smooth n-manifold M is said to be affinely flat, if there exists a smooth atlas
A = {(Ui, φi) : i ∈ I} of M such that for every i, j ∈ I with Ui ∩Uj 6= ∅ there exist
Aij ∈ GL(n,R) and bij ∈ Rn such that

φi ◦ φ−1
j (x) = Aijx+ bij

for every x ∈ φj(Ui ∩ Uj). Prove that then there exists a natural connection ∇ on
M such that every φi : Ui → φi(Ui) transfers ∇|U to the euclidean connection on
φi(Ui) ⊂ Rn.

4. Let A ∈ Rn×n be a positive definite symmetric matrix and

M = {x ∈ Rn : 〈A−1x, x〉 = 1}
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be the (n− 1)-dimensional ellipsoid with semi-axis the eigenvalues of A. Prove that
a smooth parametrized curve γ : R → M is a geodesic of M (with respect to the
euclidean connection) if and only if

γ′′ +
〈A−1γ′, γ′〉
‖A−1γ‖2 A−1γ = 0.

5. On R2 we consider the connection whose Christoffel symbols are Γ1
11 = x,

Γ1
12 = 1, Γ2

22 = 2y and the rest vanish.
(a) Write down the system of differential equations of its geodesics.
(b) Let γ : [0, 1] → R2 be the smooth parametrized curve γ(t) = (t, 0). Find the

parallel translation of the vector

(
∂

∂y

)

(0,0)

along γ on (1, 0) with respect to this

connection.

6. Let M be a smooth manifold endowed with a connection ∇ and let ρ : M → R
be a smooth function. For every X, Y ∈ X (M) we put

∇ρ
XY = ∇XY − Y (ρ)X −X(ρ)Y.

(a) Prove that ∇ρ is a connection on M .
(b) Let ǫ > 0 and γ : (−ǫ, ǫ) → M be a geodesic of ∇ρ. If h : (−ǫ, ǫ) → R is the
smooth function with

h(t) =

∫ t

0
e2ρ(γ(s))ds,

prove that γ ◦ h−1 is a geodesic of ∇. Thus, the two connections ∇ and ∇ρ have
the same non-parametrized geodesics.

7. On R3 we define ∇ : X (R3)× X (R3) → X (R3) by

∇XY = DXY +
1

2
X × Y,

where DXY is the directional derivetive of Y with respect to X and X × Y is the
usual exterior product on R3.
(a) Prove that ∇ is a connection.
(b) Is ∇ symmetric?
(c) Is ∇ compatible with the euclidean Riemannian metric?

8. Let M , N be two connected Riemannian manifolds and let f : M → N be a
smooth diffeomorphism. Assume that there exists some point p ∈ M such that
f∗p : TpM → Tf(p)N is a linear isometry. Prove that f is an isometry if and only if
it preserves the corresponding Levi-Civita connections.

9. Let M be a Riemannian smooth n-manifold and let f : M → R be a smooth
function. The gradient of f is the unique smooth vector field gradf such that

f∗p(v) = 〈gradf(p), v〉
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for every v ∈ TpM , p ∈M .
(a) Prove that in the local coordinates (x1, ..., xn) of a smooth chart of M the
gradient of f is given by the formula

gradf = (gij)
−1
1≤i,j≤n




∂f
∂x1

.

.

.
∂f
∂xn



.

(b) If ‖gradf‖ = 1 everywhere on M , prove that the integral curves of gradf are
geodesics.

10. On D2 = {z ∈ C : |z| < 1} we consider the Riemannian metric

〈v,w〉 = 4

(1− |z|2)2 · Re(vw̄), v, w ∈ TzD
2, z ∈ D2.

(a) Prove that the map C : D2 → H2 defined by

C(z) = −iz + i

z − i

is an isometry. C is called the Cayley transformation.
(b) Prove that if a, b ∈ C and |a|2 − |b|2 = 1, then

h(z) =
az + b

b̄z + ā

is an isometry of D2.
(c) Describe the geodesics of D2.

11. Let γ : R → H2 be the smooth parametrized curve γ(t) = (t, 1). Find the paral-

lel vector fieldX along γ withX(0) =

(
∂

∂y

)

γ(0)

and drawX on the interval [−π
2
, π].

12. Let M and N be two connected Riemannian manifolds.
(a) Let p ∈ M , q ∈ N and T : TpM → TqN be a linear isometry. If there exists an
isometry h :M → N such that h(p) = q and h∗p = T , prove that there exist normal
open neighbourhoods V of p and W of q such that h(V ) =W and

h|V = expq ◦T ◦ exp−1
p .

(b) Prove that if g, h : M → N are two isometries for which there exists some
p ∈M such that g(p) = h(p) and g∗p = h∗p, then g = h.

13. Let M ne a Riemannian smooth n-manifold and let G be a non-empty set of
isometries of M . If F = {p ∈ M : g(p) = p for every g ∈ G}, prove that F is a
smooth submanifold of M .
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(Hint: Consider for every p ∈ F the vector subspace

V = {v ∈ TpM : g∗p(v) = v for every g ∈ G}

of TpM and show that expp(U∩V ) = F ∩expp(U) for a suitable open neighbourhood
U of 0 ∈ TpM .)

14. Let M be a Riemannian smooth manifold with group of isometries I(M). For
a properly discontinuous subgroup G of I(M), the orbit space M/G inherits a
Riemannian metric, if it is a Hausdorff space, and the quotient map p :M →M/G
is a local isometry. If M is complete, prove that M/G is complete as well. Describe
the geodesics of the flat 2-torus T 2 and the geodesics of RP 2 with respect to the
induced Riemannian metric from S2.

15. Prove that a connected isotropic and complete Riemannian manifold is
homogeneous.

16. Let M be a connected, non-compact, complete Riemannian manifold with
Riemannian distance d. Prove that for every p ∈ M there exists a geodesic
γ : [0,+∞) →M with γ(0) = p and d(p, γ(t)) = t for every t ≥ 0.

17. Let M and N be two Riemannian smooth manifolds and let h : M → N be a
smooth diffeomorphism for which there exists c > 0 such hat c‖h∗p(v)‖ ≤ ‖v‖ for
every v ∈ TpM and p ∈M . If N is complete, prove that M is also complete.

18. Let M be a Riemannian smooth manifold with Riemannian distance d. For
every piecewise smooth parametrized curve γ : [a, b] → M , where a, b ∈ R, a < b,
the non-negative real number

J(γ) =
1

2

∫ b

a
‖γ̇(t)‖2dt

is called the energy of γ and is not invariant under reparametrizations.
(a) Prove that (L(γ))2 ≤ 2(b − a)J(γ) and the equality holds if and only if ‖γ̇‖ is
constant.

For every p, q ∈M we define

e(p, q) = inf{2J(γ)|γ : [0, 1] →M piecewise smooth with γ(0) = p, γ(1) = q}.

(b) Prove that (d(p, q))2 = e(p, q) for every p, q ∈M .
(c) If p, q ∈ M and γ is a piecewise smooth parametrized curve from p to q, prove
that γ minimizes the energy, that is 2J(γ) = e(p, q), if and only if γ is a minimizing
geodesic.
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Chapter 4

Differential forms

4.1 The cotangent bundle

Let M be a smooth n-manifold. The disjoint union of the algebraic duals of tangent
spaces at points of M , that is the set

T ∗M =
⋃

p∈M
{p} × (TpM)∗

can be endowed with a smooth structure in a similar way as the tangent bundle
can, so that the natural projection π : TM →M with π(p, a) = p, for a ∈ (TpM)∗,
p ∈M , becomes smooth and a submersion.

Let (U, φ) be a smooth chart ofM , where φ = (x1, ..., xn) and let

{
∂

∂x1
, ...,

∂

∂xn

}

be the corresponding set of basic vector fields on U . For every p ∈ U , we have a
dual basis {(dx1)p, ..., (dxn)p} of (TpM)∗, so that

(dxi)p

(
∂

∂xj

)

p

= δij

for all i, j = 1, 2, ..., n. Let φ̃ : π−1(U) → φ(U)× Rn be defined by

φ̃(p, a) = (x1(p), ..., xn(p), a1, ...an)

for a = a1(dx
1)p + · · ·+ an(dx

n)p ∈ (TpM)∗ and p ∈ U .
If (V, ψ) is another smooth chart of M with U ∩ V 6= ∅, then

(ψ̃ ◦ φ̃−1)(x, y) = ((ψ ◦ φ−1)(x), (D(ψ ◦ φ−1)(x)−1)t(y)).

Applying Lemma 2.1.1, precisely as in the case of the tangent bundle, T ∗M
can be made a smooth 2n-manifold with respect to which each (π−1(U), φ̃) is a
smooth chart and π : T ∗M → M is a submersion. The triple (T ∗M,π,M) is
the cotangent bundle of M . As in the case of the tangent bundle, the natural
projection π is the bundle map, M is the base space of the bundle and T ∗M is the
total space of the bundle. We shall also use the term cotangent bundle for T ∗M itself.

83
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Definition 4.1.1. A differential 1-form on a smooth n-manifold M is a smooth
map ω :M → T ∗M which to every p ∈M assigns a cotangent vector ωp ∈ (TpM)∗.
Briefly, ω ◦ π = idM or in other words ω is a smooth section of π.

The set A1(M) of all differential 1-forms of a smooth manifold M is an infinite
dimensional real vector space and a C∞(M)-module. As for vector fields, if (U, φ)
is a smooth chart of M , where φ = (x1, ..., xn), then for every ω ∈ A1(U) there is
a unique smooth function F = (F1, ..., Fn) : φ(U) → Rn such that ω has a local
representation

(φ̃ ◦ ω ◦ φ−1)(x) = (x, F (x)).

If we put fj = Fj ◦ φ, j = 1, ..., n, then

ωp =
n∑

j=1

fj(p)(dx
j)p

for every p ∈ U . In particular, dxj is a differential 1-form on U , j = 1, ..., n and in
analogy with the basic vector fields on U defined by the chart φ, we call dx1,.., dxn

the basic differential 1-forms on U with respect to the smooth chart (U, φ).

Example 4.1.2. Let M be a smooth n-manifold and let f :M → R be any smooth
function. At every point p ∈ M , the derivative f∗p : TpM → Tf(p)R of f at p,
can be considered an element of (TpM)∗, identifying Tf(p)R with R via the linear

isomorphism which sends

(
d

dt

)

f(p)

to 1. So we obtain a map df :M → T ∗M , that is

(df)p = f∗p. If (U, φ) is a smooth chart of M and φ = (x1, ..., xn), the corresponding
local representation of df on U is given by the formula

df |U =

n∑

j=1

∂f

∂xj
· dxj .

Therefore, df is a differential 1-form and is called the differential of f . Note that in
particular the basic differential 1-form dxj is the differential of the j-th coordinate
xj : U → R of the smooth chart φ.

The differential is a linear map d : C∞(M) → A1(M) which has the additional
property

d(fg) = gdf + fdg

for every f , g ∈ C∞(M). Indeed, if p ∈ M , a tangent vector v ∈ TpM is a
derivation of the algebra Gp(M) of germs smooth real valued functions defined on
neighbourhoods of p and so

(d(fg))p(v) = v(fg) = g(p)v(f) + f(p)v(g) = g(p)(df)p(v) + f(p)(dg)p(v).

A smooth map f : M → N of smooth manifolds induces transpose linear maps
f∗ : C∞(N) → C∞(M) and f∗ : A1(N) → A1(M) by f∗h = h ◦ f for h ∈ C∞(M)
and

(f∗ω)p(v) = ωf(p)(f∗p(v))
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for every v ∈ TpM , p ∈ M . The differential 1-form f∗ω is called the pull-back of ω
with respect to f . If g : N → P is a second smooth map of smooth manifolds, it
follows immediately from the chain rule that (g ◦ f)∗ = f∗ ◦ g∗.

Another consequence of the chain rule is the fact that the differential is natural.
This means that if f : M → N is any smooth map of smooth manifolds, then the
following diagram commutes.

C∞(N) A1(N)

C∞(M) A1(M)

d

f∗ f∗

d

4.2 Alternating multilinear forms

Let V be a real vector space of finite dimension n. Recall that a k-multilinear form
on V , for k ∈ N, is any function φ : V k → R which is linear with respect to each
variable separately. The set J k(V ) of all k-multilinear forms of V carries an obvious
vector space structure. Note that J 1(V ) = V ∗ is the algebraic dual space of V . We
also put J 0(V ) = R.

The graded vector space J (V ) =

∞⊕

k=0

J k(V ) of all multilinear forms on V can

be endowed with the tensor product ⊗ defined by

(φ⊗ ψ)(v1, ..., vk, u1, ..., ul) = φ(v1, ..., vk) · ψ(u1, ..., ul)

for φ ∈ J k(V ), ψ ∈ J l(V ) and v1, ..., vk, u1, ..., ul ∈ V with respect to which it
becomes a graded associative (non-commutative) algebra.

If {v1, ..., vn} is a basis of V and {v∗1 , ..., v∗n} is its dual basis of V ∗, then

{v∗i1 ⊗ · · · ⊗ v∗ik : 1 ≤ i1, ..., ik ≤ n}

is a basis of J k(V ). Note that

(v∗i1 ⊗ · · · ⊗ v∗ik)(vj1 , ..., vjk) =

{
0, if (i1, ..., ik) 6= (j1, ..., jk),

1, if (i1, ..., ik) = (j1, ..., jk)

and

φ =

n∑

i1,...,ik=1

φ(vi1 , ..., vik ) · v∗i1 ⊗ · · · ⊗ v∗ik

for every φ ∈ J k(V ).
Every linear map f : V → W of finite dimensional real vector spaces induces a

linear map f∗ : J (W ) → J (V ) which is defined by

(f∗φ)(u1, ..., uk) = φ(f(u1), ..., f(uk))

for every u1, ..., uk ∈ V and φ ∈ J k(V ) and which is called the transpose of f . It is
immediate from the definitions that f∗ preserves the tensor product and is thus an
algebra homomorphism.
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The determinant is an example of an n-multilinear form which has the additional
property that is alternating.

Definition 4.2.1. A k-multilinear form ω ∈ J k(V ) is called alternating if

ω(u1, ..., uk) = (sgnσ) · ω(uσ(1), ..., uσ(k))

for every u1, ..., uk ∈ V and every permutation σ ∈ Sn.

The set Λk(V ) of alternating k-multilinear forms of V is a vector subspace of
J k(V ). If {v1, ..., vn} is a basis of V and ω ∈ Λk(V ) for k > n, then ω(vi1 , ..., vik ) =
0 for every 1 ≤ i1, ..., ik ≤ n, because at least two of vi1 , ..., vik must coincide.
Therefore, ω = 0. This means that Λk(V ) = 0 for k > n.

The tensor product of two alternating k-multilinear forms need not be alternat-

ing. In order to define an algebra structure on the vector space Λ(V ) =

n⊕

k=0

Λk(V )

of all alternating forms we consider the linear map A : J (V ) → J (V ) defined by

A(φ)(u1, ..., uk) =
1

k!

∑

σ∈Sk
(sgnσ) · ω(uσ(1), ..., uσ(k))

and we observe that A(φ) ∈ Λk(V ) for every φ ∈ J k(V ). Indeed, if τ = (i j) is
the transposition which permutes the symbols i and j, we have

A(φ)(uτ(1), ..., uτ(k)) =
1

k!

∑

σ∈Sk
(sgnσ) · ω(uσ(τ(1)), ..., uσ(τ(k)))

= − 1

k!

∑

σ◦τ∈Sn
sgn(σ ◦ τ) · ω(uσ(τ(1)), ..., uσ(τ(k))) = −A(φ)(u1, ..., uk).

Moreover, A(ω) = ω, if ω ∈ Λ(V ).
If now ω ∈ Λk(V ) and θ ∈ Λl(V ), the element

ω ∧ θ = (k + l)!

k! · l! A(ω ⊗ θ) ∈ Λk+l(V )

is called the wedge product of ω with θ. It follows from the linearity of A that the
wedge product

∧ : Λk(V )× Λl(V ) → Λk+l(V )

is bilinear.
If f : V → W is a linear map of finite dimensional real vector spaces, then

f∗(Λk(W )) ⊂ Λk(V ) and f∗(ω∧θ) = f∗(ω)∧f∗(θ) for every ω ∈ Λk(W ), θ ∈ Λl(W ).

Lemma 4.2.2. If ω ∈ Λk(V ) and θ ∈ Λl(V ), then ω ∧ θ = (−1)klθ ∧ ω.

Proof. If τ = (1 2 · · · k + l)k = ((1 k + l) · · · (1 2))k, that is

τ =

(
1 2 · · · l l + 1 · · · l + k

k + 1 k + 2 · · · k + l 1 · · · k

)
,
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then sgnτ = (−1)(k+l−1)k = (−1)kl and we have

A(ω⊗θ)(u1, ..., uk+l) =
1

(k + l)!

∑

σ∈Sk+l
(sgnσ) · ω(uσ(1), ..., uσ(k)) · θ(uσ(k+1), ..., uσ(k+l))

=
1

(k + l)!

∑

σ∈Sk+l
(sgnσ) · ω(uσ(τ(l+1)), ..., uσ(τ(k+l))) · θ(uσ(τ(1))), ..., uσ(τ(l)))

= (−1)kl
1

(k + l)!

∑

σ∈Sk+l
(sgn(στ)) · ω(uσ(τ(l+1)), ..., uσ(τ(k+l))) · θ(uσ(τ(1))), ..., uσ(τ(l)))

= (−1)klA(θ ⊗ ω). �

As a consequence, if k is odd, then ω ∧ ω = 0 for every ω ∈ Λk(V ). For the
proof of the associativity of the wedge product we shall need the following.

Lemma 4.2.3. Let φ ∈ J k(V ) and ψ ∈ J l(V ). If A(φ) = 0, then

A(φ⊗ ψ) = A(ψ ⊗ φ) = 0.

Proof. For every u1,..., uk+l ∈ V we have by definition

A(φ⊗ψ)(u1, ..., uk+l) =
1

(k + l)!

∑

σ∈Sk+l
(sgnσ) · φ(uσ(1), ..., uσ(k)) · ψ(uσ(k+1), ..., uσ(k+l))

The set G = {σ ∈ Sk+l : σ(k + 1) = k + 1, ..., σ(k + l) = k + l} is a subgroup
of Sk+l isomorphic to Sk and Sk+l is the disjoint union of the right cosets of G in
Sk+l. Now we have

∑

σ∈G
(sgnσ) · φ(uσ(1), ..., uσ(k)) · ψ(uσ(k+1), ..., uσ(k+l))

= k!A(φ)(u1, ..., uk) · ψ(uk+1, ..., uk+l) = 0

and ∑

σ∈Gτ
(sgnσ) · φ(uσ(1), ..., uσ(k)) · ψ(uσ(k+1), ..., uσ(k+l))

= (sgnτ)
∑

στ−1∈G
(sgn(στ−1)) · φ(uστ−1τ(1), ..., uστ−1τ(k)) · ψ(uστ−1τ(k+1), ..., uστ−1τ(k+l))

= (sgnτ)k!A(φ)(uτ(1) , ..., uτ(k)) · ψ(uτ(k+1), ..., uτ(k+l)) = 0

for every τ ∈ Sk+l. This proves that A(φ⊗ψ) = 0 and similarly one can prove that
A(ψ ⊗ φ) = 0. �

Corollary 4.2.4. If ω ∈ Λk(V ), θ ∈ Λl(V ) and η ∈ Λm(V ), then

A(A(ω ⊗ θ)⊗ η) = A(ω ⊗A(θ ⊗ η)) = A(ω ⊗ θ ⊗ η).

Proof. Since A(A(ω ⊗ θ)− ω ⊗ θ) = 0, it follows from Lemma 4.2.3 that

0 = A((A(ω ⊗ θ)− ω ⊗ θ)⊗ η) = A(A(ω ⊗ θ)⊗ η)−A(ω ⊗ θ ⊗ η). �
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Proposition 4.2.5. If ω ∈ Λk(V ), θ ∈ Λl(V ) and η ∈ Λm(V ), then

(ω ∧ θ) ∧ η = ω ∧ (θ ∧ η) = (k + l +m)!

k! · l! ·m!
· A(ω ⊗ θ ⊗ η).

Proof. Using Corollary 4.2.4 we compute

(ω ∧ θ) ∧ η =
(k + l +m)!

(k + l)! ·m!
·A((ω ∧ θ)⊗ η)

=
(k + l +m)!

(k + l)! ·m!
· (k + l)!

k! · l! ·A(A(ω ⊗ θ)⊗ η =
(k + l +m)!

k! · l! ·m!
·A(ω ⊗ θ ⊗ η). �

The above show that Λ(V ) endowed with the wedge product is a graded com-
mutative associative algebra with unity. If now {v1, ..., vn} is a basis of V and
{v∗1 , ..., v∗n} is its dual basis of V ∗, then

{v∗i1 ∧ · · · ∧ v∗ik : 1 ≤ i< · · · < ik ≤ n}

generates Λk(V ), since A(J k(V )) = Λk(V ). Actually, it is a basis, because if
ai1···ik ∈ R, 1 ≤ i1 < · · · < ik ≤ n are such that

∑

1≤i1<···<ik≤n
ai1···ik · v∗i1 ∧ · · · ∧ v∗ik = 0,

then
0 =

∑

1≤i1<···<ik≤n
ai1···ik · (v∗i1 ∧ · · · ∧ v∗ik)(vj1 , ..., vjk )

=
∑

1≤i1<···<ik≤n
ai1···ik · k! · A(v∗i1 ⊗ · · · ⊗ v∗ik)(vj1 , ..., vjk)

=
∑

1≤i1<···<ik≤n
ai1···ik ·

∑

σ∈Sk
(sgnσ) · v∗i1(vσ(j1)) · · · v

∗
ik
(vσ(jk)) = aj1···jk .

Therefore, the dimension of Λk(V ) is

(
n
k

)
. In particular, dimΛn(V ) = 1 and Λn(V )

is generated by the determinant. If wj =
n∑

i=1

aijvi, j = 1, ..., n, then

ω(w1, ..., wn) = ω(v1, ..., vn) · det(aij)1≤i,j≤n.

4.3 The exterior algebra of a smooth manifold

In analogy to the tangent and the cotangent bundle of a smooth n-manifold M , the
disjoint union of the spaces of alternating k-multilinear forms, 1 ≤ k ≤ n, of the
tangent spaces

Λk(M) =
⋃

p∈M
{p} × Λk(TpM)
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can be endowed with a smooth structure so that the projection π : Λk(M) → M
with π(p, a) = p for p ∈ M , a ∈ Λk(TpM) becomes a submersion. Note that
Λ1(M) = T ∗M .

Let (U, φ) be a smooth chart of M , where φ = (x1, ..., xn). Let

{
∂

∂x1
, ...,

∂

∂xn

}

be the corresponding set of basic vector fields and {dx1, ..., dxn} the corresponding
set of basic differential 1-forms on U . For each p ∈ U the set

{(dxi1)p ∧ · · · ∧ (dxik)p : 1 ≤ i1 < · · · < ik ≤ n}

is a basis of Λk(TpM).

Let φ̃ : π−1(U) → φ(U) ×R
(
n
k

)

be defined by

φ̃(p, a) = (φ(p), (ai1 ···ik)1≤i1<···<ik≤n)

for a =
∑

1≤i1<···<ik≤n
ai1···ik(dx

i1)p ∧ · · · ∧ (dxik)p and p ∈ U . If (V, ψ) is an-

other smooth chart of M , then ψ̃ ◦ φ̃−1 is a smooth diffeomorphism, since
(D(ψ ◦ φ−1)(x)−1)t depends smoothly on x ∈ φ(U ∩ V ). Thus, applying Lemma
2.1.1 we obtain a topology and a smooth structure on Λk(M) turning it into a
smooth manifold and the natural projection π : Λk(M) → M a submersion. The
triple (Λk(M), π,M) is called the exterior k-bundle of M . As usual, we shall also
use the same term for its total space Λk(M).

Definition 4.3.1. A differential k-form on a smooth n-manifold M , 1 ≤ k ≤ n,
is a smooth map ω : M → Λk(M) which to every p ∈ M assigns an element
ωp ∈ Λk(TpM). So, ω ◦ π = idM , which means that ω is a smooth section of π. The
non-negative integer k is the degree of ω.

The set Ak(M) of all differential k-forms of a smooth manifold M is an infinite
dimensional real vector space and a C∞(M)-module. We also putA0(M) = C∞(M).

If (U, φ) is a smooth chart ofM , where φ = (x1, ..., xn), then for every ω ∈ Ak(U)

there is a unique smooth function F = (Fi1i2···ik)1≤i1<···<ik≤n : φ(U) → R
(
n
k

)

such
that ω has a local representation

(φ̃ ◦ ω ◦ φ−1)(x) = (x, F (x)).

If we put fi1i2···ik = Fi1i2···ik ◦ φ, then

ωp =
∑

1≤i1<···<ik≤n
fi1i2···ik(p)(dx

i1)p ∧ · · · ∧ (dxik)p

for every p ∈ U . In particular, every dxi1 ∧ · · · ∧ dxik is a differential k-form on
U , which we call a basic differential k-form on U with respect to the smooth chart
(U, φ).

On the graded vector space A∗(M) =
n⊕

k=0

Ak(M) we have a wedge product

∧ : Ak(M)×Al(M) → Ak+l(M)
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which is defined by (ω∧ θ)p = ωp∧ θp for every p ∈M . Therefore, all the properties
that the wedge product of alternating multilinear forms of vector spaces have transfer
verbatim to differential forms making thus A∗(M) a graded commutative associative
algebra with unity, which is called the exterior algebra of the smooth manifold M .

Every smooth map f : M → N of smooth manifolds induces a transpose map
f∗ : A∗(N) → A∗(M) defined by

(f∗ω)p(v1, ..., vk) = ωf(p)(f∗p(v1), ..., f∗p(vk))

for v1,..., vk ∈ TpM , p ∈ M and every ω ∈ Ak(N). The differential form f∗ω is
called the pull-back of ω with respect to f . The transpose f∗ is a homomorphism
of graded algebras, since it preserves the wedge product. If g : N → P is another
smooth map of smooth manifolds, then (g ◦ f)∗ = f∗ ◦ g∗, by the chain rule, and
evidently (idM )∗ = idA∗(M). It follows that if f is a smooth diffeomorphism, then
f∗ : A∗(N) → A∗(M) is an isomorphism of graded algebras.

On the exterior algebra of a smooth manifold there exists a natural linear endo-
morphism, which is not an algebra homomorphism, but satisfies a graded Leibniz
formula. This unifies and extends the classical operators of vector analysis in R3.
We shall construct it starting locally from open subsets of Rn.

For every differential k-form ω on an open subset S ⊂ Rn there exist unique
smooth functions fi1i2···ik : S → R , 1 ≤ i1 < · · · < ik ≤ n, such that

ω =
∑

1≤i1<···<ik≤n
fi1i2···ik · dxi1 ∧ · · · ∧ dxik .

The differential of ω is the differential (k + 1)-form defined by the formula

dω =
∑

1≤i1<···<ik≤n
dfi1i2···ik ∧ dxi1 ∧ · · · ∧ dxik .

So we get a linear endomorphism d : A∗(S) → A∗(S) which is called the exterior
differential.

Proposition 4.3.2. The exterior differential d : A∗(S) → A∗(S) for an open set
S ⊂ Rn has the following properties:
(i) If B ⊂ S is an open subset of S, then dω|B = d(ω|B) for every ω ∈ A∗(S).
(ii) d has degree 1, which means that d(Ak(S)) ⊂ Ak+1(S), 0 ≤ k ≤ n.
(iii) If f ∈ A0(M) = C∞(M), then df is the usual differential of f which was
defined in Example 3.1.2.
(iv) d(ω∧θ) = dω∧θ+(−1)kω∧dθ for every ω ∈ Ak(S) and θ ∈ Al(S), 0 ≤ k, l ≤ n
(graded Leibniz formula).
(v) d ◦ d = 0, that is d(dω) = 0 for every ω ∈ A∗(S).

Proof. The properties (i), (ii) and (iii) are immediate from the definitions. For (iv)
we suppose that

ω =
∑

1≤i1<···<ik≤n
fi1i2···ik · dxi1 ∧ · · · ∧ dxik , θ =

∑

1≤j1<···<jl≤n
gj1j2···jl · dxj1 ∧ · · · ∧ dxll
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and compute

d(ω ∧ θ) =
∑

1≤i1<···<ik≤n

1≤j1<···<jl≤n

d(fi1i2···ikgj1j2···jl) ∧ dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxll

=
∑

1≤i1<···<ik≤n

1≤j1<···<jl≤n

gj1j2···jldfi1i2···ik ∧ dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxll

+
∑

1≤i1<···<ik≤n

1≤j1<···<jl≤n

fi1i2···ikdgj1j2···jl ∧ dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxll

=
∑

1≤i1<···<ik≤n

1≤j1<···<jl≤n

(dfi1i2···ik ∧ dxi1 ∧ · · · ∧ dxik) ∧ gj1j2···jldxj1 ∧ · · · ∧ dxll

+
∑

1≤i1<···<ik≤n

1≤j1<···<jl≤n

(fi1i2···ikdx
i1 ∧ · · · ∧ dxik) ∧ (−1)kdgj1j2···jl ∧ dxj1 ∧ · · · ∧ dxll

= dω ∧ θ + (−1)kω ∧ dθ.
To prove (v), we start with a f ∈ A0(M). Then, by definition,

df =

n∑

j=1

∂f

∂xj
· dxj

and

d(df) =
n∑

j=1

d

(
∂f

∂xj

)
∧ dxj =

n∑

i,j=1

∂2f

∂xi∂xj
· dxi ∧ dxj = 0.

In particular, it follows inductively form this and (iv) that d(dxi1 ∧ · · · ∧ dxik) = 0.
If now

ω =
∑

1≤i1<···<ik≤n
fi1i2···ik · dxi1 ∧ · · · ∧ dxik ,

then

d(dω) = d

( ∑

1≤i1<···<ik≤n
dfi1i2···ik ∧ dxi1 ∧ · · · ∧ dxik

)

=
∑

1≤i1<···<ik≤n
d(dfi1i2···ik) ∧ dxi1 ∧ · · · ∧ dxik−

∑

1≤i1<···<ik≤n
dfi1i2···ik ∧ d(dxi1 ∧ · · · ∧ dxik)

= 0− 0 = 0. �

An additional important property of the exterior differential is that it is natural.

Proposition 4.3.3. Let S ⊂ Rn and T ⊂ Rm be open sets and let f : S → T be a
smooth map. Then f∗ ◦ d = d ◦ f∗, that is the following diagram commutes.

A∗(T ) A∗(T )

A∗(S) A∗(S)

d

f∗ f∗

d
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Proof. We already now from the chain rule that f∗(dg) = d(g ◦ f) = d(f∗g) for
g ∈ A0(T ) = C∞(T ). If ω ∈ A1(T ) and

ω =
m∑

j=1

gjdx
j ,

we have

d(f∗ω) =
m∑

j=1

d((gj ◦ f) · f∗(dxj)) =
m∑

j=1

d(gj ◦ f) ∧ f∗(dxj)+
m∑

j=1

(gj ◦ f) · d(f∗(dxj))

=

m∑

j=1

f∗(dgj) ∧ f∗(dxj) +
m∑

j=1

f∗gj · f∗(d(dxj)) = f∗
( m∑

j=1

gjdx
j

)
= f∗(dω).

The proof now can be concluded by induction on the degree. If the conclusion is
true for differential forms of degree smaller than k and ω = gdxi1 ∧ · · · ∧ dxik , then

d(f∗ω) = d(f∗(gdxi1) ∧ f∗(dxi2 ∧ · · · ∧ dxik))

= d(f∗(gdxi1)) ∧ f∗(dxi2 ∧ · · · ∧ dxik)− f∗(gdxi1) ∧ d(f∗(dxi2 ∧ · · · ∧ dxik))
= f∗(d(gdxi1)) ∧ f∗(dxi2 ∧ · · · ∧ dxik)− f∗(gdxi1) ∧ f∗(d(dxi2 ∧ · · · ∧ dxik))

= f∗(dg ∧ dxi1 ∧ f∗(dxi2 ∧ · · · ∧ dxik)− 0 = f∗(dω).

By linearity of the exterior differential this proves the assertion. �

We are now in a position to extend the definition of the exterior differential
from open subsets of euclidean spaces to smooth manifolds. The crucial fact that
we shall need is that the definition we gave for open sets of euclidean spaces is
invariant under smooth diffeomorphisms. This is provided by Proposition 4.3.3.

Definition 4.3.4. An exterior differential is a linear endomorphism

d : A∗(M) → A∗(M)

of degree 1 which is defined for every smooth manifold M and has the following
properties:
(i) If f ∈ A0M), then df is the usual differential of f .
(ii) d(ω ∧ θ) = dω ∧ θ + (−1)kω ∧ dθ for every ω ∈ Ak(M) and θ ∈ Al(M),
0 ≤ k, l ≤ n.
(iii) d ◦ d = 0.
(iv) If f :M → N is a smooth map of smooth manifolds, then f∗ ◦ d = d ◦ f∗.

In particular, if U ⊂ M is an open set and i : U →֒ M is the inclusion, then
dω|U = i∗(dω) = d(i∗ω) = d(ω|U ), by (iv).

Theorem 4.3.5. There exists a unique exterior differential.
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Proof. For the uniqueness it suffices to prove that for every smooth chart (U, φ)
of a smooth n-manifold M the differential (k + 1)-form d(ω|U ) on U is uniquely
determined for every ω ∈ Ak(M). Since φ : U → φ(U) is a smooth diffeomorphism,
its transpose φ∗ : A∗(φ(U)) → A∗(U) is an isomorphism of graded algebras. This
implies that it suffices to prove uniqueness for open subsets of Rn. Indeed, if S ⊂ Rn

is an open set and

ω =
∑

1≤i1<···<ik≤n
fi1i2···ik · dxi1 ∧ · · · ∧ dxik ∈ Ak(S),

it follows from properties (i)-(iv) of Definition 3.3.4 that necessarily

dω =
∑

1≤i1<···<ik≤n
dfi1i2···ik ∧ dxi1 ∧ · · · ∧ dxik .

This proves uniqueness because the smooth functions fi1i2···ik are uniquely deter-
mined by ω.

The existence of the exterior differential has already been proved on open subsets
of euclidean spaces in Proposition 3.3.2. Let M be a smooth n-manifold and let A
be a smooth atlas of M . If (U, φU ), (V, φV ) ∈ A are such that U ∩ V 6= ∅, then
φUV = φU ◦φ−1

V : φV (U ∩V ) → φU (U ∩V ) is a smooth diffeomorphism and we have
a commutative diagram

A∗(φU (U ∩ V )) A∗(φU (U ∩ V ))

A∗(φV (U ∩ V )) A∗(φV (U ∩ V ))

d

φ∗UV =(φU◦φ−1
V )∗ φ∗UV =(φU◦φ−1

V )∗

d

from Proposition 4.3.3. So, d = ((φU ◦φ−1
V )∗)−1◦d◦(φU ◦φ−1

V )∗. For every ω ∈ A∗(M)
we define

(dω)|U = φ∗U (d((φ
−1
U )∗(ω|U ))).

From the above commutative diagram we have

φ∗U (d((φ
−1
U )∗(ω|U∩V ))) = ((φ−1

UV ◦ φU )∗ ◦ d ◦ (φ−1
U ◦ φUV )∗)(ω|U∩V )

= φ∗V (d((φ
−1
V )∗(ω|U∩V ))).

Since (dω)|U and (dω)|V coincide on U ∩V for every (U, φU ), (V, φV ) ∈ A such that
U ∩ V 6= ∅, we get a globally well defined differential (k + 1)-form dω on M . This
concludes the proof. �.

Thus, the exterior algebra A∗(M) of a smooth manifoldM becomes a differential
graded algebra, which is invariant under smooth diffeomorphisms, and is called the
de Rham covhain complex of M .

C∞(M) = A0(M)
d−→ A1(M)

d−→ · · · d−→ Ak(M)
d−→ Ak+1(M)

d−→ · · ·



94 CHAPTER 4. DIFFERENTIAL FORMS

This is infinite dimensional and impossible to compute. Its cohomology is also
invariant under smooth diffeomorphisms and we can use traditional homological
methods to compute it.

We call ω ∈ Ak(M) a closed differential k-form (or k-cocycle) if dω = 0 and
an exact differential k-form (or k-coboundary) if there exists some η ∈ Ak−1(M)
such that dη = ω. Since d ◦ d = 0, an exact differential form is always closed. The
converse however is not true.

Example 4.3.6. Let M = R2 \ {(0, 0)}

ω = − y

x2 + y2
dx+

x

x2 + y2
dy.

Then ω is a closed differential 1-form, because

dω = − x2 − y2

(x2 + y2)2
dy ∧ dx+

−x2 + y2

(x2 + y2)2
dx ∧ dy = 0.

However ω is not exact. Indeed, suppose that there exists a smooth function (the po-
tential) f :M → R such that ω = df . Let γ : R →M be the standard parametriza-
tion of the unit circle, that is γ(t) = (cos t, sin t). Then ωγ(t)(γ̇(t)) = 1 and from the
Fundamental Theorem of Calculus we arrive at the contradiction

2π =

∫ 2π

0
ωγ(t)(γ̇(t))dt =

∫ 2π

0
(f ◦ γ)′(t)dt = f(γ(2π)) − f(γ(0)) = 0.

The set of closed differential k-forms on a smooth manifold M is the vector
subspace Zk(M) = Ak(M) ∩ Kerd and the set of exact differential k-forms is the
vector subspace Bk(M) = Ak(M) ∩ Imd of Zk(M). The quotient vector space

Hk(M) =
Zk(M)

Bk(M)

is called the de Rham cohomology of M at degree k or the k-th de Rham cohomology
of M . The total de Rham cohomology of a smooth n-manifold M is the graded

vector space H∗(M) =
n⊕

k=0

Hk(M) and it can be given the structure of a graded

commutative associative algebra with unity. Indeed, the wedge product on A∗(M)
induces a product ⌣: Hk(M)×H l(M) → Hk+l(M) well defined by

[ω]⌣ [θ] = [ω ∧ θ]

for ω ∈ Zk(M), θ ∈ Z l(M), which is called the cup product on H∗(M). To see this,
note first that ω∧ θ is closed , by the Leibniz formula. If now η, ζ ∈ Ak−1(M), then
for the cohomologous closed differential k-forms ω+dη to ω and θ+dζ to θ we have

(ω+dη)∧(θ+dζ) = ω∧θ+dη∧θ+ω∧dζ+dη∧dζ = ω∧θ+d(η∧θ±ω∧dζ+η∧dζ)

and therefore [ω ∧ θ] = [(ω + dη) ∧ (θ + dζ)]. Evidently, the cup product on H∗(M)
inherits the properties of the wedge product on A∗(M) . The graded algebra H∗(M)
is called the de Rham cohomology algebra of M .
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If f : M → N is now a smooth map of smooth manifolds, then the transpose
f∗ : A∗(N) → A∗(M) maps closed differential forms on N to closed differential forms
on M and exact differential forms to exact differential forms, because it commutes
with the exterior differential. Thus it induces a homomorphism of graded algebras
(denoted again by) f∗ : H∗(N) → H∗(M). If g : N → P is another smooth map of
smooth manifolds, then (g ◦ f)∗ = f∗ ◦ g∗ and (idM )∗ = idH∗(M). It follows that if f
is a smooth diffeomorphism, then f∗ : H∗(N) → H∗(M) is an algebra isomorphism.
Thus, the de Rham cohomology at every degree is a diffeomorphism invariant, as
well as the total de Rham cohomolody algebra.

In Chapter 4 we shall use powerful algebraic methods for the computation
of the de Rham cohomology. For the time being, we can compute the de Rham
cohomology of every smooth manifold at degree 0.

Theorem 4.3.7. If M is a connected smooth n-manifold, then H0(M) ∼= R.

Proof. Note first that B0(M) = 0 and Z0(M) = {f ∈ C∞(M) : df = 0}. Since
every point of M has an open neighbourhood which is diffeomorphic to Rn, every
f ∈ Z0(M) is locally constant on M . The connectedness of M implies now that f
is constant on M . Therefore, H0(M) = Z0(M) ∼= R. �

4.4 Orientable smooth manifolds

Let V be a real n-dimensional vector space, n ≥ 1 . We say that two ordered basis
[v1, ..., vn] and [w1, ..., wn] define the same orientation of V if the change of basis
matrix has positive determinant. This is an equivalence relation on the set of all
ordered basis of V with exactly two equivalence classes, which are called orientations
of V . The choice of an orientation of V turns it into an oriented vector space.

Recall that if wj =
n∑

i=1

aijvi, j = 1, ..., n, then

ω(w1, ..., wn) = ω(v1, ..., vn) · det(aij)1≤i,j≤n.

for every ω ∈ Λn(V ) ∼= R. This implies that two ordered basis [v1, ..., vn] and
[w1, ..., wn] define the same orientation of V if and only if

(v∗1 ∧ · · · ∧ v∗n)(w1, ..., wn) > 0

or equivalently
ω(v1, ..., vn) · ω(w1, ..., wn) > 0

for every non-zero ω ∈ Λn(V ). Thus the choice of an orientation on V can be
determined by the choice of a non-zero element of Λn(V ). More precisely, having
chosen chosen a non-zero ω ∈ Λn(V ), we usually say that the ordered basis [v1, ..., vn]
is positively oriented with respect to ω if ω(v1, ..., vn) > 0. Two non-zero elements
ω, θ ∈ Λn(V ) determine the same orientation if and only if θ = λω for some λ > 0.
This is again an equivalence relation with two equivalence classes on the set of non-
zero elements of Λn(V ). So, we could have equally well defined an orientation of V
to be one of these two equivalence classes.
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An orientation of a smooth n-manifold is now the choice of an orientation on
each tangent space coherently, so that they vary smoothly. However, this choice
my not be always possible.

Defibition 4.4.1. A smooth n-manifold M , n ≥ 1, is called orientable if there
exists a nowhere vanishing differential n-form ω on M . Any such form is called a
volume element of M .

We say that two volume elements ω, θ ∈ An(M) define the same orientation on
M if there exists a smooth function f :M → (0,+∞) such that θ = fω. This is an
equivalence relation on the set of volume elements of An(M), an equivalence class
of which is called an orientation of M . The choice of an orientation on M makes it
an oriented manifold.

On a connected orientable smooth n-manifold M there are exactly two orienta-
tions. Indeed, let ω be a nowhere vanishing differential n-form on M . If θ is any
other nowhere vanishing differential n-form on M , there exists a smooth function
f : M → R \ {0} such that θ = fω. Since M is connected, we must have f > 0
everywhere of M or f < 0. In the first case θ and ω define the same orientation,
and in the second θ and −ω define the same orientation.

Examples 4.4.2. (a) Any open subset M of Rn, n ≥ 1, is orientable. An
orientation is defined by the volume element dx1 ∧ · · · ∧ dxn restricted on M . Note
that at each tangent space TpRn ∼= Rn its value is the determinant. This is usually
called the positive orientation of Rn.

(b) The n-sphere Sn is an orientable smooth n-manifold. We shall prove that if

ω =

n+1∑

j=1

(−1)j−1xjdx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn+1 ∈ An(Rn+1),

and i : Sn →֒ Rn+1 is the inclusion, then i∗ω is nowhere vanishing. This is the
standard volume element of Sn.

Let p = (x1, ..., xn+1) ∈ Sn . The tangent space TpS
n is the hyperplane in Rn+1

which is orthogonal to the vector p. The subgroup G = {σ ∈ Sn+1 : σ(1) = 1} of
the symmetric group Sn+1 is isomorphic to Sn. Let also σj = (1 j), 1 ≤ j ≤ n+1.
The right cosets of G in Sn+1 are Gσj , 1 ≤ j ≤ n + 1. Putting v1 = p, for every
v2,..., vn+1 ∈ TpSn we compute

(dx1 ∧ · · · ∧ dxn+1)p(v1, v2, ..., vn+1)

=
∑

σ∈Sn+1

(sgnσ)(dx1)p(vσ(1)) · · · (dxn+1)p(vσ(n+1))

=

n+1∑

j=1

∑

σσj∈G
(sgnσ)(dx1)p(vσ(1)) · · · (dxn+1)p(vσ(n+1))

=
n+1∑

j=1

∑

τ∈G
(−sgnτ)(dx1)p(vτσj(1)) · · · (dxn+1)p(vτσj(n+1))
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=
n+1∑

j=1

∑

τ∈G
(−sgnτ)(dx1)p(vτ(j)) · · · (dxj)p(vτ(1)) · · · (dxn+1)p(vτ(n+1))

=

n+1∑

j=1

∑

τ∈G
(−sgnτ)xj(dx1)p(vτ(j)) · · · (dxj−1)p(vτ(j−1))

(dxj+1)p(vτ(j+1)) · · · (dxn+1)p(vτ(n+1))

=
n+1∑

j=1

∑

ρ∈G
(−1)j−1xj(sgnρ)(dx1)p(vρ(2)) · · · (dxj−1)p(vρ(j))

(dxj+1)p(vρ(j+1)) · · · (dxn+1)p(vρ(n+1))

(putting ρ = τ(2 3 · · · j)−1)

=

(n+1∑

j=1

(−1)j−1xjdx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn+1

)
(v2, ..., vn+1).

If now {v2, ..., vn+1} is a basis of TpS
n, then {v1, v2, ..., vn+1} is a basis of Rn+1

and therefore (dx1 ∧ · · · ∧ dxn+1)p(v1, v2, ..., vn+1) 6= 0. It follows that i∗ω nowhere
vanishes on Sn.

(c) If a : Rn+1 → Rn+1 denotes the antipodal map a(x) = −x and ω is the differential
n-form of (b), then

a∗ω =

n+1∑

j=1

(−1)j−1(−xj)d(−x1) ∧ · · · ∧ d(−xj−1) ∧ d(−xj+1) ∧ · · · ∧ d(−xn+1)

= (−1)n+1ω.

Thus, ω is a-invariant, that is a∗ω = ω, if n is odd. In this case, if i : Sn →֒ Rn+1

is the inclusion as before, then i∗ω induces a unique well defined differential n-form
Ω on RPn such that π∗Ω = i∗ω, where π : Sn → RPn is the quotient map. Since π
a local smooth diffeomorphism, that is its derivative at each point of Sn is a linear
isomorphism, and i∗ω nowhere vanishes, it follows that Ω vanishes nowhere on RPn.
This shows that the odd dimensional real projective spaces are orientable smooth
manifolds.

Suppose now that n is even. If there exists a nowhere vanishing Ω ∈ An(RPn),
then π∗Ω ∈ An(Sn) nowhere vanishes and is a-invariant. There exists a smooth
function f : Sn → R \ {0} such that π∗Ω = f · i∗ω. Since Sn is connected, f > 0
everywhere on Sn or f < 0. Now we have

fω = π∗Ω = a∗(π∗Ω) = a∗(fω) = (f ◦ a)a∗ω = −(f ◦ a)ω,

because n is even. It follows that f = −(f ◦ a), contradiction. Thus, RPn is
non-orientable in case n is even.
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Theorem 4.4.3. A smooth n-manifold M , n ≥ 1, is orientable if and only if there
exists a smooth atlas A of M such that

detD(φV ◦ φ−1
U )(x) > 0

for every x ∈ φU (U ∩ V ) and (U, φU ), (V, φV ) ∈ A with U ∩ V 6= ∅.

Proof. Suppose first that M is orientable and let ω ∈ An(M) be nowhere vanishing
on M . There exists a smooth atlas B of M such that ψU (U) = Rn for every
(U,ψU ) ∈ B. There exist smooth functions fU : Rn → R \ {0} such that

(ψ−1
U )∗(ω|U ) = fUdx

1 ∧ · · · ∧ dxn.

If fU > 0, we put φU = ψU , but if fU < 0, we put φU = g ◦ ψU , where g : Rn → Rn

is the linear isomorphism

g(x1, x2, ..., xn) = (−x1, x2, ..., xn)

which has negative determinant. In this second case, where fU < 0, we have

(φ−1
U )∗(ω|U ) = (fU ◦ g−1) · (g−1)∗(dx1 ∧ · · · ∧ dxn)

= (fU ◦ g−1) · det g−1 · dx1 ∧ · · · ∧ dxn = −(fU ◦ g−1) · dx1 ∧ · · · ∧ dxn.
Thus, putting gU = −fU ◦ g−1, in case fU < 0, and gU = fU , in case fU > 0, we
have

(φ−1
U )∗(ω|U ) = gUdx

1 ∧ · · · ∧ dxn

in any case and gU > 0. The class A = {(U, φU ) : (U,ψU ) ∈ B} is a smooth atlas of
M and if (U, φU ), (V, φV ) ∈ A are such hat U ∩ V 6= ∅, we have

gUdx
1 ∧ · · · ∧ dxn = (φ−1

U )∗(ω|U∩V ) = (φV ◦ φ−1
U )∗((φ−1

V )∗(ω|U∩V ))

detD(φV ◦ φ−1
U ) · (gV ◦ (φV ◦ φ−1

U )) · dx1 ∧ · · · ∧ dxn

on U ∩ V and therefore detD(φV ◦ φ−1
U ) > 0

Conversely, suppose that there exists a smooth atlas A such that

detD(φV ◦ φ−1
U )(x) > 0

for every x ∈ φU (U ∩ V ) and (U, φU ), (V, φV ) ∈ A with U ∩ V 6= ∅. There exists
a smooth partition of unity {fU : (U, φU ) ∈ A} which is subordinated to the open
cover U = {U : (U, φU ) ∈ A} of M , by Theorem 1.4.4. We shall show that the
differential n-form

ω =
∑

(U,φU )∈A
fU · φ∗U (dx1 ∧ · · · ∧ dxn)

vanishes nowhere on M .
Let p ∈ M . There exists an open neighbourhood W of p contained in in some

U0 ∈ U , which intersects only a finite number suppfU1 ,..., suppfUk , for some k ∈ N,
of elements of the class {suppfU : (U, φU ) ∈ A}. Thus,

ωq =
k∑

j=1

fUj(q) · φ∗Uj(dx
1 ∧ · · · ∧ dxn)q
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= φ∗U0

( k∑

j=1

(fUj ◦ φ−1
U0

) · detD(φUj ◦ φ−1
U0

) ◦ φU0 · dx1 ∧ · · · ∧ dxn
)

q

=

( k∑

j=1

fUj(q) · detD(φUj ◦ φ−1
U0

)(φU0(q))

)
φ∗U0

(dx1 ∧ · · · ∧ dxn)q

for every q ∈ W . Since fU1(p) + · · · + fUk(p) = 1, at least one of fU1(p),..., fUk(p)
must be positive. This together with our assumption imply that ωp 6= 0. �

Example 4.4.4. The transition maps of the smooth charts of the canonical
atlas of the complex projective n-space CPn described in Example 1.1.4(d) are
biholomorphic maps of open subsets of Cn. Hence its Jacobian matrix at every
point in its domain of definition has positive determinant. From the above Theorem
4.4.3 follows that CPn is orientable for every n ∈ Z+.

Let M be an oriented smooth n-manifold by a volume element ω. A smooth
chart (U, φ) of M will be called positively oriented if there exists some smooth
function g : φ(U) → (0,+∞) such that (φ−1)∗(ω|U ) = gdx1 ∧ · · · ∧ dxn. A smooth
diffeomorphism f :M →M is called orientation preserving if f∗ω and ω define the
same orientation. If f∗ω and −ω define the same orientation, we say that f reverses
orientation. In particular, a smooth diffeomorphism f : Rn → Rn is orientation
preserving if and only if detDf(x) > 0 for every x ∈ Rn, because

f∗(dx1 ∧ · · · ∧ dxn) = (detDf) · dx1 ∧ · · · ∧ dxn.

If detDf < 0, then f is reverses orientation.

4.5 Integration on oriented manifolds

A differential k-form ω on a smooth n-manifold M has compact support if there
exists a compact set K ⊂ M such that ωp = 0 for every p ∈ M \ K. The closed

set suppω = {p ∈M : ωp 6= 0} is the support of ω. The set Akc (M) of all differential
k-forms with compact supports on M is a vector subspace of Ak(M), 0 ≤ k ≤ n.
Of course A0(M) is just the set C∞

c (M) of all smooth real valued functions on M
with compact supports.

If ω ∈ Anc (Rn), there exists a unique g ∈ C∞
c (Rn) such that ω = gdx1∧· · ·∧dxn.

We define ∫

Rn
ω =

∫

Rn
g.

If f : Rn → Rn is a smooth diffeomorphism (or more generally f is a smooth
diffeomorphism of open subsets of Rn), then

f∗ω = (f ◦ g) · detDf · dx1 ∧ · · · ∧ dxn.

On the other hand, from the change of variables formula we have
∫

Rn
g =

∫

Rn
(f ◦ g) · |detDf |.
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It follows that

∫

Rn
f∗ω =





∫

Rn
ω, if f is orientation preserving,

−
∫

Rn
ω, if f is orientation reversing.

Let now M be a oriented smooth n-manifold and let A be a smooth atlas of M
consisting of positively oriented smooth charts of M . Thus,

detD(φV ◦ φ−1
U )(x) > 0

for every x ∈ φU (U ∩ V ) and (U, φU ), (V, φV ) ∈ A with U ∩ V 6= ∅, as the proof of
Theorem 4.4.3 shows. There exists a smooth partition of unity {fU : (U, φU ) ∈ A}
subordinated to the open cover U = {U : (U, φU ) ∈ A} of M . For every ω ∈ Anc (M)
the differential n-form fUω has compact support and vanishes outside U . We define

∫

M
ω =

∑

(U,φU )∈A

∫

Rn
(φ−1
U )∗(fUω).

In order this definition to be sound, we must show that it does not depend on the
choice of the smooth atlas A and the subordinated smooth partition of unity. Let B
be another smooth atlas of M consisting of positively oriented charts of M and let
{hW : (W,ψW ) ∈ B} be smooth partition of unity subordinated to the open cover
W = {W : (W,ψW ) ∈ B} of M . The transition maps φU ◦ ψ−1

W for (U, φU ) ∈ A,
(W,ψW ) ∈ B with U ∩W 6= ∅, are orientation preserving smooth diffeomorphisms
between open subsets of Rn. We compute

∑

(U,φU )∈A

∫

Rn
(φ−1
U )∗(fUω) =

∑

(U,φU )∈A

(W,ψW )∈B

∫

Rn
(φ−1
U )∗(fUhWω)

=
∑

(U,φU )∈A

(W,ψW )∈B

∫

Rn
(φU ◦ ψ−1

W )∗((φ−1
U )∗(fUhWω)) =

∑

(U,φU )∈A

(W,ψW )∈B

∫

Rn
(ψ−1

W )∗(fUhWω)

=
∑

(W,ψW )∈B

∫

Rn
(ψ−1

W )∗(hWω).

In this way we get a linear map

∫

M
: Anc (M) → R which is called the (oriented

Riemann) integral on the oriented smooth n-manifold M .
If f : M → M is a smooth diffeomorphism of a connected, smooth n-manifold

M , then

∫

M
f∗ω =





∫

M
ω, if f is orientation preserving,

−
∫

M
ω, if f is orientation reversing.

for every ω ∈ Anc (M).
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Theorem 4.5.1. If M is an oriented smooth n-manifold then

∫

M
dω = 0

for every ω ∈ An−1
c (M).

Proof. Suppose first that there exists a positively oriented smooth chart (U, φ) of
M such that suppω ⊂ U . There exist g1,..., gn ∈ C∞

c (φ(U)) such that

(φ−1)∗ω =
n∑

j=1

(−1)j−1gjdx
1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn

and differentiating

(φ−1)∗(dω) = d((φ−1)∗ω) =
n∑

j=1

(−1)j−1dgj ∧ dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn

=

n∑

i,j=1

(−1)j−1 ∂gj
∂xi

· dxi ∧ dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn

=

( n∑

j=1

∂gj
∂xj

)
· dx1 ∧ · · · ∧ dxn.

Therefore, ∫

M
dω =

n∑

j=1

∫

Rn

∂gj
∂xj

dx1 · · · dxn

=
n∑

j=1

∫

Rn−1

(∫

R

∂gj
∂xj

dxj
)
dx1 · · · dxj−1dxj+1 · · · dxn = 0

by Fubini’s theorem and the Fundamental Theorem of Calculus.

In the general case we consider a smooth atlas A of M consisting of positively
oriented charts and a smooth partition of unity {fU : (U, φU ) ∈ A} subordinated to
the open cover U = {U : (U, φU ) ∈ A} of M . Then, supp(fUω) ⊂ U and from the
above we get ∫

M
dω =

∑

(U,φU )∈A

∫

M
d(fUω) = 0. �

Corollary 4.5.2. Let M be an oriented smooth n-manifold.
(a) If M is compact, then ∫

M
dω = 0

for every ω ∈ An−1(M).

(b)

∫

M
: Anc (M) → R is a linear epimorphism.
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Proof. Only the second assertion requires proof. For this it suffices to construct a
differential n-form with compact support on M with non-zero integral. Let (U, φ)
be a positively oriented smooth chart of M and let p ∈ U be any point. There exists
a smooth function f :M → [0, 1] such that f(p) = 1 and suppf is a compact subset
of U , by Corollary 1.4.5. If we take

ω =

{
φ∗((f ◦ φ−1) · dx1 ∧ · · · ∧ dxn), on U

0, on M \ U

then ω ∈ Anc (M) and ∫

M
ω =

∫

Rn
f ◦ φ−1 > 0. �

The kernel of the linear epimorphism

∫

M
: Anc (M) → R contains d(An−1

c (M)),

by Theorem 4.5.1. It is a non-trivial fact that this is precisely the kernel in case M
is connected. The proof can be divided into a series of steps, the most crucial of
which is the first one.

Lemma 4.5.3. The kernel of

∫

Rn
: Anc (R

n) → R is d(An−1
c (Rn)).

Proof. Let ω ∈ Anc (R
n) be such that

∫

Rn
ω = 0. There exists a unique f ∈ C∞

c (Rn)

such that ω = fdx1 ∧ · · · ∧ dxn. If θ ∈ An−1
c (Rn), there exist f1,..., fn ∈ C∞

c (Rn)
such that

θ =

n∑

j=1

(−1)j−1fjdx
1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn

and

dθ =

( n∑

j=1

∂fj
∂xj

)
· dx1 ∧ · · · ∧ dxn.

Thus it suffices to prove that given f ∈ C∞
c (Rn) such that

∫

Rn
f = 0, there exist

f1,..., fn ∈ C∞
c (Rn) such that

f =

n∑

j=1

∂fj
∂xj

.

We proceed by induction. For n = 1, it suffices to take g1(t) =

∫ t

−∞
f . Suppose

that the problem can be solved in dimension n − 1. There exists R > 0 such that
suppf ⊂ (−R,R)n. Let g : Rn−1 → R be defined by

g(x1, ..., xn−1) =

∫

R
f(x1, ..., xn−1, xn)dxn.

Then, g ∈ C∞
c (Rn−1) and ∫

Rn−1

g =

∫

Rn
f = 0,
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by Fubini’s theorem. So there exist g1,..., gn−1 ∈ C∞
c (Rn−1) such that

g =

n−1∑

j=1

∂gj
∂xj

.

Let now ρ ∈ C∞
c (R) be such that suppρ ⊂ (−R,R) and

∫

R
ρ = 1. We define

fj ∈ C∞
c (Rn) by

fj(x
1, ..., xn) = gj(x

1, ..., xn−1) · ρ(xn)
for j = 1, ..., n − 1. Let h ∈ C∞

c (Rn) be the function with

h(x1, ..., xn−1, xn) = f(x1, ..., xn)− g(x1, ..., xn−1)ρ(xn)

and let fn : Rn → R be defined by

fn(x
1, ..., xn) =

∫ xn

−∞
h(x1, ..., xn−1, t)dt.

Then, f =

n∑

j=1

∂fj
∂xj

, by construction. Finally, fn has compact support because

h(x1, ..., xn) = 0 for xn < −R and for xn > R we have

fn(x
1, ..., xn) =

∫ xn

−∞
f(x1, ..., xn−1, t)dt− g(x1, ..., xn−1)

∫ xn

−∞
ρ(t)dt

=

∫

R
f(x1, ..., xn−1, t)dt− g(x1, ..., xn−1)

∫

R
ρ(t)dt

=

∫

R
f(x1, ..., xn−1, t)dt− g(x1, ..., xn−1) = 0. �

Lemma 4.5.4. For every non-empty open set W ⊂ Rn and every ω ∈ Anc (R
n)

there exists some θ ∈ An−1
c (Rn) such that supp(ω − dθ) ⊂W .

Proof. There exists some ω1 ∈ Anc (R
n) with suppω1 ⊂W and

∫

Rn
ω1 = 1. Then,

∫

Rn

(
ω −

(∫

Rm
ω

)
ω1

)
= 0

and by Lemma 4.5.3 there exists some θ ∈ An−1
c (Rn) such that

dθ = ω −
(∫

Rm
ω

)
ω1.

Therefore, supp(ω − dθ) ⊂ suppω1 ⊂W . �

Lemma 4.5.5. If M is a connected smooth n-manifold, then for every non-empty
open set W ⊂ Rn and every ω ∈ Anc (M) there exists some θ ∈ An−1

c (M) such that
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supp(ω − dθ) ⊂W .

Proof. First suppose that ω ∈ Anc (M) is such that its support is contained in an open
subset U of M which is diffeomorphic to Rn. Since M is connected, there is a finite
chain of open subsets U1, ..., Uk of M , for some k ∈ N, which are all diffeomorphic
to Rn and are such that U1 ⊂ U , Uk ⊂ W and Uj ∩ Uj+1 6= ∅, for j = 1, ..., n − 1.
From Lemma 4.5.4, there exist θ1, ..., θk−1 ∈ An−1

c (M) such that

supp

(
ω −

j∑

i=1

dθi

)
⊂ Uj ∩ Uj+1

for every j = 1, ..., n − 1. Thus, it suffices to take θ =

k−1∑

i=1

dθi.

In the general case using a smooth partition of unity it is possible to write

ω =
m∑

j=1

ωj

for some m ∈ N, where each ωj ∈ Anc (M) has support which is contained in some
open subset ofM which is diffeomorphic to Rn. According to the above, there exists

ηj ∈ An−1
c (M) such that supp(ωj − dηj) ⊂W , j = 1, ...,m. If now θ =

m∑

j=1

ηj , then

supp(ω − dθ) ⊂
m⋃

j=1

supp(ωj − dηj) ⊂W. �

Theorem 4.5.6. If M is a connected smooth n-manifold, the kernel of∫

M
: Anc (M) → R is d(An−1

c (M)).

Proof. Let ω ∈ Anc (M) be such that

∫

M
ω = 0. Let W ⊂M be an open set which is

diffeomorphic to Rn. From Lemma 4.5.5 there exists some θ ∈ An−1
c (M) such that

supp(ω − dθ) ⊂W . From Theorem 4.5.1 we have
∫

M
(ω − dθ) = 0

and from Lemma 4.5.3 there exists some η ∈ An−1(M) such that suppη ⊂ W and
ω − dθ = dη. Thus ω = d(θ + η) and θ + η ∈ An−1

c (M). �

It follows immediately from Theorem 4.5.1 and its Corollary 4.5.2 that integra-
tion on a compact oriented smooth n manifold M induces a linear epimorphism

∫

M
: Hn(M) −→ R.

In particular, Hn(M) is non-trivial. In case M is connected and compact, Theorem
4.5.6 gives the following.
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Corollary 4.5.7. If M is a connected compact oriented smooth n-manifold, then
the integration of differential n-forms on M induces a linear isomorphism

∫

M
: Hn(M)

∼=−→ R. �

4.6 Stokes’ formula

LetM be a smooth n-manifold. An open set D ⊂M is called a domain with smooth
boundary if for every p ∈ ∂D there exists a smooth chart (U, φ) of M such that
p ∈ U and

φ(U ∩D) = φ(U) ∩ {(x1, ..., xn−1, xn) ∈ Rn : xn > 0},

φ(U ∩ ∂D) = φ(U) ∩ (Rn−1 × {0}).

In particular, ∂D is a (n−1)-dimensional smooth submanifold ofM . A smooth chart
(U, φ) as above will be called D-half space smooth chart. Each such smooth chart
is ∂D-straightening. Let (V, ψ) be another D-half space smooth chart such that
∂D ∩ U ∩ V 6= ∅. If φ ◦ ψ−1 = (g1, ..., gn) is the transition smooth diffeomorphism,
then gn(x

1, ..., xn−1, 0) = 0 and gn(x
1, ..., xn) > 0 for xn > 0. So,

D(φ ◦ ψ−1)(x1, ..., xn−1, 0) =




∂g1
∂x1

· · · ∂g1
∂xn−1

∂g1
∂xn

. . . . . . . . . . . .
∂gn−1

∂x1
· · · ∂gn−1

∂xn−1
∂gn−1

∂xn

0 · · · 0 ∂gn
∂xn




and
∂gn
∂xn

(x1, ..., xn−1, 0) = lim
t→0+

gn(x
1, ..., xn−1, t)

t
> 0.

If π : Rn → Rn−1 denotes the projection onto the first n − 1 coordinates and
i : Rn−1 → Rn−1 × {0} ⊂ Rn is the inclusion, then

(π ◦ (φ ◦ ψ−1) ◦ i)(x1, ..., xn−1) = (g1(x
1, ..., xn−1, 0), ..., gn−1(x

1, ..., xn−1, 0))

and

D(π ◦ (φ ◦ ψ−1) ◦ i)(x1, ..., xn−1, 0) =




∂g1
∂x1

· · · ∂g1
∂xn−1

. . . . . . . . .
∂gn−1

∂x1
· · · ∂gn−1

∂xn−1


 .

If now M is orientable and we have chosen a specific orientation, we can cover
∂D by positively oriented smooth charts ofM , which are ∂D-straightening as above.
It follows that detD(π ◦ (φ ◦ ψ−1) ◦ i)(x1, ..., xn−1, 0) > 0. This means that ∂D is
orientable and has an orientation induced by the orientation of M .

Let now M be oriented and let A be a smooth atlas of M which consists of
positively oriented smooth charts of M , so that every element of A whose domain
of definition intersects ∂D is a D-half space smooth chart as above. We choose
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a smooth partition of unity {fU : (U, φU ) ∈ A} subordinated to the open cover
U = {U : (U, φU ) ∈ A} of M . For every ω ∈ Anc (M) we define its integral over D by

∫

D
ω =

∑

(U,φU )∈A

∫

φU (U∩D)
(φ−1
U )∗(fUω).

The definition does not depend on the choice of the smooth atlas A consisting
of positively oriented D-half space smooth charts, as above, and the choice of
the subordinated smooth partition of unity. The following is a generalization of
Theorem 4.5.1, as well as its proof.

Theorem 4.6.1. Let M be an oriented smooth n-manifold and let D ⊂ M be a
domain with smooth boundary. Let i : ∂D →֒M denote the inclusion. Then

(−1)n
∫

∂D
i∗ω =

∫

D
dω

for every ω ∈ Anc (M).

Proof. We assume first that there exists a positively oriented D-half space smooth
chart (U, φ) as above such that U ∩ ∂D 6= ∅ and φ(D ∩ suppω) ⊂ (0, 1)n ⊂ φ(U).
As in the proof of Theorem 4.5.1, there exist g1,..., gn ∈ C∞

c (φ(U)) such that

(φ−1)∗ω =

n∑

j=1

(−1)j−1gjdx
1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn

and

(φ−1)∗(dω) =

( n∑

j=1

∂gj
∂xj

)
· dx1 ∧ · · · ∧ dxn.

Therefore,

∫

D
dω =

n∑

j=1

∫

[0,1]n

∂gj
∂xj

dx1 · · · dxn = −
∫

[0,1]n−1

gn(x
1, ..., xn−1, 0)dx1 · · · dxn−1

by Fubini’s theorem and the Fundamental Theorem of Calculus.
On the other hand φ(suppi∗ω) ⊂ (0, 1)n−1 and so

∫

∂D
i∗ω =

∫

[0,1]n−1

((π ◦ φ)−1)∗(i∗ω)

=

∫

[0,1]n−1

(−1)n−1gn(x
1, ..., xn−1, 0)dx1 · · · dxn−1 = (−1)n

∫

D
dω.

In case (U, φ) is a positively oriented chart of M such that suppω ⊂ U ⊂ D, we
have ∫

∂D
i∗ω = (−1)n

∫

D
dω = 0

from Theorem 4.5.1.
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In the general case, we take a smooth atlas A of M which consists of positively
oriented smooth charts, so that every element of A whose domain of definition
intersects ∂D is a D-half space smooth chart as in the beginning, and a smooth
partition of unity {fU : (U, φU ) ∈ A} which is subordinated to the open cover
U = {U : (U, φU ) ∈ A} of M . Since supp(fUω) ⊂ U we have

∫

D
dω =

∑

(U,φU )∈A

∫

D
d(fUω) =

∑

(U,φU )∈A
(−1)n

∫

∂D
i∗(fUω) = (−1)n

∫

∂D
i∗ω. �

It is worth to describe the induced orientation used to define integration over
∂D. We shall need the notion of tangent vector which is directed inward or outward
of D. Let p ∈ ∂D. A tangent vector v ∈ TpM \ Tp∂D is directed inward of D if it
is the velocity of a smooth curve γ : (−ǫ, ǫ) → M , that is γ(0) = p and v = γ̇(0),
such that γ(t) ∈ D for all 0 < t < ǫ. If (U, φ) is any D-half space smooth chart
with φ = (x1, ..., xn−1, xn) and p ∈ U , then xn(p) = 0 and xn(γ(t)) > 0 for every
0 < t < ǫ. Therefore

(dxn)p(v) = lim
t→0+

xn(γ(t))

t
> 0.

The converse is evidently also true, that is v is directed inward of D if and only if
(dxn)p(v) > 0 for any D-half space smooth chart φ = (x1, ..., xn−1, xn). Similarly,
v is directed outward of D if there is a smooth curve γ : (−ǫ, ǫ) → M such that
γ(0) = p, v = γ̇(0) and γ(t) ∈ D for all −ǫ < t < 0 or equivalently (dxn)p(v) < 0
for any D-half space smooth chart φ = (x1, ..., xn−1, xn). Obviously, v is directed
outward of D if and only if −v is directed inward of D.

Let A be a smooth atlas of M such that each (U, φ) ∈ A with U ∩ ∂D 6= ∅
is a D-half space smooth chart and let A∂D = {(U, φ) ∈ A : U ∩ ∂D 6= ∅}. Let
{fU : (U, φU ) ∈ A} be a smooth partition of unity subordinated to the open cover
U = {U : (U, φU ) ∈ A} of M . The smooth map Y : ∂D → TM defined by

Y (p) =
∑

(U,φ)∈A∂D

fU (p)

(
∂

∂xn

)

p

where in the sum φ = (x1, ..., xn−1, xn), satisfies Y (p) ∈ TpM for every p ∈ ∂D.
In other words Y is a smooth vector field along the smooth submanifold ∂D. If
(V, ψ) ∈ A∂D and ψ = (y1, ..., yn−1, yn) with p ∈ V , then

(dyn)p(Y (p)) =
∑

(U,φ)∈A∂D

fU(p)(dy
n)p

(
∂

∂xn

)

p

> 0,

because fU (p) ≥ 0 and there exists at least one (U, φ) ∈ A∂D such that fU (p) > 0,
while

(dyn)p

(
∂

∂xn

)

p

> 0

for all (U, φ) ∈ A∂D. Hence Y (p) is directed inward of D for every p ∈ ∂D. Also
X = −Y is a smooth vector field along ∂D which is directed outward of D.
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Let now M be oriented and let the smooth atlas A as above consist of positively
oriented smooth charts. As the proof of Theorem 4.4.3 shows, the orientation of M
is defined by the volume element

Ω =
∑

(U,φ)∈A
fU · φ∗(e∗1 ∧ · · · ∧ e∗n).

For every v1,..., vn−1 ∈ Tp∂D we have

Ωp(v1, ..., vn−1, Y (p)) =
∑

(U,φ)∈A
fU (p) · (dxn)p(Y (p)) · φ∗(e∗1 ∧ · · · ∧ e∗n−1)(v1, ..., vn−1).

This implies that an ordered basis [v1, ..., vn−1] of Tp∂D is positively oriented with
respect to the induced orientation from M if and only if Ωp(v1, ..., vn−1, Y (p)) > 0.
Thus, the induced orientation on ∂D is given by Ω∂D ∈ An−1(∂D) which is defined
by

(Ω∂D)p(v1, ..., vn−1) = Ωp(v1, ..., vn−1, Y (p))

for v1,..., vn−1 ∈ Tp∂D, p ∈ ∂D, where Y : ∂D → TM is any smooth vector field
along ∂D which is directed inward of D.

The left hand side of the asserted formula in Theorem 3.6.1 is however the
integral of i∗ω with respect to the orientation of ∂D given by (−1)nΩ∂D. In odd
dimensions this orientation is given by a Ω̃∂D ∈ An−1(∂D) which is defined by

(Ω̃∂D)p(v1, ..., vn−1) = Ω̃p(v1, ..., vn−1,X(p))

for v1,..., vn−1 ∈ Tp∂D, p ∈ ∂D, where Ω̃ ∈ An(M) gives the orientation of M and
X : ∂D → TM is any smooth vector field along ∂D which is directed outward of D.

Theorem 4.6.1 can now be rephrased as follows.

Theorem 4.6.2. Let M be an oriented smooth n-manifold whose orientation is
given by a volume element Ω. Let D ⊂M be a domain with smooth boundary which
is considered oriented by (−1)nΩ∂D and let i : ∂D →֒M denote the inclusion. Then

∫

∂D
i∗ω =

∫

D
dω

for every ω ∈ Anc (M). �

This is known as the (generalized) Stokes’ formula and is a generalization of the
Fundamental Theorem of Calculus.

Examples 4.6.3. (a) The boundary ∂D of a domain with smooth boundary D
and with compact closure in R2 is a compact 1-dimensional smooth submanifold of
R2. A differential 1-form ω defined on some open neighbourhood of D is given by
ω = Pdx+Qdy, for a pair of smooth functions P , Q. Then

dω =

(
∂Q

∂x
− ∂P

∂y

)
dx ∧ dy
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and according to Stokes’ formula
∫

D

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∫

∂D
Pdx+Qdy.

This is Green’s theorem.

(b) Let D ⊂ R3 be a domain with smooth boundary and compact closure. A
differential 2-form ω on an open neighbourhood of D can be written

ω = Pdy ∧ dz +Qdz ∧ dx+Rdx ∧ dy.

Then,

dω =

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dx ∧ dy ∧ dz.

From Stokes’ formula we get Gauss’ Divergence Formula
∫

∂D
Pdy ∧ dz +Qdz ∧ dx+Rdx ∧ dy =

∫

D

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdydz.

Recall that in this case ∂D is considered oriented so that an order basis [v1, v2]
of Tp∂D, p ∈ ∂D, is positively oriented if and only if it can be completed with a
third vector v3 which is directed outward of D such that [v1, v2, v3] is a positively
oriented ordered basis of R3.

(c) Let γ = γ1 + iγ2 be a parametrised smooth simple closed curve in the complex
plane C whose image is the boundary of a domain with smooth boundary D. Let
f be a holomorphic complex function defined on some open neighbourhood of D.
Then, the smooth real valued functions u = Ref , v = Imf satisfy the Cauchy-
Riemann equations

∂u

∂x
=
∂v

∂y
, −∂u

∂y
=
∂v

∂x
.

The complex line integral of f along γ can be written
∫

γ
f(z)dz =

∫

γ
ω1 + i

∫

γ
ω2

where ω1 = udx − vdy and ω2 = vdx + udy. The Cauchy-Riemann equations are
equivalent to dω1 = 0 and dω2 = 0. It follows from Stokes’ formula that

∫

γ
f(z)dz =

∫

D
dω1 + i

∫

D
dω2 = 0.

This is known as Cauchy’s Theorem in Complex Analysis.
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4.7 Vector fields and differential forms

Let V be a real n-dimensional vector space. For each 0 ≤ k ≤ n we define the
bilinear map i : V × Λk(V ) → Λk−1(V ) by

(iXω)(u1, ..., uk−1) = ω(X,u1, ..., uk−1)

for every X ∈ V , ω ∈ Λk(V ) and u1,..., uk−1 ∈ V . In case k = 0 we define i = 0.
We call iXω the contraction of ω by X. Fixing the vector X ∈ V we get thus a
linear map iX : Λ(V ) → Λ(V ) of degree −1, which has the following important
property.

Proposition 4.7.1. If X ∈ V , ω ∈ Λk(V ) and η ∈ Λl(V ), then

iX(ω ∧ η) = iXω ∧ η + (−1)kω ∧ iXη.

Proof. Let v1,..., vk+l−1 ∈ V and put v0 = X. Then,
iXω ∧ η(v0, v1, ..., vk+l−1)

=
1

(k − 1)!l!

∑

σ∈Sk+l−1

(sgnσ)ω(X, vσ(1) , ..., vσ(k−1))η(vσ(k), ..., vσ(k+l−1))

and
(−1)kω ∧ iXη(v0, v1, ..., vk+l−1)

=
(−1)k

k!(l − 1)!

∑

σ∈Sk+l−1

(sgnσ)ω(vσ(1), ..., vσk))η(X, vσ(k+1) , ..., vσ(k+l−1)).

The symmetric group Sk+l on the set of symbols {0, 1, ..., k + l − 1} is the disjoint
union of the two sets

A = {π ∈ Sk+l : π(0) ∈ {0, ..., k − 1}},

B = {π ∈ Sk+l : π(0) ∈ {k, ..., k + l − 1}}.

Now we have
iX(ω ∧ η)(v0, v1, ..., vk+l−1)

=
1

k!l!

∑

π∈A
(sgnπ)ω(vπ(0), ..., vπ(k−1))η(vπ(k), ..., vπ(k+l−1))

+
1

k!l!

∑

π∈B
(sgnπ)ω(vπ(0), ..., vπ(k−1))η(vπ(k), ..., vπ(k+l−1)).

If π ∈ A, we need to make π−1(0) transpositions in order to move v0 to the first
entry and so
ω(vπ(0), ..., vπ(k−1))η(vπ(k), ..., vπ(k+l−1))

= (−1)π
−1(0)ω(X, vσ(1) , ..., vσ(k−1))η(vσ(k), ..., vσ(k+l−1))



4.7. VECTOR FIELDS AND DIFFERENTIAL FORMS 111

for some unique σ ∈ Sk+l−1 such that sgnπ = (−1)π
−1(0)sgnσ. Since v0 = X can be

at any of the first k entries it follows that the first sum is equal to

k

k!l!

∑

σ∈Sk+l−1

(sgnσ)ω(X, vσ(1), ..., vσ(k−1))η(vσ(k), ..., vσ(k+l−1)).

Similarly, the second sum is equal to

(−1)kl

k!l!

∑

σ∈Sk+l−1

(sgnσ)ω(vσ(1), ..., vσk))η(X, vσ(k+1), ..., vσ(k+l−1)),

because in this case we need to perform k extra transpositions in order to move
v0 = X to the first entry. �

Example 4.7.2. A particularly interesting case of contraction is the following. Let
{v1, ..., vn} be a basis of V and ω = v∗1 ∧ · · · ∧ v∗n. If X = X1v1 + · · ·+Xnvn, then

iXω =

n∑

j=1

(−1)j−1Xjv
∗
1 ∧ · · · ∧ v∗j−1 ∧ v∗j+1 ∧ · · · ∧ v∗n.

This can be seen by a computation which is similar to the computation of Example
3.4.2 and which we repeat for the sake of clarity. Let G = {σ ∈ Sn : σ(1) = 1} and
σj = (1 j). For u2,..., un ∈ V and putting v1 = X we compute

iXω(u2, ..., un) =
∑

σ∈Sn
(sgnσ)v∗1(uσ(1) · · · v∗n(uσ(n))

=

n∑

j=1

∑

σσj∈G
(sgnσ)v∗1(uσ(1) · · · v∗n(uσ(n))

=
n∑

j=1

∑

τ∈G
(sgnτ)v∗1(uτσj(1) · · · v∗n(uτσj(n))

n∑

j=1

∑

τ∈G
−(sgnτ)v∗1(uτ(j)) · · · v∗j−1(uτ(j−1))Xjv

∗
j+1(uτ(j+1)) · · · v∗n(uτ(n))

=
n∑

j=1

∑

ρ∈G
(−1)j−1Xj(sgnρ)v

∗
1(uρ(2)) · · · v∗j−1(uρ(j−1))v

∗
j+1(uρ(j+1)) · · · v∗n(uρ(n))

n∑

j=1

(−1)j−1Xjv
∗
1 ∧ · · · ∧ v∗j−1 ∧ v∗j+1 ∧ · · · ∧ v∗n(u2, ..., un).

It follows immediately from this that the linear map F : V → Λn−1(V ) de-
fined by F (X) = iXω is a monomorphism and hence an isomorphism since
dimΛn−1(V ) = dimV = n.
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Let now M be a smooth n-manifold. For every X ∈ X (M) and ω ∈ Ak(M), the
differential (k − 1)-form iXω defined by

(iXω)p(u1, ..., uk−1) = ωp(X(p), u1, ..., uk−1)

for every u1,..., uk−1 ∈ TpM , p ∈ M , is called the contraction of ω by the vector
field X.

From Proposition 4.7.1 follows that the linear map iX : A∗(M) → A∗(M) of
degree −1 satisfies the graded Leibliz formula

iX(ω ∧ η) = iXω ∧ η + (−1)kω ∧ iXη

for ω ∈ Ak(M), η ∈ A∗(M).

Proposition 4.7.3. If M is an oriented smooth n-manifold by a volume element
ω ∈ An(M) then the linear map F : X (M) → An−1(M) defined by F (X) = iXω is
an isomorphism.

Proof. Let (U, φ) be a positively oriented smooth chart of M and φ = (x1, ...., xn).
There exists a unique smooth function f : U → (0,+∞) such that

ω|U = f · dx1 ∧ · · · ∧ dxn.

For every X ∈ (M) there exist unique smooth functions X1,..., Xn : U → R such
that

X|U =

n∑

j=1

Xj
∂

∂xj
.

As in Example 4.7.2 we have then

ixω =

n∑

j=1

(−1)j−1fXjdx
1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn.

This implies that F is injective. Unlike Example 4.7.2 we need an extra globalization
argument in order to show that F is surjective, since this time we deal with infinite
dimensional vector spaces. Let θ ∈ An−1(M). There are unique smooth functions
X1,..., Xn : U → R such that

θ|U =

n∑

j=1

(−1)j−1fXjdx
1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn.

Let (V, ψ) be another positively oriented smooth chart of M and ψ = (y1, ..., yn).
There exists a unique smooth function g : V → (0,+∞) such that

ω|V = g · dy1 ∧ · · · ∧ dyn

and unique smooth functions Y1,..., Yn : V → R such that

θ|V =
n∑

j=1

(−1)j−1gYjdy
1 ∧ · · · ∧ dyj−1 ∧ dyj+1 ∧ · · · ∧ dyn.
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If U ∩ V 6= ∅, then

n∑

j=1

(−1)j−1fXjdx
1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn

=

n∑

j=1

(−1)j−1gYjdy
1 ∧ · · · ∧ dyj−1 ∧ dyj+1 ∧ · · · ∧ dyn

on U ∩ V , because θ is globally defined. Since ω is also globally defined, on U ∩ V
for each 1 ≤ i ≤ n we have

Yiω|U∩V = dyi∧θ|U∩V =

n∑

j=1

(−1)j−1fXjdy
i ∧ dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn

=
n∑

j=1

(−1)j−1fXj

( n∑

k=1

∂yi

∂xk
dxk
)
dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn

=

( n∑

j=1

Xj
∂yi

∂xj

)
ω|U∩V .

Hence

Yi =

n∑

j=1

Xj
∂yi

∂xj

which implies that
n∑

j=1

Xj
∂

∂xj
=

n∑

j=1

Yj
∂

∂yj

on U ∩ V . Thus, these local vector fiends piece together to a globally defined
smooth vector field X such that iXω = θ. �

If M is an oriented smooth n-manifold by a volume element ω ∈ An(M), the
differential (n− 1)-form iXω is called the flux form of the smooth vector field X.

There is a useful formula for the exterior differential in terms of vector fields
considered as derivations and the Lie bracket.

Theorem 4.7.4. Let M be a smooth n-manifold, ω ∈ Ak(M), 0 ≤ k ≤ n, and let
X0,..., Xk ∈ X (M). Then

dω(X0, ...,Xk) =

k∑

i=0

(−1)iXiω(X0, ...,Xi−1,Xi+1, ...,Xk)

+
∑

i<j

(−1)i+jω([Xi,Xj ],X0, ...,Xi−1,Xi+1, ...,Xj−1,Xj+1, ...,Xk).
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Proof. A first observation is that since both sides involve derivations, it suffices
to prove the formula locally. A second observation is that both sides are C∞(M)-
multilinear on the C∞(M)-module X (M) × · · · × X (M). This is trivial for the left
hand side. In order to confirm it for the right hand side, we put

S(X0, ...,Xk) =
k∑

i=0

(−1)iXiω(X0, ...,Xi−1,Xi+1, ...,Xk)

and

T (X0, ...,Xk) =
∑

i<j

(−1)i+jω([Xi,Xj ],X0, ...,Xi−1,Xi+1, ...,Xj−1,Xj+1, ...,Xk).

For every f ∈ C∞(M) and 1 ≤ m ≤ k we have

S(X0, ..., fXm, ...,Xk) = fS(X0, ...,Xk)+
∑

i 6=m
(−1)iXif · ω(X0, ...,Xi−1,Xi+1, ...,Xk).

On the other hand,
T (X0, ..., fXm, ...,Xk)

=
∑

i<j
i,j 6=m

(−1)i+jω([Xi,Xj ],X0, ..., fXm, ...,Xi−1,Xi+1, ...,Xj−1,Xj+1, ...,Xk)

+
∑

i<m

(−1)i+mω([Xi, fXm],X0, ...,Xi−1,Xi+1, ...,Xm−1,Xm+1, ...,Xk)

+
∑

m<j

(−1)m+jω([fXm,Xj ],X0, ...,Xm−1,Xm+1, ...,Xj−1,Xj+1, ...,Xk)

= fT (X), ...,Xk)+
∑

i<m

(−1)i+mXif · ω(Xm,X0, ...,Xi−1,Xi+1, ...,Xm−1,Xm+1, ...,Xk)

−
∑

m<j

(−1)m+jXjf · ω(Xm,X0, ...,Xm−1,Xm+1, ...,Xj−1,Xj+1, ...,Xk)

= fT (X), ...,Xk) +
∑

i<m

(−1)i+m+m−1Xif · ω(X0, ...,Xi−1,Xi+1, ...,Xk)

−
∑

m<j

(−1)m+j+mXjf · ω(X0, ...,Xj−1,Xj+1, ...,Xk)

= fT (X), ...,Xk)−
∑

i 6=m
(−1)iXif · ω(X0, ...,Xi−1,Xi+1, ...,Xk).

Hence the right hand side S+T is C∞(M)-multilinear. From these two observations
we see that it is sufficient to prove the formula on the domain U of a smooth chart
(U, φ), where φ = (x1, ..., xn), for any set of k basic vector fields. There are unique
smooth functions ωi0i1···ik−1

: U → R, 1 ≤ i0 < · · · < ik−1 ≤ n, such that

ω =
∑

1≤i0<···<ik−1≤n
ωi0···ik−1

dxi0 ∧ · · · ∧ dxik−1 .
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For any 1 ≤ j0 < · · · < jk ≤ n we have

dω

(
∂

∂xj0
, ...,

∂

∂xjk

)

=

n∑

m=1

∑

1≤i0<···<ik−1≤n

∂ωi0···ik−1

∂xm
dxm ∧ dxi0 ∧ · · · ∧ dxik−1

(
∂

∂xj0
, ...,

∂

∂xjk

)

=

k∑

i=1

(−1)i
∂ωj0···ji−1ji+1···jk

∂xji

and

(S + T )

(
∂

∂xj0
, ...,

∂

∂xjk

)
=

k∑

i=0

(−1)i
∂

∂xji
ω

(
∂

∂xj0
, ...,

∂

∂xjk

)

=
k∑

i=1

(−1)i
∂ωj0···ji−1ji+1···jk

∂xji
. �

Let now Φ : D →M be the flow of a smooth vector fieldX onM . For ω ∈ A∗(M)
the differential form

LXω =
d

dt

∣∣∣∣
t=0

Φ∗
tω = lim

t→0

1

t
(Φ∗

tω − ω)

is called the Lie derivative of ω with respect to X. Note that LXf = Xf for
f ∈ A0(M) = C∞(M). It is obvious that the Lie derivative operator

LX : A∗(M) → A∗(M)

commutes with the exterior differentiation d, that is d ◦ LX = LX ◦ d. Finally, the
Lie derivative LX with respect to X is a derivation of the exterior algebra A∗(M)
since it satisfies a (non-graded) Leibliz formula

LX(ω ∧ η) = LXω ∧ η + ω ∧ LXη

for every ω, η ∈ A∗(M). Actually, these properties characterize LX .

Proposition 4.7.5. Let M be a smooth n-manifold and let X ∈ X (M). Let
D : A∗(M) → A∗(M) be a linear map with the following properties:
(a) D(Ak(M)) ⊂ Ak(M) for all 0 ≤ k ≤ n.
(b) D(ω ∧ η) = Dω ∧ η + ω ∧Dη for every ω, η ∈ A∗(M).
(c) D commutes with the exterior differentiation d, that is D ◦ d = d ◦D.
(d) Df = Xf for every f ∈ C∞(M).

Then, D = LX .

Proof. It suffices to prove the assertion locally in the domain U of a smooth chart
(U, φ) with φ = (x1, ..., xn). If ω ∈ Ak(M), there exist unique smooth functions
ωi1···ik : U → R, 1 ≤ i1 < · · · < ik ≤ n such that

ω|U =
∑

1≤i1<···<ik≤n
ωi1···ikdx

i1 ∧ · · · ∧ dxik .
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Then,

Dω|U =
∑

1≤i1<···<ik≤n
Dωi1···ikdx

i1 ∧ · · · ∧ dxik

+
∑

1≤i1<···<ik≤n
ωi1···ik

k∑

m=1

dxi1 ∧ · · · ∧D(dxim) ∧ · · · dxik

=
∑

1≤i1<···<ik≤n
LXωi1···ik · dxi1 ∧ · · · ∧ dxik

+
∑

1≤i1<···<ik≤n
ωi1···ik

k∑

m=1

dxi1 ∧ · · · ∧ LX(dxim) ∧ · · · dxik = LXω|U . �

The Lie derivative is closely related with the contraction and the exterior
differentiation through a formula which is due to E. Cartan.

Theorem 4.7.6. If X is a smooth vector field of a smooth n-manifold M , then

LX = iX ◦ d+ d ◦ iX .

Proof. It suffices to check that D = iX ◦ d + d ◦ iX has the properties (a)-(d) in
the statement of Proposition 4.7.5. Obviously, D is linear of degree 0. Also, D is a
derivation, because if ω ∈ Ak(M) and η ∈ Al(M) we have

D(ω ∧ η) = d(iXω ∧ η + (−1)kω ∧ iXη) + iX(dω ∧ η + (−1)kω ∧ dη)

= diXω ∧ η + (−1)k−1iXω ∧ dη + (−1)kdω ∧ iXη + ω ∧ diXη
+iXdω ∧ η + (−1)k+1dω ∧ iXη + (−1)kiXω ∧ dη + ω ∧ iXdη

= (diXω + iXdω) ∧ η + ω ∧ (diXη + iXdη) = Dω ∧ η + ω ∧Dη.
Finally, D ◦ d = d ◦ iX ◦ d = d ◦ D and Df = iX(df) = df(X) = Xf for every
f ∈ C∞(M). �

Corollary 4.7.7. If ω ∈ Ak(M), 1 ≤ k ≤ n, and X, X1,..., Xk ∈ X (M), then

LXω(X1, ...,Xk) = Xω(X1, ...,Xk)−
k∑

j=1

ω(X1, ...,Xj−1, [X,Xj ],Xj+1, ...,Xk).

Proof. Applying Theorem 3.7.6 we have

iXdω(X1, ...,Xk) = Xω(X1, ...,Xk) +

k∑

i=1

Xiω(X,X1, ...,Xi−1,Xi+1, ...,Xk)

+

k∑

j=1

(−1)jω([X,Xj ],X1, ...,Xj−1,Xj+1, ...,Xk)

+
∑

i<j

(−1)i+jω([Xi,Xj ],X,X1, ...,Xi−1,Xi+1, ...,Xj−1,Xj+1, ...,Xk)
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and

diXω(X1, ...,Xk) =

k∑

i=1

(−1)k−1Xiω(X,X1, ...,Xi−1,Xi+1, ...,Xk)

+
∑

i<j

(−1)i+jω(X, [Xi,Xj ], ...,Xi−1,Xi+1, ...,Xj−1,Xj+1, ...,Xk).

Therefore,

LXω(X1, ...,Xk) = diXω(X1, ...,Xk) + iXdω(X1, ...,Xk)

= Xω(X1, ...,Xk)−
k∑

j=1

ω(X1, ...,Xj−1, [X,Xj ],Xj+1, ...,Xk). �

Corollary 4.7.8. If M is a smooth n-manifold and X, Y ∈ X (M), then

i[X,Y ] = LX ◦ iY − iY ◦ LX .

Proof. Applying the formula for the Lie derivative proved in the preceding
Corollary 4.7.7, for any ω ∈ Ak(M) and X1,...,Kk−1 ∈ X (M) we have
LX(iY ω)(X1, ...,Xk−1)

= Xω(Y,X1, ...,Xk−1)−
k−1∑

j=1

ω(Y,X1, ...,Xj−1, [X,Xj ],Xj+1, ...,Xk−1)

and

iY (LXω)(X1, ...,Xk−1) = Xω(Y,X1, ...,Xk−1)− ω([X,Y ],X1, ...,Xk−1)

−
k−1∑

j=1

ω(Y,X1, ...,Xj−1, [X,Xj ],Xj+1, ...,Xk−1).

Therefore,

(LX iY ω−iY LXω)(X1, ...,Xk−1) = ω([X,Y ],X1, ...,Xk−1) = i[X,Y ]ω(X1, ...,Xk). �

4.8 Integration on Riemannian manifolds

Let V be a n-dimensional real vector space equipped with an inner product 〈., .〉
which we assume that it is oriented by a non-zero element of Λn(V ). There exists a
unique Ω ∈ Λn(V ) such that Ω(v1, ..., vn) = 1 for every positively oriented ordered
orthonormal basis [v1, ..., vn] of V or equivalently Ω = v∗1 ∧ · · · ∧ v∗n, where [v∗1 , ..., v∗n]
is the dual basis. Indeed, if [w1, ..., wn] is another such basis of V , then

wj =

n∑

i=1

aijvi, 1 ≤ j ≤ n

for some aij ∈ R, 1 ≤ i, j ≤ n. The matrix A = (aij)1≤i,j≤n is orthogonal and has
detA = 1. Since

ω(w1, ..., wn) = (detA)ω(v1, ..., vn) = ω(v1, ..., vn)
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for every ω ∈ Λn(V ), it follows that v∗1 ∧ · · · ∧ v∗n = w∗
1 ∧ · · · ∧w∗

n.

Let now M be an oriented Riemannian smooth n-manifold. According to
the above, on each tangent space TpM , p ∈ M , there exists a unique element
Ωp ∈ Λn(TpM) such that Ωp(v1, ..., vn) = 1 for every positively oriented ordered
orthonormal basis [v1, ..., vn] of TpM . This defines a volume element of M which
gives its orientation and is called the Riemannian volume element of M . We need
only show that Ω is indeed smooth. To see this, let (U, φ) be a smooth chart of M
with φ = (x1, ..., xn). Let p ∈ U and let [v1, ..., vn] be a positively oriented ordered
orthonormal basis of TpM . Then,

(
∂

∂xj

)

p

=
n∑

i=1

aijvi, 1 ≤ j ≤ n

for some aij ∈ R, 1 ≤ i, j ≤ n. Let A = (aij)1≤i,j≤n. The matrix of the Riemannian
metric at p with respect to the chosen smooth chart has entries

gij(p) =

〈(
∂

∂xi

)

p

,

(
∂

∂xj

)

p

〉
=

〈 n∑

k=1

akivk.
n∑

l=1

aljvl

〉
=

n∑

k=1

akiakj.

Thus, (gij(p))1≤i,j≤n = AtA and since

Ωp

((
∂

∂x1

)

p

, , ...,

(
∂

∂xn

)

p

)
= (detA)ω(v1, ..., vn) = detA

we have

Ωp =
√

det(gij(p))1≤i,j≤n · (dx1)p ∧ · · · ∧ (dxn)p.

Since this holds for every p ∈ U , we conclude that Ω is smooth.

Let now ∇ be the Levi-Civita connection of M . If X ∈ X (M), the smooth
function

divX = Tr(∇.X)

is called the divergence of X with respect to the Riemannian metric and can be
alternatively characterized as follows.

Proposition 4.8.1. Let M be an oriented Riemannian smooth n-manifold with
Riemannian volume element Ω. The divergence divX of X ∈ X (M) is the unique
smooth function such that

d(iXΩ) = (divX) · Ω.

Proof. Let (U, φ) be a smooth chart of M with φ = (x1, ..., xn) and suppose that

X|U =

n∑

k=1

Xk ∂

∂xk
.

Using Example 4.7.2 and the above local formula for Ω, we compute

d(iXΩ)|U = d(iX(
√

det(gij)1≤i,j≤n · dx1 ∧ · · · ∧ dxn))
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= d

( n∑

k=1

(−1)k−1
√

det(gij)1≤i,j≤nX
k · dx1 ∧ · · · ∧ dxk−1 ∧ dxk+1 ∧ dxn

)

=

( n∑

k=1

∂

∂xk
(
√

det(gij)1≤i,j≤nX
k)

)
· dx1 ∧ · · · ∧ dxn

=

(
1√

det(gij)1≤i,j≤n

n∑

k=1

∂

∂xk
(
√

det(gij)1≤i,j≤nX
k)

)
· Ω.

On the other hand, for every 1 ≤ i ≤ n we have

∇ ∂

∂xi
X =

n∑

k=1

(
∂Xk

∂xi
+

n∑

j=1

ΓkijX
j

)
∂

∂xk

and so

divX =

n∑

k=1

(
∂Xk

∂xk
+

n∑

j=1

ΓkkjX
j

)
=

n∑

k=1

∂Xk

∂xk
+

n∑

j=1

( n∑

k=1

Γkkj

)
Xj .

Using the formula for the Christoffel symbols derived in the proof of Theorem 5.4.3
we have

n∑

k=1

Γkkj =
1

2

n∑

k,l=1

gkl
(
∂gjl
∂xk

+
∂glk
∂xj

− ∂gkj
∂xl

)
=

1

2

n∑

k,l=1

gkl
∂glk
∂xj

+
1

2

n∑

k,l=1

gkl
(
∂gjl
∂xk

− ∂gkj
∂xl

)

=
1

2

n∑

k,l=1

gkl
∂glk
∂xj

+ 0 =
1

2
· 1

det(gkl)1≤k,l≤n
· ∂

∂xj
det(gkl)1≤k,l≤n

=
1√

det(gkl)1≤k,l≤n
· ∂

∂xj

√
det(gkl)1≤k,l≤n.

Substituting we arrive at

divX =

n∑

j=1

(
∂Xj

∂xj
+

Xj

√
det(gkl)1≤k,l≤n

· ∂

∂xj

√
det(gkl)1≤k,l≤n

)

=
1√

det(gkl)1≤k,l≤n

n∑

j=1

∂

∂xj

(√
det(gkl)1≤k,l≤nX

j

)
. �

In the end of the proof of the preceding Proposition 4.8.1 we have used the
following fact. Let A : Rn → Rn×n be a smooth map. If p ∈ Rn and detA(p) > 0,
then

1

detA(p)
· ∂ detA

∂xk
(p) = Tr

(
∂A

∂xk
(p) · (A(p))−1

)
, 1 ≤ k ≤ n.

Indeed, if G : (−ǫ, ǫ) → Rn×n is a smooth curve for some ǫ > 0 with G(0) = In,
then from Taylor’s formula we have

G(t) = In + tG′(0) +O(t2)
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and therefore

detG(t) = 1 + tTrG′(0) +O(t2).

This implies (detG)′(0) = TrG′(0). Applying this to G(t) = B(t)B(0)−1 we obtain

(detB)′(0)
detB(0)

= Tr(B′(0)B(0)−1)

for any smooth B : (−ǫ, ǫ) → Rn×n.
Let now D be a domain with smooth boundary in an oriented Riemannian

smooth n-manifold M . There exists a unique smooth vector field ν : ∂D → TM
along ∂D which is directed outward of D and is orthogonal to ∂D and has unit
length. We shall call ν the unit outer normal to ∂D. As we saw in section 3.6,
the orientation of ∂D with respect to which Stokes’ formula holds is represented by
iνΩ, where Ω is the Riemannian volume element of M . Let p ∈ ∂D and let v2,...,
vn ∈ Tp∂D be such that [ν(p), v2, ..., vn] is a positively oriented ordered orthonormal
basis of Tp∂D. Then,

iνΩ(p) = v∗2 ∧ · · · ∧ v∗n.

If X ∈ X (M), from Example 4.7.2 we have

iXΩ(p) = 〈X(p), ν(p)〉+
n∑

k=2

(−1)k−1〈X(p), vk〉ν(p)∗ ∧ v∗2 ∧ · · · ∧ v∗k−1 ∧ v∗k+1 ∧ · · · ∧ v∗n

= 〈X(p), ν(p)〉iνΩ(p) + 0.

Thus, iXΩ|∂D = 〈X, ν〉iνΩ. Stokes’ formula has the following version on Rieman-
nian manifolds, which is known also as the Divergence Theorem.

Theorem 4.8.2. Let M be an oriented Riemannian smooth n-manifold with Rie-
mannian volume element Ω and let D ⊂M be a domain with smooth boundary. Let
ν be the unit outer normal to ∂D. If X ∈ X (M) has compact support in M , then

∫

D
divX · Ω =

∫

∂D
〈X, ν〉iνΩ.

Proof. From the above considerations, Theorem 4.6.2 and Proposition 4.8.1 we
have ∫

D
divX · Ω =

∫

D
d(iXΩ) =

∫

∂D
iXΩ|∂D =

∫

∂D
〈X, ν〉iνΩ. �

4.9 Differential ideals

LetM be a smooth n-manifold and let D be a geometric distribution of constant rank
k on M . A differential r-form ω on M is said to annihilate D if ωp(v1, ..., vr) = 0
for every v1,..., vr ∈ Dp and p ∈ M . An element of the exterior algebra A∗(M)
annihilates D if all its components annihilate D. The set E(D) of all elements of
A∗(M) which annihilate D is an ideal in A∗(M), by the definition of the wedge
product. We shall analyse further the structure of the annihilating ideal E(D).
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In general, an ideal S in A∗(M) is said to be locally generated by n − k
independent differential 1-forms if there exists an open cover U of M such that for
every U ∈ U there exist pointwise linearly independent θ1,..., θn−k ∈ A1(U) such
that a differential form ω on M belongs to E(D) if and only if ω|U belongs to the
ideal in A∗(U) which is generated by θ1,..., θn−k.

Proposition 4.9.1. If D is a geometric distribution of constant rank k on a
smooth n-manifold M , then its annihilator E(D) is an ideal locally generated by
n− k independent differential 1-forms.

Proof. Let p ∈M . There exists an open neighbourhood U of p and Y1,..., Yk ∈ X (U)
such that {Y1(q), ..., Yk(q)} is a basis of Dq for every q ∈ U . There exist some Yk+1,...,
Yn ∈ X (U) such that {Y1(q), ..., Yk(q), Yk+1(q), ..., Yn(q)} is a basis of TqM for every
q ∈ U . There are unique dual differential 1-forms ω1,..., ωn ∈ A1(U), that is
ωi(Yj) = δij , 1 ≤ i, j ≤ n. Then, ωk+1,..., ωn ∈ E(D) and they are pointwise linearly
independent. If now ω ∈ E(D) is a differential r-form, there are fi1···ir ∈ C∞(U),
{i1, ..., ir} ⊂ {1, ..., n}, such that

ω =
∑

{i1,...,ir}⊂{1,...,n}
fi1···irωi1 ∧ · · · ∧ ωir

where fi1···ir = 0 in case {i1, ..., ir} ∩ {k + 1, ..., n} = ∅. Hence ω|U belongs to the
ideal in A∗(U) which is generated by ωk+1,..., ωn. Conversely, if ω ∈ A∗(M) is such
hat ω|U belongs to the ideal in A∗(U) generated by ωk+1,..., ωn, then evidently
ω ∈ E(D). �

Proposition 4.9.2. Let M be a smooth n-manifold and let S be an ideal in A∗(M).
If S is locally generated by n − k independent differential 1-forms, there exists a
unique geometric distribution D of constant rank k such that S = E(D).

Proof. Let p ∈ M and let θ1,..., θn−k be pointwise linearly independent differential
1-forms defined on some open neighbourhood U of p which generated S on U . Then,

Dp =

n−k⋂

i=1

Kerθi(p)

is a k-dimensional vector subspace of Tp. It is obvious that D =
⋃

p∈M
Dp is a

geometric distribution of constant rank k and S = E(D). The uniqueness is
immediate from the fact that if D1 and D2 are two geometric distributions of the
same constant rank and D1 6= D2, then E(D1) 6= E(D2). �

Thus, there is a bijective correspondence between geometric distributions of
constant rank k on a smooth n-manifold M and ideals in its exterior algebra A∗(M)
that are locally generated by n − k independent differential 1-forms. In terms of
annihilating ideals the Frobenius’ theorem can be stated as follows.
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Theorem 4.9.3. A geometric distribution D of constant rank k on a smooth
n-manifold M is integrable if and only if d(E(D)) ⊂ E(D).

Proof. If D is integrable, it is involutive and so if ω ∈ Ar(M) annihilates D, from
Theorem 4.7.4 we have

dω(X1, ...,Xr) = 0

for every X1,... Xr ∈ XD(M). Hence dω annihilates D as well.
Conversely, suppose that d(E(D)) ⊂ E(D) and let X, Y ∈ XD(M). By Proposi-

tion 3.8.1, every point p ∈M has an open neighbourhood U such that E(D) is gener-
ated on U by pointwise linearly independent differential 1-forms θ1,..., θn−k ∈ A1(U).
By Corollary 1.4.5, we may assume that these are restrictions to U of globally de-
fined differential 1-forms on M with support contained in U . From Theorem 4.7.4
we have

θj([X,Y ]) = −dθj(X,Y ) +Xθj(Y )− Y θj(X) = 0

for all 1 ≤ j ≤ n− k. Therefore,

[X,Y ](p) ∈
n−k⋂

j=1

Kerθj(p) = Dp.

This shows that D is involutive, hence integrable, by Corollary 2.4.7. �

Combined with Proposition 4.9.1, the preceding version of Frobenius’ theorem
can be restated in local terms as follows.

Corollary 4.9.4. Let D be a geometric distribution of constant rank k on a smooth
n-manifoldM with annihilating ideal E(D). The following statements are equivalent.
(a) D is integrable.
(b) There exists an open cover U of M such that for every U ∈ U the ideal E(D) on
U is generated by n− k independent differential 1-forms θ1,..., θn−k for which there
exist aij ∈ A1(U), 1 ≤ i, j ≤ n− k, such that

dθj =
n−k∑

i=1

θi ∧ aij, 1 ≤ j ≤ n− k.

(c) There exists an open cover U of M such that for every U ∈ U the ideal E(D) on
U is generated by n− k independent differential 1-forms θ1,..., θn−k such that

dθj ∧ θ1 ∧ · · · ∧ θn−k = 0, 1 ≤ j ≤ n− k. �

Example 4.9.5. Let M be an open subset of R3 and θ ∈ A1(M) be nowhere
vanishing. Then Kerθ is geometric distribution of constant rank 2 onM and E(Kerθ)
is generated by θ. According to Theorem 4.9.3, Kerθ is integrable if and only if
dθ ∧ θ = 0. In particular, Kerθ is integrable, if θ is closed. The euclidean inner
product 〈., .〉 gives a natural linear isomorphism φ : X (M) → A1(M) defined by
φ(X) = 〈.,X〉. IfX = φ−1(θ), by a routine computation we see that the integrability
condition translates to 〈X, curlX〉 = 0. This observation is due to G. Reeb and is
considered to have given birth to the theory of foliations.
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4.10 Exercises

1. Let M be a smooth manifold and ω ∈ A1(M). If there exists f ∈ C∞(M), such
that f(p) 6= 0 for every p ∈M and fω is closed, prove that ω ∧ dω = 0.

2. Let M and N be two smooth manifolds and f : M → N be a submersion onto
N . Prove that the transpose f∗ : A∗(N) → A∗(M) is injective.

3. Prove that H1(R) = 0.

4. Let f : R → R be a smooth periodic function of period 1, that is f(x+1) = f(x)
for every x ∈ R. Prove that there exists λ ∈ R and a smooth periodic function
g : R → R of period 1 such that fdx = λdx + dg on R. Use this to prove that
H1(S1) ∼= R.

5. On R2 \ {(0, 0)} we consider the differential 1-form

ω =
−y

x2 + y2
dx+

x

x2 + y2
dy.

Let F : (0,+∞)× R → R2 \ {(0, 0)} the local smooth diffeomorphism defined by

F (ρ, θ) = (ρ cos θ, ρ sin θ).

(a) Prove that F ∗ω = dθ.
(b) Let η be a closed differential 1-form on R2 \ {(0, 0)}. Prove that there exist
λ ∈ R, a smooth periodic function g : R → R of period 2π and a smooth function
h : (0,+∞) ×R → R such that h(ρ, θ + 2π) = h(ρ, θ) for every ρ > 0, θ ∈ R and

F ∗η = dh+ λdθ + g′(θ)dθ

on (0,+∞) × R.
(c) Use the above to prove that H1(R2 \ {(0, 0)}) ∼= R.

6. LetM ⊂ R3 be an open set. For every α ∈ A1(M) there exist α1, α2, α3 ∈ C∞(M)
such that α = α1dx

1 + α2dx
2 + α3dx

3. The map φ : X (M) → A1(M) with

φ(α1
∂

∂x1
+ α2

∂

∂x2
+ α3

∂

∂x3
) = α1dx

1 + α2dx
2 + α3dx

3

is a linear isomorphism. For every θ ∈ A2(M) there exist β1, β2, β3 ∈ C∞(M) such
that θ = β1dx

2 ∧ dx3 + β2dx
3 ∧ dx1 + β3dx

1 ∧ dx2 and ψ : X (M) → A2(M) with

ψ(β1
∂

∂x1
+ β2

∂

∂x2
+ β3

∂

∂x3
) = θ

is a linear isomorphism. Finally, µ : C∞(M) → A3(M) with µ(f) = fdx1∧dx2∧dx3
is a linear isomorphism. Prove that φ(ξ)∧φ(ζ) = ψ(ξ×ζ) and φ(ξ)∧ψ(ζ) = µ(〈ξ, ζ〉)
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for every ξ, ζ ∈ X (M), where × is the usual exterior product on R3 and 〈, 〉 is the
euclidean inner product, and the following diagram commutes.

C∞(M)
grad−→ X (M)

curl−→ X (M)
div−→ C∞(M)yid

yφ
yψ

yµ
C∞(M)

d−→ A1(M)
d−→ A2(M)

d−→ A3(M)

7. LetM ⊂ Rn be an open set and ω ∈ A1(M) such that ω∧dx1∧· · ·∧dxk = 0, where
k < n. Prove that there exist f1, ..., fk ∈ C∞(M) such that ω = f1dx

1+ · · ·+fkdxk.

8. Prove that the (total space of the) tangent bundle of a smooth manifold is
always an orientable smooth manifold.

9. Let U ⊂ Rn be an open set and let f : U → R be a smooth function. If
c ∈ R is a regular value of f and M = f−1(c) 6= ∅, prove that M is an orientable
(n− 1)-dimensional smooth submanifold of Rn.

(Hint : The pull-back of

n∑

j=1

(−1)j−1 ∂f

∂xj
· dx1 ∧ ... ∧ dxj−1 ∧ dxj+1 ∧ ... ∧ dxn on

M vanishes nowhere on M .)

10. Prove that orientability is a property of smooth manifolds which remains
invariant under smooth diffeomorphisms.

11. Let M be a smooth n-manifold and ω ∈ Ak(M), 0 ≤ k ≤ n. Let G be a group
of diffeomorphisms of M which acts properly discontinuously on M so that M/G
is a Hausdorff space. If g∗ω = ω for every g ∈ G, prove that there exists a unique
ω̃ ∈ Ak(M/G) such that p∗ω̃ = ω, where p : M → M/G is the quotient map. Use
this to prove that if M is orientable and ω is a volume element such that g∗ω = ω
for every g ∈ G, then M/G is orientable.

12. Let M be a smooth n-manifold and ω ∈ Ak(M), 0 ≤ k ≤ n. Let G be a group
of diffeomorphisms of M which acts properly discontinuously on M and let M/G
be Hausdorff. If ω̃ ∈ Ak(M/G), 0 ≤ k ≤ n and ω = p∗ω̃, where p : M → M/G is
the quotient map, prove that g∗ω = ω for every g ∈ G. Thus, if M/G is orientable,
then M is necessarily orientable.

13. Let G =< g, h >, where g, h : R2 → R2 are defined by g(x, y) = (x + 1, y)
and h(x, y) = (1 − x, y + 1). In other words G =< g, h : h−1gh = g−1 >. Prove
that the quotient space, K2 = R2/G, which is the Klein bottle, is a non-orientable
connected compact smooth 2-manifold.

14. Let A ∈ Rn×n be symmetric and let ω be the standard volume element of Sn−1.
Prove that ∫

Sn−1

〈Ax, x〉ω =
1

n
TrA · vol(Sn−1)

where 〈, 〉 is the euclidean inner product.
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(Hint: Use the Spectral Theorem.)

15. If k ∈ Z+, prove that the differential (n− 1)-form

ωk =

n+1∑

j=1

(−1)j−1 xj

‖x‖k · dx1 ∧ ... ∧ dxj−1 ∧ dxj+1 ∧ ... ∧ dxn+1

is not exact on Rn+1 \ {0}.

16. Let M be an oriented smooth n-manifold by a volume element ω ∈ An(M). For
every X ∈ X (M) there exists a unique smooth function divωX ∈ C∞(M), which
is called the ω-divergence of X such that d(iXω) = (divωX)ω. If M = Rn and
ω = fdx1 ∧ ... ∧ dxn, where f ∈ C∞(Rn) with f 6= 0, prove that for

X =

n∑

k=1

Xk ∂

∂xk

we have

divωX =
1

f

n∑

k=1

∂(fXk)

∂xk
.

17. If M is a smooth manifold and X, Y ∈ X (M), prove that

L[X,Y ] = LX ◦ LY − LY ◦ LX .

18. LetM be a compact connected oriented smooth n-manifold by a volume element
ω ∈ An(M). A smooth vector field X ∈ X (M) with corresponding one-parameter
group of diffeomorphisms (Φt)t∈R is called ω-volume preserving if Φ∗

tω = ω for every
t ∈ R.
(a) Prove that X ∈ X (M) is ω-volume preserving if and only if the flux form iXω
is closed.
(b) Prove that that the vector space Xω(M) of all ω-volume preserving smooth
vector fields of M is isomorphic to An−1(M) ∩Kerd.

A ω-volume preserving smooth vector field X ∈ X (M) is called ω-homologically
trivial if the flux form iXω is exact.
(c) Prove that for every X, Y ∈ Xω(M) the smooth vector field [X,Y ] is always
ω-homologically trivial.

Let now M be 3-dimensional such that H1(M) = {0} and H2(M) = {0}.
(d) If X, Y ∈ Xω(M) and η ∈ A1(M) is such that dη = iY ω, prove that the integral

ℓ(X,Y ) =

∫

M
iXω ∧ η

does not depend on the choice of the primitive η of the flux form iY ω.
(e) Prove that ℓ : Xω(M) × Xω(M) → R is a non-degenerate, symmetric, bilinear
form.

19. Let M be an open subset of R3 and θ ∈ A1(M) be nowhere vanishing. Prove
that Kerθ is integrable if and only if every p ∈M has an open neighbourhood U on
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which there exists a nowhere vanishing f ∈ C∞(U) such that fθ|U is exact.

20. Let M be a Riemannian smooth n-manifold and let f : M → R be a smooth
function. We assume that M is oriented with Riemannian volume element Ω. The
function

△f = div(gradf)

is the (Riemannian) Laplacian of f .
(c) If h :M → R is another smooth function, prove that
(i) div(fgradh) = 〈grad f, gradh〉+ f△h and
(ii) △(fh) = 2〈grad f, gradh〉+ f△h+ h△f .
(d) Let D ⊂M be a domain with smooth boundary and ν be the unit outer normal
on ∂D. If f, h :M → R are two smooth functions at least one of which has compact
support, prove Green’s formulas

∫

D
(〈grad f, gradh〉+ f△h)Ω =

∫

∂D
(f〈gradf, ν〉iνΩ,

∫

D
(h△f − f△h)Ω =

∫

∂D
(h〈gradf, ν〉 − f〈gradh, ν〉)iνΩ.

(e) The smooth function f : M → R is called harmonic if △f = 0. Prove that
if M is connected, then every harmonic function on M with compact support is
constant.

21. Let n ≥ 2 be an integer and g : (0,+∞) × (0, π)n−1 × (0, 2π) → Rn+1 be the
smooth map with g(ρ, θ1, ..., θn) = (x1, ..., xn, xn+1) where

x1 = ρ cos θ1
x2 = ρ sin θ1 cos θ2
.....................................
xn = ρ sin θ1 · · · sin θn−1 cos θn
xn+1 = ρ sin θ1 · · · sin θn−1 sin θn.

(a) Prove that g∗ω = ρn+1 sinn−1 θ1 sin
n−2 θ2 · · · sin θn−1 · dθ1 ∧ · · · ∧ dθn, where

ω =
n+1∑

j=1

(−1)j−1xjdx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxn+1 ∈ An(Rn+1).

(b) Let i : Sn →֒ Rn+1 be the inclusion. Prove that if n = 2m− 1, then

vol(S2m−1) =

∫

S2m−1

i∗ω =
2πm

(m− 1)!

and if n = 2m, then

vol(S2m) =

∫

S2m

i∗ω =
2m+1πm

1 · 3 · 5 · · · (2m− 1)
.



Chapter 5

De Rham cohomology

5.1 Homotopy invariance

This chapter is devoted to the development of methods of computation of the de
Rham cohomology of smooth manifolds. The first important property of the de
Rham cohomology is homotopy invariance. This will give the de Rham cohomology
of Rn, a result which is traditionally known as the Poincaré Lemma.

LetM be a smooth n-manifold. In order to compute the de Rham cohomology of
the smooth (n+1)-manifold R×M we consider the projection π : R×M →M and
the inclusion i :M → R×M with i(p) = (0, p). Since π ◦ i = idM , we immediately
have that i∗ ◦ π∗ = id. The greater part of this section is devoted to proving that
π∗ ◦ i∗ = id also, and therefore π∗ : H∗(M) → H∗(R ×M) is an isomorphism of
graded algebras with inverse i∗. We note that in place of the inclusion i we could
very well use the inclusion it :M → R×M with it(p) = (t, p) for any t ∈ R.

Let A be a smooth atlas of M and let {fU : (U, φU ) ∈ A} be a smooth partition
of unity subordinated to the open cover U = {U : (U, φU ) ∈ A} of M . Then, Ã =
{(R×U, id×φU ) : (U, φU ) ∈ A} is a smooth atlas of R×M and {f̃U : (U, φU ) ∈ A} is a
smooth partition of unity subordinated to the open cover Ũ = {R×U : (U, φU ) ∈ A}
of R×M , where f̃U = fU ◦ π.

Let now ω ∈ Ak(R × M). If φU = (x1, ..., xn), there are smooth functions
fUi1···ik−1

, gUj1···jk on R× U such that

ω|R×U =
∑

1≤i1<···<ik−1≤n
fUi1···ik−1

dt ∧ dxi1 ∧ · · · ∧ dxik−1

+
∑

1≤j1<···<jk≤n
gUj1···kdx

j1 ∧ · · · ∧ dxjk .

and globally

ω =
∑

(U,φU )∈A

( ∑

1≤i1<···<ik−1≤n
f̃Uf

U
i1···ik−1

dt ∧ dxi1 ∧ · · · ∧ dxik−1

)

+
∑

(U,φU )∈A

( ∑

1≤j1<···<jk≤n
f̃Ug

U
j1···kdx

j1 ∧ · · · ∧ dxjk
)
.

127
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From Corollary 1.4.5, for every U ∈ U there is a smooth function hU :M → [0, 1]
such that suppfU ⊂ h−1

U (1) and supphU ⊂ U . If h̃U = hU ◦ π, then f̃U h̃U = f̃U and

ω =
∑

(U,φU )∈A

( ∑

1≤i1<···<ik−1≤n
f̃Uf

U
i1···ik−1

dt ∧ (h̃Udx
i1 ∧ · · · ∧ dxik−1)

)

+
∑

(U,φU )∈A

( ∑

1≤j1<···<jk≤n
f̃Ug

U
j1···k(h̃Udx

j1 ∧ · · · ∧ dxjk)
)
.

On each strip R×U only a finite number of elements of A give non-zero terms of the
above sum. Note that each differential form h̃Udx

i1 ∧ · · · ∧ dxik−1 can be smoothly
extended to all of R×M by setting it zero outside R× U so that

h̃Udx
i1 ∧ · · · ∧ dxik−1 = π∗ηUi1···ik−1

where

ηUi1···ik−1
=

{
hUdx

i1 ∧ · · · ∧ dxik−1 , on U

0, on M \ U .

Similarly, in the second sum we have h̃Udx
j1 ∧ · · · ∧ dxjk = π∗ζUj1···jk , where

ζUj1···jk =

{
hUdx

j1 ∧ · · · ∧ dxjk , on U

0, on M \ U .

Thus, every ω ∈ Ak(R ×M) is a locally finite sum of differential k-forms of (the
compressed) type

f(t, x)dt ∧ π∗η + g(t, x)π∗ζ

for suitable smooth functions f , g and η ∈ Ak−1(M), ζ ∈ Ak(M).

Now set Ak(M) = 0 for every integer k < 0 and define S : Ak(M) → Ak−1(M)
by

Sω =

(∫ t

0
f(s, x)ds

)
π∗η

if ω = f(t, x)dt ∧ π∗η + g(t, x)π∗ζ and extending using the above. Thus we obtain
a linear map S : A∗(M) → A∗(M) of degree −1 of the graded vector space A∗(M),
which according to the following crucial lemma is a cochain homotopy between
π∗ ◦ i∗ and the identity.

Lemma 5.1.1. d ◦ S + S ◦ d = id− π∗ ◦ i∗.

· · · Ak−1(M) Ak(M) Ak+1(M) · · ·

· · · Ak−1(M) Ak(M) Ak+1(M) · · ·

d d

π∗◦i∗ id

d

π∗◦i∗ id
S S

π∗◦i∗ id

d

d d d d
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Proof. If ω = g(t, x)π∗ζ, we have Sω = 0, by definition, and so

d(Sω) + S(dω) = S(dg ∧ π∗ζ + gπ∗(dζ)) = S(dg ∧ π∗ζ) = S
(∂g
∂t
dt ∧ π∗ζ

)

=

(∫ t

0

∂g

∂s
(s, x)ds

)
π∗ζ =

(
g(t, x) − g(0, x)

)
π∗ζ = ω − (π∗ ◦ i∗)ω.

If now ω = f(t, x)dt ∧ π∗η, then ω − (π∗ ◦ i∗)ω = ω, because i∗(dt) = 0. On the
other hand, we have

d(Sω) = d

((∫ t

0
f(s, x)ds

)
π∗η

)
= d

(∫ t

0
f(s, x)ds

)
π∗η +

(∫ t

0
f(s, x)ds

)
d(π∗η)

=

[(∫ t

0

∂f

∂x
(s, x)ds

)
dx+ f(t, x)dt

]
∧ π∗η +

(∫ t

0
f(s, x)ds

)
(.π

∗η)

and

S(dω) = S
(∂f
∂x
dx ∧ dt ∧ π∗η − f(t, x)dt ∧ d(π∗η)

)

= −
(∫ t

0

∂f

∂x
(s, x)ds

)
dx ∧ π∗η −

(∫ t

0
f(s, x)ds

)
d(π∗η).

therefore,
d(Sω) + S(dω) = f(t, x)dt ∧ π∗η = ω = ω − (π∗ ◦ i∗)ω.

This completes the proof. �

Corollary 5.1.2. For every smooth manifold M the canonical projection
π : R ×M → M induces an isomorphism π∗ : H∗(M) → H∗(R ×M) in de Rham
cohomology.

Proof. Indeed, for every closed differential form ω ∈ A∗(R×M) we have

ω − (π∗ ◦ i∗)ω = d(Sω)

from Lemma 5.1.1 and hence id− π∗ ◦ i∗ = 0 in the level of cohomology. �

Since R0 is a singleton, from Theorem 4.3.7 and we get inductively the following.

Corollary 5.1.3. The de Rham cohomology of Rn, n ∈ Z+, is

Hk(Rn) =

{
R, for k = 0,

{0}, for k > 0.
�

Definition 5.1.4. Let M and N be two smooth manifolds. Two smooth maps
f , g : M → N are said to be (smoothly) homotopic if there exists a smooth map
F : R ×M → M such that F (t, p) = f(p) for all t ≤ 0, p ∈ M and F (t, p) = g(p)
for all t ≥ 1, p ∈ M or equivalently F ◦ it = f for t ≤ 0 and F ◦ it = g for t ≥ 1. In
this case we write f ≃ g and call F a (smooth) homotopy from f to g.
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It is obvious that (smooth) homotopy is an equivalence relation in the set of all
smooth maps from M to N .

Theorem 5.1.5. Let M and N be two smooth manifolds. If two smooth maps f ,
g :M → N are (smoothly) homotopic, then f∗ = g∗ : H∗(N) → H∗(M).

Proof. If F : R×M →M is a smooth homotopy from f to g, then

f∗ = (F ◦ i0)∗ = i∗0 ◦ F ∗ = (π∗)−1 ◦ F = i∗1 ◦ F ∗ = (F ◦ i1)∗ = g∗. �

As we know, the de Rham cohomology is a diffeomorphism invariant. Actually,
Theorem 5.1.5 implies a much more stronger statement.

Definition 5.1.6. Two smooth manifolds M and N are said to have the same
smooth homotopy type if there are smooth maps f : M → N and g : N → M
such that g ◦ f ≃ idM and f ◦ g ≃ idN . Such maps f and g are called homotopy
equivalences and homotopy inverses to each other.

Corollary 5.1.7. If two smooth manifolds have the same smooth homotopy type,
they have isomorphic de Rham cohomology algebras.

Two smooth manifolds with the same smooth homotopy type may be quite
different, for instance they may not even have the same dimension.

Examples 5.1.8. (a) The n-dimensional euclidean space has the homotopy
type of a singleton for every n ∈ Z+. Indeed, if i : {0} →֒ Rn is the inclusion
and r : Rn → {0} the unique obvious map, then r ◦ i = id{0}. On the other
hand, if h : R → [0, 1] is a smooth function such that h−1(0) = (−∞, 0] and
h−1(1) = [1,+∞), then F : R × Rn → Rn defined by F (t, x) = h(t)x is a smooth
homotopy from i ◦ r to idR. A smooth manifold with the smooth homotopy type of
a singleton is called contractible.

(b) The n-sphere Sn has the same smooth homotopy type with the punctured (n+1)-
dimensional euclidean space Rn+1 \ {0}. To see this, let i : Sn →֒ Rn+1 \ {0} be the
inclusion and let r : Rn+1 \ {0} → Sn be the smooth map

r(x) =
1

‖x‖ · x.

Then, obviously r ◦ i = idSn , and i ◦ r ≃ idRn+1\{0}. Indeed, the smooth map
F : R× Rn+1 \ {0} → Rn+1 \ {0} defined by

F (t, x) = (1− h(t))
1

‖x‖ · x+ h(t) · x,

where h is the smooth function of (a), is a smooth homotopy from i◦r to idRn+1\{0}.
In the terminology of Algebraic Topology, the map r is a retraction and Sn is a

(strong) deformation retract of Rn+1.
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5.2 The degree of a smooth map

If M is a compact, connected, oriented smooth n-manifold, there exists a unique de
Rham cohomology class oM ∈ Hn(M) whose integral over M is equal to 1, which is
called the cohomological fundamental class (or orientation class) ofM . By Theorem
4.5.7, the cohomology class of a differential n-form ω ∈ An(M) is then

[ω] =

(∫

M
ω

)
oM .

Let N be another compact, connected, oriented smooth n-manifold and suppose
that f :M → N is a smooth map. We call

deg f =

∫

M
f∗oN

the degree of f . Then, for every θ ∈ An(N) we have

∫

M
f∗θ = (deg f) ·

(∫

N
θ

)

and so the transpose f∗ : Hn(N) → Hn(M) is given by the formula

f∗θ = (deg f) ·
(∫

N
θ

)
· oM .

The degree has the following properties.

Proposition 5.2.1. Let M , N be two compact, connected, oriented smooth
n-manifolds and f :M → N be a smooth map.
(a) If f is a diffeomorphism, then deg f = 1, in case f preserves orientation, and
deg f = −1, if f reverses orientation.
(b) If f is smoothly homotopic to a smooth map g :M → N , then deg f = deg g.
(c) If P is compact, connected, oriented smooth n-manifold and h : N → P is a
smooth map, then deg(h ◦ f) = (deg h) · (deg f).
(d) If deg f 6= 0, then f is onto N .

Proof. Assertions (a) and (c) are obvious from the definition of the degree, and
assertion (b) is an immediate consequence of Theorem 5.1.5. To prove (d), suppose
that f is not onto N . Then N \ f(M) is a non-empty open subset of N and there
exists a smooth function h : N → [0.1] such that ∅ 6= supph ⊂ N \ f(M), by
Corollary 1.4.5. Thus, h ◦ f = 0 and therefore

∫

M
f∗(hoN ) =

∫

M
(h ◦ f)f∗oN = 0.

This means that deg f = 0. �.

We shall give an important application of the notion of degree to tangent vector
fields of even dimensional spheres which is known as the ”Hairy Ball Theorem”.
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We observe first that the antipodal map a : Sn → Sn, n ≥ 1 with a(x) = −x has
degree (−1)n+1. This follows immediately from Example 4.4.2(c).

Lemma 5.2.2. If two smooth maps f , g : Sn → Sn, n ≥ 1, satisfy f(x) 6= −g(x)
for every x ∈ Sn, then they are smoothly homotopic and so deg f = deg g.

Proof. If h : R → [0, 1] is a smooth function such that h−1(0) = (−∞, 0] and
h−1(1) = [1,+∞), then F : R× Sn → Sn defined by

F (t, x) =
1

‖(1 − h(t))f(x) + h(t)g(x)‖ · [(1− h(t))f(x) + h(t)g(x)]

is a smooth homotopy from f to g. �

Theorem 5.2.3. Every smooth tangent vector field on an even dimensional sphere
vanishes in at least one point.

Proof. Let X ∈ X (Sn), n ≥ 1, be nowhere vanishing. There exists a unique smooth
map F : Sn → Rn+1 \ {0} such that X(p) = (p, F (p)) and 〈p, F (p)〉 = 0 for every
p ∈ Sn. We consider the smooth map f : Sn → Sn defined by

f(p) =
1

‖F (p)‖ · F (p).

Again 〈p, f(p)〉 = 0, and so f(p) 6= ±p for every p ∈ Sn. From the preceding Lemma
5.2.2, f must be smoothly homotopic to the identity and to the antipodal map a.
Therefore,

1 = deg f = deg a = (−1)n+1

and n must be odd. �.

In the sequel we shall give another more geometric description of the degree
from which will follow that the degree is always an integer. As before, let M , N
be two compact, connected, oriented smooth n-manifolds and let f : M → N be
a smooth map. Let y ∈ N be a regular value of f such that f−1(y) 6= ∅. For
each p ∈ f−1(y) the derivative f∗p : TpM → TyN is a linear isomorphism and so
there exists an open neighbourhood V ⊂ M of p such that f(V ) ⊂ N is open and
f |V : V → f(V ) is a smooth diffeomorphism, by the Inverse Map Theorem. In
particular, f−1(y) ∩ V = {p}. This means that f−1(y) is a closed discrete subset of
M , hence finite, becauseM is compact. So, there are p1,..., pm ∈M for some m ∈ N
such that f−1(y) = {p1, ..., pm}, and each pk has an open neighbourhood Vk ⊂ M
such that f |Vk : Vk → f(Vk) is a smooth diffeomorphism. Moreover, Vk ∩ Vl = ∅ for
k 6= l. The set C =M \ V1 ∪ · · · ∪ Vk is compact and so is f(A). The set

W =
m⋂

k=1

f(Vk) ∩ (N \ f(C))

is an open neighbourhood of y and f−1(W ) ⊂ V1∪· · ·∪Vk. If now Uk = Vk∩f−1(W )
for 1 ≤ k ≤ m, we have

f−1(W ) = U1 ∪ · · · ∪ Uk
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each Uk is an open neighbourhood of pk and f(Uk) = W . Finally, U1,..., Um are
mutually disjoint and f |Uk : Uk → W is a smooth diffeomorphism. Shrinking W , if
necessary, we may always pick it to be connected.

In the particular case where f is a local diffeomorphism onto N the above con-
siderations show that f is a finite covering map.

For every p ∈M we set now

ǫ(p) =





0, if f∗p is not a linear isomorphism,

+1, if f∗p is an orientation preserving linear isomorphism,

−1, if f∗p is an orientation reversing linear isomorphism.

Theorem 5.2.4. Let M , N be compact, connected, oriented smooth n-manifolds
and let f : M → N be a smooth map. If y ∈ N is a regular value of f such that
f−1(y) 6= ∅, then

deg f =
∑

p∈f−1(p)

ǫ(p).

Proof. We continue to use the notations of the preceding considerations. The
cohomological fundamental class oN can be represented by a differential n-form
ω ∈ An(N) such that suppω ⊂W . Then, suppf∗ω ⊂ f−1(W ) and

deg f =

∫

M
f∗ω =

m∑

k=1

∫

Uk

f∗ω|Uk =

m∑

k=1

∫

Uk

(f |Uk)∗ω.

If ǫ(p) = +1, then f |Uk is orientation preserving, since Uk is connected, and for the
same reason if ǫ(p) = −1, then f |Uk is orientation reversing. It follows that

deg f =
m∑

k=1

∫

Uk

(f |Uk)∗ω =
m∑

k=1

ǫ(pk)

∫

W
ω|W =

m∑

k=1

ǫ(pk). �

5.3 The Mayer-Vietoris exact sequence

In this section we shall develop the Mayer-Vietoris long exact sequence for de Rham
cohomology, which is a powerful tool for computations. Let M be a smooth n-
manifold and let U , V ⊂M be two open sets such that M = U ∪ V . We denote by
i : U ∩ V →֒ U and j : U ∩ V →֒ V the inclusions. We also consider the inclusions
iU : U →֒M and iV : V →֒M .

U ∩ V U
∐
V M

j

i inclusion

Passing to the level of differential forms we get the following sequence of cochain
maps

0 A∗(M) A∗(U)⊕A∗(V ) A∗(U ∩ V ) 0
(i∗U ,i

∗
V ) ρ
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where ρ(ω, θ) = j∗θ − i∗ω, which is exact and is called the Mayer-Vietoris exact
sequence. Its exactness at A∗(M) and A∗(U) ⊕ A∗(V ) is obvious. In order to see
that ρ is an epimorphism, let ω ∈ A∗(U ∩ V ) and {fU , fV } be a smooth partition
of unity subordinated to the open cover {U, V } of M . At every point p ∈ U ∩ V we
have

j∗(fUω)p − i∗(−fV ω)p = fU(p)ωp + fV (p)ωp = ωp.

Therefore, ρ(−fV ω, fUω) = ω and −fV ω can be considered in A∗(U), extended by
zero on U \ U ∩ V , and similarly fUω can be considered in A∗(V ).

From the fundamental theorem of homological algebra (also known as ”the snake
lemma”) we get the Mayer-Vietoris long exact sequence for the de Rham cohomology.

· · · Hk(M) Hk(U)⊕Hk(V ) Hk(U ∩ V ) Hk+1(M) · · ·d∗ (i∗U ,i
∗
V ) ρ d∗

We shall describe in detail the connecting homomorphism d∗. The following com-
mutative diagram

0 Ak−1(M) Ak−1(U)⊕Ak−1(V ) Ak−1(U ∩ V ) 0

0 Ak(M) Ak(U)⊕Ak(V ) Ak(U ∩ V ) 0

0 Ak+1(M) Ak+1(U)⊕Ak+1(V ) Ak+1(U ∩ V ) 0

d

(i∗U ,i
∗
V )

d⊕d

ρ

d

d

(i∗U ,i
∗
V )

d⊕d

ρ

d

(i∗U ,i
∗
V ) ρ

has exact rows. Let ω ∈ Ak(U ∩V ) be a closed differential k-form. From the above,
ρ(−fV ω, fUω) = ω and ρ(−d(fV ω), d(fUω)) = 0, by exactness. Thus,

j∗(d(fUω)) = i∗(−d(fV ω))

and we obtain a well defined closed differential (k + 1)-form θ ∈ Ak+1(M) by

θ =

{
−d(fV ω), on U,

d(fUω), on V .

The cohomology class [θ] ∈ Hk+1(M) depends only on the cohomology class of ω
and d∗[ω] = [θ].

Example 5.3.1. Using a Mayer-Vietoris long exact sequence combined with the
homotopy invariance we shall compute the de Rham cohomology of the spheres Sn,
n ≥ 0. We already know from Theorem 4.3.7 and Theorem 4.5.7 that H0(Sn) ∼= R
and Hn(Sn) ∼= R for n ≥ 1. In particular,

Hk(S1) =

{
R, for k = 0, 1,

{0}, for k > 1.
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Moreover, H0(S0) ∼= R⊕ R and Hk(S0) = {0} for k > 0. So we assume that n ≥ 2
in the sequel.

To begin with, we note first that for every 0 < ǫ < 1 the set

Aǫ = {x ∈ Sn : |〈x, en+1〉| < ǫ}

where 〈, 〉 is the euclidean inner product in Rn+1, has the smooth homotopy type
of Sn−1, which is identified with the set {x ∈ Sn : 〈x, en+1〉 = 0}. Indeed, let
i : Sn−1 →֒ Sn be the inclusion and let r : Aǫ → Sn−1 be the smooth map defined
by

r(x) =
1

‖x− 〈x, en+1〉‖
· (x− 〈x, en+1〉).

Then, obviously r ◦ i = idSn−1 . On the other hand, let h : R → [0, 1] be a smooth
function such that h−1(0) = (−∞, 0] and h−1(1) = [1,+∞). The smooth map
F : R×Aǫ → Aǫ defined by

F (t, x) =
1

‖x− h(t)〈x, en+1〉‖
· (x− h(t)〈x, en+1〉)

is a smooth homotopy of idAǫ with i ◦ r. Hence i ◦ r ≃ idAǫ and the transpose of
the inclusion on cohomology i∗ : H∗(Aǫ) → H∗(Sn−1) is an isomorphism of graded
algebras.

Let now U = {x ∈ Sn : 〈x, en+1〉 > −ǫ} and V = {x ∈ Sn : 〈x, en+1〉 < ǫ}.
Then, Sn = U ∪ V and U ∩ V = Aǫ. Moreover, the open subsets U , V are both
contractible, because the smooth map G : R× U → U defined by

G(t, x) =
1

‖(1− h(t))en+1 + h(t)x‖ · ((1 − h(t))en+1 + h(t)x)

is a smooth homotopy of idU with the constant map of U with value en+1. Therefore,

Hk(U) =

{
R, for k = 0,

{0}, for k > 0.
�

and similarly for V . It follows that the corresponding Mayer-Vietoris long exact
sequence splits in short exact sequences

0 → R → R⊕ R → H0(Sn−1) → H1(Sn) → 0

0 → Hk(Sn−1)
d∗−→ Hk+1(Sn) → 0

for k ≥ 1. The first short exact sequence gives H1(Sn) = {0} for every n ≥ 2 and
the second one gives inductively

Hk(Sn) ∼= · · · ∼= H1(Sn−k+1), 2 ≤ k ≤ n.

It follows that

Hk(Sn) =

{
R, for k = 0, n,

{0}, for k 6= 0, n.
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Example 5.3.2. Let A = {(Uk, φk) : k = 0, 1, ...n} be the canonical atlas of the
complex projective n-space CPn, n ≥ 0. Since CP 0 is a singleton, H0(CP 0) ∼= R
and Hk(CP 0) = {0}, for k > 0. So we assume that n ≥ 1 in the sequel. We already
know that H0(CPn) ∼= R and H2n(CPn) ∼= R, since CPn is a connected, compact
orientable smooth 2n-manifold.

If E = CPn \{[0, ..., 0, 1]}, then CPn = E∪Un and E has the smooth homotopy
type of CPn−1. Indeed, let i : CPn−1 → E be the smooth embedding i[z0, ..., zn−1] =
[z0, ..., zn−1, 0] and let r : E → CPn−1 be the smooth submersion r[z0, ..., zn−1, zn] =
[z0, ..., zn−1]. Obviously, r ◦ i = idCPn−1 . On the other hand, the smooth map
F : R× E → E defined by

F (t, [z0, ..., zn−1, zn]) = [z0, ..., zn−1, h(t)zn],

where h is the smooth function of the previous Example 5.3.1, is a smooth homotopy
of i ◦ r with idE . Therefore, i

∗ : H∗(E) → H∗(CPn−1) is an isomorphism of graded
algebras.

Recall that the canonical smooth chart φn : Un → Cn is given by

φn[z0, ..., zn−1, zn] =
( z0
zn
, ...,

zn−1

zn

)

and so

φn(E ∩ Un) =
{( z0
zn
, ...,

zn−1

zn

)
: (z0, ..., zn−1) 6= (0, ..., 0)

}
= Cn \ {0}

has the homotopy type of S2n−1, according to the Example 5.1.8(b). Hence from
the previous Example 5.3.1 the de Rham cohomology of E ∩ Un is

Hk(E ∩ Un) =
{
R, for k = 0, 2n − 1,

{0}, for k 6= 0, 2n − 1.

From the corresponding Mayer-Vietoris long exact sequence

· · · Hk−1(E ∩ Un) Hk(CPn) Hk(E) ⊕Hk(Un) Hk(E ∩ Un) · · ·d∗ ρ d∗

follows that the inclusion in : CPn−1 →֒ CPn with in[z0, ..., zn−1] = [z0, ..., zn−1, 0]
induces a linear monomorphism i∗n : H1(CPn) → H1(CPn−1) and henceH1(CPn) =
{0} for every n ≥ 1. Also H2n−1(CPn) = {0}, because H2n−2(S2n−1) = {0}
and H2n−1(E) ∼= H2n−1(CPn−1) = {0}, since CPn−1 has dimension 2n − 2. For
1 < k < 2n− 1 the Mayer-Vietoris long exact sequence gives a linear isomorphism

i∗n : Hk(CPn) → Hk(CPn−1).

It follows now inductively that the de Rham cohomology of the complex projective
n-space is

Hk(CPn) =

{
R, for k = 0, 2, 4, ..., 2n,

{0}, otherwise.
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Note that this computation only gives H∗(CPn) as a graded vector space. It gives
no information about the algebra structure. One way to obtain the de Rham
cohomology algebra H∗(CPn) is by applying the Poincaré Duality Theorem which
will be proved in the next section.

In principle, using the Mayer-Vietoris long exact sequence we can compute the
de Rham cohomology vector spaces of a smooth manifold M inductively from a
finite open cover if we have control over the cohomologies of its elements as well
as their intersections. This is possible if the open cover is admissible. An open
cover U of M is called admissible if for every m ∈ N and any U1,..., Um ∈ U the set
U1 ∩ · · · ∩ Um is contractible.

Theorem 5.3.3. Let M be a smooth n-manifold. For every open cover U of M
there exists a countable open cover V of M which is an admissible locally finite
refinement of U consisting of relatively compact sets.

Proof. From Lemma 1.4.3 there exists an open cover B which is a locally finite
refinement of U and consists of relatively compact sets. We can choose any Rieman-
nian metric on M , by Proposition 3.3.2. Each point p ∈ M has a strongly convex
uniformly normal open ball Wp contained in some element of B, by Corollary 3.6.4.
Then W = {Wp : p ∈ M} is an open cover of M and for each B ∈ B there exists a
finite set WB ⊂ W which covers B. Now

V =
⋃

B∈B
WB

is an open cover of M which is a locally finite refinement of U consisting of
relatively compact sets. For every m ∈ N and V1,..., Vm ∈ V the open set
C = V1 ∩ · · · ∩ Vm is strongly convex and is contained in V1 which is a uniformly
normal strongly convex open ball. It follows that C is contractible, because fixing
any point p ∈ C, and choosing a smooth function h : R → [0, 1] such such that
h−1(0) = [1,+∞) and h−1(1) = (−∞, 0], the smooth map H : R × C → C with
H(t, q) = expp(h(t) exp

−1
p (q)) is a smooth homotopy from H(0, .) = idC to the

constant H(1, .) = p. �

Thus the set of admissible covers of a smooth manifold constitutes a cofinal
subset of the directed set of its open covers.

A smooth manifold M is said to be of finite type if it has a finite admissible
cover. Obviously, every compact manifold is of finite type. More generally, if C is
a compact subset of a smooth manifold, then every open neighbourhood of C in
M contains an open neighbourhood of C which as a smooth manifold is of finite
type. The terminology of finite type is justified by the following fact whose proof
is an illustration of the inductive use of the Mayer-Vietoris long exact sequence in
computing cohomologies.

Proposition 5.3.4. If M is a smooth manifold of finite type, then H∗(M) has
finite dimension.
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The proof relies on the following elementary observation. Let V1, V2, V3 be three
real vector spaces and let

V1 V2 V3
f g

be a short exact sequence of linear maps. If V1 and V3 have finite dimension, then
also V2 has finite dimension. Indeed, there exist v1,..., vk ∈ V2, for some k ∈ N such
that {g(v1), ..., g(vk)} is a basis of g(V2) and also vk+1,..., vm ∈ V2, for some m ∈ N
such that {vk+1, ..., vm} is a basis of f(V1) = Kerg. For every v ∈ V2 there exist
a1,..., ak ∈ R such that

g(v) =

k∑

i=1

aig(vi) = g

( k∑

i=1

aivi

)

and so there exist ak+1,..., am ∈ R such that

v −
k∑

i=1

aivi =

m∑

i=k+1

aivi.

Thus, V2 is finitely generated.

Proof of Proposition 5.3.4. We proceed by induction on the number m of the ele-
ments of the admissible finite cover. If m = 1, the conclusion is trivial, by Corollary
5.1.7. Suppose that the conclusion holds for smooth manifolds which have an ad-
missible cover with m − 1 elements. Let M be a smooth manifold which has an
admissible cover {U1, U2, ..., Um}. Putting V = U2 ∪ · · · ∪ Um, by the inductive
hypothesis H∗(V ) has finite dimension. Since M = U1 ∪ V from the corresponding
Mayer-Vietoris long exact sequence we obtain short exact sequences

Hk−1(U1 ∩ V ) Hk(M) Hk(U1)⊕Hk(V ).d∗

Since {U1 ∩ U2, ..., U1 ∩ Um} is an admissible cover of U1 ∩ V , by the inductive hy-
pothesis Hk(U1 ∩ V ) has finite dimension. From the above elementary observation,
Hk(M) has finite dimension. �

Corollary 5.3.5. The de Rham cohomology of a compact smooth manifold has
finite dimension. �

5.4 Poincaré Duality

Let M be a smooth n-manifold. Since d(Akc (M)) ⊂ Ak+1
c (M) for every k ∈ Z+, the

pair (A∗
c(M), d) is a cochain complex. The quotient vector space

Hk(M) =
Zk(M) ∩Akc (M)

Bk(M) ∩Akc (M)

is called the de Rham cohomology of M with compact supports at degree k. Since
the wedge product of two differential forms with compact supports also has compact
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support, the graded vector space H∗
c (M) =

n⊕

k=0

Hk
c (M) endowed with the cup prod-

uct becomes an associative commutative graded algebra which is a diffeomorphism
invariant. In general however if f : M → N is a smooth map, f∗(A∗

c(N)) may not
be a subset of A∗

c(M).
According to Theorem 4.5.6, if M is a connected oriented smooth n-manifold,

then integration over M induces a well defined linear isomorphism

∫

M
: Hn

c (M)
∼=−→ R.

Also, the proof of Theorem 4.3.7 shows that if M is a connected, non-compact
smooth manifold, then H0

c (M) = {0}. The version of the Poincaré Lemma for the
de Rham cohomology with compact supports can be stated as follows.

Proposition 5.4.1. The de Rham cohomology with compact supports of Rn is

Hk
c (R

n) =

{
R, for k = n,

{0}, for k 6= n.

Proof. From the above, this is obviously true for n = 0, 1 and for n > 1, it suffices
to prove that Hk

c (R
n) = {0} for all 0 < k < n. Since Rn is diffeomorphic to

Sn \ {en+1}, it suffices to prove that Hk
c (S

n \ {en+1}) = {0} for 0 < k < n. The
elements of Akc (S

n \ {en+1}) are differential k-forms on Sn which vanish on an open
neighbourhood of the north pole en+1. Let ω ∈ Akc (S

n \ {en+1}) with dω = 0. Since
Hk(Sn) = {0}, by Example 5.3.1, there exists θ ∈ Ak−1(Sn) such that ω = dθ. It
remains to show that there exists such a θ that vanishes on an open neighbourhood
of en+1.

There exists an open neighbourhood V ⊂ Sn of en+1 which is diffeomorphic
to Rn such that ω|V = 0. If k = 1, then θ ∈ C∞(Sn) = A0(Sn) is a smooth
function such that dθ|V = 0 and therefore θ is constant on V . We denote this
constant value by θ|V . Now θ̃ = θ − (θ|V ) ∈ C∞(Sn) vanishes on V and dθ̃ = ω.
This proves the assertion for k = 1. Let 2 ≤ k < n. From Corollary 5.1.3, there
exists η ∈ Ak−2(V ) such that dη = θ|V , because d(θ|V ) = dθ|V = ω|V = 0. Let U
be an open neighbourhood of en+1 with U ⊂ V . There exists a smooth function
f : Sn → [0, 1] such that U ⊂ f−1(1) and suppf ⊂ V , by Corollary 1.4.5. The
differential (k − 2)-form fη ∈ Ak−2(V ) can be extended to the differential (k − 2)-
form η̃ ∈ Ak−2(Sn) defined by

η̃ =

{
fη, on V ,

0, on Sn \ V .

If θ̃ = θ − dη̃, then dθ̃ = dθ = ω and θ̃|U = θ|U − dη|U = 0. This completes the
proof. �

There is a Mayer-Vietoris exact sequence for de Rham cohomology with compact
supports. We observe first that ifW ⊂ U ⊂M are open sets of a smooth n-manifold
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M , the inclusion i :W →֒ U induces a cochain map i∗ : A∗
c(W ) → A∗

c(U) defined by

(i∗ω)p =

{
ωp, for p ∈W ,

0, for p ∈ U \ suppω.

Let now U , V ⊂ M be two open sets such that M = U ∪ V . Let i : U ∩ V →֒ U
and j : U ∩ V →֒ V denote the inclusions and iU : U →֒M and iV : V →֒M be the
inclusions in M .

U ∩ V U
∐
V M

j

i inclusion

Passing to the level of differential forms with compact supports we get the fol-
lowing sequence of cochain maps

0 A∗
c(U ∩ V ) A∗

c(U)⊕A∗
c(V ) A∗

c(M) 0τ σ

where τ(ω) = (−i∗ω, j∗ω) and σ(ω1, ω2) = (iU )∗ω1 + (iV )∗ω2, which is exact. Its
exactness at A∗

c(U ∩ V ) and at A∗
c(U) ⊕ A∗

c(V ) is obvious from the definitions of
τ and σ. To see that σ is onto A∗

c(M), let {fU , fV } be a smooth partition of
unity subordinated to the open cover {U, V } of M . If ω ∈ A∗

c(M), then ω =
σ(fuω|U , fV ω|V ).

Thus we get a Mayer-Vietoris long exact sequence for the de Rham cohomology
with compact supports.

· · · Hk
c (U ∩ V ) Hk

c (U)⊕Hk
c (V ) Hk

c (M) Hk+1
c (U ∩ V ) · · ·d∗ τ σ d∗

The connecting homomorphism d∗ can be described as follows. If ω ∈ Akc (M),
there are ω1 = fUω, ω2 = fV ω ∈ Akc (M), so that suppω1 ⊂ U , suppω2 ⊂ V and
ω = (iU )∗(ω1|U ) + (iV )∗(ω2|V ). If moreover dω = 0, then −dω1|U∩V = dω2|U∩V =
η ∈ Ak+1

c (U ∩ V ) and dη = 0. We have now d∗[ω]c = [η]c.

If ω ∈ Ak(M) and θ ∈ Alc(M), then ω ∧ θ ∈ Ak+lc (M). If ω and θ are closed and
η ∈ Ak−1(M), ζ ∈ Al−1

c (M), we have

(ω + dη) ∧ (θ + dζ)− ω ∧ θ = ±d(ω ∧ ζ)± d(η ∧ θ)± d(η ∧ dζ)

and the differential forms ω ∧ ζ, η ∧ θ, η ∧ dζ have compact supports. This means
that the wedge product induces a well defined cup product

⌣: Hk(M)×H l
c(M) → Hk+l

c (M)

which inherits its properties.

Let now M be an oriented smooth n-manifold. From the above, we get a well
defined bilinear map

Hk(M)×Hn−k
c (M) Hn

c (M) R⌣

∫

M
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and a linear map DM : Hk(M) → Hn−k
c (M)∗ with

DM ([ω])([θ]c) =

∫

M
ω ∧ θ

which we call the Poincaré Duality map.

Theorem 5.4.2. If M is an oriented smooth n-manifold, then the Poincaré Dual-
ity map DM : Hk(M) → Hn−k

c (M)∗ is a linear isomorphism for every k = 0, 1, ..., n.

The proof will be given in several steps, starting locally and going to global
using a Mayer-Vietoris argument.

Lemma 5.4.3. The Poincaré Duality map DRn : Hk(Rn) → Hn−k
c (Rn)∗ is a linear

isomorphism for all 0 ≤ k ≤ n.

Proof. By Corollary 5.1.3 and Proposition 5.4.1, we need only check that

DRn : H0(Rn) → Hn
c (R

n)∗

is a linear isomorphism. Indeed, as the proof of Theorem 4.3.7 shows, H0(Rn) ∼= R
is generated by the constant function with value 1. This is sent from DRn to the
integration ∫

Rn
: Hn

c (R
n) → R

over M , which is a linear isomorphism, according to Theorem 4.5.6. �

Lemma 5.4.4. If U , V ⊂ M are two open subsets of an oriented smooth n-
manifold M such that M = U ∪ V , then the following diagram, with first row the
Mayer-Vietoris long exact sequence in de Rham cohomology and second the dual
Mayer-Vietoris long exact sequence in de Rham cohomology with compact supports,
commutes.

· · · Hk(M) Hk(U)⊕Hk(V ) Hk(U ∩ V ) Hk+1(M) · · ·

· · · Hn−k
c (M)∗ Hn−k

c (U)∗ ⊕Hn−k
c (V )∗ Hn−k

c (U ∩ V )∗ Hn−k−1
c (M)∗ · · ·

d∗

DM

(i∗U ,i
∗
V )

DU⊕DV

ρ

DU∩V

d∗

DM

±dt∗ σt τ t ±dt∗

Proof. The left square commutes because if ω ∈ Ak(M), φ ∈ An−kc (U), θ ∈ An−kc (V )
are closed, then

DU ([i
∗
Uω])([φ]c) +DV ([i

∗
V ω])([θ]c) =

∫

U
i∗Uω ∧ φ+

∫

V
i∗V ω ∧ θ

=

∫

M
ω ∧ ((iU )∗φ+ (iV )∗θ) = DM ([ω])(σ([φ]c, [θ]c) = (σt ◦DM )([ω])([φ]c, [θ]c).
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For the commutativity of the middle square let ω1 ∈ Ak(U), ω2 ∈ Ak(V ) and
η ∈ An−kc (U ∩ V ) be closed. Then

DU∩V ([j
∗ω2 − i∗ω1])([η]c) =

∫

U∩V
(ω2 − ω1) ∧ η =

∫

V
ω2 ∧ j∗η −

∫

U
ω1 ∧ i∗η

= DU ([ω1])(−[i∗η]c) +DV ([ω2])([j∗η]c) = τ t((DU ([ω1]),DV (ω2]))([η]c).

To prove the commutativity of the right square, we consider a smooth partition
of unity {fU , fV } subordinated to the open cover {U, V } of M . If ω ∈ Ak(U ∩ V ) is
closed, then d∗[ω] is represented by the closed differential (k + 1)-form

d∗ω =

{
−d(fV ω), on U ,

d(fUω), on V .

On the other hand, if φ ∈ An−k−1
c (M) is closed, then d∗[φ]c is represented by

−d(fUφ)|U∩V = d(fV φ)|U∩V . Now we compute

DM (d∗([ω]))([φ]c) =
∫

M
d∗ω ∧ φ = −

∫

U∩V
d(fV ω) ∧ φ = −

∫

U∩V
dfV ∧ ω ∧ φ

= (−1)k+1

∫

U∩V
ω ∧ d∗φ = (−1)k+1dt∗(DU∩V ([ω]))(φ]c). �

An immediate consequence of the above Lemma 5.4.4 and the five lemma is the
following.

Corollary 5.4.5. Let U , V ⊂ M be two open subsets of an oriented smooth
n-manifold M . If DU , DV and DU∩V are linear isomorphisms, so is DU∪V . �

Recall that the algebraic dual of the direct sum of a family V of vector spaces is
isomorphic to the direct product of their algebraic duals. Indeed, the map

G :
∏

V ∈V
V ∗ →

(⊕

V ∈V
V

)∗

defined by

G((aV )V ∈V)((xV )V ∈V) =
∑

V ∈V
aV (xV )

for (xV )V ∈V ∈
⊕

V ∈V
V is a linear isomorphism.

Lemma 5.4.6. If U is an open cover of a smooth manifold M consisting of

mutually disjoint open sets, then H∗(M) ∼=
∏

U∈U
H∗(U) and

⊕

U∈U
H∗
c (U) ∼= H∗

c (M).

Proof. It suffices to observe that if iU : U →֒ M is the inclusion, then the maps

L : A∗(M) →
∏

U∈U
A∗(U) defined by L(ω) = (i∗Uω)U∈U and T :

⊕

U∈U
A∗
cU) → A∗

c(M)

defined by T ((ωU )U∈U ) =
∑

U∈U
(iU )∗ωU are cochain isomorphisms of obvious cochain
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complexes. �

Corollary 5.4.7. If U is an open cover of a smooth n-manifold M consisting of
mutually disjoint open sets and DU is a linear isomorphism for every U ∈ U , then
so is DM .

Proof. The assertion follows immediately from the commutative diagram

Hk(M)
∏

U∈U
Hk(U)

Hn−k
c (M)∗

∏

U∈U
Hn−k
c (U)∗

∼=

DM

∏

U∈U
DU

∼=

in which the horizontal maps are the isomorphisms of Lemma 5.4.6. �

The proof of Theorem 5.4.2 will be a combination of the above lemmas and
corollaries and the following general proposition.

Proposition 5.4.8. Let M be a smooth m-manifold and let U be a set of open
subsets of M with the following properties:
(i) ∅ ∈ U .
(ii) If U is an open subset of M diffeomorphic to Rm, then U ∈ U .
(iii) If U1, U2 ∈ U are such that U1 ∩ U2 ∈ U , then U1 ∪ U2 ∈ U .
(iv) If {Un : n ∈ N} is a countable family of mutually disjoint elements of U , then
∞⋃

n=1

Un ∈ U .

Then, M ∈ U .

The proof of Proposition 5.4.8 relies on the following lemma.

Lemma 5.4.9. With the assumptions of Proposition 5.4.8, let {Un : n ∈ N} be a
locally finite countable family of open and relatively compact subsets of M such that
⋂

j∈J
Uj ∈ U for every finite set J ⊂ N. Then,

∞⋃

n=1

Un ∈ U .

Proof. First we show that finite unions of elements of the countable family belong to
U . Let n ∈ N and i1,..., in ∈ N. We shall show inductively that Ui1 ∪ · · · ∪ Uin ∈ U .
For n = 1, 2 this is true by property (iii) and our assumption (in case J is a singleton).
Let n ≥ 3 and suppose that the assertion holds for finite subfamilies with n − 1
elements. If V = U12 ∪ · · · ∪ Uin , then

Ui1 ∩ V =

n⋃

k=2

Ui1 ∩ Uik ∈ U
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from the inductive hypothesis. Moreover, from our assumption (iii) we have

Ui1 ∪ · · · ∪ Uin = Ui1 ∪ V ∈ U .

Since finite unions of elements of the countable family belong to U , for every
n ∈ N and indices i1, j1,..., in, jn ∈ N we have

n⋃

k=1

Uik ∩ Ujk ∈ U .

Now we define inductively I1 = {1}, W1 = U1 and

In = {n} ∪ {i ∈ N : i > n and Ui ∩Wn−1 6= ∅} \
n−1⋃

k=1

Ik, Wn =
⋃

i∈In
Ui,

for n ≥ 2. If In−1 is finite, then Wn−1 is relatively compact and intersects at most
finitely many of the elements of the countable family, since the latter is assumed
to be locally finite. Thus, inductively In is finite and Wn is relatively compact and
belongs to U for every n ∈ N. Moreover, Wn ∩Wn+1 ∈ U and Wn ∩Wk = ∅, if
k > n + 1, because otherwise there exists some i ∈ Ik such that Wn ∩ Ui 6= ∅ and
thus i ∈ Ij for some j ≤ n+ 1, contradiction. From property (iv) of U we have

( ∞⋃

k=1

W2k

)
∩
( ∞⋃

k=1

W2k−1

)
=

∞⋃

n=1

Wn ∩Wn+1 ∈ U

and from property (iii) the proof is concluded. �

Proof of Proposition 5.4.8. In the beginning we consider the case where M is an
open subset of Rm. Then there exists a locally finite countable open cover of M
which consists of open cubes (with edges parallel to the axis) and refines U . Any
finite intersection of open cubes is an open cube and thus again diffeomorphic to
Rm. From property (ii) and Lemma 5.4.9 follows that M ∈ U .

In the general case, for every chart (U, φ) of M the family

Uφ = {B ⊂ φ(U) : B is open and φ−1(B) ∈ U}

has the properties (i), (ii), (iii) and (iv). Hence φ(U) ∈ Uφ and therefore U ∈ U .
Now we take any locally finite countable open cover of M consisting of relatively
compact open sets which are domains of charts. Lemma 5.4.9 gives immediately
M ∈ U . �

Proof of Theorem 5.4.2. It suffices to consider the family U of all open subsets
of M such that DU is an isomorphism for all U ∈ U . Then, Lemma 5.3.3 and
Corollaries 5.3,5 and 5.3.7 say that U satisfies the assumptions of Proposition 5.3.8
and therefore DM ∈ U . �

Corollary 5.4.10. If M is a non-compact orientable smooth n-manifold, then
Hn(M) = {0}. �
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We shall give some applications of the Roincaré Duality Isomorphism in the
particular case of compact smooth manifolds.

Example 5.4.11. We shall compute the de Rham cohomology algebra of the com-
plex projective n-space CPn for n ≥ 1. The Poincaré Duality Isomorphism gives a
non-degenerate bilinear pairing

H2k(CPn)×H2n−2k(CPn) H2n(CPn) R⌣

∫

CPn

for every 0 ≤ k ≤ n. Let X denote the generator of H2(CPn). For k = 1 this gives
X2 = X ⌣ X 6= 0 and inductively Xk = X ⌣ · · · ⌣ X 6= 0, for all 0 ≤ k ≤ n,
while Xn+1 = 0. This implies that the map F : R[X] → H∗(CPn) defined by

F

( ∞∑

k=0

akX
k

)
= (a0, ..., an) ∈

n⊕

k=0

H2k(CPn) = H∗(CPn)

is an epimorphism of algebras and its kernel is the ideal in R[X] that is generated
by the monomial Xn+1. Hence the de Rham cohomology algebra H∗(CPn) is
isomorphic to the truncated polynomial algebra R[X]/ < Xn+1 >.

Recall that if V is a real vector space and A ⊂ V is a basis of V , then V ∼=
⊕

a∈A
R.

Since (⊕

a∈A
R
)∗

∼=
∏

a∈A
R

is follows that if V ∗ has finite dimension, then V necessarily has finite dimension.
This simple algebraic observation combined with the Poincaré Duality Isomorphism
and Proposition 5.3.4 gives immediately the following.

Corollary 5.4.12. If M is an orientable smooth n-manifold of finite type, then
H∗
c (M) has finite dimension and Hk(M)∗ ∼= Hn−k

c (M) for every 0 ≤ k ≤ n. �

If M is a compact orientable smooth n-manifold, the integer

χ(M) =

n∑

k=0

(−1)k dimHk(M)

is the Euler characteristic of M . Suppose that M is also connected and n = 2m is
even. The Poincaré Duality Isomorphism gives a non-degenerate bilinear form

〈., .〉 : Hm(M)×Hm(M) → R

which is skew-symmetric if m is odd, and symmetric if m is even. In the latter case
its signature is usually called the signature of M .
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Proposition 5.4.13. Let M be a connected, compact, oriented smooth n-manifold.
(a) If n is odd, then χ(M) = 0.
(b) If n = 2m and m is odd, then χ(M) = 0 mod 2.
(c) If n = 2m and m is even, then dimHm(M) = χ(M) mod 2.

Proof. Using the Poincaré Duality Isomorphism and Corollary 4.3.12 we compute

χ(M) =

n∑

k=0

(−1)k dimHk(M) =

n∑

k=0

(−1)k dimHn−k(M) = (−1)nχ(M)

and so χ(M) = 0, if n is odd.
If n = 2m, we have

χ(M) =
n∑

k=0

(−1)k dimHk(M) = 2
m−1∑

k=0

(−1)k dimHk(M) + (−1)m dimHm(M).

In case m is odd, dimHm(M) is even, since the real vector space Hm(M) carries
the non-degenerate skew-symmetric bilinear form 〈., .〉. The rest is obvious. �

5.5 The Künneth formula

In this section we shall compute the de Rham cohomology with compact supports of
the cartesian product of two smooth manifolds. LetM , N be two smooth manifolds
and let πM : M × N → M and πN : M × N → N denote the natural projections.
There is a well defined cochain map γ : A∗(M)⊗A∗(N) → A∗(M ×N) by

γ(ω ⊗ θ) = π∗Mω ∧ π∗Nθ

which induces a linear map γ : H∗(A∗(M) ⊗ A∗(N)) → H∗(M × N). Composing
with the algebraic isomorphism µ : H∗(M) ⊗H∗(N) → H∗(A∗(M) ⊗ A∗(N)) with
µ([ω] ⊗ [θ]) = [ω ⊗ θ], we get a linear map ψ : H∗(M) ⊗ H∗(N) → H∗(M × N)
defined by

ψ(α⊗ β) = π∗Mα ⌣ π∗Nβ

which is natural.
We observe that γ has a restriction γc : A

∗
c(M) ⊗ A∗

n(N) → A∗
c(M × N), from

which as above we take a well defined linear map ψc : H
∗
c (M)⊗H∗

c (N) → H∗
c (M×N)

with

ψc([ω]c ⊗ [θ]c) = [π∗Mω ∧ π∗Nθ]c
since the support of π∗Mω ∧ π∗Nθ is contained in suppω × suppθ.

Theorem 5.5.1. If M and N are two smooth manifolds, then

ψc : H
∗
c (M)⊗H∗

c (N) → H∗
c (M ×N)

with ψc([ω]c ⊗ [θ]c) = [π∗Mω ∧ π∗Nθ]c is an isomorphism.
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Corollary 5.5.2. If M and N are two compact smooth manifolds, then

ψ : H∗(M)⊗H∗(N) → H∗(M ×N)

with ψ(α ⊗ β) = π∗Mα ⌣ π∗Nβ is a natural isomorphism. �

The procedure of the proof is similar to that of Theorem 5.4.2. We begin with
the case M = Rn, n ≥ 1. Of course it suffices to prove that

ψc : H
∗
c (R)⊗H∗

c (N) → H∗
c (R ×N)

is an isomorphism. From Proposition 5.4.1 follows however that

(H∗
c (R⊗H∗

c (N))k ∼= H1
c (R)⊗Hk−1

c (N) ∼= Hk−1
c (N)

for every k ∈ Z, because H1
c (R) ∼= R, the isomorphism being integration over R.

Taking into account this isomorphism, we have to show that

ψc : H
k−1
c (N) → Hk

c (R×N)

defined by
ψc([θ]c) = [e(t)dt ∧ π∗Nθ]c

is an isomorphism for every k ∈ Z, where e ∈ C∞
c (R) is such that

∫

R
e(t)dt = 1.

This is a version of the Poincaré Lemma for the de Rham cohomology with compact
supports. Of course ψc can be defined at the level of the cochain complexes A∗

c(N)
and A∗

c(R ×N) where it is a cochain map of degree 1.

Theorem 5.5.3. The map ψc : Hk−1
c (N) → Hk

c (R × N) is an isomorphism for
every k ∈ Z.

Proof. As we did in the proof of Corollary 5.1.2, we shall construct a cochain
map π : A∗

c(R × N) → A∗
c(N) of degree −1 and a cochain homotopy K such that

π ◦ ψc = ±id and id − ψc ◦ π = ±(d ◦ K − K ◦ d). We define the linear map
π : Akc (R×N) → Ak−1

c (N) by

π(ω) =

(∫

R
g(t, x)dt

)
· η

if ω = f(t, x)π∗Nθ + g(t, x)π∗Nη ∧ dt, where f , g ∈ C∞
c (R × N) θ ∈ Akc (N) and

η ∈ Ak−1
c (N). Now on the one hand we have

d(π(ω)) =

(∫

R

∂g

∂x
dt

)
dx ∧ η +

(∫

R
g(t, x)dt

)
dη

and on the other

π(dω) = π(df ∧ π∗Nθ + fπ∗N (dθ) + dg ∧ π∗Nη ∧ dt+ gπ∗N (dη) ∧ dt)

= ±
(∫

R

∂f

∂t
dt

)
θ +

(∫

R

∂g

∂x
dt

)
dx ∧ η +

(∫

R
g(t, x)dt

)
dη
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=

(∫

R

∂g

∂x
dt

)
dx ∧ η +

(∫

R
g(t, x)dt

)
dη

from the Fundamental Theorem of Calculus, since f has compact support. Hence
π is a cochain map. It is also obvious from the definitions that

π(ψc(η)) = π(e(t)dt ∧ π∗Nη) = (−1)k−1η.

Now we define the linear map K : Akc (R ×N) → Ak−1
c (R×N) by

K(ω) =

(∫ t

−∞
g(s, x)ds

)
π∗Nη −

(
h(t)

∫

R
g(t, x)dt

)
π∗Nη

where h(t) =

∫ t

−∞
e(s)ds. Again from the Fundamental Theorem of Calculus we

have

(d ◦K −K ◦ d)(fπ∗Nθ) = (−1)k−1

[(∫ t

−∞

∂f

∂t
dt

)
π∗Nθ −

(
h(t)

∫

R

∂f

∂t
dt

)
π∗Nθ

]

= (−1)k−1fπ∗Nθ = (id− (−1)k−1ψc ◦ π)(fπ∗Nθ).
Also,

(id − (−1)k−1ψc ◦ π)(gπ∗Nη ∧ dt) = gπ∗Nη ∧ dt−
(∫

R
g(t, x)dt

)
e(t)π∗Nη ∧ dt

and

(d ◦K)(gπ∗Nη ∧ dt) = d

[(∫ t

−∞
g(s, x)ds − h(t)

∫

R
g(t, x)dt

)
π∗Nη

]

=

(∫ t

−∞
g(s, x)ds − h(t)

∫

R
g(t, x)dt

)
π∗N (dη) + (−1)k−1π∗Nη ∧

(∫ t

−∞

∂g

∂x
ds

)
dx

+(−1)k−1gπ∗Nη ∧ dt− (−1)k−1π∗Nη ∧
[(∫

R
g(t, x)dt

)
e(t)dt+ h(t)

(∫

R

∂g

∂x
dt

)
dx

]

while

(K ◦ d)(gπ∗Nη ∧ dt) = K
(
gπ∗N (dη) ∧ dt+ (−1)k−1 ∂g

∂x
π∗Nη ∧ dx ∧ dt

)

=

(∫ t

−∞
g(s, x)ds − h(t)

∫

R
g(t, x)dt

)
π∗N (dη)

+(−1)k−1

[(∫ t

−∞

∂g

∂x
ds− h(t)

∫

R

∂g

∂x
dt

)
π∗Nη ∧ dx.

Hence

(d◦K−K ◦d)(gπ∗Nη∧dt) = (−1)k−1gπ∗Nη∧dt− (−1)k−1

(∫

R
g(t, x)dt

)
e(t)π∗Nη∧dt

= (−1)k−1(id− (−1)k−1ψc ◦ π)(gπ∗Nη ∧ dt).
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This shows that (id − (−1)k−1ψc ◦ π) = (−1)k−1(d ◦ K − K ◦ d). It follows
immediately the ψc : Hk−1

c (N) → Hk
c (R × N) is an isomorphism. Moreover, its

inverse is (−1)k−1π : Hk
c (R×N) → Hk−1

c (N) for every k ∈ Z. �

Lemma 5.5.4. Let U , V ⊂M be two open subsets of the smooth manifold M such
that M = U ∪ V and N be a smooth manifold. If

ψc : H
∗
c (U)⊗H∗

c (N) → H∗
c (U ×N),

ψc : H
∗
c (V )⊗H∗

c (N) → H∗
c (V ×N),

ψc : H
∗
c (U ∩ V )⊗H∗

c (N) → H∗
c ((U ∩ V )×N)

are isomorphisms, then so is ψc : H
∗
c (M)⊗H∗

c (N) → H∗
c (M ×N).

Proof. From the Mayer-Vietoris exact sequences

0 A∗
c(U ∩ V ) A∗

c(U)⊕A∗
c(V ) A∗

c(M) 0τ σ

and

0 A∗
c((U ∩ V )×N) A∗

c(U ×N)⊕A∗
c(V ×N) A∗

c(M ×N) 0τ σ

we get the following commutative diagram with exact rows

0 A∗
c(U ∩ V )⊗A∗

c(N) A∗
c(U)⊗A∗

c(N)⊕A∗
c(V )⊗A∗

c(N) A∗
c(M)⊗A∗

c(N) 0

0 A∗
c((U ∩ V )×N) A∗

c(U ×N)⊕A∗
c(V ×N) A∗

c(M ×N) 0.

γ γ⊕γ γ

This gives an analogous commutative diagram for the corresponding long exact
sequences in cohomology. The assertion follows then from the five lemma. �

Lemma 5.5.5. Let U be a countable open cover of the smooth manifold M by mutu-
ally disjoint sets and N be a smooth manifold. If ψc : H

∗
c (U)⊗H∗

c (N) → H∗
c (U×N)

is an isomorphism for every U ∈ U , then so is ψc : H
∗
c (M)⊗H∗

c (N) → H∗
c (M×N).

Proof. The assertion follows from the obvious isomorphism
⊕

U∈U
H∗
c (U)⊗H∗

c (N) ∼= H∗
c (M)⊗H∗

c (N)

and the commutative diagram

⊕

U∈U
H∗
c (U)⊗H∗

c (N)
⊕

U∈U
H∗
c (U ×N)

H∗
c (M) ⊗H∗

c (N) H∗
c (M ×N). �

⊕

U∈U
ψC

∼= ∼=

ψc
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Proof of Theorem 5.5.1. Let U be the family of all open subsets U of M such
that ψc : H∗

c (U) ⊗ H∗
c (N) → H∗

c (U × N) is an isomorphism. Then U fulfils the
assumptions of Proposition 4.4.8, by Theorem 5.5.3, Lemma 5.5.4 and Lemma
5.5.5. Therefore, M ∈ U . This completes the proof. �

Example 5.5.6. As an illustration we shall compute the de Rham vohomology
algebra of the connected compact orientable 6-manifold S2 × S4. Using Example
5.3.1 and Corollary 5.5.2, we have

H1(S2 × S4) ∼= H0(S2)⊗H1(S4)⊕H1(S2)⊗H0(S4) = {0},

H2(S2 × S4) ∼= H0(S2)⊗H2(S4)⊕H1(S2)⊗H1(S4)⊕H2(S2)⊗H0(S4) ∼= R,

and similarly H3(S2 × S4) = {0}, H4(S2 × S4) ∼= R. Of course H0(S2 × S4) ∼= R
and H6(/S2×S4) ∼= R. The generator of H2(S2×S4) is π∗S2oS2 = ψ(oS2 ⊗1). Thus,

(π∗S2oS2)2 = π∗S2oS2 ⌣ π∗S2oS2 = π∗S2(oS2 ⌣ oS2) = 0

in H4(S2 × S4). In other words the cup product

⌣: H2(S2 × S4)×H2(S2 × S4) → H4(S2 × S4)

is trivial

We observe now that although Hk(S2 × S4) ∼= Hk(CP 3) for all k, the de Rham
cohomology algebras H∗(S2 × S4) and H∗(CP 3) are not isomorphic, since the cup
product

⌣: H2(CP 3)×H2(CP 3) → H4(CP 3)

is non-trivial. This illustrates the fact that the de Rham cohomology algebra is a
much finer invariant than the de Rham cohomology vector space.

5.6 Intersection theory

LetM be a compact connected oriented smooth n-manifold. A k-cycle inM is a pair
(S, σ), where S is a compact oriented (possibly not connected) smooth k-manifold
and σ : S → M is a smooth map. Such a k-cycle induces a well defined element of
Hk(M)∗ which sends each a ∈ Hk(M) to the integral of σ∗α over S. Indeed, if ω,
θ ∈ Ak(M) and η ∈ Ak−1(M) are such that ω = θ + dη, then

∫

S
σ∗ω =

∫

S
σ∗θ +

∫

S
d(σ∗η) =

∫

S
σ∗θ

by Theorem 4.5.1. By Poincaré Duality, there exists a unique δ(S,σ) ∈ Hn−k(M)
such that ∫

M
α ⌣ δ(S,σ) =

∫

S
σ∗α

for every α ∈ Hk(M), which is called the Poincaré dual de Rham cohomology class
of the k-cycle (S, σ). We will usually write simply δS instead of δ(S,σ) if there no
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danger of confusion.

Examples 5.6.1. (a) The Poincaré dual cohomology class of a point in a compact
connected oriented smooth n-manifold M is oM .

(b) If M is a compact, connected, oriented smooth n-manifold, then the Poincaré
dual cohomology class of the n-cycle (M, idM ) in M is 1.

(c) If N is a compact oriented k-dimensional smooth submanifold of a compact
connected oriented smooth n-manifold M and i : N →֒ M is the inclusion, then
(N, i) is a k-cycle in M .

(d) LetM be a compact connected oriented smoothm-manifold and N be a compact
connected oriented smooth n-manifold. If (S, σ) is a k-cycle in M and (T, τ) is a
l-cycle in N , then (S × T, σ × τ) is a (k + l)-cycle in M ×N and

δS×T = (−1)(m−k)lπ∗MδS ⌣ π∗NδT

where πM : M × N → M and πN : M × N → N are the projections. Indeed, for
every α ∈ Hk(M) and β ∈ H l(M) we have

∫

S×T
(σ × τ)∗(πaM ⌣ π∗Nβ) =

(∫

S
σ∗α

)
·
(∫

T
τ∗β

)
=

(∫

M
α ⌣ δS

)
·
(∫

N
β ⌣ δT

)

=

∫

M×N
π∗M (α ⌣ δS)⌣ π∗N (η ⌣ δT )

= (−1)(m−k)l
∫

M×N
π∗M(α ⌣ π∗Nη)⌣ (π∗MδS ⌣ π∗NδT ).

This computation and Corollary 4.5.2 prove the assertion.

(e) Let M be a compact connected oriented smooth n-manifold. The diagonal map

∆ :M →M ×M

gives a n-cycle (M,∆) in the smooth 2n-manifold M ×M . If πj : M ×M → M
denotes the projection onto the j-th coordinate, j = 1, 2, then

∫

M
∆∗(π∗1α ⌣ π∗2β) =

∫

M
α ⌣ β

for every a ∈ Hk(M) and β ∈ Hn−k(M), 0 ≤ k ≤ n. Let {αi} be a basis of H∗(M)
and let {αi} be its Poincaré dual, that is

∫

M
αi ⌣ αj = δij .

Every a ∈ H∗(M) can be written as

a =
∑

i

(∫

M
αi ⌣ α

)
αi and a =

∑

i

(∫

M
α ⌣ αi

)
αi
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and so
∫

M
α ⌣ β =

∑

i,j

(∫

M
αi ⌣ α

)
·
(∫

M
β ⌣ αj

)
·
(∫

M
αi ⌣ aj

)

=
∑

i

(∫

M
α ⌣ αi

)
·
(∫

M
β ⌣ αi

)
=
∑

i

∫

M×M
π∗1(α ⌣ αi)⌣ π∗2(β ⌣ ai)

=

∫

M×M
(π∗1α ⌣ π∗2β)⌣

(∑

i

(−1)deg a
i

π∗1α
i ⌣ π∗2αi

)
.

It follows from Corollary 4.5.2 that

δ∆ =
∑

i

(−1)deg a
i

π∗1α
i ⌣ π∗2αi.

Note that
∫

M
∆∗δ∆ =

∑

i

(−1)deg α
i

∫

M
∆∗(π∗1α

i ⌣ π∗2αi) =
∑

i

(−1)deg α
i

∫

M
αi ⌣ αi

=
∑

i

(−1)deg α
i

=

n∑

k=0

(−1)k dimHk(M) = χ(M).

Two k-cycles (S1, σ1) and (S2, σ2) are called cobordant if there exists a relatively
compact connected domain with smooth boundary D in an oriented smooth (n+1)-
manifold P such that

∂D = (−S1)
∐

S2

and a smooth map σ : P →M such that σ|Sj = σj, j = 1, 2, where we have denoted
by −S1 the smooth k-manifold S1 endowed with the reverse orientation.

Proposition 5.6.2. If two k-cycles (S1, σ1) and (S2, σ2) in M are cobordant, then
δS1 = δS2 .

Proof. Using the above notations, by Stokes’ formula we have

∫

S2

σ∗2ω −
∫

S1

σ∗1ω =

∫

∂D
σ∗ω =

∫

D
d(σ∗ω) =

∫

D
σ∗(dω) = 0
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for every closed ω ∈ Ak(M). �

An observation that is often useful in computations involving Poincaré dual
cohomology classes of cycles is the following. Let (S, σ) be a k-cycle in a compact
connected oriented smooth n-manifold M . If U is any open neighbourhood of σ(S)
in M , then U contains a smaller open neighbourhoodW of σ(S) which as a smooth
manifold is of finite type. Let i : W →֒ M denote the inclusion. There exists then
a Poincaré dual δWS ∈ Hn−k

c (W ) of (S, σ) in W , by Corollary 5.4.12, and

∫

M
α ⌣ i∗δ

W
S =

∫

W
i∗α ⌣ δWS =

∫

S
σ∗α

for every α ∈ Hk(M). This shows that the Poincaré dual cohomology class of (S, σ)
in M is δS = i∗δWS . In other words δS can be represented by closed differential
(n − k)-forms in M with compact supports in arbitrarily small neighbourhoods of
σ(S). This is the localization principle for Poincaré dual classes.

Let now N be an compact oriented k-dimensional smooth submanifold of M . If
S is a smooth manifold, a smooth map σ : S →M is said to be transverse to N if

Tσ(x)M = Tσ(x)N + σ∗x(TxS)

for every x ∈ N . We shall restrict ourselves to the case where the dimension of S is
n−k and then the above sum of vector spaces is direct. It follows that if in addition
S is compact, then σ−1(N) is a finite set. This is a consequence of the elementary
observation that if f : Rm → Rn is a smooth map and there exists a sequence (xl)l∈N
converging to some point x ∈ Rm such that f(xl) ∈ Rk × {0} for every l ∈ N, there
exists some v ∈ Sm−1 such that Df(x)v ∈ Rk × {0}.

Suppose that S is oriented. The orientations of Tσ(x)N and TxS induce an
orientation on Tσ(x)M = Tσ(x)N ⊕ σ∗x(TxS). If it coincides with the orientation of
M , we put ix(N,S) = +1. If not, we put ix(N,S) = −1. The integer

N • S =
∑

x∈σ−1(N)

ix(N,S)

is called the intersection number of N with S.

Lemma 5.6.3. Let M be a compact connected oriented smooth n-manifold and N
be a compact oriented k-dimensional smooth submanifold of M . Let B = (−1, 1)n−k

and let σ : B → M be a smooth map which is transverse to N and σ−1(N) = {0}.
Then,

N •B =

∫

B
σ∗δN .

Proof. Since σ is assumed to be transverse to N , we have

Tσ(0)M = Tσ(0)N ⊕ σ∗0(Rn−k)

and so σ∗0 : Rn−k → Tσ(0)M is a monomorphism. Then σ∗x : Rn−k → Tσ(x)M is a
monomorphism for x in an open neighbourhood of 0. There is no loss of generality
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if we assume the σ is an immersion. By the Constant Rank Theorem 1.3.2 or rather
its proof and its Corollary 1.3.3, we may further assume that there exists a smooth
chart (U, φ) of M with φ = (x1, ..., xn) with the following properties:
(i) σ(B) ⊂ U and φ(U) = (−1, 1)n.
(ii) σ(0) ∈ U and φ(σ(0)) = 0.
(iii) (U, φ) is N -straightening, that is φ(N ∩ U) = (−1, 1)k × {0}.
(iv) The orientation on N ∩ U is defined by dx1 ∧ · · · ∧ dxk.
(v) σ has a local representation

(φ ◦ σ)(t1, ..., tn−k) = (0, ..., 0, t1 , ..., tn−k).

By a previous observation, the dual cohomology class δN is represented by a differ-
ential (n−k)-form onM with compact support contained in an open neighbourhood
W of N such that W ∩ U = φ−1((−1/2, 1/2)n).

By definition, ǫ = N • B = ix(N,B) = ±1 and so ǫdx1 ∧ · · · ∧ dxn defines an
orientation on U . For every p ∈ N ∩ U , let σp : B → U be the smooth map defined
by

σp(t
1, ..., tn−k) = φ−1(x1(p), ..., xk(p), t1, ..., tn−k).

It suffices to prove now that

∫

B
σ∗pδN = ǫ.

If g : Rk → R is a smooth function with compact support contained in
(−1/3, 1/3)k and ω = (g ◦ φ)dx1 ∧ · · · ∧ dxk then ω is closed and

∫

U
[ω]⌣ δN =

∫

N∩U
ω|N∩U =

∫

(−1,1)k
g(t1, ..., tk)dt1 · · · dtk.

The left hand side can be computed by assuming that the restriction of δN in U is
represented by a differential (n− k)-form fdxn+1 ∧ · · · ∧ dxn for some f ∈ C∞

c (W ),
because in the wedge product with ω all other terms involving dxj for 1 ≤ j ≤ k
will disappear. Then,

∫

U
[ω]⌣ δN = ǫ

∫

(−1,1)n
g · (f ◦ φ−1)

= ǫ

∫

(−1,1)k
g ·
(∫

{(t1,...,tk)}×(−1,1)n−k
(f ◦ φ−1)dtk+1 · · · dtn

)
dt1 · · · dtk

= ǫ

∫

(−1,1)k
g ·
(∫

B
σ∗pδN

)
dt1 · · · dtk.

Thus,

∫

(−1,1)k
g(t1, ..., tk)dt1 · · · dtk =

∫

(−1,1)k
g(t1, ..., tk) · ǫ

(∫

B
σ∗pδN

)
dt1 · · · dtk

for any such g. This implies that

ǫ

∫

B
σ∗pδN = 1. �
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Theorem 5.6.4. Let M be a compact connected oriented smooth n-manifold and
let N ⊂ be a compact oriented k-dimensional smooth submanifold of M . If (S, σ) is
a (n− k)-cycle in M which is transverse to N , then

N • S =

∫

M
δN ⌣ δS .

Proof. Since S is compact and the (n − k)-cycle (S, σ) is transverse to N , the
set σ−1(N) is finite. Suppose that σ−1(N) = {p1, ..., pm} for some m ∈ N. By
transversality, each pj has an open neighbourhood Bj in S which is diffeomorphic
to (−1, 1)k and such that σj = σ|Bj is a smooth embedding with σ−1

j (N) = {pj}.
From Lemma 5.6.3 we have

N • S =
m∑

j=1

N •Bj =
m∑

j=1

∫

Bj

σ∗j δN .

The Poincaré dual cohomology class δN can be represented by a differential (n−k)-
form with compact support contained in an open neighbourhood W of N such that

W ∩ σ
(
S \

m⋃

j=1

Bj
)
= ∅. So, σ∗δN can be represented by a differential (n− k)-form

with compact support contained in B1 ∪ · · · ∪Bm and

N • S =

∫

B1∪···∪Bm
σ∗δN =

∫

S
σ∗δN =

∫

M
δN ⌣ δS . �

This can be seen as a geometric interpretation of the wedge product of closed
differential forms in terms of submanifolds which intersect transversally. From
Proposition 5.6.2 and Theorem 5.6.4 we get the invariance of the intersection
number under cobordism.

Corollary 5.6.5. Let M be a compact connected oriented smooth n-manifold and
let Nj ⊂ M , j = 1, 2, be compact oriented k-dimensional smooth submanifolds
of M . Let (Sj , σj) is a (n − k)-cycle in M which is transverse to Nj, j = 1, 2.
If N1 is cobordant to N2 and (S1, σ1) is cobordant to (S2, σ2), then N1•S1 = N2•S2.

A compact k-dimensional smooth submanifold N of M intersects transversally
a compact (n − k)-dimensional smooth submanifold S of M if TpM = TpN ⊕ TpS
for every p ∈ N ∩ S.

Corollary 5.6.6. Let M be a compact connected oriented smooth n-manifold. If
a compact k-dimensional smooth submanifold N intersects transversally a compact
(n− k)-dimensional smooth submanifold S of M , then

N • S = (−1)n−k
∫

M×M
δN×S ⌣ δ∆.
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Proof. From Example 5.6.1(d) we have

δN×S = (−1)n−kπ∗1δN ⌣ π∗2δS

where π1 : M ×M → M and π2 : M ×M → N are the projections onto the first
and second coordinate, respectively. Since π1 ◦∆ = π2 ◦∆ = idM , we compute

∫

M
δN ⌣ δS =

∫

M
∆∗(π∗1δN ⌣ π∗2δS)

=

∫

M×M
π∗1δN ⌣ π∗2δS ⌣ δ∆ = (−1)n−k

∫

M×M
δN×S ⌣ δ∆. �

5.7 The Lefschetz formula

The aim of this section is to give a proof of the Leschetz Fixed Point Theorem
for smooth maps of compact oriented smooth manifolds and some of its numerous
applications. We shall need some algebraic preliminaries.

Let V , W be two real vector spaces and let g : V ∗ ⊗W → Hom(V,W ) be the
linear map defined by

g(a⊗ w)(v) = a(v)w

for every v ∈ V , a ∈ V ∗ and w ∈W . Then g is a linear monimorphism. Indeed, let
{ai} be a basis of V ∗ and let {wj} be a basis of W . Then {ai ⊗ wj} is a basis of
V ∗ ⊗W and each element z ∈ V ∗ ⊗W has a unique expansion

z =
∑

i,j

λijai ⊗ wj

for some λij ∈ R. If g(z) = 0, then

∑

j

(∑

i

λijai(v)

)
wj = 0

for every v ∈ V . Therefore, ∑

i

λijai(v) = 0

for every v ∈ V and every j, which means that λij = 0 for all i, j.

In case W is finite dimensional, g is an isomorphism. To see this, let {w1, ..., wk}
be a basis of W . For each h ∈ Hom(V,W ) there are φ1,..., φk ∈ V ∗ such that

h(v) = φ1(v)w1 + · · ·+ φk(v)wk

for every v ∈ V . For each 1 ≤ j ≤ there are a1j ,..., anj, for some n ∈ N, and some
λ1j ,..., λnj ∈ R such that

φj =

n∑

l=1

λijaij .
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Substituting,

h(v) =

k∑

j=1

n∑

l=1

λijaij(v)wj = g

( k∑

j=1

n∑

l=1

λijaij(v)⊗ wj

)
(v).

This shows that g is an epimorphism.

Lemma 5.7.1. Let V be a finite dimensional real vector space. If a ∈ V ∗ and
v ∈ V , then Trg(a⊗ v) = a(v).

Proof. Let dimV = n and {v1, ..., vn} be a basis of V . Let (aij)1≤i,j≤n be the matrix
of g(a⊗ v) with respect to this basis. For every 1 ≤ j ≤ n we have

a(vj)v = g(a⊗ v)(vj) =

n∑

i=1

aijvi

and hence

v =

n∑

i=1

aij
a(vj)

vi

for every j ∈ I = {1 ≤ k ≤ n : a(vk) 6= 0}. The expansion of a with respect to the

dual basis {v∗1 , ..., v∗n} is a =
∑

j∈I
a(vj)v

∗
j . It follows that

a(v) =
∑

j∈I
a(vj)v

∗
j (v) =

∑

j∈I
a(vj)

ajj
a(vj)

=
∑

j∈I
ajj = Trg(a⊗ v)

because if a(vj) = 0, then g(a⊗ v)(vj ) = a(vj)v = 0 and so aij = 0 for all 1 ≤ i ≤ n.
�

Let M be a compact connected oriented smooth n-manifold. For brevity we
shall use the notation

Ek(M) = Hom(Hk(M),Hk(M)), 0 ≤ k ≤ n.

and E(M) =

n⊕

k=0

Ek(M). By Corollary 5.4.12 and the above considerations, we have

isomorphisms gk : Hk(M)∗ ⊗Hk(M) → Ek(M), 0 ≤ k ≤ n and the isomorphism

g =
n∑

k=0

(−1)kgk :
n⊕

k=0

Hk(M)∗ ⊗Hk(M) → E(M).

From the Poincaré Duality Isomorphism DM we get the isomorphism

DM ⊗ id :

n⊕

k=0

Hn−k(M)⊗Hk(M) →
n⊕

k=0

Hk(M)∗ ⊗Hk(M).
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We shall also need the Künneth isomorphism

ψ :
n⊕

k=0

Hn−k(M)⊗Hk(M) → Hn(M ×M)

of Corollary 5.5.2 defined by ψ(α ⊗ β) = π∗1α ⌣ π∗2β, where πj : M ×M → M
denotes the projection onto the j-th coordinate, j = 1, 2. Composing, we get the
isomorphism

λ = ψ ◦ (D−1
M ⊗ id) ◦ g−1 : E(M) → Hn(M ×M).

Lemma 5.7.2. If σ = (σ0, σ1, ..., σn) ∈ E(M), then

n∑

k=0

(−1)kTrσk =

∫

M
∆∗(λ(σ))

where ∆ :M →M ×M is the diagonal map.

Proof. Let 0 ≤ k ≤ n. There are unique α ∈ Hn−k(M) and β ∈ Hk(M) such that
σk = gk(DM (α) ⊗ β and therefore λ(σk) = (−1)kπ∗1α ⌣ π∗2β, because g

−1(σk) =
(−1)kDM (α)⊗ β. On the other hand, from Lemma 4.7.1 we get

Trσk = DN (α)(β) =

∫

M
α ⌣ β =

∫

M
∆∗(π∗1α ⌣ π∗2β) =

∫

M
∆∗(λ(σk)). �

A smooth map f : M → M induces for each 0 ≤ k ≤ n a transpose linear map
f∗k : Hk(M) → Hk(M) and so an element f∗ = (f∗0 , f

∗
1 , ..., f

∗
n) ∈ E(M). We call

L(f) =
n∑

k=0

(−1)kTrf∗k

the Lefschetz number of f . According to Lemma 5.7.2,

L(f) =

∫

M
∆∗(λ(f∗)).

Obviously, two smoothly homotopic maps of M have the same Lefschetz number.
Note that L(idM ) = χ(M), the Euler characteristic of M . Actually,

λ(id) = (−1)nδ∆

where δ∆ is the Poincaré dual cohomology class of the diagonal in M ×M . To see
this, recall from Example 5.6.1(e) that

δ∆ =
∑

i

(−1)deg a
i

π1α
i ⌣ π∗2αi

where {αi} is a basis of H∗(M) and is {αi} is its Poincaré dual basis that is

∫

M
αi ⌣ αj = δij .
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So,

λ−1(δ∆)(αj) =
∑

i

(−1)deg a
i

g(DM (αi)⊗ αi)(αj)

∑

i

(−1)deg a
i+deg aiDM (αi)(αj)αi = (−1)naj.

Lemma 5.7.3. If f :M →M is a smooth map, then

λ(f∗) = (−1)n(idM × f)∗(δ∆).

Proof. Suppose that id = gk(DM (α)⊗ β) for some α ∈ Hn−k(M) and β ∈ Hk(M).
Then, λ(id) = (−1)kπ∗1α ⌣ π∗2β and for every θ ∈ Hk(M) we have

f∗k (θ) = f∗k (DM (α)(θ)β) = DM (α)(θ)f∗kβ = gk(DM (α)⊗ f∗kβ)(θ).

This means that f∗k = gk(DM (α) ⊗ f∗kβ) and consequently

λ(f∗k ) = (−1)kπ∗1α ⌣ π∗2(f
∗β) = (id× f)∗((−1)kπ∗1α ⌣ π∗2β)

= (id× f)∗(λ(id)) = (−1)n(id× f)∗(δ∆). �

We are now ready to state and prove the following.

Theorem 5.7.4. Let M be a compact connected oriented smooth n-manifold and
f :M →M be a smooth map.
(a) If Γ :M →M ×M is the smooth map Γ(p) = (p, f(p)), then

L(f) = (−1)n
∫

M
Γ∗δ∆.

(b) If L(f) 6= 0, then f has at least one fixed point.

Proof. (a) Prom the preceding Lemma 5.7.2 and Lemma 5.7.3 we have

L(f) =

∫

M
∆∗(λ(f∗)) =

∫

M
∆∗((id × f)∗(λ(id))) =

∫

M
Γ∗(λ(id)) = (−1)n

∫

M
Γ∗δ∆.

(b) If f has no fixed point, then M ×M \ Γ(M) is an open neighbourhood of the
diagonal ∆(M) and so δ∆ can be represented by a differential n-form with compact
support contained in M ×M \ Γ(M). Therefore Γ∗δ∆ = 0 and L(f) = 0, by (a). �

Corollary 5.7.5. Let M be a compact connected oriented smooth n-manifold. If
χ(M) 6= 0, then every smooth vector field X ∈ X (M) vanishes at some point of M
and so has some constant integral curve.

Proof. Since M is compact, a smooth vector field X on M is complete, by Corollary
2.2.5. Let (Φt)t∈R be the one-parameter group of diffeomorphisms of M defined by
the flow Φ : R ×M → M of X. Note that Φ is a smooth homotopy and thus each
Φt is smoothly homotopic to Φ0 = idM . Therefore, L(Φt) = L(idM ) = χ(M). From
our assumption and Theorem 5.7.4, every Φt has at least one fixed point. Let Fk
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denote the fixed point set of Φ1/2k , k ∈ N. Since Φ1/2k+1 ◦Φ1/2k+1 = Φ1/2k , we have
Fk+1 ⊂ Fk for every k ∈ N. By compactness of M , we have

F =
∞⋂

k=1

Fk 6= ∅.

Thus, there exists p ∈M such that Φ1/2k(p) = p and hence

Φ
(m
2k
, p
)
= Φm/2k(p) = (Φ1/2k)

m(p) = p

for every m ∈ Z and k ∈ N. This implies that Φ(t, p) = p for every t ∈ R, because
the set of dyadic rational numbers is dense in R. This is equivalent to saying that
X(p) = 0. �

Example 5.7.6. Let f : CPn → CPn be a smooth map, n ≥ 1. Let X ∈ H2(CPn)
be a generator so that {1,X, ...,Xn} is a basis of H∗(CPn), where powers are taken
with respect to the cup product, according to Example 5.4.11. There exists a unique
t ∈ R such that f∗(X) = tX. Then, f∗(Xk) = (f∗(X))k = tkXk, 0 ≤ k ≤ n, and so
the Lefschetz number of f is

L(f) = 1 + t+ · · ·+ tn.

If t = 1, then L(f) = n+ 1 and f has at least one fixed point. If t 6= 1 and n is
even, then

L(f) =
tn+1 − 1

t− 1
6= 0

and f has a fixed point. Thus in any case, if n is even, then every smooth map
f : CPn → CPn has a fixed point.

5.8 Exercises

1. If π : S2n+1 → CPn, n ≥ 1, is the Hopf map prove that there is no smooth map
s : CPn → S2n+1 such that π ◦ s = id.

2. Prove that there is no smooth map r : Rn+1 → Sn such that r|Sn = idSn , n ∈ N.

3. Prove the Fundamental Theorem of Algebra.

4. If n ∈ N is odd, prove that the quotient map π : RPn → Sn has degree 2.

5. Compute the de Rham cohomology of the real projective spaces RPn, n ≥ 0.

6. Let M be a compact, connected, oriented smooth n-manifold with cohomological
fundamental class oM ∈ Hn(M).
(a) Prove that for every non-zero α ∈ Hk(M), 0 ≤ k ≤ n, there exists a unique
non-zero β ∈ Hn−k(M) such that α ⌣ β = oM .
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(b) Prove that every non-trivial ideal of the de Rham cohomology algebra H∗(M)
of M contains oM .
(c) Let N be a smooth manifold and let f : N →M be a smooth map. If f∗oM 6= 0,
prove that the transpose f∗ : H∗(M) → H∗(N) is a monomorphism.

7. Let M be a smooth n-manifold, n ≥ 1, and let θ be a closed differential 1-form
on M . We consider the linear map dθ : A

∗(M) → A∗(M) with dθ(ω) = dθ − θ ∧ ω
for every ω ∈ A(M).
(a) Prove that dθ ◦ dθ = 0.

We denote by H∗
θ (M) the cohomology of the cochain complex (A∗(M), dθ).

(b) If f ∈ C∞(M), prove that the map F : (A∗(M), dθ+df ) → (A∗(M), dθ) with
F (ω) = e−fω is a cochain isomorphism, which therefore induces an isomorphism
Hk
θ+df (M) ∼= Hk

θ (M) for every k ≥ 0.
(c) If θ is exact, prove that H∗

θ (M) ∼= H∗(M).
(d) If the closed differential 1-form θ ∈ A1(S1) is not exact, prove that H0

θ (S
1) = 0.

8. Let k, l ∈ N and let σ : S1 → S1 × S1 be the smooth map σ(z) = (zk, zl).
Compute the Poincaré dual de Rham cohomology class of the 1-cycle (S1, σ) in the
2-torus S1 × S1.

9. Let M and N be two compact connected oriented smooth n-manifolds and
f :M → N be a smooth map. Prove that

DM (f∗(α))(f∗(β)) = (deg f) ·DN (α)(β)

for every α ∈ Hk(N), β ∈ Hn−k(N) and 0 ≤ k ≤ n. Deduce from this that if
deg f 6= 0, then f∗ : H∗(N) → H∗(M) is a monomorphism.

10. Let M be compact connected oriented smooth n-manifold. If there exists a
smooth map f : Sn → M such that deg f 6= 0, prove that Hk(M) = {0} for all
0 < k < n.

11. Let M be compact connected oriented smooth n-manifold and f : M → M be
a smooth map. If the smooth map Γ : M → M ×M with Γ(p) = (p, f(p)), which
parametrizes the graph Γ(M) of f , is transverse to the diagonal ∆(M) in M ×M ,
prove that L(f) = Γ(M) •∆(M).

12. Prove that the Lefschetz number of a smooth map f : Sn → Sn is

L(f) = 1 + (−1)n deg f.

Deduce from this that every orientation preserving diffeomorphism f : S2 → S2

has at least one fixed point and give an example of an orientation reversing
diffeomorphism of S2 with no fixed point.

13. Let f : S3 → S2 be a smooth map and let ω ∈ A2(S2) with

∫

S2

ω = 1. If
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θ ∈ A1(S3) is such that f∗ω = dθ, prove that the integral

h(f) =

∫

S3

θ ∧ dθ

does not depend on the choice of the primitive θ and it depends only on the
homotopy class of f . This integral is called the Hopf invariant of f .

14. (a) Prove that the differential 2-form

Ω =
i

2π
· 1

(|z0|2 + |z1|2)2
· (z1dz0 − z0dz1) ∧ (z̄1dz̄0 − z̄0dz̄1)

on Cn+1 \ {0} induces a well-defined differential 2-form ω on CP 1, so that the pull-
back of ω under the natural quotient map is Ω.
(b) Prove that ∫

CP 1

ω = 1.

(c) Let f : S3 → S2 ≈ CP 1 denote the Hopf fibration. Prove that

f∗ω =
1

π
· d(x1dx2 + x3dx4)

where z0 = x1 + ix2 and z1 = x3 + ix4 for (z0, z1) ∈ S3.
(d) Compute that the Hopf invariant of the Hopf fibration is equal to 1.



Chapter 6

Čech-de Rham theory

6.1 Generalized Mayer-Vietoris exact sequences

In this section we shall generalize the Mayer-Vietoris argument for the computation
of the de Rham cohomology of a smooth n-manifold M to countable open covers.

Let U = {Ui : i ∈ I} be an open cover of M , where we assume that the index
set I is countable and ordered. For simplicity, if k ∈ N and i0,..., ik ∈ I we shall
use the notation Ui0···ik = Ui1 ∩ · · · ∩ Uik . The generalized Mayer-Vietoris sequence
corresponding to the open cover U is the following sequence of vector spaces and
linear maps

A∗(M)
∏

i∈I
A∗(Ui)

∏

i0<i1

A∗(Ui0i1)
∏

i0<i1<i2

A∗(Ui0i1i2) · · ·r δ δ δ

where r(ω) = (ω|Ui)i∈I for every ω ∈ A∗(M) and for every m ∈ Z+ and every

ω = (ωi0···im)i0<···<im ∈
∏

i0<···<im
A∗(Ui0···im) the coordinates of δω are

(δω)i0···imim+1 =

m+1∑

k=0

(−1)kωi0···ik−1ik+1···im+1 .

We observe that

(δ(δω))i0 ···imim+2 =

m+2∑

k=0

(−1)k(δω)i0···ik−1ik+1···im+2

∑

l<k

(−1)l+kωi0···i−1il+1···lik−1ik+1···im+2+
∑

k<l

(−1)k+(l−1)ωi0···ik−1ik+1···il−1il+1···im+2 = 0.

Thus, the above generalized Mayer-Vietoris sequence of vector spaces and linear
maps is a cochain complex. If now {fi : i ∈ I} is a smooth partition of unity sub-

ordinated to the open cover U , for each ω = (ωi0···im)i0<···<im ∈
∏

i0<···<im
A∗(Ui0···im)
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we define the element Lω ∈
∏

i0<···<im−1

A∗(Ui0···im−1) with coordinates

(Lω)i0···im−1 =
∑

i∈I
fiωii0···im−1 .

It follows from the definitions that

(δ(Lω))i0···im =
∑

i∈I

m∑

k=1

(−1)kfiωii0···ik−1ik+1···im

and

(L(δω))i0 ···im =
∑

i∈I
fiωi0···im +

∑

i∈I

m∑

k=1

(−1)k−1fiωii0···ik−1ik+1···im .

Consequently, δ(Lω) + L(δω)) = ω, which means that L is a cochain homotopy
between id and 0. This shows that the generalized Mayer-Vietoris sequence is exact.

We consider now the double cochain complex (Km,l)m,l∈Z+ , with

Km,l =
∏

i0<···<im
Al(Ui0···im)

and differentials δ, d. As it is usual, from this we obtain a cochain complex (K,D),

if we putKs =
⊕

m+l=s

Km,l and D = δ+(−1)sd on Ks. Thus, if θ = (θ0, ..., θs) ∈ Ks,

where θm ∈ Km,s−m, 0 ≤ m ≤ s, then

Dθ = (dθ0, δθ0 − dθ1, ..., δθs−1 + (−1)sdθs, δθs).

There is a product ⌣: Ks1 × Ks2 → Ks1+s2 , s3, s2 ∈ Z+, on K defined as
follows. If ω ∈ Km1+l1 and θ ∈ Km1+l2 , where m1 + l1 = s1, m2 + l2 = s2, then

(ω ⌣ θ)i0···im1+m2
= (−1)l1l2(ω|Ui0···im1

) ∧ (θ|Uim1 ···im1+m2
)

on their common domain of definition Ui0···im1+m2
= Ui0···im1

∩ Uim1 ···im1+m2
. From

this definition and the definition of δ we have

(δ(ω ⌣ θ))i0···im1+m2+1 = δ((−1)l1l2ωi0···im1
∧ θim1 ···im1+m2

)

= (−1)l1l2
[ ∑

k≤m1

(−1)kωi0···ik−1ik+1···im1+1 ∧ θim1+1···im1+m2+1

+(−1)m1
∑

k≥m1

(−1)k+m1ωi0···im1
∧ θim1 ···ik−1ik+1···im1+m2+1

]

= (δω ⌣ θ)i0···im1+m2+1 + (−1)m1+l1l2(−1)l1(l2+1)(ω ⌣ δθ)i0···im1+m2+1

= (δω ⌣ θ)i0···im1+m2+1 + (−1)s1(ω ⌣ δθ)i0···im1+m2+1 .

Hence
D(ω ⌣ θ) = Dω ⌣ θ + (−1)s1ω ⌣ Dθ.
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This implies that there is an induced product on the cohomology H∗
D(K) of K,

which we denote again by ⌣. In this way H∗
D(K) becomes a graded algebra.

Note that

D(r(ω)) = (δ + d)(r(ω)) = d(r(ω)) = r(dω)

for every ω ∈ A∗(M), which means that r : A∗(M) → K is a cochain map and
hence induces an algebra homomorphism r∗ : H∗(M) → H∗

D(K) in cohomology.

Proposition 6.1.1. The map r∗ : H∗(M) → H∗
D(K) is an algebra isomorphism.

Proof. We shall show first that r∗ is surjective. Let θ = (θ0, ..., θs) ∈ Ks, where
θm ∈ Km,s−m, 0 ≤ m ≤ s, and Dθ = 0. Then, δθs = 0 and by the exactness
of the generalized Mayer-Vietoris sequence there exists ψn−1 ∈ Ks−1,0 such that
δψs−1 = θs. If u = (0, ..., 0, ψs−1) ∈ Ks−1, we have

Du = (0, ..., 0, (−1)s−1dψs−1, δψs−1) ∈ Ks.

Thus, θ −Du and θ represent the same element of Hs
D(K) and

θ −Du = (ω0, ..., ωs−1, 0)

for some ωm ∈ Km,s−m, 0 ≤ m ≤ s−1. SinceDω = 0, we have δωs−1 = 0. Repeating
the above argument s − 1 times we arrive at an element τ = (τ0, 0, ..., 0) ∈ Ks, for
some τ0 ∈ K0,s with Dτ = 0, or equivalently δτ0 = 0 and dτ0 = 0, which is
cohomologous to θ in K. Since δτ0 = 0, the coordinates of τ0 are restrictions to the
elements of the open cover U of a differential s-form on M , which we denote again
by τ0 and which is closed. Obviously, r∗[τ0] = [τ ]D = [θ]D.

To see that r∗ is injective, let ω ∈ As+1(M) be closed and such that r(ω) = Dθ
for some θ ∈ Ks. Then θ = (θ0, ..., θs) ∈ Ks, for some θm ∈ Km,s−m, 0 ≤ m ≤ s.
Since Dθ ∈ K0,s+1, we must have δθs = 0. As above, there exists an element
σ = (σ0, 0, ..., 0) ∈ Ks for some σ0 ∈ K0,s such that δσ0 = 0 and Dσ = Dθ. In other
words, σ0 defines a differential s-form on M and

r(ω) = Dθ = Dσ = (dσ0, 0, ..., 0)

which means that ω = dσ0. �

We denote now by Čm(U ;R) the kernel of d|Km,0 : Km,0 → Km,1, for m ∈ Z+.
Note that the coordinates of the elements of Čm(U ;R) are locally constant functions
on the open sets Ui0···im , i0 < · · · < im. The cohomology Ȟ∗(U ;R) of the cochain
complex (Č∗(U ;R), δ) is called the Čech cohomology of the open cover U of M (with
real coefficients). The restriction of the product ⌣ on K restricts to a product of
(Č∗(U ;R), δ) defined by

(ω ⌣ θ)i0···im1+im2
= ωi)···im1

· θim1 ···im1+m2

for ω = (ωi0···im1
)i0<···<im1

and θ = (θi0···im2
)i0<···<im2

. This turns Ȟ∗(U ;R) into a
graded commutative algebra with unity.
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Recall that from Theorem 5.6.5 the set of admissible open covers is non-empty
and cofinal in the directed family of all open covers of M .

Theorem 6.1.2. If U is an admissible open cover of M , then we have algebra
isomorphisms

Ȟ∗(U ;R) ∼= H∗
D(K) ∼= H∗(M).

...
...

...
...

0 A2(M) K0,2 K1,2 K2,2 · · ·

0 A1(M) K0,1 K1,1 K2,1 · · ·

0 A0(M) K0,0 K1,0 K2,0 · · ·

Č0(U ;R) Č1(U ;R) Č2(U ;R) · · ·

0 0 0

r

d

δ

d

δ

d

δ

d

r

d

δ

d

δ

d

δ

d

r

d

δ

d

δ

d

δ

d

δ

inclusion

δ

inclusion

δ

inclusion

Proof. The rows in the above diagram are the Mayer-Vietoris exact sequences in
the corresponding degrees. If the columns of the augmented double complex are
exact, then the assertion is proved using exactly the same argument of the proof of
Proposition 6.1.1. The obstructions for this are the de Rham cohomologies

∏

i0<···<im
H∗(Ui0···im), m ∈ Z+.

In case the open cover U is admissible, the open sets Ui0···im are contractible and
these de Rham cohomologies are trivial, by Corollary 5.1.7. �

Corollary 6.1.3. The Čech cohomologies of any two admissible open covers of a
smooth manifold are isomorphic.

6.2 Čech cohomology

Let X be a topological space and R be a commutative ring with unity. A presheaf
of R-modules on X is a contravariant functor Γ from the category with objects the
open subsets of X and morphisms the inclusions to the category MR of R-modules,
which sends the empty subset of X to the trivial R-module. In other words, to each
open set U ⊂ X corresponds a R-module Γ(U) and to an inclusion U ⊂ V of open
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subsets of X corresponds a morphism ρUV : Γ(V ) → Γ(U) of R-modules, which is
usually called restriction, such that ρUU = idU and if U ⊂ V ⊂W , then

ρUW = ρUV ◦ ρVW .

Examples 6.2.1. (a) If G is a R-module, the constant preshef, denoted again
by G, sends to every non-empty open set U ⊂ X the R-module G and to every
inclusion U ⊂ V of open subsets of X the identity map of G, that is ρUV = idG.

(b) Let M be a smooth manifold and let GAR denote the category of graded
commutative, associative algebras with unity over R. The contravariant functor
A which to a non-empty open set U ⊂ M assigns the exterior algebra A∗(U) of
differential forms of U and to an inclusions U ⊂ V of open subsets of M assigns
the usual restriction, which is the transpose of the inclusion map, is a presheaf on
M , which is called the de Rham presheaf on M .

A homomorphism of presheaves Γ and Γ′ on a topological space X is a natural
transformation from Γ to Γ′. This is a family of homomorphisms hU : Γ(U) → Γ′(U)
of R-modules, where U runs over all open subsets of X, such that for each inclusion
U ⊂ V of open subsets of X the following diagram commutes.

Γ(V ) Γ′(V )

Γ(U) Γ′(U)

hV

ρUV ρ′UV

hU

Let now Γ be a presheaf on a topological space X and let U = {Ui : i ∈ I} be
an open cover of X. For every m ∈ Z+ we put

Čm(U ; Γ) =
∏

i0,...,im∈I
Γ(Ui0···im)

where Ui0···im = Ui0∩· · ·∩Uim , and define δ : Čm(U ; Γ) → Čm+1U ; Γ) by the formula

(δω)i0···im+1 =
m+1∑

k=0

(−1)kρUi0···im+1
Ui0···ik−1ik+1···im+1

(ωi0···ik−1ik+1···im+1)

for ω = (ωi0,...,im)i0,··· ,im∈I ∈ Čm(U ; Γ). Then, (Č∗(U ; Γ), δ) is a cochain complex of
R-modules, whose cohomology Ȟ∗(U ; Γ) is called the Čech cohomology of the open
cover U of X with coefficients in the presheaf Γ.

Let now V = {Vj : j ∈ J} be an open cover of M which is a refinement of U .
There exists a function φ : J → I such that Vj ⊂ Uφ(j) for every j ∈ J . This gives

a cochain map φ♯ : Č∗(U ; Γ) → Č∗(V; Γ) defined by

(φ♯ω)i0···im = ωφ(i0)···φ(im)

if ω = (ωi0,...,im)i0,...,im ∈ Čm(U ; Γ). In the above formula the restriction has been
suppressed for notational simplicity. If ψ : J → I is another function such that
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Vj ⊂ Uψ(j) for every j ∈ J , we obtain a cochain homotopy H between ψ♯ and φ♯, if

we define H : Čm(U ; Γ) → Čm−1(V; Γ) by

(Hω)j0···jm−1 =

m−1∑

k=0

(−1)kωφ(j0)···φ(jk)ψ(jk)···ψ(jm−1)

where restrictions have been suppressed again. Indeed, we compute

(δ(Hω))j0...jm =
m∑

k=0

(−1)k(Hω)j0...jk−1jk+1...jm

=
m∑

k=0

(−1)k
[k−1∑

l=0

(−1)lωφ(j0)...φ(jl)ψ(jl)...ψ(jk−1)ψ(jk+1)...ψ(jm)

+

m∑

l=k+1

(−1)l−1ωφ(j0)...φ(jk−1)φ(jk+1)...φ(jl)ψ(jl)...ψ(jm)

]

and

(H(δω))j0...jm =

m∑

l=0

(−1)l(δω)φ(j0)...φ(jj)ψ(jl)...ψ(jm)

=

m∑

l=0

(−1)l
[ l∑

k=0

(−1)kωφ(j0)...φ(jk−1)φ(jk+1)...φ(jl)ψ(jl)...ψ(jm)

+
m∑

k=l

(−1)k+1ωφ(j0)...φ(jl)ψ(jl)...ψ(jk−1)ψ(jk+1)...ψ(jm)

]
.

Therefore,

(δ(Hω) +H(δω))j0...jm

=

( m∑

l=0

m∑

k=0

(−1)k+l −
m∑

k=0

m∑

l=k+1

(−1)k+l
)
ωφ(j0)...φ(jk−1)φ(jk+1)...φ(jl)ψ(jl)...ψ(jm)

+

( m∑

k=0

k−1∑

l=0

(−1)k+l −
m∑

k=0

m∑

k=l

(−1)k+l
)
ωφ(j0)...φ(jl)ψ(jl)...ψ(jk−1)ψ(jk+1)...ψ(jm)

=

m∑

k=0

ωφ(j0)...φ(jk−1)ψ(jk)...ψ(jm) −
m∑

k=0

ωφ(j0)...φ(jk)ψ(jk+1)...ψ(jm)

= ωψ(j0)...ψ(jm) − ωφ(j0)...φ(jm) = (ψ♯ω − φ♯ω)j0...jm.

This implies that there is a well defined homomorphism φ♯ : Ȟ∗(U ; Γ) → Ȟ∗(V; Γ)
of graded R-modules, which does not depend on the choice of the function φ. It is
obvious now that the family

{
Ȟ∗(U ; Γ) : U open cover of X

}
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is a direct system of graded R-modules. The Čech cohomology of the topological
space X with coefficients in the presheaf Γ is the graded R-module

Ȟ∗(X; Γ) = lim
→
Ȟ∗(U ; Γ).

Especially, if Γ is the constant presheaf G for a R-module G, then Ȟ∗(X;G) is the
Čech cohomology of the topological space X with coefficients in the R-module G.

The content of the previous section 6.1 can be encoded in the following which
is known as the Čech-de Rham theorem.

Theorem 6.2.2. For every smooth manifold M there is an isomorphism

Ȟ∗(M ;R) ∼= H∗(M).

Proof. Since the countable admissible open covers of M constitute a cofinal subset
of the directed set of open covers of M , by Theorem 5.3.3, we can consider only
this sort of open covers. From Theorem 6.1.2, if U is a countable admissible open
cover of M , then Ȟ∗(U ;R) ∼= H∗(M) and if V is another countable admissible
open cover of M which refines U , the inclusions iU : Č∗(U ;R) → Č∗(U ;A) and
iV : Č∗(U ;R) → Č∗(V;A) induce isomorphisms in cohomology so that the following
diagram commutes.

Ȟ∗(U ;R) Ȟ∗(V;R)

H∗
D(C(U ;A)) H∗

D(C(V;A))

H∗(M)

φ♯

i∗U i∗V

r∗U r∗V

Since i∗U , i
∗
V , r

∗
U and r∗V are isomorphisms by Theorem 6.1.2, it follows that φ♯ is an

isomorphism as well. Going to the direct limit the isomorphisms r∗U ◦ i∗U induce the
desired isomorphism Ȟ∗(M ;R) ∼= H∗(M). �

It is obvious from the definition that the Čech cohomology with coefficients in
a preasheaf of a topological space is a topological invariant. In particular the Čech
cohomology algebra Ȟ∗(M ;R) with real coefficients of a smooth manifold M is a
purely topological invariant. Thus, the preceding Theorem 6.2.2 has the following
very interesting consequence.

Corollary 6.2.3. The de Rham cohomology algebra H∗(M) of a smooth manifold
M depends only on the underlying topology of M and not on the choice of the smooth
structure. �
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6.3 Exercises

1. If d′ = (−1)md : Km,l → Km,l+1, prove that

δ ◦ (d′ ◦ L)i = (d′ ◦ L)i ◦ δ − (d′ ◦ L)i−1 ◦ d′

for every integer i ≥ 0.

2. If θ = (θ0, ..., θs) ∈ Ks and Dθ = (ψ0, ..., ψs, ψs+1), so that ψ0 = dθ0, ψs+1 = δθ
and ψj = δ + d′θj, 1 ≤ j ≤ s, we define

f(θ) =

s∑

j=0

(−d′ ◦ L)jθj −
s+1∑

j=1

L ◦ (−d′ ◦ L)j+1ψj .

(a) Prove that f(θ) defines a differential s-form by showing that δf(θ) = 0.
(b) Prove that the so defined map f : K → A∗(M) is cochain and f ◦ r = idA∗(M).
(c) If L′ :M s → Ks−1 is defined by L′θ = ((L′θ)0, ..., (L′θ)s−1), where

(L′θ)j =
s∑

i=j+1

L ◦ (−d′ ◦ L)i−j−1θi, 0 ≤ j ≤ s− 1,

prove that idK − r ◦ f = D ◦ L′ + L′ ◦ D and therefore the induced algebra ho-
momorphism f∗ : H∗

D(K) → H∗(M) is the inverse of the algebra isomorphism
r∗ : H∗(M) → H∗

D(K).
(d) If U is an admissible open cover of M and η ∈ Čm(U ;R) with δη = 0, prove
that the closed differential m-form which corresponds to η under the isomorphism
Ȟ∗(U ;R) ∼= H∗(M) is f(η) = (−1)m(d′ ◦ L)mη.
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Chapter 7

Vector bundles

7.1 Complex and real vector bundles

A complex, respectively real, vector bundle of rank n is a triple ξ = (E, p,M),
where E and M are topological spaces and p : E → M is a continuous map such
that for every x ∈ M the level set p−1(x) is a complex, respective;y real, vector
space of dimension n and there exists an open cover U of M together with a family
of homeomorphisms hU : p−1(U) → U × Cn, respectively hU : p−1(U) → U × Rn,
U ∈ U , so that hU maps each level set p−1(x) linearly isomorphically onto {x}×Cn,
respectively onto {x} × Rn, for x ∈ U . The homeomorphism hU is called a local
trivialization of the bundle over U . The space E is the total space and M is the
base space of the bundle. The level sets Ex = p−1(x), x ∈ M , are called the fibres
of the bundle.

The vector bundle ξ = (E, p,M) is smooth, if E and M are smooth manifolds,
the bundle map p is smooth and it has a family of local trivializations consisting of
smooth diffeomorpisms.

Examples 7.1.1. (a) For every topological space M the projection onto the first
factor pr1 :M×Cn →M is a bundle map. The vector bundle ǫnC = (M×Cn, pr1,M)
is the complex trivial vector bundle of rank n.

(b) For every smooth n-manifold M its tangent bundle is a smooth real vector
bundle of rank n with total space TM and base space M . In this case the bundle
map p : TM → M is the canonical projection sending each tangent vector to its
point of application.

(c) LetM be a regular m-dimensional submanifold of the euclidean space Rm+n.
Let

E =
⋃

x∈M
{x} × (TxM)⊥ ⊂M × Rm+n

where the orthogonal complements are taken with respect to the euclidean inner
product in Rm+n. The map p : E → M with p(x, v) = x is a bundle map defining
a real smooth vector bundle over M called the normal bundle of M in Rm+n. One
way to construct local trivializations of p is the following. Let x0 ∈M . There exists
an open neighbourhood U of x0 on which there are smooth local coordinates. So,
on U we have smooth basic tangent vector fields X1,..., Xm to M . Let {v1, ..., vn}

173
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be a basis of (Tx0M)⊥. There is now an open neighbourhood W ⊂ U of x0 such
that

det(X1(x), ...,Xm(x), v1, ..., vn) 6= 0

for every x ∈W . Applying Gram-Schmidt orthogonalization to the basis

{X1(x), ...,Xm(x), v1, ..., vn}

we obtain an orthonormal basis

{X̃1(x), ..., X̃m(x), Y1(x), ..., Yn(x)}

such that {X̃1(x), ..., X̃m(x)} is an orthonormal basis of TxM and {Y1(x), ..., Yn(x)}
is an orthonormal basis of (TxM)⊥ for every x ∈W . The map g :W×Rn → p−1(W )
defined by

g(x, t1, ..., tn) =
n∑

j=1

tjYj(x)

is a diffeomorphism and h = g−1 is a local trivialization of p over W . This shows
that p is a vector bundle map.

(d) Let n ∈ Z+ and En = S2n+1 × C/ ∼, where

(z0, ..., zn, u) ∼ (λz0, ..., λzn, λ
−1u)

for λ ∈ S1. The projection pr1 : S
2n+1 × C → S2n+1 onto the first factor induces a

continuous map q : En → CPn, which defines a smooth complex bundle of rank 1.
A vector bundle of rank 1 is usually called line bundle.

There are local trivializations hj : q
−1(Uj) → Uj × C, 0 ≤ j ≤ n, of q over the

domains of the canonical atlas {(U0, φ0), ..., (Un, φn)} given by the formulas

hj([z, u]) = ([z], u).

The inverse of hj is given by

h−1
j ([z], u) = [

z

‖z‖ , u]

for [z] ∈ Uj. It is obvious that En becomes a smooth manifold and q a smooth
vector bundle map. The complex line bundle (En, q,CPn) is called the tautological
(or canonical) line bundle over the complex projective space CPn.

Similarly, there is a tautological real line bundle over the real projective space
RPn, where in this case the total space is Sn × R/ ∼, and (x, t) ∼ (−x,−t). In
particular, for n = 1 the total space is the Möbius strip and the base space is S1.

Let ξ1 = (E1, p1,M1) and ξ2 = (E2, p2,M2) be two complex, respectively real,
vector bundles. A vector bundle morphism from ξ1 to ξ2 is a pair (f̃ , f) of continuous
maps f :M1 →M2 and f̃ : E1 → E2 such that p2 ◦ f̃ = f ◦ p1 and f̃ maps linearly
p−1
1 (x) into p−1

2 (f(x)) for every x ∈ M1. In case the vector bundles are smooth we
say that the morphism is smooth if both f and f̃ are smooth.
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E1 E2

M1 M2

f̃

p1 p2

f

If ξ = (E, p,M) is a vector bundle and A ⊂ M , then the restriction of p on
p−1(A) is a vector bundle map over A and the pair of the obvious inclusions is a
vector bundle morphism from ξ to ξ|A = (p−1(A), p|p−1(A), A).

Two vector bundles ξ1 and ξ2 over the same base space M = M1 = M2 are
called isomorphic if there are vector bundle morphisms (f̃ , idM ) from ξ1 to ξ2 and
(g̃, idM ) from ξ2 to ξ1 such that g̃ ◦ f̃ = idE1 and f̃ ◦ g̃ = idE2 . In the sequel we
shall simply write f̃ instead of (f̃ , idM ) and f̃ : ξ1 ∼= ξ2 to denote that f̃ is an
isomorphism from ξ1 to ξ2. In the smooth case, ξ1 and ξ2 are called smoothly
isomorphic if f̃ and g̃ are smooth diffeomorphisms.

Lemma 7.1.2. Let ξ1 = (E1, p1,M) and ξ2 = (E2, p2,M) be two complex,
respectively real, vector bundles over the space M . If a vector bundle morphism
f̃ : E1 → E2 maps each fiber (p1)

−1(x) isomorphically onto the fiber (p2)
−1(x),

x ∈ M , then f̃ : ξ1 ∼= ξ2. If f̃ is smooth, then it is a smooth vector bundle
isomorphism.

Proof. Our assumptions imply that f̃ is a bijection. Thus, we need only show that
f̃−1 is continuous and smooth in the smooth case. If U ⊂ M is an open set and
h : (p1)

−1(U) → U × Cn and g : (p2)
−1(U) → U × Cn are local trivializations, then

F = g ◦ f̃ ◦ h−1 : U × Cn → U ×Cn

is an isomorphism of trivial vector bundles. Indeed, there is a continuous map
G : U × Cn → Cn such that F (x, v) = (x,G(x, v)) and G(x, .) ∈ GL(n,C) for
every x ∈ U . Also, taking the inverse in GL(n,C) is a smooth map and G(x, .)−1

depends continuously on x and smoothly in the smooth case. Since continuity and
smoothness are local properties, the conclusion follows. �

Example 7.1.3. Let Hn = {(ℓ, u) ∈ CPn × Cn+1 : u ∈ ℓ} and p : Hn → CPn

be the projection onto the first factor. The continuous map f : S2n+1 × C → Hn

defined by

f(z0, ..., zn, w) = ([z0, ..., zn], wz0, ..., wzn)

is onto and open. Moreover, f(z0, ..., zn, w) = f(z′0, ..., z
′
n, w

′) if and only if there
exists some λ ∈ C∗ such that z′j = λzj for all 0 ≤ j ≤ n and w′ = λ−1w. This

implies that f induces a homeomorphism f̃ : En → Hn such that p ◦ f̃ = q and
f̃(q−1(ℓ)) = ℓ ∪ {0} ⊂ Cn+1. Since (En, q,CPn) is a smooth complex line bundle,
the triple (Hn, p,CPn) becomes a smooth complex line bundle so that f̃ is a smooth
vector bundle isomorphism. This is an alternative version of the tautological line
bundle over the complex projective space.
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7.2 Direct sums and inner products

Let ξ1 = (E1, p1,M1) and ξ2 = (E2, p2,M2) be two complex, respectively real, vector
bundles. Then, the triple (E1 ×E2, p1 × p2,M1 ×M2) is a vector bundle with fibres
p−1
1 (x1) × p−1

2 (x2), (x1, x2) ∈ M1 × M2, because if h1 : p−1
1 (U1) → U × Cn and

h2 : p−1
2 (U2) → U × Cm are local trivializations, then h1 × h2 is local trivialization

of p1 × p2 over U1 × U2.
Suppose now that M =M1 =M2 and ξ1 = (E1, p1,M) and ξ2 = (E2, p2,M) are

two vector bundles over the same space M . We put

E1 ⊕ E2 = {(v1, v2) ∈ E1 × E2 : p1(v1) = p2(v2)}

and let p : E1 ⊕ E2 → M be defined by p(v1, v2) = p1(v1) = p2(v2). In other
words, p is the restriction of p1×p2 over the diagonal in M ×M . The vector bundle
ξ1 ⊕ ξ2 = (E1 ⊕ E2, p,M) is called the direct (or Whitney) sum of ξ1 and ξ2 and it
has fibres the direct sums of the corresponding fibres of ξ1 and ξ2.

It is evident that the direct sum of two trivial vector bundles is a trivial vector
bundle. However, the direct sum of two vector bundles neither of which is trivial
may be trivial. For instance, if M ⊂ Rm+n is a regular m-dimensional submanifold
with normal bundle ν in Rm+n, then TM ⊕ ν ∼= ǫm+n

R , the trivial real vector bundle
of rank m+ n over M .

An inner product on a complex (or real) vector bundle ξ = (E, p,M) is a
continuous function g : E ⊕ E → C (respectively R in the real case) such that its
restriction gx on each fibre Ex is a hermitian (respectively euclidean) inner product.

Lemma 7.2.1. If M is a paracompact space, then every vector bundle ξ = (E, p,M)
of rank n over M admits an inner product.

Proof. Let U be an open cover ofM for which there is a family of local trivializations
hU : pi−1(U) → U × Cn, U ∈ U . Since M is assumed to be paracompact, there
exists a partition of unity {fU : U ∈ U} subordinated to U . For x ∈ M and v,
w ∈ Ex the formula

gx(v,w) =
∑

U∈U
fU(x)〈hU (v), hU (w)〉

defines an inner product on ξ, where 〈, 〉 is the usual hermitian product on {x}×Cn

or the euclidean inner product on {x} × Rn in the real case. �

As the proof of the preceding lemma shows, if the vector bundle ξ = (E, p,M)
over a smooth manifold M is smooth, then it admits a smooth inner product, by
the existence of smooth partitions of unity. A smooth inner product on the tangent
bundle of a smooth manifold M is a Riemannian metric on M .

As an application of the existence of inner products we shall prove that two
isomorphic smooth vector bundles over a compact smooth manifold are smoothly
isomorphic.

A section of a vector bundle ξ = (E, p,M) is a continuous map s : M → E
such that p ◦ s = idM , that is s(x) ∈ Ex for every x ∈ M . The set Γ(ξ) of all
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sections of ξ becomes a vector space in the obvious way. In the smooth case we shall
denote by Ω0(ξ) the vector subspace of Γ(ξ) consisting of the smooth sections of ξ. If
h : p−1(U) → U×Cn is a local trivialization over the open set U ⊂M and {e1, ..., en}
is the canonical (or any) basis of Cn, then the formulas sj(x) = h−1(x, ej), x ∈ U ,
1 ≤ j ≤ n, define sections of ξ|U and {s1(x), ..., sn(x)} is a basis of Ex for every
x ∈ U . The set {s1, ..., sn} is called a frame of ξ over U . Conversely, each frame
over an open subset U of M gives a trivialization of ξ over U . If we have an inner
product on the bundle, then applying the Gram-Schmidt orthogonalization process
we can construct orthonormal sections over U . In the smooth case, the above can
be carried out smoothly.

Let now ξ′ = (E′, p′,M) be a second vector bundle of rank n over M and
f : E → E′ be a vector bundle morphisms of vector bundles over the same base
space M . If {s1, ..., sn} is a frame of ξ over U and {s′1, ..., s′n} a frame of ξ′ over U ,
then fx = f |Ex is represented by a n × n matrix. In this way we get a continuous
map ad(f) : U → Cn×n, which depends on the choice of the local frames. If
everything is smooth, then ad(f) is also smooth.

Lemma 7.2.2. Let M be a compact space, ξ = (E, p,M) and ξ′ = (E′, p′,M)
two vector bundles of rank n equipped with inner products. If f : E → E′ is a
vector bundle isomorphism, then there exists δ > 0 any vector bundle morphism
φ : E → E′ with p′ ◦ φ = p and such that sup{‖fx − φx‖ : x ∈ M} < δ is a vector
bundle isomorphism.

Proof. Since M is assumed a compact space, it can be covered by a finite number
of compact subsets over each of which both bundles are trivial. Thus, it suffices
to prove the conclusion only in the case where both bundles are trivial. Choosing
frames, f is represented by a continuous map ad(f) : U → GL(n,C). Since
ad(f)(M) is a compact subset of the open subset GL(n,C) of Cn×n, there exists
δ > 0 such that the ball of radius δ around Ad(f)(M) is contained in GL(n,C).
This implies the assertion. �

Proposition 7.2.3. Let ξ = (E, p,M) and ξ′ = (E′, p′,M) be two smooth vector
bundles of rank n over a compact smooth manifold M . If ξ is isomorphic to ξ′,
then it is smoothly isomorphic.

Proof. Since M is assumed to be compact, there exists a finite open cover
{U1, ..., Um} of M and smooth orthonormal frames {sj1, ..., s

j
n} and {tj1, ..., t

j
n} of ξ

and ξ′, respectively, over Uj , 1 ≤ j ≤ m. A vector bundle isomorphism f : E → E′

gives rise to continuous maps ad(f j) : Uj → GL(n,C), where f j = f |Uj , 1 ≤ j ≤ m.
There exists δ > 0 as in Lemma 7.2.2. For every 1 ≤ j ≤ m there exists a smooth
map Gj : Uj → GL(n,C) such that ‖Gj(x) − ad(f j)(x)‖ < δ for every x ∈ Uj . Let
gj : p−1(Uj) → (p′)−1(Uj) be defined by

gj(
n∑

k=1

λks
j(x)) =

n∑

k=1

( n∑

l=1

Gjkl(x)λl

)
tj(x)

or in other words ad(gj) = Gj . Obviously, ‖f j(x) − gj(x)‖ < δ for every x ∈ Uj .
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Let {ψ1, ..., ψm} be a smooth partition of unity subordinated to the open cover
{U1, ..., Um}. Now we define g : E → E′ by

gx = g|Ex =
m∑

j=1

ψj(x)g
j(x)

for every x ∈M . Then,

‖fx − gx‖ ≤
m∑

j=1

ψj(x)‖f jx − gjx‖ < δ

for every x ∈ M and from Lemma 7.2.2 follows that g is a smooth isomorphism of
vector bundles. �

7.3 The functors K and KO

As we have already mentioned in the preceding section, the direct sum of two
non-trivial vector bundles can be trivial. Actually, the following general fact holds.

Theorem 7.3.1. If M be a compact space, then for every vector bundle
ξ = (E, p,M) over M there exists another vector bundle ξ̃ such that ξ ⊕ ξ̃ is trivial.

Proof. SinceM is compact, there exist a finite open cover {U1, ..., Um} ofM and local
trivializations hj : p

−1(Uj) → Uj×Cn, 1 ≤ j ≤ m. There is also a partition of unity
{ψ1, ..., ψm} ofM subordinated to this open cover. Let f j = pr2◦hj : p−1(Uj) → Cn,
where pr2 denotes the projection onto the second factor. Let g : E →M × Cnm be
defined by

g(v) = (p(v), ψ1(p(v))f
1(v), ..., ψm(p(v))fm(v)).

It is obvious that g is a vector bundle morphism of vector bundles overM . Moreover,
g|Ex : Ex → {x} × Cnm is a monomorphism of vector spaces for every x ∈ M . We
put

Ẽ = {(x, v) ∈M × Cnm : v ∈ g(Ex)
⊥}

where the orthogonal complement is taken with respect to usual hermitian product
on Cnm. Then, ξ̃ = (Ẽ, pr1,M) is a vector bundle (see Example 7.1.1(c)) and
obviously ξ ⊕ ξ̃ ∼= ǫnm. �

In case M is a smooth manifold and the bundle ξ in Theorem 7.3.1 is smooth,
then the vector bundle ξ̃ can be chosen to be also smooth, by the existence of
smooth partitions of unity. In fact, Theorem 7.3.1 holds also under the assumption
that the base spaceM is paracompact and has finite covering topological dimension.
In particular, it holds if M is a topological manifold. The proof is an immediate
consequence of the fact that any vector bundle over a paracompact space with finite
covering topological dimension is of finite type.

A vector bundle ξ = (E, p,M) is said to be of finite type if M is a normal space
and may be covered by a finite number of open sets over each of which ξ is trivial.
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Of course ifM is a compact space, then every vector bundle over M is of finite type.

Proposition 7.3.2. If M is a paracompact space of finite covering topological
dimension, then every vector bundle ξ = (E, p,M) over M is of finite type.

Proof. Let U be an open cover of M such that ξ|U is trivial for every U ∈ U .
Suppose that dimM ≤ m and let V be an open refinement of U such that no point
of M is contained in more than m + 1 elements of V. Since M is assumed to be
paracompact, we may take V to be locally finite and there exists a partition of unity
{φV : V ∈ V} subordinated to V. Let

Ai = {a ⊂ V : |a| = i+ 1}

for each i ∈ Z+. For each a ∈ Ai with a = {V0, ..., Vi} the set

Wi,a = {x ∈M : φV (x) < min{φV0(x), ..., φVi (x)} for V 6= V0, ..., Vi}

is open and contained in V0 ∩ · · · ∩ Vi. So, ξ|Wi,a
is trivial. Moreover, if a, b ∈ Ai,

then Wi,a and Wi,b are disjoint. Thus, if we put

Xi =
⋃

a∈Ai
Wi,a

then ξ|Xi is trivial as well and it suffices to show that {X0, ...,Xm} is an open cover
of M . Indeed, if a point x ∈ M is contained in at most m+ 1 of V and so at most
m+1 of the functions φV , V ∈ V are positive at x. In other words, there exist some
0 ≤ i ≤ m and V0,..., Vi ∈ V such that φV0(x) > 0,..., φVi(x) > 0 and φV (x) = 0 for
V 6= V0, ..., Vi. This implies that x ∈ Wi,a, where a = {V0, ..., Vi}. This concludes
the proof. �

Corollary 7.3.3. Every (complex or real) vector bundle over a topological manifold
is of finite type. �

The proof of Theorem 7.3.1 together with Corollary 7.3.3 and Theorem 1.5.4
show that the following holds.

Corollary 7.3.4. If M is a paracompact space of finite covering dimension
and ξ is a (complex or real) vector bundle over M , then there exists a vector
bundle ξ̃ over M such that ξ ⊕ ξ̃ is trivial. In particular, this holds if M is a
topological manifold. Moreover, if ξ is a smooth vector bundle over a smooth mani-
foldM , then there exists a smooth vector bundle ξ̃ overM such that ξ⊕ξ̃ is trivial. �

For any space M and non-negative integer n we let VectCn(M), respectively
VectRn(M), denote the set of isomorphism classes of complex, respectively real, vector
bundles over M . The direct sum of vector bundles makes

VectC(M) =
∐

n≥0

VectCn(M)
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an abelian semigroup whose neutral element is represented by the trivial bundle of
rank 0 with total space M × {0}. Similarly, for VectR(M).

From any abelian semigroup one can construct an abelian group more or less in
the same way the integers can be contructed from the set of natural numbers. It
is worth to note however that in contrast to the case of the natural numbers the
cancellation law may not hold in the semigroups VectR(M) and VectC(M). Indeed,
consider for example the 2-sphere S2. Its normal bundle ν in R3 is a trivial line
bundle over S2 and TS2 ⊕ ν is also trivial. So, ν ∼= ǫ1 and

TS2 ⊕ ν ∼= ǫ3 ∼= ǫ2 ⊕ ǫ1.

However, TS2 is not trivial, by the Hairy Ball Theorem 5.2.3.

Lemma 7.3.5. (A. Grothendieck) For every abelian semigroup (V,⊕) there exist
a unique abelian group (K(V ),+) and a semigroup homomorphism γ : V → K(V )
with the universal property that for every abelian group G and every semigroup
homomorphism f : V → G there is a unique group homomorphism f̃ : K(V ) → G
such that f̃ ◦ γ = f .

Proof. Let (F (V ),+) denote the free abelian group with basis the set V and let R
be its subgroup which is generated by the elements of V of the form x⊕ y − x− y,
for x, y ∈ V . We put K(V ) = F (V )/R and let γ : V → K(V ) be defined by
γ(x) = x+R. Then, γ(0) = R and

γ(x⊕ y) = (x⊕ y) +R = (x+ y) +R = (x+R) + (y +R)

for every x, y ∈ V , from the choice of R.

Let now G be an abelian group and f : V → G be any semigroup hoomo-
morphism. There is unique linear extension of f to a group homomorphism
f̂ : F (V ) → G. Obviously, R is contained in Kerf̂ and so we get an induced group
homomorphism f̃ : K(V ) → G such that f̃ ◦ γ = f . The uniquness of f̃ follows
from the fact that if f̃ ◦ γ = 0, then f̃(x+R) = 0 for every x ∈ V and since the set
{x + R : x ∈ V } generates K(V ) we must have f̃ = 0. This universal property of
K(V ) and γ implies their uniqueness. �

The abelian group K(V ) is called the Grothendieck group of the semigroup V
and can be realized as follows. On V × V we consider the equivalence relation with
(x1, x2) ∼ (y1, y2) if and only if there exists some z ∈ V such that

z ⊕ x1 ⊕ y2 = z ⊕ y1 ⊕ x2.

On the quotient Ṽ = V × V/ ∼ we have a well defined addition + if we set

[x1, x2] + [a1, a2] = [x1 ⊕ a1, x2 ⊕ a2].

Note that [x, y] = [x, 0] + [0, y] and [0, b] + [b, 0] = [b, b] = [0, 0]. Thus, (Ṽ ,+)
is an abelian group with neutral element [0, 0]. Also, −[x, y] = [y, x] and every
[x, y] ∈ Ṽ has the expression [x, y] = [x, 0] − [y, 0]. The map γ : V → Ṽ defined
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by γ(x) = [x, 0] is obviously a semigroup homomorphism. We shall prove that it
has the universal property. Let G be an abelian group and let f : V → G be a
semigroup homomorphism. We define f̃ : Ṽ → G by f̃ [x, y] = f(x) − f(y). The
definition of f̃ is good, because if [x, y] = [a, b], there exists some z ∈ V such that
z⊕x⊕b = z⊕a⊕y and therefore f(x)−f(y) = f(a)−f(b), since G is a group. Also,
f̃(γ(x)) = f(x)− f(0) = f(x)− 0 = g(x), because f is a semigroup homomorphism.
Finally, f̃ is unique, because γ(V ) generates Ṽ . From the uniqueness of K(V )
follows now that K(V ) = Ṽ .

Applying Grothendieck’s Lemma, we get for every space M the abelian groups
K(M) = K(VectC(M)) and KO(M) = K(VectR(M)). We shall make K and KO
functors describing their effect on continuous and smooth maps.

Proposition 7.3.6. Let f : X → M be a continuous map of topological spaces.
To every vector bundle ξ = (E, p,M) over M correspond a vector bundle f∗ξ =
(f∗E, q,X) over X and a continuous map f̃ : f∗E → E which maps the fibres of
f∗ξ linearly isomorphically onto the fibres of ξ so that the pair (f̃ , f) is a vector
bundle morphism.

f∗E E

X M

f̃

q p

f

Moreover, f∗ξ is unique with these properties up to isomorphism of vector
bundles over X.

Proof. Let f∗E = {(x, v) ∈ X × E : f(x) = p(v)} and define the continuous
maps q : f∗E → X by q(x, v) = x and f̃ : f∗E → E by f̃(x, v) = v. Obviously,
p ◦ f̃ = f ◦ q. Moreover, if Γ(f) = {(x, f(x)) : x ∈ X} ⊂ X ×M is the graph of f ,
then q is precisely the composition

f∗E
id×p−→ Γ(f)

≈−→ X

and id × p|f∗E is a vector bundle map, because (X × E, id × p,X ×M) is a vector
bundle. This means that the triple (f∗E, q,X) is a vector bundle. By its definition,
f̃ maps the fibres of q linearly isomorphically onto the fibres of p.

In order to prove that the vector bundle f∗ξ = (f∗E, q,X) is unique with these
properties, suppose that ζ = (E′, q′,X) is another such bundle and continuous map
f̃ ′. We consider the continuous map F : E′ → f∗E defined by

F (u) = (q′(u), f̃ ′(u)).

From the definitions follows that q ◦ F = q′ and

F ((q′)−1(x)) = {(x, f̃ ′(u)) ∈ f∗E : q′(u) = x}

for every x ∈ X. Since f̃ ′ maps the fibres of q′ linearly isomorphically onto the
fibers of p, it follows from Lemma 7.1.2 that F is a vector bundle isomorphism of
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vector bundles over X. �

The vector bundle f∗ξ is called the induced (or pull-back) vector bundle of ξ by
f . It is clear from the proof that if ξ is a smooth vector bundle and f is a smooth
map, then f∗ξ is smooth as well. Also, the induced bundle of ξ by the identity map
is ξ itself and (f ◦ g)∗ξ ∼= g∗(f∗ξ)). If X ⊂ M and f : X → M is the inclusion,
then f∗ξ ∼= ξ|X . Finally, the pull-back preserves the direct sums. More precisely,
let ξ1 = (E1, p1,M) and ξ2 = (E2, p2,M) be two vector bundles over the same base
space M and let f : X →M be a continuous map. Then,

f∗E1 ⊕ f∗E2 = {(x, v1, x, v2) ∈ X × E1 ×X × E2 : p1(v1) = p2(v2) = f(x)}.

If q : f∗E1 ⊕ f∗E2 → X is the continuous map defined by q(x, v1, x, v2) = x and
f̃ : f∗E1 ⊕ f∗E2 → E1 ⊕E2 is defined by f̃(x, v1, x, v2) = (v1, v2), then p ◦ f̃ = f ◦ q
and f̃ maps the fibres of q linearly isomorphically onto the fibres of p.

f∗E1 ⊕ f∗E2 E1 ⊕ E2

X M

f̃

q p

f

The uniqueness now implies that f∗ξ1 ⊕ f∗ξ2 ∼= f∗(ξ1 ⊕ ξ2).

Thus, to every continuous map f : X → M corresponds a group homomor-
phism f∗ : K(M) → K(X) such that id∗M = idK(M) and (f ◦ g)∗ = g∗ ◦ f∗.
These mean that K is a contravariant functor from the topological category
to the category of abelian groups. In the rest of this section we shall show
that K is actually a homotopy functor (for paracompact spaces) with values in
the category of commutative rings with unity. Similar facts hold for the functor KO.

Lemma 7.3.7. If X is a paracompact space, then for every open cover U of X
there exists a countable open cover V of X consisting of open sets which are disjoint
unions of open sets each of which is contained in some element of U .

Proof. Let U be an open cover of X. SinceX is paracompact, there exists a partition
of unity {φU : U ∈ U} subordinated to U . For each finite set S ⊂ U we define

VS = {x ∈ X : φU (x) > φW (x) for all U ∈ S and W ∈ U \ S}.

Since for every x ∈ X the set {U ∈ U : φU (x) > 0} is finite, VS is an open set. Also,
VS ⊂ U for every U ∈ S, because x ∈ VS implies that φU (x) > 0 for U ∈ S. Let
now

Vn =
⋃

{VS : S ⊂ U and |S| = n}

for n ∈ N. This is a disjoint union of open sets. Finally, V = {Vn : n ∈ N} is an
open cover of X, because for every x ∈ X the set S = {U ∈ U : φU (x) > 0} is finite
and x ∈ VS . �
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Theorem 7.3.8. Let ξ = (E, p,M) be a vector bundle and f , g : X → M be two
continuous maps from a paracompact space X to M . If f ≃ g, then f∗ξ ∼= g∗ξ.

Proof. If H : [0, 1] × X → M is a homotopy with H(0, .) = f and H(1, .) = g,
then H∗ξ|{0}×X ∼= f∗ξ and H∗ξ|{1}×X ∼= g∗ξ. Thus, it suffices to prove that if
ξ = (E, p, [0, 1] × X) is a vector bundle over [0, 1] × X and X is a paracompact
space, then ξ|{0}×X ∼= ξ|{1}×X .

We observe that if for some 0 < c < 1 the restrictions ξ[0,c]×X and ξ[c,1]×X are
trivial, then ξ is trivial. Indeed, let E1 = p−1([0, c] ×X) and E2 = p−1([c, 1] ×X),
and suppose that h1 : E1 → [0, c] × X × Cn and h2 : E2 → [c, 1] × X × Cn are
vector bundles isomorphisms. Since h1 ◦ h−1

2 : {c} ×X × Cn → {c} ×X × Cn is an
isomorphism of trivial vector bundles over {c} ×X, there exists a continuous map
ρ : X → GL(n,C) such that

h1 ◦ h−1
2 (c, x, v) = (c, v, ρ(x)(v))

for every x ∈ X, v ∈ Cn. The map σ : [c, 1] ×X ×Cn → [c, 1] ×X ×Cn defined by
σ(t, x.v) = (t, v, ρ(x)(v)) is an isomorphism of trivial vector bundles over [c, 1] ×X
and so is σ ◦ h2 : E2 → [c, 1] × X × Cn. Since h1 and σ ◦ h2 coincide on E1 ∩ E2,
they fit together to a form an isomorphism from ξ to the trivial vector bundle over
[0, 1] ×X.

A second observation is that there exists an open cover of U of X such that
ξ|[0,1]×U is trivial for every U ∈ U . This follows easily from our first observation and
the compactness of [0, 1].

From Lemma 7.3.7 there exists a countable open cover V = {Vk : k ∈ N} of
X consisting of open sets which are disjoint unions of open sets each of which is
contained in some element of U . Thus, ξ|[0,1]×Vk is trivial for every k ∈ N. Let
{φk : k ∈ N} be a partition of unity subordinated to V. We set ψ0 = 0 and
ψk = φ1 + · · · + ψk, k ∈ N. Let Xk = {(ψk(x), x) : x ∈ X} ≈ X and ξk = ξ|Xk .
The homeomorphism ηk : Xk → Xk−1 defined by η(ψk(x), x) = (ψk−1(x), x) can
be lifted to a homeomorphism η̃k : p−1(Xk) → p−1(Xk−1) such that η̃k = id on
p−1(Xk) \ p−1([0, 1] × Vk) and

η̃k = h−1
k−1 ◦ (id× (ηk|Vk)) ◦ hk

on p−1([0, 1] × Vk ∩ Xk), where hk : p−1(Vk) → [0, 1] × Vk × Cn is a trivialization
of ξ over [0, 1] × Vk. So, η̃k takes each fiber of ξk linearly isomorphically onto the
corresponding fiber of ξk−1. Now the infinite composition η̃ = η̃1 ◦ η̃2 ◦ · · · is well
defined, because {suppφk : k ∈ N} is a locally finite closed cover of X, and is a
vector bundle isomorphism from ξ|{1}×X to ξ|{0}×X . �

Corollary 7.3.9. Every homotopy equivalence f : X → Y of paracompact spaces
induces an isomorphism f∗ : K(Y ) → K(X) and similarly for the KO groups.
In particular, every vector bundle over a contractible paracompact space is trivial. �

We shall now define a ring structure on K(M) for any space M using the tensor
product of vector bundles in the same way we used the direct sum to define the group
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structure. Let ξ1 = (E1, p1,M) and ξ2 = (E2, p2,M) be two complex (respectively
real) vector bundles over the same base space M . We define

E1 ⊗ E2 =
∐

x∈M
p−1
1 (x)⊗ p−1

2 (x)

where the tensor product is taken over C (respectively over R in the real case). On
E1⊗E2 one can define a topology and make it the total space of a vector bundle over
M . Indeed, let V , W ⊂ M be two open sets such that V ∩W 6= ∅ for which there
are trivializations hj : p

−1(V ) → V ×Cnj and gj : p−1(W ) →W ×Cnj , j = 1, 2, for
ξ1 and ξ2, respectively. There exist continuous functions Gj : V ∩W → GL(nj ,C)
such that

(gj ◦ h−1
j )(x, v) = (x,Gj(x)(v))

for j = 1, 2. Defining the map

h1 ⊗ h2 :
∐

x∈V
p−1
1 (x)⊗ p−1

2 (x) → V × (Cn1 ⊗ Cn2)

by the formula (h1 ⊗ h2)(v1 ⊗ v2) = (x, h1(v1)⊗ h2(v2)), for every v1 ∈ p−1
1 (x) and

v2 ∈ p−1
2 (x), we see that

((g1 ⊗ g2) ◦ (h1 ⊗ h2)
−1)(x, u1 ⊗ u2) = (x, (G1(x)⊗G2(x))(u1 ⊗ u2)).

Since G1(x) ⊗ G2(x) is a continuous function of x ∈ V ∩W , it is a standard fact
that there exists a unique topology on E1 ⊗E2 such that each set of the form

∐

x∈V
p−1
1 (x)⊗ p−1

2 (x)

as above is open and the maps like h1 ⊗ h2 are homeomorphisms. It is obvious
now that the triple ξ1 ⊗ ξ2 = (E1 ⊗ E2, q,M) is a vector bundle over M of rank
n1n2, where q is the canonical projection, and each map h1 ⊗ h2 as above is a local
trivialization. The vector bundle ξ1 ⊗ ξ2 is called the tensor product of the vector
bundles ξ1 and ξ2.

The basic properties of the tensor product of vector spaces carry over immedi-
ately to the case of vector bundles over a space M . So,

(i) if ξ1 ∼= ζ1 and ξ2 ∼= ζ2, then ξ1 ⊗ ξ2 ∼= ζ1 ⊗ ζ2.

(ii) ξ1 ⊗ ξ2 ∼= ξ2 ⊗ ξ1.

(iii) (ξ1 ⊗ ξ2)⊗ ξ3 ∼= ξ1 ⊗ (ξ2 ⊗ ξ3).

(iv) ξ ⊗ ǫ1 ∼= ξ.

(v) ξ ⊗ (ξ1 ⊕ ξ2) ∼= ξ ⊗ ξ1 ⊕ ξ ⊗ ξ2.

(vi) If f : X → M is a continuous map then f∗(ξ1 ⊗ ξ2) ∼= f∗ξ1 ⊗ f∗ξ2. This
follows from the uniqueness of the induced bundle.

The tensor product defines an associative commutative multiplication with unity
on VectC(M) and on VectR(M) which is compatible with the direct sum. From this
we get a commutative ring structure on K(M) and KO(M). More abstractly, let V
be an abelian semigroup on which we have a commutative associative multiplication
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with unity which is compatible with the addition. A multiplication on K(V ) can be
defined by putting

[a, b] · [x, y] = [ax, ay]− [bx, by]

for every [a, b], [x, y] ∈ K(V ). Indeed, if [a1, b1] = [a2, b2] and [x1, y1] = [x1, y2],
there exist c, d ∈ V such that c+a1+ b2 = c+a2+ b1 and d+x1+ y2 = d+x2+ y1.
Then, [a1x1, a1y1] = [a1x2, a1y2] and [b1x1, b1y1] = [b1x2, b1y2]. On the other hand,

(cx2 + cy2) + (a1 + b2)x2 + (a2 + b1)y2 = (cx2 + cy2) + (a2 + b1)x2 + (a1 + b2)y2

which means that [(a1 + b2)x2, (a1 + b2)y2] = [(a2 + b1)x2, (a2 + b1)y2]. This implies
that

[a1x1, a1y1]− [b1x1, b1y1] = [a1x2, a1y2]− [b1x2, b1y2] = [a2x2, a2y2]− [b2x2, b2y2].

In this way K(V ) turns into a commutative ring with unity, called the Grothendieck
ring of V . In particular for every space M we have the Grothendieck ring K(M) of
complex vector bundles over M and the Grothendieck ring KO(M) of real vector
bundles. The unity is represented by ǫ1 in both cases.

7.4 The classification of vector bundles

In this section we shall show that the functor VectC(M) is representable for paracom-
pact spaces by constructing an explicit classifying space. Although we present the
case of complex vector bundles, everything holds verbatim for the functor VectR(M)
also, replacing the unitary groups involved by orthogonal groups and the complex
Grassmannians by the real ones.

Let 1 ≤ k ≤ n be positive integers and let

Vk(C
n) = {(v1, ..., vk) ∈ (S2n+1)k : 〈vl, vj〉 = δlj , 1 ≤ l, j ≤ k}

be the space of all orthonormal k-frames in Cn, where 〈, 〉 denotes the usual hermitian
product on Cn. Obviously, Vk(Cn) is a compact space and there is a continuous
surjection ηnk : U(n) → Vk(Cn) defined by ηnk (A) = (Ae1, ..., Aek). We observe that
if A, B ∈ U(n), then ηnk (A) = ηnk (B) if and only if B−1A ∈ U(n − k), where we
consider the inclusion U(n− k) ⊂ U(n) so that each element of U(n− k) fixes e1,...,
ek in Cn. This implies that ηnk induces a homeomorphism

η̃nk :
U(n)

U(n− k)
≈ Vk(C

n).

The inclusion SU(n) →֒ U(n) induces a continuous injection of the homogeneous
space SU(n)/SU(n−k) into U(n)/U(n−k) which is moreover a surjection, because
for every A ∈ U(n) there exists B ∈ SU(n) such that B−1A ∈ U(n− k). Thus,

SU(n)

SU(n− k)
≈ U(n)

U(n− k)
≈ Vk(C

n).

The homogeneous space Vk(Cn) is called the Stiefel manifold of orthonormal k-
frames in Cn.
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Each element of Vk(Cn) generates a k-dimensional vector subspace of Cn. Let
Gk(Cn) be the space of all k-dimensional vector subspaces of Cn endowed with the
quotient topology with respect to the natural surjection q : Vk(Cn) → Gk(Cn). The
group U(k) acts smoothly on Vk(Cn) from the right and Gk(Cn) is the orbit space
of the action. Here we consider U(k) embedded in U(n) so that each element of
U(k) fixes ek+1,...,en in Cn. The right action of U(k) on Vk(Cn) is defined by

(v1, ..., vk)A =

( k∑

l=1

al1vl, ...,
k∑

l=1

alkvl

)
,

for A = (alj)1≤l,j≤n ∈ U(k) ⊂ U(n), where alj = δlj , 1 ≤ l ≤ n, k + 1 ≤ j ≤ n.
If A, B ∈ U(n), then the orthonormal k-frames (Ae1, ..., Aek) and (Be1, ..., Bek)

generate the same vector subspace of Cn if and only if there exists C ∈ U(k) ⊂ U(n)
such that Aej = BCej for 1 ≤ j ≤ k. Thus, (B−1A)({0} × Cn−k) = {0} × Cn−k,
because {0} × Cn−k = (Ck × {0})⊥. If D ∈ U(n − k) is defined by Dej = ej for
1 ≤ j ≤ k and Dej = (B−1A)ej for k + 1 ≤ j ≤ n, then B−1A = CD ∈ U(k). This
implies that the q ◦ η̃nk induces a homeomorphism

U(n)

U(k)× U(n− k)
≈ Gk(C

n).

The homogeneous space Gk(Cn) is called the Grassmann manifold of k-dimensional
vector subspaces of Cn. Note that Gk(Cn) ≈ Gn−k(Cn) and G1(Cn) = CPn−1.

Now we consider the standard inclusions C ⊂ C2 ⊂ C3 ⊂ · · · and the union

C∞ =

∞⋃

n=0

Cn = lim
→

Cn, which is the vector space of all sequences of complex num-

bers with only a finite number of non-zero terms. The hermitian product extends
to C∞. Also, C∞ becomes a topological space equipped with the weak topology.
Correspondingly, we get a sequence of inclusions

Vk(C
k) ⊂ Vk(C

k+1) ⊂ · · · ⊂ Vk(C
n) · · ·

and the space Vk(C
∞) =

∞⋃

n=k

Vk(C
n) equipped with the weak topology.

Similarly, we construct the infinite Grassmannian Gk(C
∞) =

∞⋃

n=k

Gk(C
n) en-

dowed with the weak topology. In particular we have an infinite complex projective

space CP∞ = G1(C∞) =
∞⋃

n=1

CPn.

There is a canonical smooth vector bundle γkn of rank k over Gk(Cn) with total
space

E(γkn) = {(V, z) ∈ Gk(Cn)× Cn : z ∈ V }.
The bundle map pn,k : E(γkn) → Gk(Cn) is the restriction to E(γkn) of the projection
onto the first factor. Since p−1

n,k(V ) = {V } × V for every V ∈ Gk(Cn), the vector

bundle γkn = (E(γkn), pn,k, Gk(C
n)) is called the tautological bundle over Gk(Cn). It

is a generalization of Example 7.1.3. In the sequel we shall prove that γkn is indeed
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a smooth vector bundle.

Lemma 7.4.1. Suppose that (v1, v2, ..., vk), (v
′
1, v

′
2, ..., v

′
k) ∈ Vk(Cn) are such that

q(v1, v2, ..., vk) = q(v′1, v
′
2, ..., v

′
k). Then

k∑

j=1

〈z, vj〉vj =
k∑

j=1

〈z, v′j〉v′j

for every z ∈ Cn.

Proof. There exists some A = (alj)1≤l,j≤k ∈ U(k) such that (v1, v2, ..., vk)A =
(v′1, v

′
2, ..., v

′
k). This means that

v′j =
k∑

l=1

aljvl

for every 1 ≤ j ≤ k. Therefore,

k∑

j=1

〈z, v′j〉v′j =
k∑

j,l,r=1

āljarj〈z, vl〉vr =
k∑

r,l=1

( k∑

j=1

āljarj

)
〈z, vl〉vr =

k∑

l=1

〈z, vl〉vl

because A
T
= A−1. �

The preceding Lemma 7.4.1 implies that there is a well-defined smooth map
h : Gk(Cn)× Cn → Cn with

h(q(v1, v2, ..., vk), z) =

k∑

j=1

〈z, vj〉vj

which is the projection of the vector z ∈ Cn on the vector subspace of Cn spanned
by the orthonormal k-frame (v1, v2, ..., vk).

Also the smooth symmetric function σ : Gk(Cn)×Gk(Cn) → R with

σ((q(v1, v2, ..., vk), (q(v
′
1, v

′
2, ..., v

′
k)) = |det(〈vl, v′j〉)1≤l,j≤k|

is well-defined, because if A, B ∈ U(k) and (v1, v2, ..., vk)A = (u1, u2, ..., uk) and
(v′1, v

′
2, ..., v

′
k)B = (u′1, u

′
2, ..., u

′
k), then

|det(〈ul, u′j〉)1≤l,j≤k| = |det(AT · (〈vl, v′j〉)1≤l,j≤k · B)| = |det(〈vl, v′j〉)1≤l,j≤k|.

It is obvious that σ((q(v1, v2, ..., vk), (q(v
′
1, v

′
2, ..., v

′
k)) > 0 if and only if

h(q(v′1, v
′
2, ..., v

′
k), vj), 1 ≤ j ≤ k, are linearly independent and form a basis of

q(v′1, v
′
2, ..., v

′
k), because the entries of the l row of the matrix (〈vl, v′j〉)1≤l,j≤k are the

coordinates of the orthogonal projection of vl on q(v
′
1, v

′
2, ..., v

′
k) with respect to its

ordered basis (v′1, v
′
2, ..., v

′
k). In this case, h(q(v′1, v

′
2, ..., v

′
k), .) maps q(v1, v2, ..., vk)

linearly isomorphically onto q(v′1, v
′
2, ..., v

′
k).
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For every q(v1, v2, ..., vk) ∈ Gk(Cn) the set

Uq(v1,v2,...,vk) = {q(v′1, v′2, ..., v′k) ∈ Gk(C
n) : σ((q(v1, v2, ..., vk), (q(v

′
1, v

′
2, ..., v

′
k)) > 0}

is an open neighbourhood of q(v1, v2, ..., vk) and

Gk(C
n) =

⋃
{UCΓ : Γ ⊂ {1, 2, ..., n} with |Γ| = k},

where CΓ = ⊕j∈ΓCej .
For each Γ ⊂ {1, 2, ..., n} with |Γ| = k let jΓ : Ck → CΓ be the linear isomorphism

which sends e1 ∈ Ck to ej(1) ∈ Cn, where j(1) = minΓ and so on taking into account

the ordering of Γ. The map φΓ : UCΓ × Ck → p−1(UCΓ) defined by

φΓ(V, z) = (V, h(V, jΓ(z)))

is a diffeomorphism which maps {V } × Ck linearly isomorphically onto the fibre
p−1
n,k(V ) from the above remarks concerning h. This shows that the triple γkn =

(E(γkn), pn,k, Gk(C
n)) is a smooth complex vector bundle of rank k.

In the same way we have a tautological complex vector bundle of rank k
γk∞ = (E(γk∞), pn,k, Gk(C∞)) over Gk(C∞), whose restriction to each Gk(Cn)) is
γkn.

Definition 7.4.2. Let ξ = (E, p,M) be a complex vector bundle of rank k. A
Gauss map of ξ is a continuous map g : E → Cn for some k ≤ n ≤ ∞ such that
g|p−1(x) : p

−1(x) → Cn is a linear monomorphism for every x ∈M .

For example, the restriction of the projection onto the second factor to E(γkn),
that is the map g : E(γkn) → Cn with g(V, z) = z, is a Gauss map of the tautological
bundle γkn.

If a complex vector bundle ξ = (E, p,M) of rank k admits a continuous Gauss
map g : E → Cn, then there are two continuous maps f : M → Gk(Cn) with
f(x) = g(Ex) and f̃ : E → E(γnk ) with f̃(v) = (f(p(v), g(v)) such that the following
diagram commutes.

E E(γkn)

M Gk(Cn)

f̃

p pn,k

f

Thus, the pair (f, f̃) is a vector bundle morphism, whose restriction on each
fibre is a linear isomorphism. It follows from Proposition 7.3.6 that ξ ∼= f∗γkn.
Conversely, if we start from a vector bundle morphism (f, f̃) which is a linear
isomorphism on fibres so that the above diagram commutes, then pr ◦ f̃ : E → Cn

is a Gauss map of ξ. This shows that a complex vector bundle ξ = (E, p,M) of
rank k admits a Gauss map g : E → Cn for some k ≤ n ≤ ∞ if and only if there
exists a continuous map f :M → Gk(Cn) such that ξ ∼= f∗γkn.
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Theorem 7.4.3. Every complex vector bundle ξ = (E, p,M) of rank k over a
paracompact space M admits a continuous Gauss map g : E → C∞. Moreover, if
there exists a finite open cover {U1, ..., Un} of M such that ξ|Uj is trivial for all

1 ≤ j ≤ n, then there exists a continuous Gauss map g : E → Ckn of ξ.

Proof. Since M is assumed to be paracompact, there exists a countable open cover
{Uj : j ∈ N} of M such that ξ|Uj is trivial for every j ∈ N, by Lemma 7.3.7. Let

φj : p
−1(Uj) → Uj × Ck be a trivialization of ξ|Uj . Then pr ◦ φj : p−1(Uj) → Ck is

a Gauss map for ξ|Uj , where pr : Uj × Ck → Ck is the projection onto the second
factor. Let {fj : j ∈ N} be a partition of unity subordinated to the open cover
{Uj : j ∈ N} and for each j ∈ N let gj : E → Ck be the continuous map defined by

gj(v) =

{
0, if v ∈ E \ p−1(Uj),

fj(p(v)) · pr(φj(v)), if x ∈ p−1(Uj).

The map

g =
∑

j∈N
gj : E →

⊕

j∈N
Ck = C∞

is now continuous. Since each gj maps Ex linearly isomorphically onto Ck for
fj(x) > 0 and the images of different gj ’s belong to different factors of the direct
sum, it follows that g|Ex is a linear monomorphism for every x ∈ M . Hence g is a
continuous Gauss map of ξ. The second assertion is now obvious, because in this
case we begin with the finite open cover {U1, ..., Un} and the direct sum is finite. �

Corollary 7.4.4. For every complex vector bundle ξ = (E, p,M) of rank k over a
paracompact space M there exists a continuous map f : M → Gk(C∞) such that
ξ ∼= f∗γk∞. If M is compact, there exists a continuous map f : M → Gk(Cn) for
some large enough n ∈ N such that ξ ∼= f∗γkn. �

Actually, the second part of Corollary 7.4.4 holds under the more general as-
sumption that the base space M is paracompact and has finite covering topological
dimension since any vector bundle over such a space is of finite type.

Corollary 7.4.5. If M is a paracompact space of finite covering dimension and ξ
is a complex vector bundle over M , then there exists some n ∈ N and a continuous
map f : M → Gk(Cn) such that ξ ∼= f∗γkn. In particular this holds in case M is a
topological manifold. The same is true for real vector bundles if we replace Gk(Cn)
with the real Grassmann manifold Gk(Rn). �

The continuous map f in Corollary 7.4.4 is not unique, but its homotopy class
is, as we shall prove shortly. We set

Cev = {(zn)n≥0 ∈ C∞ : z2m+1 = 0 for all m ∈ Z+},

Codd = {(zn)n≥0 ∈ C∞ : z2m = 0 for all m ∈ Z+}
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and consider the homotopies gev, godd : [0, 1] × C∞ → C∞ defined by

gevt (z0, z1, z2, ...) = (1− t) · (z0, z1, z2, ...) + t(z0, 0, z1, 0, z2, ...),

goddt (z0, z1, z2, ...) = (1− t) · (z0, z1, z2, ...) + t(0, z0, 0, z1, 0, ...).

The continuous map gev1 ◦ pr|E(γkn)
: E(γkn) → C2n is a Gauss map of γkn from which

we get a vector bundle morphism (f ev, f̃ ev) from γkn to γk2n. Similarly, we get a
vector bundle morphism (f odd, f̃ odd) from γkn to γk2n for every 1 ≤ n ≤ ∞. Since
f ev and f odd are induced by gev1 and godd1 , the homotopies gev and godd induce
homotopies of f ev and f odd with the canonical inclusion j : Gk(Cn) → Gk(C2n),
because gevt (Cn) ⊂ C2n, goddt (Cn) ⊂ C2n and in particular gev1 (Cn) = C2n ∩ Cev and
godd1 (Cn) = C2n ∩ Codd.

Proposition 7.4.6. Let 1 ≤ n ≤ ∞, k ∈ N and M be a topological space. Let f0,
f1 :M → Gk(Cn) be two continuous maps such that f∗0γ

k
n
∼= f∗1γ

k
n as vector bundles

over M . Then, j ◦ f0 ≃ j ◦ f1, where j : Gk(Cn) → Gk(C2n) is the canonical
inclusion.

Proof. The hypothesis says that there exists a complex vector bundle ξ = (E, p,M)
and two vector bundle morphisms (f0, f̃0) and (f1, f̃1) from ξ to γkn, which are linear
isomorphisms of fibres. As before we get two continuous Gauss maps g0, g1 : E → Cn

of ξ as well as two vector bundle morphisms (f ev ◦ f0, f̃ ev ◦ f̃0), (f odd ◦ f1, f̃ odd ◦ f̃1)
to γk2n and corresponding Gauss maps gev ◦ g0 : E → C2n, godd ◦ g1 : E → C2n. The
continuous map h : [0, 1] × E → C2n defined by

h(t, v) = (1− t) · gev1 (g0(v)) + tgodd1 (g1(v))

is now a Gauss map of the vector bundle 1 × ξ = ([0, 1] × E, id × p, [0, 1] × M)
from which we get a vector bundle morphism (H, H̃) from 1 × ξ to γk2n. The
map H : [0, 1] × M → Gk(C2n) is a homotopy from f ev ◦ f0 to f odd ◦ f1. Since
f ev ◦ f0 ≃ j ◦ f0 and f odd ◦ f1 ≃ j ◦ f1, it follows that j ◦ f0 ≃ j ◦ f1. �

Combining the above with Theorem 7.3.8 we get a natural one-to-one correspon-
dence of the set of isomorphism classes of complex vector bundles of rank k over
a paracompact space M onto the set of homotopy classes of maps [M,Gk(C∞)].
To every homotopy class [f ] ∈ [M,Gk(C∞)] corresponds (the isomorphism class of)
f∗γk∞. Thus, the problem of the classification of complex vector bundles of rank k
over a paracompact spaceM is equivalent to the calculation of the set [M,Gk(C∞)].

Let H be a contravariant functor on a category of spaces and continuous maps
with values in the category of commutative semigroups. A characteristic class of
complex vector bundles with values in H is a natural transformation Φ from the
functor VectC to H. If for each space M in the category of spaces we consider the
image of ΦM : VectC(M) → H(M) is contained in a subgroup of H(M), then Φ
factors through the functor K. In this case we say that the characteristic class is
stable. Let R be a commutative ring with unity. If Φ is a natural transformation
from the functor K to the (singular) cohomology functor H∗(−;R) with coefficients
in R, then to every continuous map of paracmpact spaces f : M → N corresponds
the commutative diagram
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K(N) H∗(N ;R)

K(M) H∗(M ;R)

ΦN

f∗ f∗

ΦM

If c = ΦGk(C∞)(γ
k
∞) ∈ H∗(Gk(C∞);R), then for every complex vector bundle ξ of

rank k over the paracompact space M there is a continuous map f :M → Gk(C∞)
such that ξ ∼= f∗γk∞ and ΦM(ξ) = f∗(c).

7.5 Operations with vector bundles and their sections

In this section we shall describe some useful constructions using vector bundles and
their sections, which are analogous to the ones in the category of finite dimensional
vector spaces.

As for vector spaces, to every vector bundle ξ = (E, p,M) over a space M
corresponds its dual vector bundle ξ∗ = (E∗, p∗,M) over M which is defined in an
analogous way as the cotangent bundle of a smooth manifold. Its total space is the
disjoint union

E∗ =
∐

x∈M
(p−1(x))∗

with the obvious topology.

Recall that if V is a finite dimensional vector space then choosing a basis of V
we have a linear isomorphism V ∼= V ∗, but the isomorphism is not natural as it
depends on the initial choice of the basis. If V is real and carries an inner product
〈, 〉, then the map which sends v ∈ V to 〈., v〉 is a natural linear isomorphism of V
to its dual V ∗. Since every vector bundle over a paracompact space admits an inner
product, it follows that if ξ is a real vector bundle over a paracompact space, then
ξ ∼= ξ∗.

To every finite dimensional complex vector space V corresponds its conjugate
V with the same additive structure and exterior multiplication sending λ ∈ C and
v ∈ V to λv. If 〈, 〉 is a hermitian inner product on V , then the map which sends
v ∈ V to 〈., v〉 ∈ V ∗ is a linear isomorphism V ∼= V ∗. To every complex vector
bundle ξ = (E, p,M) corresponds its conjugate vector bundle ξ in the obvious way
and if the base space M is paracompact, then ξ ∼= ξ∗.

In any case V is naturally isomorphic to V ∗∗ and therefore ξ ∼= ξ∗∗ for any vector
bundle ξ.

Let now V and W be two finite dimensional vector spaces (both complex or
real). The linear map µ : V ∗ ⊗W → Hom(V,W ) defined by

µ(a⊗ w)(v) = a(v)w

for every a ∈ V ∗, w ∈W and v ∈ V , is an isomorphism. This carries over to vector
bundles. If ξ1 = (E1, p1,M) and ξ2 = (E2, p2,M) are two vector bundles over the
same base space M , there is a vector bundle Hom(ξ1, ξ2) and

ξ∗1 ⊗ ξ2 ∼= Hom(ξ1, ξ2).
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If ξ = (E, p,M) is a real vector bundle, the complex vector bundle ξC = ξ⊗R ǫ
1
C

is called the complexification of ξ, where ǫ1C is the trivial complex line bundle over
M . On the other hand, every complex vector bundle ζ of rank n can be considered
as a real vector bundle of rank 2n denoted by ζR. Now we have

(ξC)R ∼= ξ ⊗R (ǫ1R ⊕ ǫ1R)
∼= ξ ⊗R ǫ

1
R ⊕ ξ ⊗R ǫ

1
R
∼= ξ ⊕ ξ.

For the converse we have the following.

Lemma 7.5.1. (i) If V is a complex vector space then V ⊗RC ∼= V ⊕V as complex
vector spaces.

(ii) If ξ = (E, p,M) is a complex vector bundle over a paracompact space M ,
then (ξR)C ∼= ξ ⊕ ξ∗.

Proof. Since the exterior multiplication on V ⊗RC is defined by λ(v⊗Rz) = v⊗R(λz)
for v ∈ V and λ, z ∈ C, the formula

φ(v ⊗R z) = (zv, zv)

defines a C-linear isomorphism V ⊗R C ∼= V ⊕ V . This proves (i) and (ii) follows
from this choosing a hermitian inner product on ξ. �

In the rest of this section we shall describe the spaces of smooth sections of
the vector bundles defined above corresponding to a given smooth vector bundle
ξ = (E, p,M) of rank n over a smooth manifold M . The vector space Ω0(ξ) of
the smooth sections of ξ is a C∞(M)-module. From Corollary 7.3.4 there exists a
smooth vector bundle ξ̃ overM of some rankm such that ξ⊕ ξ̃ ∼= ǫn+m and therefore

Ω0(ξ)⊕ Ω0(ξ̃) ∼= Ω0(ξ ⊕ ξ̃) ∼= Ω0(ǫn+m).

Since Ω0(ǫn+m) is a finitely generated free C∞(M)-module, we conclude that Ω0(ξ)
is a finitely generated projective C∞(M)-module.

We shall need the following algebraic lemma.

Lemma 7.5.2. Let R be a commutative ring with unity, A a projective R-module
and B a finitely generated R-module. Then,

HomR(A,R)⊗R B ∼= HomR(A,B).

Proof. Let µ : HomR(A,R) ⊗R B → HomR(A,B) be the natural homomorphism
defined by µ(f ⊗ b)(a) = f(a)b. If B = R or a finitely generated free R-module,
then µ is an isomorphism. If B is a finitely generated R-module, there is a short
exact sequence of R-modules

0 → K → F → B → 0

where K and F are free and finitely generated. Since µ is natural, we get the
following commutative diagram
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HomR(A,R)⊗R K HomR(A,R) ⊗R F HomR(A,R)⊗R B 0

HomR(A,K) HomR(A,F ) HomR(A,B) 0

µ µ

in which the rows are exact, because A is assumed to be projective and therefore
HomR(A, .) is an exact functor. The assertion follows now from the five lemma. �

The previous Lemma 7.5.2 is a special case of the more general statement

HomR(A,G) ⊗R B ∼= HomR(A,G⊗R B)

which holds under the same assumptions on A and B for every R-module G. The
isomorphism now is given by µ(f ⊗ b)(a) = f(a)⊗ b and the proof is essentially the
same.

Theorem 7.5.3. If ξ1 = (E1, p1,M) and ξ2 = (E2, p2,M) are two smooth vector
bundles over the same smooth manifold M then the following hold.

(i) Ω0(Hom(ξ1, ξ2)) ∼= HomC∞(M)(Ω
0(ξ1),Ω

0(ξ2)).

(ii) Ω0(ξ1 ⊗ ξ2) ∼= Ω0(ξ1)⊗C∞(M) Ω
0(ξ2).

(iii) Ω0(ξ∗1) ∼= HomC∞(M)(Ω
0(ξ1), C

∞(M)).

Proof. Let
F : Ω0(Hom(ξ1, ξ2)) → HomC∞(M)(Ω

0(ξ1),Ω
0(ξ2))

be the C∞(M)-linear map defined by F (φ̂)(s)(x) = φ̂(x)(s(x)), for every x ∈ M
and φ̂ ∈ Ω0(Hom(ξ1, ξ2)), s ∈ Ω0(ξ1).

First, we observe that F is injective, because if F (φ̂) = 0, then for every x ∈M
and v ∈ p−1

1 (x) there exists sv ∈ Ω0(ξ1) with sv(x) = v and therefore φ̂(x)(v) =

F (φ̂)(s)(x) = 0.
In order to prove that F is onto let φ ∈ HomC∞(M)(Ω

0(ξ1),Ω
0(ξ2)). In the

beginning we shall show that if s ∈ Ω0(ξ1) and x ∈ M are such that s(x) = 0,
then φ(s)(x) = 0. Let s1, s2,..., sn1 ∈ Ω0(ξ1) be a local frame of ξ1 on some open
neighbourhood U of x. Then

s|U =

n1∑

j=1

fjsj

for some fj ∈ C∞(U), 1 ≤ j ≤ n1. Let g ∈ C∞(M) be such that g(x) = 1 and
suppg ⊂ U . Then,

φ(s) = φ((1− g)s + sg) = (1− g)φ(s) + φ(gs)

and

g(s|U ) =
n1∑

j=1

(gfj)sj.
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Now each gfj can be extended to a smooth function f̃j ∈ C∞(M) by setting it zero
outside U . Thus,

φ(gs) =

n1∑

j=1

f̃jφ(sj) ∈ Ω0(ξ2)

and φ(s)(x) = φ(gs)(x) = 0.
We define now φ̂ setting φ̂(x)(v) = φ(sv)(x), for every x ∈M , where sv ∈ Ω0(ξ1)

is any with sv(x) = v. From the above, φ is well defined and obviously F (φ̂) = φ.
This concludes the proof of (i), while (iii) follows as a special case by taking ξ2 = ǫ1.

The proof of (ii) is the following chain of isomorphisms

Ω0(ξ1 ⊗ ξ2) ∼= Ω0(Hom(ξ∗1 , ξ2))

∼= HomC∞(M)(Ω
0(ξ∗1),Ω

0(ξ2))

∼= HomC∞(M)(HomC∞(M)(Ω
0(ξ1)C

∞(M)),Ω0(ξ2))

∼= Ω0(ξ1)⊗C∞(M) Ω
0(ξ2)

where the last isomorphism is given by Lemma 7.5.2. �



Chapter 8

Characteristic classes

8.1 Connections on vector bundles

Let ξ = (E, p,M) be a smooth vector bundle of rank n over a smooth manifold M .
A (linear) connection on ξ is a linear map

∇ : Ω0(ξ) → A1(M)⊗C∞(M) Ω
0(ξ)

with the additional property (Leibniz formula)

∇(fs) = df ⊗ s+ f∇s

for every f ∈ C∞(M) and s ∈ Ω0(ξ), where A1(M) denotes the space of differential
1-forms of M . If ξ is real then linear means R-linear. If ξ is a smooth complex
vector bundle, a connection on ξ is a C-linear map

∇ : Ω0(ξ) → A1(M ;C)⊗C∞(M ;C) Ω
0(ξ)

satisfying the Leibniz formula for all f ∈ C∞(M ;C). We will write Ak(M) and
C∞(M) in both cases, as the meaning will usually be clear from the context.

Since A1(M) = Ω0(T ∗M) and A1(M ;C) = Ω0((T ∗M)C), from Theorem 7.5.3
we have

A1(M)⊗C∞(M) Ω
0(ξ) ∼= Ω0(T ∗M ⊗ ξ)

∼= Ω0(Hom(TM, ξ)) ∼= HomC∞(M)(Ω
0(TM),Ω0(ξ)).

So a connection on ξ is a map ∇ : Ω0(ξ) × Ω0(TM) → Ω0(ξ) which is linear with
respect to the factor Ω0(ξ), is C∞(M)-linear with respect to the factor Ω0(TM) =
X (M) and if we write ∇X = ∇(.,X), then

∇X(fs) = f∇Xs+ (Xf)s

for every X ∈ Ω0(TM), s ∈ Ω0(ξ) and f ∈ C∞(M). In other words a connection
on a smooth vector bundle ξ is a way to differentiate smooth sections of ξ in the
directions of smooth vector fields of M and it generalizes the Definition 3.1.1, which
gives the notion of a connection on TM .

195
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From the above isomorphisms a connection can be thought of as a linear map
∇ : Ω0(ξ) → Ω0(Hom(TM, ξ)), and so the value (∇Xs)(x) ∈ Ex = p−1(x) depends
only of the vector X(x) ∈ TxM and the values of s on an open neighbourhood of
x ∈ M , because if s|U = 0 and U ⊂ M is an open neighbourhood of x, there exists
some f ∈ C∞(M) such that f(x) = 1 and suppf ⊂ U , and therefore f · s = 0 on
M , which gives

0 = ∇X(fs)(x) = f(x)(∇Xs)(x) + (Xf)(x)s(x) = (∇Xs)(x).

Thus, a connection can be localized to ξ|U for every open set U ⊂M .

Let U ⊂M be an open set over which ξ is trivial and let {e1, ..., en} be a smooth
local frame of ξ on U . Every element of A1(U)⊗C∞(U) Ω

0(ξ|U ) can be written in a
unique way as

n∑

j=1

aj ⊗ ej

for some aj ∈ C∞(U), 1 ≤ j ≤ n. Therefore,

∇ek =
n∑

j=1

Ajk ⊗ ej

where A = (Ajk) is a n×n matrix of differential 1-forms on U , called the connection
form with respect to the frame {e1, ..., en}. Conversely, for any n × n matrix of
smooth 1-forms on U and any smooth frame {e1, ..., en} of ξ|U one can define a
connection on ξ|U by setting

∇(
n∑

k=1

fkek) =
n∑

k=1

dfk ⊗ ek +
n∑

k,j=1

fkAjk ⊗ ej

for every f1,..., fn ∈ C∞(M).

Example 8.1.1. If ξ = (E, p,M) is a smooth vector bundle of rank n on a smooth
manifold M , there exists a smooth vector bundle ξ̃ of some rank k such that ξ⊕ ξ̃ ∼=
ǫn+k. Let f : E →M×Cn+k be the inclusion and g :M×Cn+k → E the projection.
Let ∇0 be the connection on ǫn+k with zero connection form. Equivalently, ∇0 =
d⊕ · · · ⊕ d, since Ω0(ǫn+k) ∼= C∞(M)⊕ · · ·C∞(M) n+ k times and therefore

A1(M)⊗C∞(M) Ω
0(ǫn+k) ∼= A1(M)⊕ · · · ⊕A1(M)

We have C∞(M)-linear maps f∗ : Ω0(ξ) → Ω0(ǫn+k) and g∗ : Ω0(ǫn+k) → Ω0(ξ)
and the composition ∇ = (id ⊗ g∗) ◦ ∇0 ◦ f∗

Ω0(ξ)
f∗−→Ω0(ǫn+k)

∇0−→A1(M)⊗C∞(M) Ω
0(ǫn+k)

id⊗g∗−→A1(M)⊗C∞(M) Ω
0(ξ)

is a connection on ξ. Thus, every (complex or real) smooth vector bundle over a
smooth manifold admits at least one connection.
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In the sequel we denote Ωk(ξ) = Ak(M) ⊗C∞(M) Ω
0(ξ) for every k ∈ Z+ and

every smooth vector bundle ξ = (E, p,M).
If ξ1 = (E1, p1,M) and ξ1 = (E2, p2,M) be two smooth vector bundles over the

same smooth manifold M . We define the C∞(M)-bilinear form

Ωk(ξ1)⊗C∞(M) Ω
l(ξ2)

∧−→Ωk+l(ξ1 ⊗ ξ2) ∼= Ak+l(M)) ⊗C∞(M) (Ω
0(ξ1)⊗C∞(M) Ω

0(ξ2))

which sends (ω ⊗ s) ⊗ (θ ⊗ t) to (ω ∧ θ) ⊗ (s ⊗ t), where ω ∧ θ is the usual wedge
product of differential forms on M .

Since Ω0(ǫ1R)
∼= C∞(M) and Ωk(ǫ1R)

∼= Ak(M), taking ξ1 = ǫ1R and k = 0 the
above bilinear form gives just the C∞(M)-module structure of Ωl(ξ2) for a real
vector bundle ξ2. Similarly, Ω0(ǫ1C)

∼= C∞(M ;C) and Ωk(ǫ1C)
∼= Ak(M ;C), the

C-valued smooth k-forms on M . Moreover, if ξ2 is a complex vector bundle, for
ω ∈ Ak(M ;C) and s ∈ Ω0(ξ2) we have ω ∧ s = ω ⊗ s, which means that

Ak(M ;C)⊗C∞(M ;C) Ω
0(ξ2)

∧−→ Ωk(ξ2) ∼= Ak(M ;C)⊗C∞(M ;C) Ω
0(ξ2)

is the identity map. analogously, in case ξ2 is real.
Obviously, 1 ∧ s = s and (ω ∧ θ) ∧ s = ω ∧ (θ ∧ s) for every ω ∈ Ak(M),

θ ∈ Al(M) and s ∈ Ωj(ξ2).

Lemma 8.1.2. If ∇ is a connection on the smooth vector bundle ξ = (E, p,M),
then there exists a linear map d∇ : Ωk(ξ) → Ωk+1(ξ) for k ∈ Z+ such that

(i) d∇ = ∇ : Ω0(ξ) → Ω1(ξ) for k = 0 and
(ii) d∇(ω ∧ s) = dω ∧ s+ (−1)kω ∧ d∇s for every ω ∈ Ak(M) and s ∈ Ωl(ξ) and

k, l ∈ Z+.

Proof. For every ω ∈ Ak(M) and s ∈ Ω0(ξ) we put

d∇(ω ⊗ s) = dω ∧ s+ (−1)kω ∧ (∇s)

and observe that d∇ is well defined on Ωk(ξ), because

d∇(ω ⊗ (fs)) = fdω ∧ s+ (−1)kω ∧ (df ⊗ s+ f∇s)

= fdω ∧ s+ (−1)kω ∧ fω ∧ ∇s+ (df ∧ ω) ∧ s = d∇((fω)⊗ s)

for every f ∈ C∞(M). Since dω ∧ s = dω ⊗ s, we have (i).
To prove (ii) suppose that s = θ ⊗ t, where θ ∈ Al(M) and t ∈ Ω0(ξ). Then,

d∇(ω ∧ s) = d∇(ω ∧ (θ ⊗ t)) = d∇((ω ∧ θ)⊗ t)

= d(ω ∧ θ)⊗ t+ (−1)k+l(ω ∧ θ) ∧ (∇t)
= (dω ∧ θ + (−1)kω ∧ θ)⊗ t+ (−1)k+l(ω ∧ θ) ∧ (∇t)
= dω ∧ (θ ⊗ t) + (−1)kω ∧ [dθ ⊗ t+ (−1)lθ ∧ (∇t)]

= dω ∧ (θ ⊗ t) + (−1)kω ∧ d∇(θ ⊗ t)

= dω ∧ s+ (−1)kω ∧ d∇s. �
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Thus, for every connection on a smooth vector bundle ξ = (E, p,M) we get the
sequence of linear maps

0−→Ω0(ξ)
∇−→Ω1(ξ)

d∇−→Ω2(ξ)
d∇−→· · ·

In the particular space ξ = ǫ1, it coincides with the de Rham complex of M . How-
ever, as we shall see, this is not a cochain complex in general. In any case, the map
F∇ = d∇ ◦ ∇ : Ω0(ξ) → Ω2(ξ) is C∞(M)-linear. Indeed, for every f ∈ C∞(M) and
s ∈ Ω0(ξ) we have

d∇(∇(fs)) = d∇(df ⊗ s+ f∇s) = d∇(df ∧ s+ f ∧ ∇s)

= d(df) ∧ s− df ∧ (∇s) + df ∧ (∇s) + fd∇(∇s) = fd∇(∇s)).

On the other hand, from Theorem 7.5.3 we have

HomC∞(M)(Ω
0(ξ),Ω2(ξ)) ∼= HomC∞(M)(Ω

0(ξ),Ω0(ξ))⊗C∞(M) A
2(M)

∼= Ω0(Hom(ξ, ξ))⊗C∞(M) A
2(M) = Ω2(Hom(ξ, ξ)).

Thus, F∇ is a differential 2-form with values in Hom(ξ, ξ) which is called the cur-
vature form of ∇. For every X, Y ∈ Ω0(TM) the evaluation at (X,Y ) induces
a C∞(M)-linear map from Ω2(Hom(ξ, ξ)) to Ω0(Hom(ξ, ξ)) which sends F∇ to an
element F∇

X,Y . Because of the C∞(M)-linearity, for every x ∈M the value F∇
X,Y (x)

depends only on the values X(x) and Y (x). For every ω ∈ A1(M) and s ∈ Ω0(ξ)
we have

d∇(ω ⊗ s) = dω ⊗ s− ω ∧ ∇s

and therefore

d∇(ω ⊗ s)(X,Y ) = [Xω(Y )− Y ω(X) − ω([X,Y ])] · s− [ω(X)∇Y s− ω(Y )∇Xs]

= ∇X(ω(Y )s)−∇Y (ω(X)s)− ω([X,Y ])s

from which follows the traditional formula of the curvature tensor

F∇
X,Y (s) = d∇(∇s)(X,Y ) = ∇X(∇Y s)−∇Y (∇Xs)−∇[X,Y ]s.

In order to carry out explicit calculations it is useful to have a local formula for
the curvature 2-form. Let A = (Ajk) be the connection form with respect to some
local smooth frame {e1, ..., en}. Then,

d∇(∇ek) =
n∑

j=1

dAjk ⊗ ej −
n∑

j=1

Ajk ∧ ∇ej

=
n∑

j=1

dAjk ⊗ ej −
n∑

j=1

Ajk ∧
( n∑

l=1

Alj ⊗ el
)
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=

n∑

l=1

(
dAlk ⊗ el +

( n∑

j=1

Alj ∧Ajk
)
⊗ el

)
.

Thus, in matrix form we have

F∇|locally = dA+A ∧A

and for every X, Y ∈ Ω0(TM) the matrix of the linear map F∇
X,Y (x) : Ex → Ex

with respect to the basis {e1(x), ..., en(x)} is (dA+A ∧A)(X,Y ).

Example 8.1.3. Let γ1 = (H1, p,CP 1) be the tautological complex line bundle
over CP 1 ≈ S2. Recall that H1 = {(ℓ, u) ∈ CP 1 × C2 : u ∈ ℓ} and let

H⊥
1 = {(ℓ, u) ∈ CP 1 × C2 : u ∈ ℓ⊥}

with respect to the usual hermitian product on C2. Then, H⊥
1 is the total space of an

obvious smooth complex vector bundle γ⊥1 over CP 1 such that γ1⊕γ⊥1 ∼= ǫ2C. We shall
compute the connection form and the curvature form of the connection ∇ defined
as in Example 8.1.1. using the same notations. Thus, ∇ = (id ⊗ g∗) ◦ (d ⊕ d) ◦ f∗,
where f : H1 → CP 1×C2 is the inclusion and g : CP 1×C2 → H1 is the projection.
If ℓ = [z0, z1], then

g([z0, z1], (u0, u1)) = (z0u0 + z1u1) · (z0, z1) = (|z0|2u0 + z1z0u1, z1z0u1 + |z1|2u1).

Let {(U0, φ0), (U1, φ1)} be the canonical atlas of CP 1. Over U0 we have the smooth
section s defined by s([1, z]) = (1, z) and (d⊕d)s([1, z]) = ([1, z], (0, dz)). Therefore,

(∇s)([1, z]) =
(
[1, z],

1

1 + |z|2 · 0 + z

1 + |z|2 dz,
z

1 + |z|2 · 0 + |z|2
1 + |z|2 dz

)

=

(
[1, z],

( z

1 + |z|2 dz
)
· (1, z)

)
=
( z

1 + |z|2 dz
)
⊗ s.

So, the connection form on U0 with respect to the frame {s} is

A =
z

1 + |z|2 dz.

Since A ∧A = 0, we have F∇|U0 = dA and so

F∇|U0 = d
( z

1 + |z|2
)
∧ dz =

[
d
( 1

1 + |z|2
)
z +

1

1 + |z|2 dz
]
∧ dz

=

[
− d(1 + zz)

(1 + |z|2)2 z +
1

1 + |z|2 dz
]
∧ dz = 1

(1 + |z|2)2 dz ∧ dz.

Note that Hom(γ1, γ1) ∼= ǫ1C, because it is a complex line bundle and admits the
global smooth section whose value at ℓ is the identity map of the corresponding
fibre of γ1. Thus,

F∇ ∈ Ω2(Hom(γ1, γ1)) ∼= A2(CP 1)⊗C∞(CP 1) C
∞(CP 1;C) = A2(CP 1;C)



200 CHAPTER 8. CHARACTERISTIC CLASSES

is indeed a C-valued differential 2-form on CP 1.

Example 8.1.4. The normal bundle ν of the tangent bundle TSn of the n-sphere
Sn, n ≥ 2, is trivial and its fibre at any point p ∈ Sn is realized as the orthogonal
complement of the tangent space TpS

n in TpRn+1 ∼= Rn+1 with respect to the
euclidean Riemannian metric 〈., .〉. Also TSn ⊕ ν ∼= ǫn+1.

We shall compute the curvature of the connection ∇ on TSn defined in Example
8.1.1 as ∇ = (id ⊗ g∗) ◦ ∇0 ◦ f∗, where ∇0 is the connection on the trivial vector
bundle ǫn+1 with zero connection form, f : TSn → Sn × Rn+1 is the inclusion and
g : Sn ×Rn+1 → TSn is the projection

g(p, v) = (p, v − 〈v, p〉p).

If p = (p1, ..., pn+1) ∈ Sn and s ∈ X (Sn) = Ω0(TSn), X ∈ X (Sn) and f∗s =
(s1, ..., sn+1), suppressing the point of application, we have

(∇Xs)(p) =




X(p)(s1)− p1
n+1∑

k=1

X(p)(sk)p
k

. . . . . . . . . . . . . . . . . .

X(p)(sn+1)− pn+1
n+1∑

k=1

X(p)(sk)p
k



.

If we denote by φk : Sn → R the restriction of the projection onto the k-th coordi-
nate, 1 ≤ k ≤ n+ 1, the above formula can be rewritten

∇Xs =




X(s1)− φ1

n+1∑

k=1

X(sk)φk

. . . . . . . . . . . . . . . . . .

X(sn+1)− φn+1

n+1∑

k=1

X(sk)φk



.

It is easy to see now that ∇ is actually the Levi-Civita connection of the standard
Riemannian metric of Example 3.3.3 on Sn.

For X, Y ∈ X (Sn), a routine calculation shows that the i-th coordinate of
∇0
X∇Y s−∇0

Y∇Xs is equal to

[X,Y ](si)− φi

n+1∑

k=1

φk[X,Y ](sk) + φi

n+1∑

k=1

(X(sk)Y (φk)−X(φk)Y (sk))

+Y (φi)

n+1∑

k=1

φkX(sk)−X(φi)

n+1∑

k=1

φkY (sk).

Thus, if f∗X = (X1, ...,Xn+1) and f∗Y = (Y1, ..., Yn+1), then

F∇
X,Y (s)(p) =

(n+1∑

k=1

pkX(p)(sk)

)
Y (p)−

(n+1∑

k=1

pkY (p)(sk)

)
X(p).
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However, since s ∈ X (Sn) we have φ1s1 + · · · + φn+1sn+1 = 0 and differentiating

n+1∑

k=1

(φkdsk + skdφk) = 0.

Evaluating at X(p) we get

n+1∑

k=1

pkX(p)(sk) = −
n+1∑

k=1

sk(p)Xk(p) = −〈s(p),X(p)〉

and similarly
n+1∑

k=1

pkY (p)(sk) = −〈s(p), Y (p)〉.

Substituting we arrive at the formula

F∇
X,Y (s) = 〈s, Y 〉X − 〈s,X〉Y

for the curvature of the Levi-Civita connection of the standard Riemannian metric
on Sn.

So far we have dealt with F∇ = d∇ ◦ ∇. It turns out that in higher degrees the
composition d∇ ◦ d∇ : Ωk(ξ) → Ωk+2(ξ) for k ≥ 2 is completely determined by F∇.
To see this, we consider the C∞(M)-bilinear map

Ωk(ξ)×HomC∞(M)(Ω
0(ξ),Ω2(ξ))

∧−→ Ωk+2(ξ)

defined by (ω ⊗ s) ∧ G = ω ∧ G(s), for every ω ∈ Ak(M), s ∈ Ω0(ξ) and
G ∈ HomC∞(M)(Ω

0(ξ),Ω2(ξ)), where the wedge in the right hand side is the one
previously defined.

Proposition 8.1.5. (d∇ ◦ d∇)(t) = t ∧ F∇ for every t ∈ Ωk(ξ).

Proof. Indeed, if t = ω ⊗ s ∈ Ωk(ξ), we have

(d∇ ◦ d∇)(ω ⊗ s) = d∇(dω ⊗ s+ (−1)kω ∧∇s)

= d(dω)⊗ s+ (−1)k+1dω ∧ ∇s+ (−1)kdω ∧ ∇s+ ω ∧ (d∇(∇s)) = ω ∧ F∇(s). �

8.2 Induced connections

Let f : N →M be a smooth map between smooth manifolds and let ξ = (E, p,M)
be a (complex or real) smooth vector bundle of rank n over M . Since the induced
map f∗ : C∞(M) → C∞(N) is a ring homomorphism, every C∞(N)-module is also
a C∞(M)-module. In particular, Ω0(f∗ξ) has a C∞(M)-module structure and the
map f∗ : Ω(ξ) → Ω0(f∗ξ) defined by

(f∗(s))(x) = (x, s(f(x))
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for every x ∈ N , is C∞(M)-linear.

Lemma 8.2.1. The well defined C∞(N)-linear map

f∗ : C∞(N)⊗C∞(M) Ω
0(ξ) → Ω0(f∗ξ)

which sends φ⊗ s to φ · f∗(s) is an isomorphism.

Proof. If ξ is trivial, then f∗ξ is the trivial vector bundle of rank n over N and
Ω0(ξ) ∼= C∞(M)⊕· · · ⊕C∞(M) and Ω0(f∗ξ) ∼= C∞(N)⊕· · · ⊕C∞(N), n-times. It
is immediate from the definitions that in this case f∗ is an isomorphism, essentially
the identity map.

In the general case, there exists a smooth vector bundle ξ̃ = (Ẽ, p̃,M) over M
of some rank m such that ξ ⊕ ξ̃ ∼= ǫn+m. Then, f∗ξ ⊕ f∗ξ̃ ∼= ǫn+m over N and from
the trivial case

f∗ : (C∞(N)⊗C∞(M) Ω
0(ξ))⊕ (C∞(N)⊗C∞(M) Ω

0(ξ)) ∼= Ω0(f∗ξ)⊕ Ω0(f∗ξ̃)

where the first factor on the left hand side is send to the first factor on the right
hand side. �

It is evident that the C∞(M)-linear map f∗ : Ω0(ξ) → Ω0(f∗ξ) induces a
C∞(M)-linear map f∗ : A1(M)⊗C∞(M) Ω

0(ξ) → A1(N)⊗C∞(N) Ω
0(f∗ξ).

Lemma 8.2.2. For every connection ∇ on ξ and every smooth map f : N → M
there exists a unique connection f∗∇ on f∗ξ, which makes the following diagram
commutative.

Ω0(ξ) Ω1(ξ)

Ω0(f∗ξ) Ω1(f∗ξ)

∇

f∗ f∗

f∗∇

Proof. From the preceding Lemma 8.2.1 it follows that we have an C∞(N)-
isomorphism Ωk(f∗ξ) ∼= Ak(N) ⊗C∞(M) Ω

0(ξ) for every k ∈ Z+. On the other

hand, the pull-back map f∗ : Ak(M) → Ak(N) induces a C∞(M)-linear map from
C∞(N) ⊗C∞(M) A

k(M) to Ak(N) which sends φ ⊗ ω to φ · f∗(ω). Taking tensor
products (over C∞(M)) with Ω0(ξ) we obtain a C∞(M)-linear map

ρ : C∞(N)⊗C∞(M) Ω
k(ξ) → Ak(N)⊗C∞(M) Ω

0(ξ).

It suffices now to take

f∗∇ = (d⊗ id) + ρ(id⊗∇) : Ω0(f∗ξ) → A1(N)⊗C∞(N) Ω
0(f∗ξ),

since from Lemma 8.2.1 we have a C∞(N)-isomorphism

f∗ : C∞(N)⊗C∞(M) Ω
0(ξ) ∼= Ω0(f∗ξ). �
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Let U ⊂ M be an open set over which ξ is trivial and let {e1, ..., en} be a local
frame of ξ on U . Let A be the connection form of a connection ∇ on U with
respect to this frame. Then, {f∗(e1), ..., f∗(en)} is a frame of f∗ξ on f−1(U) and
the corresponding connection form of f∗∇ on f−1(U) is f∗A. The commutative
diagram of Lemma 8.2.2 extends to the commutative diagram

Ω1(ξ) Ω2(ξ)

Ω1(f∗ξ) Ω2(f∗ξ)

d∇

f∗ f∗

df
∗∇

from which we get the commutative diagram

Ω0(ξ) Ω2(ξ)

Ω0(f∗ξ) Ω2(f∗ξ)

F∇

f∗ f∗

F f
∗∇

Since f∗(Hom(ξ, ξ)) ∼= Hom(f∗ξ, f∗ξ), we arrive at f∗(F∇) = F f
∗∇. This can

also be seen by computing locally

f∗(F∇) = f∗(dA+A∧A) = f∗(dA)+f∗(A∧A) = d(f∗(A))+f∗(A)∧f∗(A) = F f
∗∇.

A connection ∇ on a smooth vector bundle ξ = (E, p,M) induces a connection
on the dual vector bundle ξ∗ as follows. We consider the composition

(., .) : Ωk(ξ)⊗C∞(M) Ω
l(ξ∗)

∧−→Ωk+l(ξ ⊗ ξ∗)−→Ak+l(M)

where the second map is induced by the vector bundle morphism ξ⊗ξ∗ → ǫ1 defined
by evaluation on the fibres. So,

(ω ⊗ s, θ ⊗ s∗) = s∗(s) · ω ∧ θ

for every ω ∈ Ak(M), θ ∈ Al(M) and s ∈ Ω0(ξ), s∗ ∈ Ω(ξ∗). Since (., .) is non-
degenerate for (k, l) = (0, 0) and for (k, l) = (0, 1), the equation

d(s, s∗) = (∇s, s∗) + (s,∇∗s∗)

defines a connection ∇∗ on ξ∗.
If ξ1 = (E1, p1,M) and ξ2 = (E2, p2,M) are two smooth vector bundles over the

same smooth manifoldM with connections ∇1 and ∇2, respectively, then the wedge

Ω0(ξ1)⊗C∞(M) Ω
0(ξ2)

∧−→Ω0(ξ1 ⊗ ξ2)

coincides with the isomorphism Ω0(ξ1) ⊗C∞(M) Ω
0(ξ2) ∼= Ω0(ξ1 ⊗ ξ2) of Theorem

1.5.3(ii), and we can define a connection ∇ on the tensor product ξ1 ⊗ ξ2 by the
formula

∇(s⊗ t) = (∇1s) ∧ t+ s ∧ (∇2t).
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In particular, this gives a way to define a connection ∇ on Hom(ξ1, ξ2) ∼= ξ∗1 ⊗ ξ2
putting

∇(s∗ ⊗ t) = (∇1∗s∗) ∧ t+ s∗ ∧ (∇2t).

There is another, perhaps more direct, way to define this connection on Hom(ξ1, ξ2),
as follows. The evaluation map

Ω0(ξ1)×Ω0(Hom(ξ1, ξ2)) → Ω0(ξ2)

induces a C∞(M)-bilinear map

(., .) : Ωk(ξ1)× Ωl(Hom(ξ1, ξ2)) → Ωk+l(ξ2)

which for (k, l) = (0, 1) is given by the formula (s, ω ⊗ φ) = ω ⊗ φ(s). Thus, it is
non-degenerate and the equation

∇2(s, φ) = (∇1s, φ) + (s,∇′φ)

defines a connection ∇′ on Hom(ξ1, ξ2).
We shall prove that the connections ∇ and ∇′ on Hom(ξ1, ξ2) coincide through

the isomorphism a : ξ∗1 ⊗ ξ2 ∼= Hom(ξ1, ξ2). It suffices to show that

(s,∇′a(s∗ ⊗ t)) = (s,∇(s∗ ⊗ t))

for every s ∈ Ω0(ξ1), t ∈ Ω0(ξ2) and s∗ ∈ Ω0(ξ∗1). Indeed, there is a commutative
diagram of vector bundle morphisms

ξ1 ⊗ ξ∗1 ⊗ ξ2 ξ1 ⊗Hom(ξ1, ξ2)

ǫ1 ⊗ ξ2 ξ2

id⊗a

(.,.)⊗id (.,.)

where the bottom map is scalar multiplication, because

(s, a(s∗ ⊗ t)) = (s, s∗ · t) = s∗(s)t = (s, s∗)t.

Thus,
(s,∇(s∗ ⊗ t)) = (s,∇1s∗) ∧ t+ (s, s∗)∇2t.

From the definitions now we have

(s,∇′a(s∗ ⊗ t)) = ∇2(s, a(s∗ ⊗ t))− (∇1s, a(s∗ ⊗ t)) = ∇2((s, s∗)t)− (∇1s, s∗) ∧ t

= d(s, s∗)∧ t+(s, s∗)∇2t− (∇1s, s∗)∧ t = (s,∇1∗s∗)∧ t+(s, s∗)∇2t = (s∇(s∗⊗ t)).

Finally, it is easy to check following.
(i) d(s, s∗) = (d∇s, s∗) + (−1)k(s, d∇s∗) for every s ∈ Ωk(ξ) and s∗ ∈ Ωk(ξ∗),

and
(ii) d∇(s⊗ t) = (d∇s)⊗ t+ (−1)ks⊗ (d∇t),
(iii) d(s, φ) = (d∇s, φ) + (−1)k(s, d∇φ) for every s ∈ Ωk(ξ1), t ∈ Ωl(ξ2) and

φ ∈ Ωl(Hom(ξ1, ξ2)).
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8.3 Invariant complex polynomials

A complex polynomial P in n2 variables of degree k is homogeneous if it is the
sum of monomials of the same degree k. Such a polynomial can be considered as a
function P : Cn×n → C, by arranging the n2 variables in a n × n matrix. So P (A)
is determined as a polynomial function of the entries of the matrix A ∈ Cn×n with
the property P (λA) = λkP (A) for every λ ∈ C.

A homogeneous polynomial P : Cn×n → C is called invariant if it is an invariant
function under the action of GL(n,C) on Cn×n by conjugation, that is

P (gAg−1) = P (A)

for every g ∈ GL(n,C) and A ∈ Cn×n. In this case, P induces a well defined
function P : Hom(V, V ) → C for every complex vector space of dimension n, since
the value P (A) does not depend on the choice of basis.

Examples 8.3.1. (a) For every A ∈ Cn×n the ”characteristic polynomial” of −A is

σ(t) = det(In + tA) =

n∑

k=0

σk(A)t
k

and σ0(A) = 1. Each coefficient σk(A) is obviously an invariant homogeneous poly-
nomial of degree k. Note that σn(A) = detA.

(b) For every A ∈ Cn×n the trace Tr(Ak) is an invariant homogeneous polynomial
of A of degree k. There is an alternative description which relates this example with
the previous one. Let

s(t) = −t d
dt

log det(In − tA) =

∞∑

k=0

sk(A)t
k

where log is considered as the formal power series

log(1 + x) =
∞∑

k=1

(−1)k−1

k
xk

and
d

dt
denotes the formal derivative

d

dt

( ∞∑

k=0

akt
k

)
=

∞∑

k=0

kakt
k−1.

We shall show that sk(A) = Tr(Ak) for every k ∈ N. In the special case of a diagonal
matrix A = diag(λ1, ..., λn) we have

s(t) = −t d
dt

log

n∏

k=1

(1− tλk) = −t d
dt

n∑

k=1

log(1− tλk) =

n∑

k=1

tλk
1− tλk

=
n∑

k=1

∞∑

j=1

λjkt
j =

∞∑

j=0

( n∑

k=1

λjk

)
tj.
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This implies that sk(A) = Tr(Ak) for every diagonal matrix A ∈ Cn×n. The general
case is a consequence of continuity and the following.

Lemma 8.3.2. The set of diagonalisable complex n×n matrices is dense in Cn×n.

Proof. Let A ∈ Cn×n have eigenvalues λ1,..., λj ∈ C with multiplicities n1,..., nj,
respectively. There exists R ∈ GL(n,C) such that R−1AR is upper triangular. Let
ǫ > 0. We choose any

0 < ρ <
1

2
min{ǫ, |λk − λl| : 1 ≤ k 6= l ≤ j}.

We also choose distinct points zk1 ,..., z
k
nk

∈ C of distance at most ρ from λk. Let Tǫ
be the matrix which results in from R−1AR by replacing the diagonal entries with
the complex numbers

z11 , ..., z
1
n1
, ..., zjnj .

Then, Aǫ = RTǫR
−1 is diagonalisable, because it has distinct eigenvalues, and

‖A−Aǫ‖ ≤ n‖R‖ · ‖R−1‖ · ‖R−1AR− Tǫ‖ ≤ n‖R‖ · ‖R−1‖ · ρ

where ‖.‖ denotes the maximum norm. �

Note that the preceding Lemma 8.3.2 is not true over the field of real numbers.
For instance the matrix of the rotation Rπ/2 by the angle π/2 has characteristic
polynomial t2 + 1 which has negative discriminant. Since the discriminant of the
characteristic polynomial is a continuous function of the matrix and the charac-
teristic polynomial of a diagonalisable real 2 × 2 matrix must have non-negative
discriminant, it follows that Rπ/2 cannot be approximated by diagonalisable ele-
ments of R2×2.

The invariant homogeneous polynomials σk(A) and sk(A), 0 ≤ k ≤ n are related
through the Newton identities

sk(A)− sk−1(A)σ1(A) + sk−2(A)σ2(A) + ·+ (−1)kkσk(A) = 0.

To see this, we apply again Lemma 8.3.2, so that it suffices to prove the identities
for diagonal A = diag(λ1, ..., λn). In this case, on the one hand we have

( n∑

k=0

(−1)kσk(A)t
k

)
·
( ∞∑

k=1

sk(A)t
k

)
=

( n∑

j=1

tλj
1− tλj

)
·
n∏

j=1

(1− tλj)

=

n∑

j=1

tλj(1− tλ1) · · · (1− tλj−1)(1 − tλj+1) · · · (1− tλn)

= −t d
dt

n∏

j=1

(1− tλj) = −t d
dt

n∑

k=0

(−1)kσk(A)t
k =

n∑

k=1

(−1)k−1kσk(A)t
k

and on the other hand
( n∑

k=0

(−1)kσk(A)t
k

)
·
( ∞∑

k=1

sk(A)t
k

)
=

∞∑

k=0

( k∑

j=0

(−1)kσj(A)sk−j(A)

)
tk,
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where we have set σk(A) = 0 for k > n and s0(A) = 0. Comparing the coefficients
we obtain the Newton identities.

It follows from the Newton identities that sk(A) can be determined inductively
as a polynomial function with integer coefficients of σ1(A),..., σk(A). Conversely,
σk(A) is a polynomial function with rational coefficients of s1(A),..., sk(A). For
instance, for k = 1 we have s1(A) = σ1(A) and for k = 2 we have

s2(A) = s1(A)σ1(A)− 2σ2(A) = (σ1(A))
2 − 2σ2(A).

For k = 3 we have

s3(A) = s2(A)σ1(A) − s1(A)σ2(A) + 3σ3(A) = (σ1(A))
3 − 3σ1(A)σ2(A) + 3σ3(A)

and so on.
It is immediate from the definitions that sk(diag(A1, A2)) = sk(A1)+sk(A2) and

σk(diag(A1, A2)) =

k∑

j=0

σj(A1)σk−j(A2).

Also, sk(A1 ⊗ A2) = sk(A1) · sk(A2), since Tr(A1 ⊗ A2) = Tr(A1) · Tr(A2), where
A1 ⊗A2 denotes the matrix of the tensor product of the linear maps with matrices
A1 and A2.

The invariant homogeneous polynomials can be described as polynomial func-
tions of the elementary symmetric polynomials. Recall that the elementary sym-
metric polynomials σj(X1, ...,Xn), 1 ≤ j ≤ n in n variables are determined from
the identity

n∏

j=1

(1 + tXj) =
n∑

j=0

σj(X1, ...,Xn)t
j .

Obviously, σ1(X1, ...,Xn) = X1 + · · · + Xn and σn(X1, ...,Xn) = X1X2 · · ·Xn.
Every symmetric complex polynomial of n variables is a polynomial function of
σ1,..., σn.

Theorem 8.3.3. For every invariant homogeneous polynomial P : Cn×n → C there
exists a polynomial p of n variables such that P (A) = p(σ1(A), ..., σn(A)) for every
A ∈ Cn×n.

Proof. Let Dn ⊂ Cn×n be the set of all diagonal matrices. By Lemma 8.3.2, the set
⋃

g∈GL(n,C)
gDng

−1

is dense in Cn×n and so P is completely determined by its values on Dn. Every
permutation s in n symbols determines an element g ∈ GL(n,C) such that

gdiag(λ1, ..., λn)g
−1 = diag(λs(1), ..., λs(n))

for every λ1,..., λn ∈ C. Since P is invariant, it follows that P (diag(X1, ...,Xn)) is
a symmetric polynomial and so there exists a polynomial p of n variables such that

P (diag(X1, ...,Xn)) = p(σ1(X1, ...,Xn), ..., σn(X1, ...,Xn)).
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The conclusion follows now by continuity. �

The set I∗n(C) of invariant homogeneous polynomials of n2 complex variables
equipped with the usual operations is a commutative algebra. Similarly, the set
S∗
n(C) of all symmetric homogeneous polynomials of n variables is a commutative

algebra and S∗
n(C) = C[σ1, ..., σn]. The preceding Theorem 8.3.3 says that the map

ρ : I∗n(C) → S∗
n(C) defined by

ρ(σ)(X1, ...,Xn) = σ(diag(X1, ...,Xn))

is an isomorphism.

8.4 Chern classes

Let ξ = (E, p,M) be a smooth complex vector bundle of rank n over a smooth
manifold M . Let U ⊂ M be an open set over which ξ is trivial and let {e1, ..., en}
be a frame of ξ on U . There is a corresponding isomorphism of the restriction
Hom(ξ, ξ)|U with the trivial bundle of rank n × n over U . From this we get an
isomorphism

Ω2(Hom(ξ, ξ)|U ) ∼= A2(U ;Cn×n) ∼= A2(U ;C)n×n.

Thus, every 2-form R on Hom(ξ, ξ) gives a matrix (Rkl) ∈ A2(U ;C)n×n, which
depends on the initial choice of the frame {e1, ..., en}. For every invariant homoge-
neous complex polynomial P of n2 variables and degree k we have a corresponding
element P ((Rkl)) ∈ A2k(U ;C), because the wedge product of differential forms of
even degree is commutative.

If {e′1, ..., e′n} is another frame on U from which we have a corresponding matrix
(R′

kl) ∈ A2(U ;C)n×n, there exists a smooth function g : U → GL(n,C) such that
(Rkl) = g(R′

kl)g
−1. Since P is invariant, we have P ((Rkl)) = P ((R′

kl)). This shows
that there is a global well defined complex smooth 2k-form P (R) ∈ A2k(M ;C).

In particular, if ∇ is a connection on ξ with curvature form F∇ ∈ Ω2(Hom(ξ, ξ)),
then for every invariant homogeneous polynomial P : Cn×n → C we have a well
defined C-valued smooth 2k-form P (F∇) ∈ A2k(M ;C).

Lemma 8.4.1. Let P : Cn×n → C be an invariant homogeneous polynomial. If

P ′ =

(
∂P

∂xkl

)T
, where T means transpose, then P ′(X) · X = X · P ′(X) for every

X ∈ Cn×n.

Proof. Since P is invariant, we have

P ((In + tEkl)X) = P (X(In + tEkl))

for every |t| < 1, where Ekl is the basic n×n matrix whose (k, l)-entry is equal to 1
and has zeros everywhere else. Differentiating at t = 0 for X = (akl) the left hand
side gives

DP (X)XEkl = DP (X)

( n∑

j=1

aljEkj

)
=

n∑

j=1

alj
∂P

∂xkj
(X)
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which is the (l, k)-entry of P ′(X)X. Similarly, the right hand side gives

DP (X)EklX = DP (X)

( n∑

j=1

ajkEjl

)
=

n∑

j=1

ajk
∂P

∂xjl
(X)

which is the (l, k)-entry of XP ′(X). �

Proposition 8.4.2. If ∇ is a connection on ξ with curvature form
F∇ ∈ Ω2(Hom(ξ, ξ)), then for every invariant homogeneous polynomial
P : Cn×n → C the complex smooth 2k-form P (F∇) ∈ A2k(M ;C) is closed.

Proof. (J. Milnor and J. Stasheff) It suffices to prove the assertion locally. Let
U ⊂ M be an open set over which ξ is trivial and let A be the connection form of
∇ on U with respect to some frame. Then F∇|U = dA+A ∧A and differentiating

dF∇|U = F∇ ∧A−A ∧ F∇.

This is called the (second) Bianchi identity. If F∇|U = (Fkl), then

dP (F∇)|U =

n∑

k,l=1

∂P

∂xkl
(F∇) ∧ dFkl = Tr(P ′(F∇) ∧ dF∇),

where P ′ is defined as in the preceding Lemma 2.4.1, by the use of which we get

dP (F∇)|U = Tr(P ′(F∇) ∧ F∇ ∧A− P ′(F∇) ∧A ∧ F∇)

= Tr(F∇ ∧ P ′(F∇) ∧A− P ′(F∇) ∧A ∧ F∇) = 0,

because if Y = P ′(F∇) ∧A = (Ykl), then

dP (F∇)|U = Tr(F∇ ∧ Y − Y ∧ F∇) =
n∑

k,l=1

Flk ∧ Ykl − Ykl ∧ Flk = 0,

since Flk is a 2-form. �

Proposition 8.4.3. If P is an invariant homogeneous complex polynomial of n2

variables of degree k, then the cohomology class [P (F∇)] ∈ H2k(M ;C) does not
depend on the choice of the connection ∇ on ξ.

Proof. Let ∇0 and ∇1 be two connections on ξ and let pr : R×M →M denote the
projection. Let ∇̃0 = pr∗∇0 and ∇̃1 = pr∗∇1 be the induced connections on pr∗ξ.
On pr∗ξ we consider the connection ∇̃ defined by

(∇̃s)(t, x) = (1− t)(∇̃0s)(t, x) + t(∇̃1s)(t, x)

for (t, x) ∈ R ×M . From Lemma 8.2.2 we have j∗0∇̃ = ∇0 and j∗1∇̃ = ∇1, where
j0, j1 : M → R ×M are the inclusions j0(x) = (0, x) and j1(x) = (1, x). Moreover,

F∇0
= j∗0(F

∇̃) and F∇1
= j∗1(F

∇̃). Therefore,

[P (F∇0
)] = [j∗0(P (F

∇̃))] = j∗0 [P (F
∇̃)] = j∗1 [P (F

∇̃)] = [j∗1(P (F
∇̃))] = [P (F∇1

)]



210 CHAPTER 8. CHARACTERISTIC CLASSES

by homotopy invariance. �

It follows from Propositions 8.4.2 and 8.4.3 that if ξ = (E, p,M) is a complex
smooth vector bundle of rank n over a smooth manifold M , then for every invariant
homogeneous complex polynomial P on n2 variables of degree k there is a well
defined cohomology class in H2k(M ;C). If ξ′ = (E′, p′,M) is another complex
smooth vector bundle isomorphic to ξ and f : E′ → E is a smooth vector bundle
isomorphism, then for every connection ∇ on ξ we can choose a connection ∇′ on
ξ′ such that the following diagram commutes.

Ω0(ξ′) Ω1(ξ′)

Ω0(ξ) Ω1(ξ)

∇′

f∗ f∗

∇

Then, the local matrices of F∇ and F∇′
with respect to suitable local frames

coincide and thus P (F∇) = P (F∇′
), since P is invariant. More generally, if f :

N → M is a smooth map and P is an invariant homogeneous polynomial, then
for every connection ∇ on ξ we have f∗(P (F∇)) = P (F f

∗∇). This means that the
correspondence which sends each isomorphism class of complex vector bundles over
M to the cohomology class in H∗(M ;C) defined by P is a natural transformation
from the K-functor to the cohomology functor H∗(.;C).

For every k ∈ Z+ we define by

ck(ξ) =

[
σk

(−1

2πi
F∇
)]

∈ H2k(M ;C)

the k-Chern class of ξ and by

chk(ξ) =

[
1

k!
sk

(−1

2πi
F∇
)]

∈ H2k(M ;C)

the k-Chern character of ξ. From the above, the definitions are independent of the
choice of the connection ∇ on ξ. Obviously, c0(ξ) = 1 and ch0(ξ) = n. The Newton
identities imply that chk(ξ) is a polynomial function of c0(ξ),..., ck(ξ).

Examples 8.4.4 (a) Let M be a smooth manifold and let ξ = (L, p,M) be a
smooth complex line bundle over M . Then, Ω2(Hom(ξ, ξ) ∼= A2(M ;C). Thus, if ∇
is a connection on ξ, then F∇ ∈ A2(M ;C) and

sk(F
∇) = F∇ ∧ · · · ∧ F∇ k-times.

Since σ1(F
∇) = F∇, it follows that

chk(ξ) =
1

k!
c1(ξ)

k.

(b) We shall compute the first Chern class c1(γ1) of the tautological complex
line bundle γ1 = (H1, p,CP 1) over CP 1 ≈ S2. Since the integration

∫

CP 1

: H2(CP 1;C) → C
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is an isomorphism, by Poincaré duality, it suffices to calculate the integral
∫

CP 1

c1(γ1).

We use the connection ∇ of Example 8.1.3 and the calculations therein according
to which if {(U0, φ0), (U1, φ1)} is the canonical atlas of CP 1, then

F∇|U0 =
1

(1 + |z|2)2dz ∧ dz =
2i

(1 + x2 + y2)2
dx ∧ dy

where z = x+ iy. Since CP 1 \ U0 is a singleton, we have

∫

CP 1

F∇ = 2i

∫

R2

1

(1 + x2 + y2)2
dxdy = 2i

∫ 2π

0

∫ +∞

0

r

(1 + r2)2
drdθ = 2πi.

Since σ1(F
∇) = F∇, it follows that

∫

CP 1

c1(γ1) =

∫

CP 1

(−1

2πi

)
F∇ = −1.

In particular γ1 is not trivial.
(c) In the Newton identities we see that the coefficient of σn in sn is (−1)n−1n.

Let now ξ be a smooth complex vector bundle of rank n such that ck(ξ) = 0 for
1 ≤ k ≤ n− 1. In this case the Newton identities imply that the n-Chern character
of ξ is

chn(ξ) =
1

n!
(−1)n−1ncn(ξ) =

(−1)n−1

(n − 1)!
cn(ξ).

In particular this holds for every smooth complex vector bundle ξ of rank n over
the 2n-dimensional sphere S2n.

The following proposition is useful in calculations.

Proposition 8.4.5. If ξ1 and ξ2 are two smooth complex vector bundles over a
smooth manifold M , then

(a) chk(ξ1 ⊕ ξ2) = chk(ξ1) + chk(ξ2) and

(b) ck(ξ1 ⊕ ξ2) =
k∑

j=0

cj(ξ1)⌣ ck−j(ξ2).

Proof. We take connections ∇1 and ∇2 on ξ1 and ξ2, respectively. Then,

∇1 ⊕∇2 : Ω0(ξ1)⊕ Ω0(ξ2) ∼= Ω0(ξ1 ⊕ ξ2) → Ω1(ξ1 ⊕ ξ2) ∼= Ω1(ξ1)⊕ Ω0(ξ2)

is a connection on ξ1 ⊕ ξ2 with curvature form

F∇1 ⊕ F∇2 ∈ Ω2(Hom(ξ1 ⊕ ξ2, ξ1 ⊕ ξ2)).

So,

chk(ξ1 ⊕ ξ2) =

[
1

k!
sk

(−1

2πi
diag(F∇1

, F∇2
)

)]
= chk(ξ1) + chk(ξ2).
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This proves (a) and (b) follows in the same way. �

Let ξ = (E, p,M) be a complex smooth vector bundle of rank n over a smooth
manifold M . Let I∗n(C) be the commutative graded algebra of invariant homoge-
neous complex polynomials. More precisely, we set I2k+1

n (C) = 0 and let I2kn (C) be
the space of invariant homogeneous polynomials of degree k. For each P ∈ I∗n(C)
let φξ(P ) ∈ H∗(M ;C) denote the cohomology class defined by P as above choosing
any connection on ξ. In this way we have a well defined homomorphism of graded
algebras φξ : I

∗
n(C) → H∗(M ;C), which is called the Chern-Weil homomorphism for

the complex vector bundle ξ. The subalgebra φξ(I
∗
n(C)) of H∗(M ;C) is called the

Chern algebra of ξ and is generated (as an algebra) by the set of the Chern classes

ck(ξ) =

(−1

2πi

)
φξ(σk), k ∈ Z+

of ξ, by Theorem 8.3.3.

8.5 The Pfaffian polynomial

Let n ∈ N and let so(2n,R) denote the Lie algebra of the special orthogonal group
SO(2n,R), which consists of the skew-symmetric 2n × 2n real matrices. If A =
(Akl) ∈ so(2n,R), we let

ω(A) =
∑

k<l

Akle
∗
k ∧ e∗l

where {e∗1, ..., e∗2n} is the dual of the canonical basis {e1, ..., e2n} of R2n, and define
Pf(A) by the equality

ω(A) ∧ · · · ∧ ω(A) = n!Pf(A) · e∗1 ∧ · · · ∧ e∗2n.

It is obvious that Pf(A) is a homogeneous polynomial of degree n of the 2n2−n real
variables Akl, 1 ≤ k < l ≤ n and is called the Pfaffian polynomial. Explicitly,

Pf(A) =
1

2nn!

∑

σ∈S2n

(sgnσ)Aσ(1)σ(2) · · ·Aσ(2n−1)σ(2n) .

Example 2.5.1. Let a1,..., an ∈ R and A ∈ so(2n,R) be the matrix with the 2× 2
blocks (

0 a1
−a1 0

)
, · · · ,

(
0 an

−an 0

)

along the diagonal and zeros elsewhere. Then,

ω(A) = a1e
∗
1 ∧ e∗2 + · · · + ane

∗
2n−1 ∧ e∗2n

and thus
ω(A) ∧ · · · ∧ ω(A) = n!a1 · · · ane∗1 ∧ · · · ∧ e∗2n.

So in this case Pf(A) = a1 · · · an. Note that (Pf(A))2 = detA. We shall generalize
this property of the Pfaffian for every element of so(2n,R). We shall need the
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following.

Lemma 8.5.2. If A = (Akl) ∈ so(2n,R) and B ∈ R2n×2n, then

Pf(BABT ) = Pf(A) · detB.

Proof. Let B = (Bkl) and let ul = Bel. From the equalities
∑

k<l

Aklu
∗
k ∧ u∗l =

∑

k<l

∑

µ,ν

BνkAklBµle
∗
ν ∧ e∗µ =

∑

k<l

∑

ν<µ

(BABT )νµe
∗
ν ∧ e∗µ = ω(BABT )

follows that

ω(BABT ) ∧ · · · ∧ ω(BABT ) =

(∑

k<l

Aklu
∗
k ∧ u∗l

)
∧ · · · ∧

(∑

k<l

Aklu
∗
k ∧ u∗l

)

= n!Pf(A) · u∗1 ∧ · · · ∧ u∗n = n!Pf(A) · (detB) · e∗1 ∧ · · · ∧ e∗n. �

Corollary 8.5.3. The Pffafian polynomial is invariant under the action of
SO(2n,R) by conjugation.

If A ∈ so(2n,R), then A is normal as a complex matrix and by the Spectral
Theorem there exists an orthonormal basis {e1, e2, ..., e2n} of C2n with respect to
the usual hermitian product consisting of eigenvectors of A. Let λ1, λ2,..., λ2n ∈ C
be the corresponding eigenvalues. Since A is real, λ̄1, λ̄2,..., λ̄2n are also eigenvalues
with corresponding eigenvectors ē1, ē2,..., ē2n and since A is skew-symmetric, λ1,
λ2,..., λ2n ∈ iR. It is possible to arrange this orthonormal basis so that e2k = ē2k−1

for all 1 ≤ k ≤ n. This is trivial, if A = 0. If A 6= 0 and λ1 6= 0, we have
Aē1 = λ̄1ē1 = −λ1ē1 and e1, ē1 are orthogonal. So, we may take λ2 = −λ1 and
e2 = ē1. Inductively now, if H is the linear subspace of C2n with basis {e1, ē1}, then
H, H⊥ and H are A-invariant and we can repeat this for the restriction of A on H⊥.

Theorem 8.5.4. (Pf(A))2 = detA for every A ∈ so(2n,R).

Proof. Since A is skew-symmetric, it has eigenvalues

λ1, λ2 = −λ1, ..., λ2n−1, λ2n = −λ2n−1 ∈ iR

and corresponding eigenvectors

e1, e2 = ē1, ..., e2n−1, e2n = ē2n−1 ∈ C2n

which comprise an orthonormal basis of C2n. Putting

vk =
1√
2
(e2k−1 + e2k) and wk =

1

i
√
2
(e2k−1 − e2k), 1 ≤ k ≤ n

we get an orthonormal basis of R2n. If ak = −iλ2k−1, then Avk = −akwk and
Awk = akvk. This means that there exists g ∈ O(2n,R) such that gAg−1 is the
matrix with the 2× 2 blocks

(
0 a1

−a1 0

)
, · · · ,

(
0 an

−an 0

)
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along the diagonal and zeros everywhere else. From Example 2.5.1 and Lemma
2.5.2, we have on the one hand

(Pf(gAg−1))2 = (a1 · · · an)2 = detA

and on other other hand

(Pf(gAg−1))2 = (Pf(gAgT ))2 = (Pf(A))2(detA)2 = (Pf(A))2. �

If A ∈ su(n,C), then A = −AT and from it we get an element AR ∈ so(2n,R).

Corollary 8.5.5. If A ∈ su(n,C), then Pf(AR) = in detA.

Proof. Since A is normal, there exists an orthonormal basis of Cn consisting of
eigenvectors of A. Thus, we may assume that A = diag(ia1, ..., ian), for some a1,...,
an ∈ R. Since iak corresponds to the 2× 2 block

(
0 −ak
ak 0

)

from Example 8.5.1 we have Pf(AR) = (−1)na1 · · · an and on the other hand detA =
ina1 · · · an. The conclusion follows now from Lemma 8.5.2. �

8.6 The Euler class

Let ξ = (E, p,M) be a smooth real vector bundle of rank n over a smooth manifold
M . A smooth inner product 〈, 〉 on ξ induces a bilinear map

〈, 〉 : Ωk(ξ)×Ωl(ξ) → Ak+l(M)

defined by 〈ω1 ⊗ s1, ω2 ⊗ s2〉 = 〈s1, s2〉ω1 ∧ ω2.
A connection ∇ on ξ is said to be compatible with the inner product (or a metric

connection with respect to 〈, 〉) if

d〈s1, s2〉 = 〈∇s1, s2〉+ 〈s1,∇s2〉

for every s1, s2 ∈ Ω0(ξ).
Let U ⊂ M be an open set over which ξ is trivial and let {e1, ..., en} be an

orthonormal frame on U . Let A = (Akl) be the connection form with respect to this
frame. Then,

0 = d〈ek, el〉 = 〈
n∑

j=1

Ajk ⊗ ej , el〉+ 〈ek,
n∑

j=1

Ajl ⊗ ej〉

=

n∑

j=1

Ajk〈ej , el〉+
n∑

j=1

Ajl〈ek, ej〉 = Alk +Akl.

Thus, the connection form A is skew-symmetric and an easy calculation shows that
the converse is also true. More precisely, if the connection form A of ∇ on U with
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respect to an orthonormal frame is skew-symmetric, then the restriction of ∇ on U
is a metric connection. The curvature form F∇ is also skew-symmetric, since on U
it is given by the formula F∇|U = dA+A ∧A.

We note that if {fj : j ∈ J} is a smooth partition of unity on the base space M
and {∇j : j ∈ J} is a family of connections on ξ, then

∇ =
∑

j∈J
fj∇j

is a connection on ξ. Moreover, if each ∇j is a metric connection with respect to
the same inner product on ξ for every j ∈ J , then ∇ is also a metric connection.

Using smooth partitions of unity one can construct connections which are com-
patible with a given inner product on ξ. Indeed, let U be an open cover of M
consisting of open sets over which ξ is trivial. For U ∈ U we choose an orthonormal
frame {e1, ..., en} on U . On U we consider the connection ∇U defined by the formula

∇U
X

( n∑

k=1

φkek

)
=

n∑

k=1

dφk(X)ek

for every smooth vector field X on U . Then, ∇U is compatible with the inner
product. If {fU : U ∈ U} is a smooth partition of unity subordinated to U , then

∇ =
∑

U∈U
fU∇U

is a connection on ξ compatible with the inner product.
The real vector bundle ξ of rank n is called orientable if there exists an open

cover U of its base space M such that ξ is trivial over each element of U and for any
U , V ∈ U such that U ∩V 6= ∅ and there are trivializations hU , hV of ξ over U and
V , respectively, such that

(hU ◦ h−1
V )(x, v) = (x, gUV (x)v)

for every x ∈ U ∩ V and v ∈ Rn, where gUV : U ∩ V → SO(n,R) is a smooth map.
Applying the Gram-Schmidt orthogonalization method, it is always possible to find
such an open cover with the corresponding maps gUV taking values in O(n,R). The
bundle is orientable if gUV take values in the connected component of the identity
of O(n,R).

We shall assume now that the rank of ξ is even and equal to 2n. Then, Pf(F∇|U )
is a smooth 2n-form on U , which depends on the choice of the initial orthonormal
frame on U . If we choose another orthonormal frame on U , then the curvature form
with respect to the new frame is B · (F∇|U ) ·B−1, where B : U → O(2n,R) is some
smooth map. It follows from Lemma 8.5.2 that the Pfaffian of the curvature form
with respect to the new frame is ±Pf(F∇|U ), assuming that U is connected. Thus,
in case ξ is orientable, we have a well defined global smooth 2n-form Pf(F∇) on M ,
for which the proof of Proposition 8.4.2 works and shows that it is closed. We shall
prove in the sequel that its cohomology class does not depend on the choices of the
metric connection and the initial inner product.
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Lemma 8.6.1. Let j0, j1 : M → R ×M be the inclusions with j(x) = (0, x) and
j(x) = (1, x) and pr : R×M → M the projection. If g0, g1 are two inner products
on ξ and ∇0 a connection compatible with g0 and ∇1 a connection compatible with
g1, then there exists an inner product g on pr∗ξ and a connection ∇ compatible
with g such that j∗0g = g0, j

∗
1g = g1 and j∗0∇ = ∇0, j∗1∇ = ∇1.

Proof. Let {f0, f1} be smooth partition of unity subordinated to the open cover

{(−∞,
3

4
)×M, (

1

4
,+∞)×M}

of R×M . Then,
g = f0pr

∗g0 + f1pr
∗g1

is an inner product on pr∗ξ such that j∗0g = g0 and j
∗
1g = g1. Now pr∗∇0 is a connec-

tion which is compatible with g only on (−∞,
1

4
)×M and pr∗∇1 is compatible with

g on (
3

4
,+∞)×M . Taking any connection ∇̃ on M which is compatible with g, we

can glue these three connections using a smooth partition of unity subordinated to
the open cover

{(−∞,
1

4
)×M, (

1

8
,
7

8
)×M, (

3

4
,+∞)×M}

of R×M with the required properties. �

Corollary 8.6.2. The cohomology class of Pf(F∇) in H2n(M) does not depend on
the choices of the inner product and the compatible connection ∇ on ξ.

Proof. Let g0, ∇0 and g1, ∇1 be two choices of inner products and compatible
connections on ξ. Applying the preceding Lemma 2.6.1 and using the same
notations, there exists an inner product g on pr∗ξ and a compatible connection
such that j∗0 (F

∇) = F∇0
and j∗1(F

∇) = F∇1
. Hence j∗0(Pf(F

∇)) = Pf(F∇0
) and

j∗1(Pf(F
∇)) = Pf(F∇1

). By homotopy invariance, the cohomology classes of these
two closed 2n-forms coincide. �

If ξ = (E, p,M) ia a smooth orientable real vector bundle of rank 2n over a
smooth manifold M , then the cohomology class

e(ξ) =

[
Pf

(
F∇

2π

)]
∈ H2n(M)

is called the Euler class of ξ.
The Euler class is natural in the sense that if f : N → M is a smooth map of

smooth manifolds and ξ = (E, p,M) is an smooth, orientable real vector bundle of
rank 2n over M , then

e(f∗ξ) = f∗(e(ξ)).

Also, if ξ1 = (E1, p1,M) and ξ2 = (E2, p2,M) are two smooth, orientable real
vector bundles of even ranks over M , then

e(ξ1 ⊕ ξ2) = e(ξ1)⌣ e(ξ2).
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Both assertions are proved in the same way as the corresponding assertions for Chern
classes.

So far in this section we have considered real vector bundles. It is obvious
however that the notion of metric connection or hermitian connection can be defined
on a smooth complex vector bundle equipped with a hermitian inner product. In
the same way as in the real case, it is easy to show that the connection form A of a
hermitian connection with respect to an orthonormal local frame is skew-hermitian,

that is A = −AT .
Let ξ = (E, p,M) be a smooth complex vector bundle of rank n over a smooth

manifold M . As a real vector bundle ξ has rank 2n and is orientable, because
U(n) ⊂ SO(2n,R), expanding the entries of U(n) to 2 × 2 real blocks in the usual
way. Let h be a smooth hermitian inner product on ξ and let ∇ be a compatible
connection. The underlying real vector bundle ξR inherits the real inner product Reh
and a corresponding compatible connection ∇R. The connection form A of ∇ with
respect to some orthonormal local frame of ξ on an open set U ⊂ M corresponds
to a connection form AR of ξR. For instance, if ξ is a complex line bundle, that is
n = 1, then A = (iω) ∈ A1(U ;C)1×1 for some differential 1-form ω on U and

AR =

(
0 −ω
ω 0

)
.

In case n = 2, there are differential 1-forms ω1, ω2 and θ on U such that

A =

(
iω1 θ

−θ iω2

)
.

and

AR =




0 −ω1 Reθ Imθ
ω1 0 −Imθ Reθ

−Reθ Imθ 0 −ω2

−Imθ −Reθ ω2 0


 .

From Corollary 8.5.5 we have Pf(F∇R

) = in det(F∇).

Theorem 8.6.3. If ξ = (E, p,M) is a smooth complex vector bundle of rank n
over a smooth manifold M , then e(ξR) = cn(ξ). In particular cn(ξ) ∈ H2n(M).

Proof. We compute

Pf

(
1

2π
F∇R

)
=

(
i

2π

)n
det(F∇) =

(
i

2π

)n
σn(F

∇) = σn

(−1

2πi
F∇
)
. �

Theorem 8.6.4. Let ξ = (E, p,M) is a smooth orientable real vector bundle of
rank 2n over a smooth manifold M . If there exists a nowhere vanishing smooth
section of ξ, then e(ξ) = 0.

Proof.We choose any smooth inner product on ξ. Normalising we may assume
that there exists a nowhere vanishing smooth section s of ξ of unit length. There
is an open cover U of M consisting of open sets over which ξ is trivial. Applying
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the Gram-Schmidt process on each U ∈ U we can construct a smooth local
orthonormal frame {e1, ..., e2n} such that e1 = s|U . Using a smooth partition of
unity subordinated to U as in the beginning of this section, we can construct a
metric connection ∇ on ξ such that ∇s = 0. The connection form A of ∇ with
respect to the orthonormal frame {e1, ..., e2n} on U has zeros in the first column.
The same is true for the curvature form F∇|U = dA + A ∧ A. This implies that
Pf(F∇) = 0 and therefore e(ξ) = 0. �

Example 8.6.5. As an illustration we shall compute the Euler class of the tangent
bundle TS2n of the 2n-dimensional sphere using the Levi-Civita connection ∇ of the
standard euclidean Riemannian metric 〈., .〉 of Example 3.3.3. As we have computed
in Example 8.1.4, the curvature in given by the formula

F∇
X,Y (s) = 〈s, Y 〉X − 〈s,X〉Y

for every X, Y , s ∈ X (S2n) = Ω0(TS2n).
Let {v1, v2, ..., v2n} be a positively oriented smooth local orthonormal frame of

TS2n on U = S2n \ {en+1} and {v∗1 , v∗2 , ..., v∗2n} be its dual. For every 1 ≤ j ≤ 2n we
have

F∇
X,Y (vj) = 〈Y, vj〉X − 〈X, vj〉Y =

2n∑

k=1

(
〈X, vk〉 · 〈Y, vj〉 − 〈X, vj〉 · 〈Y, vk〉

)
vk

=
2n∑

k=1

(
v∗k ∧ v∗j

)
(X,Y ) · vk.

Therefore
F∇|U =

(
v∗k ∧ v∗j

)
1≤k,j≤2n

and on U the Euler class is represented by the smooth closed 2n-form

Pf

(
F∇

2π

)
=

1

2nn!(2π)n

∑

σ∈S2n

(sgnσ)v∗σ(1) ∧ v∗σ(2) ∧ · · · ∧ v∗σ(2n−1) ∧ v∗σ(2n)

=
(2n)!

2nn!(2π)n
· v∗1 ∧ v∗2 ∧ · · · ∧ v∗2n−1 ∧ v∗2n.

It follows that
∫

S2n

Pf

(
F∇

2π

)
=

(2n)!

2nn!(2π)n
· Vol(S2n) =

(2n)!

2nn!(2π)n
· 2n+1πn

1 · 3 · 5 · · · (2n − 1)
= 2

which means that e(TS2n) is twice the standard generator of H2n(S2n).

8.7 The Gauss-Bonnet formula

A connection ∇ on the cotangent bundle T ∗M of a smooth manifold M of any
dimension n is said to be symmetric if the composition

Ω0(T ∗M) = A1(M)
∇−→ Ω1(T ∗M) = A1(M)⊗C∞(M) A

1(M)
∧−→ A2(M)
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coincides with the exterior derivation d.
On a local chart (U ;x1, ..., xn) of M there are smooth functions Γjkl : U → R

such that

∇(dxj) =

n∑

k,l=1

Γjkldx
k ⊗ dxl, 1 ≤ j ≤ n,

which are traditionally called the Christoffel symbols. If ∇ is symmetric, we have

n∑

k,l=1

Γjkldx
k ∧ dxl = d(dxj) = 0

and therefore Γjkl = Γjlk for all 1 ≤ j, k, l ≤ n.
More generally, for every f ∈ C∞(M) we can compute on U that

∇(df) =
n∑

k,l=1

(
∂2f

∂xk∂xl
+

n∑

j=1

Γjkl
∂f

∂xj

)
dxk ⊗ dxl.

If ∇ is symmetric, then the coefficient of dxk ⊗ dxl is symmetric with respect to the
indices k, l. The converse is also true.

A Riemannian metric on M gives rise to a natural smooth vector bundle iso-
morphism T ∗M ∼= TM by the use of which we can transfer the inner product to
T ∗M . According to Theorem 3.4.3, for every Riemannian metric on M there exists
a unique symmetric connection on T ∗M which is compatible with the Riemannian
metric and is the Levi-Civita connection of the Riemannian metric. This can be
proved in our context alternatively as follows. It suffices to prove that for every
local chart (U ;x1, ..., xn) of M and every orthonormal frame {θ1, ..., θn} of T ∗M on
U there exists a unique skew-symmetric matrix (Akl) of differential 1-forms on U
such that

dθl =
n∑

k=1

Akl ∧ θk, 1 ≤ l ≤ n,

because the local formulas

∇θl =
n∑

k=1

Akl ⊗ θk, 1 ≤ l ≤ n,

define a symmetric metric connection on U which is actually defined globally on M
by uniqueness. Indeed, there are smooth functions Aklj : U → R such that

dθj =

n∑

k,l=1

Akljθk ∧ θl.

If we take

Bklj =
1

2
[Aklj +Alkj −Ajkl −Ajlk +Aljk +Akjl]

and

Cklj =
1

2
[Aklj −Alkj +Ajkl −Ajlk −Aljk −Akjl]



220 CHAPTER 8. CHARACTERISTIC CLASSES

then Bklj is symmetric with respect to k, l and Cklj is skew-symmetric with respect
to l, j. Moreover, Aklj = Bklj + Cklj and this decomposition is unique, because if
Aklj = B′

klj + C ′
klj and B′

klj, C
′
klj have the same symmetry properties as Bklj and

Cklj, then Dklj = Bklj − B′
klj = Cklj − C ′

klj is at the same time symmetric with
respect to k, l and skew-symmetric with respect to l, j, which implies that

Dklj = Dlkj = −Dljk = −Djlk = Djkl = Dkjl = −Dklj

and therefore Dklj = 0. It follows now that

dθj =
n∑

k,l=1

Ckljθk ∧ θl

and it suffices to take

Akl =

n∑

k,l=1

Cjklθj, 1 ≤ k, l ≤ n.

Specializing to the case whereM is an oriented compact Riemannian 2-manifold, let
again {θ1, θ2} be an orthonormal frame of T ∗M on U . Then θ1∧θ2 is the restriction
to U of the Riemannian volume vol(M). The corresponding connection form of the
Levi-Civita connection is

A =

(
0 ω
−ω 0

)

where ω ∈ A1(U). Also, we have the structure equations

dθ1 = −ω ∧ θ2, dθ2 = ω ∧ θ1
and the curvature form is

F∇|U = dA+A ∧A =

(
0 dω

−dω 0

)
.

Hence, Pf(F∇)|U = dω, which is called the Gauss-Bonnet 2-form of M , and there
exists a unique smooth function K :M → R such that Pf(F∇) = K · vol(M) which
is called the Gauss curvature of M . Then,

∫

M
Kvol(M) = 2π

∫

M
e(T ∗M).

It follows from the above and Example 8.6.5 that for every Riemannian metric
on S2 with Gauss curvature K of the corresponding Levi-Civita connection we have

∫

S2

Kvol(S2) = 2π

∫

S2

e(T ∗S2) = 4π.

This is the Gauss-Bonnet Theorem for the 2-sphere. The Gauss-Bonnet Theorem
for the 2-torus T 2 = S1 × S1 takes the form

∫

T 2

Kvol(T 2) = 2π

∫

T 2

e(T ∗T 2) = 0,
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by Theorem 8.6.4, because T 2 is parallelizable.

The main purpose of this section is the statement and proof of the Gauss-Bonnet
Theorem for every oriented compact 2-manifold. Let M be an oriented compact
Riemannian 2-manifold with Levi-Civita connection ∇. We shall use the above
notations. The total space T 1M of the unit tangent bundle of M can be identified
with the set L of triples (x, v1, v2), where x ∈M and (v1, v2) is an ordered positively
oriented orthonormal basis of TxM , through the bijection f : L → T 1M with
f(x, v1, v2) = (x, v1). In other words, the unit tangent bundle ofM can be identified
with the frame bundle of positively oriented orthonormal frames. There is a natural
smooth action of S1 on T 1M defined by the diffeomorphisms Rφ : T 1M → T 1M
with

Rφ(x, v1, v2) = (x, cos φ · v1 + sinφ · v2,− sinφ · v1 + cosφ · v2)
for all eiφ ∈ S1.

Let U ⊂ M be an open set which is diffeomorphic to R2 and let (e1, e2) be an
ordered positively oriented orthonormal frame on U . Let (θ1, θ2) be its dual frame
with respect to the Riemannian metric. If (ê1, ê2) is a second ordered positively
oriented orthonormal frame on U with dual frame (θ̂1, θ̂2), there exists a smooth
function τ : U → R such that

ê1(x) = cos τ(x) · e1(x) + sin τ(x) · e2(x)

ê2(x) = − sin τ(x) · e1(x) + cos τ(x) · e2(x)
and correspondingly

θ̂1(x) = cos τ(x) · θ1(x) + sin τ(x) · θ2(x)

θ̂2(x) = − sin τ(x) · θ1(x) + cos τ(x) · θ2(x)
for every x ∈ U . Of course vol(M)|U = θ1 ∧ θ2 = θ̂1 ∧ θ̂2.

If A and Â are the corresponding connection forms on U and

A =

(
0 ω
−ω 0

)
, Â =

(
0 ω̂
−ω̂ 0

)
,

then ω̂ = ω − dτ , by uniqueness, because

dθ̂1 = −(ω − dτ) ∧ θ̂2, dθ̂2 = (ω − dτ) ∧ θ̂1.

On T 1M we consider the differential 1-forms ω1, ω2 defined by

(ωj)(x,v1,v2)(w) = 〈vj , p∗(x,v1,v2)(w)〉

for w ∈ T(x,v1,v2)T
1M , (x, v1, v2) ∈ T 1M , j = 1, 2, where 〈, 〉 is the Riemannian

metric on M and p : T 1M → M is the unit tangent bundle projection. It is useful
to find local expressions of ω1, ω2 on p−1(U). The map hU : U × S1 → p−1(U)
defined by

hU (x.e
iφ) = (x, cosφ · e1(x) + sinφ · e2(x),− sin φ · e1(x) + cosφ · e2(x))
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is a diffeomorphism and pr = p ◦ hU : U ×S1 → U is the projection. It follows from
the definitions that

(hU )
∗ω1 = cosφ · pr∗θ1 + sinφ · pr∗θ2

(hU )
∗ω2 = − sinφ · pr∗θ1 + cosφ · pr∗θ2

and therefore
(hU )

∗(ω1 ∧ ω2) = pr∗(θ1 ∧ θ2)
or equivalently

ω1 ∧ ω2|p−1(U) = p∗(θ1 ∧ θ2) = p∗(vol(M)|U ).
Since U is an arbitrary open subset of M diffeomorphic to R2, it follows that

ω1 ∧ ω2 = p∗(vol(M))

on T 1M .

Lemma 8.7.1. There exists a differential 1-form α on T 1M such that
(i) dω1 = −α ∧ ω2 and dω2 = α ∧ ω1,
(ii) dα = p∗(Pf(F∇)) on T 1M and
(iii) α is invariant under the smooth action of S1 on T 1M .

Proof. Using the above notations, let again U ⊂ M be an open set which is diffeo-
morphic to R2. Differentiating we see that

(hU )
∗(dω1) = −(pr∗ω − dφ) ∧ (hU )

∗ω2, (hU )
∗(dω2) = (pr∗ω − dφ) ∧ (hU )

∗ω1.

If ĥU is taken from another frame (ê1, ê2) on U , then

(h−1
U ◦ ĥU )(x, eiφ̂) = (x, φ̂+ τ(x))

and so dφ = dφ̂+ dτ , from which follows that

(h−1
U ◦ ĥU )∗(pr∗ω − dφ) = pr∗ω̂ − dφ̂

since ω̂ = ω − dτ . This means hat there exists a globally defined differential 1-form
α on T 1M such that

α|p−1(U) = (h−1
U )∗(pr∗ω − dφ) = p∗ω − (h−1

U )∗(dφ)

for every open set U ⊂M diffeomorphic to R2. Differentiating

dα|p−1(U) = p∗(dω) = p∗(Pf(F∇)|U ).

Finally, it is evident from the definitions that

(h−1
U ◦Rβ ◦ hU )(x, eiφ) = (x, ei(φ+β))

from which follows immediately that α is invariant unser the action of S1. �
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The tangent bundle of M is actually a smooth complex line bundle over M ,
because U(1) = SO(2,R). In section 9.2 we shall generalize the above construction
of α to any smooth complex line bundle over a smooth manifold.

Let now I ⊂ R be an open interval and σ : I → M be a smooth curve
parametrized by arclength. For the lifted smooth curve γ : I → T 1M defined
by γ(s) = (σ(s), σ̇(s)) we have γ∗ω1 = ds and γ∗ω2 = 0. There exists a unique
smooth function κ : I → R such that

γ∗α = −κ(s)ds

which is called the geodesic curvature of σ. Locally, on an open set U ⊂ M
diffeomorphic to R2 with respect to an ordered positively oriented orthonormal
frame (e1, e2), if σ(I) ⊂ U , there exists a smooth function φ : I → R such that
h−1
U (γ(s)) = (c(s), eiφ(s)) for every s ∈ I. The smooth map eiφ : I → S1 is the angle

between e1 and ċ and

−κ(s)ds = γ∗α = (h−1
U ◦ γ)∗(pr∗ω − dφ) = c∗ω − dφ

as the proof of Lemma 8.7.1 shows.

Theorem 8.7.2. (C.F. Gauss - P.O. Bonnet) If M is an oriented compact Rie-
mannian 2-manifold with Riemannian volume form vol(M) and Gauss curvature
K :M → R, then ∫

M
K · vol(M) = 2πχ(M).

Proof. The assertion has been proved in case M is the 2-torus T 2, by Theorem
8.6.4. Let V = T 2 \D1 ∪D2, where D1, D2 ⊂ T 2 are two disjoint closed discs with
smooth boundary. Since T 2 is parallelizable, there exists a global ordered positively
oriented orthonormal frame (e1, e2) on T 2. If φj is the angle between e1 and ∂Dj

and κj is the geodesic curvature of ∂Dj , j = 1, 2, we have

∫

V
K · vol(M) = −

∫

T 2\V
K · vol(M) = −

∫

D1

K · vol(M)−
∫

D2

K · vol(M)

= −
∫

D1

dω −
∫

D2

dω = −
∫

∂D1

ω −
∫

∂D1

ω

= −
∫

∂D1

(dφ− κ1(s))ds −
∫

∂D2

(dφ− κ2(s))ds

= −2π +

∫

∂D1

κ1(s)ds− 2π +

∫

∂D2

κ2(s)ds.

Suppose now that the genus of M is g > 1. Then,

M = V0 ∪ V1 ∪ · · · ∪ Vg ∪ Vg+1

where V0, Vg+1 are closed discs with smooth boundaries ∂V0 = C0, ∂Vg+1 = Cg+1,
and each Vj is diffeomorphic to V for 1 ≤ j ≤ g with ∂Vj = Cj ∪ C ′

j so that
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C ′
j = −Cj+1 homologically, 0 ≤ j ≤ g. We have

∫

M
K · vol(M) =

g+1∑

j=0

∫

Vj

K · vol(M).

If κj denotes the geodesic curvature of Cj and κ′j the geodesic curvature of C ′
j , we

have ∫

V0

K · vol(M) +

∫

V1

K · vol(M)

= 2π −
∫

C0

κ0(s)ds− 4π +

∫

C1

κ1(s)ds +

∫

C′
1

κ′1(s)ds

= 2π − 4π −
∫

C2

κ2(s)ds.

Similarly,
∫

Vg

K · vol(M) +

∫

Vg+1

K · vol(M) = 2π − 4π +

∫

Cg

κg(s)ds.

For 2 ≤ j ≤ g − 2 we have
∫

Vj

K · vol(M) +

∫

Vj+1

K · vol(M)

= −4π +

∫

Cj

κj(s)ds+

∫

C′
j

κj(s)ds− 4π +

∫

Cj+1

κj(s)ds +

∫

C′
j+1

κj(s)ds

= −4π +

∫

Cj

κj(s)ds − 4π +

∫

C′
j+1

κ′j(s)ds.

Consequently, ∫

M
K · vol(M) = 4π − 4πg = 2πχ(M). �

In purely topological terms the Gauss-Bonnet Theorem can be stated as follows.

Corollary 8.7.3. If M is an oriented compact 2-manifold, then
∫

M
e(T ∗M) = χ(M). �

8.8 The splitting principle for complex vector bundles

The notion of vector bundle is a special case of the more general notion of fibre
bundle. A fibre bundle is a quadruple (E, p,M,F ) where E, M and F are
topological spaces and p : E → M is a continuous onto map such that there exists
an open cover U of M consisting of open sets U ⊂ M for each of which there
exists a homeomorphism hU : p−1(U) → U × F such that pr ◦ hU = p, where
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pr : U × F → U is the projection. The space E is called the total space, the space
M is the base space and F is the fibre. Each homeomorphism like hU is a local
trivialization of the bundle on U . The fibre bundle is said to be smooth if E, B
and F are smooth manifolds and p : E → M is a smooth map. It is obvious from
the definitions that a vector bundle is fibre bundle with fibre a vector space and
local trivializations which are linear on fibres. The fibre bundle (M × F, pr,M,F )
is the trivial fibre bundle over M with fibre F .

Examples 8.8.1 (a) If ξ = (E, p,M) is a real vector bundle of rank n equipped with
an inner product 〈, 〉 and we put S(ξ) = {v ∈ E : 〈v, v〉 = 1}, then (S, p|S ,M, Sn−1)
is a fibre bundle, which is called the corresponding sphere bundle of ξ. Indeed,
if U ⊂ M is an open set over which ξ is trivial, then applying the Gram-Schmidt
orthogonalization process to any local frame of ξ on U we obtain a local trivialization
of p|S on U .

(b) Let ξ = (E, p,M) be a (real or complex) vector bundle of rank n and

P (ξ) = {(x, ℓ) : x ∈M and ℓ ∈ P (p−1(x))}

where P (p−1(x)) denotes the projective space corresponding to the vector space
p−1(x). The projection q : P (ξ) → M with q(x, ℓ) = x is a fibre bundle map. The
total space is P (ξ), base space M and fibre RPn−1, in case ξ is real or CPn−1, if ξ
is a complex vector bundle. This is the projective vector bundle which corresponds
to ξ. If the initial vector bundle ξ is smooth, then its corresponding projective fibre
bundle is also smooth.

In the case of a vector bundle the total space and the base space have the same
homotopy type and actually (a copy of) the base space is a strong deformation
retract of the total space. This is not the case in general for fibre bundles. If
(E, p,M,F ) is a smooth fibre bundle, then on H∗(E) one can define an exterior
multiplication

· : H∗(M)⊗H∗(E) → H∗(E)

by setting a · e = p∗(a) ⌣ e, for a ∈ H∗(M), e ∈ H∗(E). In this way the
cohomology algebra H∗(E) of the total space becomes a graded module over the
graded cohomology algebra H∗(M) of the base space.

Theorem 8.8.2. (J. Leray and G. Hirsch) Let (E, p,M,F ) be a smooth fibre bundle.
We assume that H∗(F ) is a finite dimensional vector space and that there exist n1,...,
nk ∈ N and cohomology classes ej ∈ Hnj (E), 1 ≤ j ≤ k, such that

{ej |p−1(x) : j = 1, 2, ..., k}

is a basis of H∗(p−1(x)) ∼= H∗(F ) for every x ∈ M . Then, H∗(E) is the free
H∗(M)-module with basis {e1, ..., ek}.

Proof. Let V be an open cover of M consisting of open subsets of M over each
of which the fibre bundle is trivial. Let also U denote the family of all open sets
U ⊂ M such that the assertion is true for ξ|U . By Proposition 5.4.8, it suffices to
prove the following:
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(i) ∅ ∈ U .
(ii) If V ∈ V and U ⊂ V is an open subset of M diffeomorphic to Rm, where

m = dimM , then U ∈ U .
(iii) If U1, U2 ∈ U are such that U1 ∩ U2 ∈ U , then U1 ∪ U2 ∈ U .
(iv) If {Un : n ∈ N} is a countable family of mutually disjoint elements of U ,

then

∞⋃

n=1

Un ∈ U .

The first point is trivially true as well as the second, because H∗(Rm × F ) ∼=
H∗(F ) is a real vector space, hence a free H∗(Rm) ∼= R-module. The fourth point
is also clear from the facts

H∗(
∞⋃

n=1

Un; ) ∼=
∞∏

n=1

H∗(Un) and H∗(p−1(
∞⋃

n=1

Un)) ∼=
∞∏

n=1

H∗(p−1(Un))

and our assumption. The non-trivial point of the proof is (iii) which can be proved
using Mayer-Vietoris sequences. For simplicity of notation we denote E1 = p−1(U1),
E2 = p−1(U2) and E12 = p−1(U1 ∩ U2). Let also U = U1 ∪ U2 and EU = p−1(U).
We have the two Mayer-Vietoris long exact sequences

· · · −→Hq−1(E12)
δ∗−→Hq(EU )

I−→Hq(E1)⊕Hq(E2)
ρ−→· · ·

· · · −→Hq−1(U1 ∩ U2)
δ∗−→Hq(U)

I−→Hq(U1)⊕Hq(U2)
ρ−→· · ·

If

k∑

j=1

aj · ej = 0 in H∗(EU ), where aj ∈ H∗(U), 1 ≤ j ≤ k, then aj = 0, 1 ≤ j ≤ k ,

because this holds in H∗(E1) and H
∗(E2).

It remains to prove that for every e ∈ H∗(EU ) there exist aj ∈ H∗(U), 1 ≤ j ≤ k,
such that e = a1 · e1 + · · ·+ ak · el in H∗(EU ). If i1 : E1 → EU and i2 : E2 → EU are
the inclusions, then our assumption implies that i∗1(e) and i

∗
2(e) can be written as

i∗1(e) =
k∑

j=1

a1j · ej and i∗2(e) =
k∑

j=1

a2j · ej .

If g1 : E12 → E1 and g2 : E12 → E2, it follows by exactness of the first Mayer-
Vietoris sequence that

k∑

j=1

g∗1(a
1
j ) · ej =

k∑

j=1

g∗2(a
2
j ) · ej

and therefore g∗1(aj) = g∗2(aj), 1 ≤ j ≤ k. By exactness of the second Mayer-Vietoris
sequence, there are aj ∈ H∗(U), 1 ≤ j ≤ k, such that I(aj) = (a1j , a

2
j ) for every

1 ≤ j ≤ k. Hence

I(e−
k∑

j=1

aj · ej) = 0
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and e−
k∑

j=1

aj · ej ∈ Imδ∗, by exactness. Thus, it suffices to prove the assertion in

Imδ∗. This follows from the assumption that it holds on E12 and the formula

δ∗(a · i∗12(e)) = δ∗(a) · e

for every a ∈ H∗(U) and e ∈ H∗(EU ), where i12 : E12 → EU is the inclusion. This
formula follows immediately from the formula giving the connecting homomor-
phism δ∗ using a smooth partition of unity {f1, f2} subordinated to the open cover
{U1, U2} of U and the induced partition of unity {f1 ◦ p, f2 ◦ p} subordinated to the
open cover {E1, E2} of EU . �

Of course in the preceding Theorem 8.8.2 we could have used cohomology with
complex coefficients. We recall now that for every n ∈ N the canonical inclu-
sion j : CP 1 → CPn with j[z0, z1] = [z0, z1, 0, ..., 0] induces and isomorphism
j∗ : H2(CPn;C) → H2(CP 1;C). Actually, if X generates H2(CP 1;C) ∼= C, then
(j∗)−1(X) generates the cohomology algebra of CPn. If γn = (Hn, p,CPn) is the
tautological complex line bundle, then j∗γn = γ1. Since the Chern classes are nat-
ural, from Example 8.4.4 we conclude that

j∗(c1(γn)) = c1(j
∗γn)) = c1(γ1) = −X 6= 0

and hence c1(γn) = −(j∗)−1(X) 6= 0.
Let ξ = (E, p,M) be a smooth complex vector bundle of rank n + 1 and let

(P (ξ), q,M,CPn) be the corresponding projective fibre bundle of Example 8.8.1(b).
There exists a smooth complex line bundle ζ = (H, τ, P (ξ)), where

H = {(x, ℓ, v) : (x, ℓ) ∈ P (ξ), v ∈ ℓ}

and τ(x, ℓ, v) = (x, ℓ). In case M is a singleton this is just the tautological complex
line bundle γn over CPn. We consider any smooth hermitian inner product on
ξ. This induces a smooth hermitian inner product on q∗ξ and we have a splitting
q∗ξ ∼= ζ ⊕ ζ⊥, where the total space of ζ⊥ is H⊥ = {(x, ℓ, v) : (x.ℓ) ∈ P (ξ), v ∈ ℓ⊥}.

q∗E E

P (ξ) M

p

q

Let e = c1(ζ) ∈ H2(P (ξ);C). Since the restriction of ζ on a fibre q−1(x) is
isomorphic to the tautological complex line bundle γn, we conclude that e|q−1(x) is
(minus) the generator of H2(q−1(x);C). This implies that the set of cohomology
classes

{1, e, ..., en}
in H∗(P (ξ);C), where powers are taken with respect to the cup product, satisfies
the assumptions of Theorem 8.8.2. Thus, H∗(P (ξ);C) is the free H∗(M ;C)-module
with basis {1, e, ..., en}. In particular, for every a ∈ H∗(M ;C) we have

q∗(a) = q∗(a)⌣ 1 = a · 1 ∈ H∗(P (ξ);C)
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and so q∗ : H∗(M ;C) → H∗(P (ξ);C) is a injective.

Theorem 8.8.3. (Splitting Principle) If ξ = (E, p,M) is a smooth complex vector
bundle of rank n, then there exist a smooth manifold N , a proper smooth map
f : N →M and smooth complex line bundles ξj = (Ej , pj , N), 1 ≤ j ≤ n such that

(i) f∗ : H∗(M ;C) → H∗(N ;C) is injective and
(ii) f∗ξ ∼= ξ1 ⊕ · · · ⊕ ξn.

Proof. Let (P (ξ), q,M,CPn−1) be the corresponding projective fibre bundle and let
ζ = (H, τ, P (ξ)) be the smooth complex line bundle which was defined above. We
have the commutative diagrams

q∗E −→ Ey
yp

P (ξ)
q−→ M

and

q∗1(H⊥) −→ H⊥y
yp1

P (H⊥)
q1−→ P (ξ)

and q∗1ζ
⊥ is isomorphic to the direct sum of a complex line bundle and another

complex vector bundle (like ζ⊥). This implies a splitting

(q ◦ q1)∗ξ ∼= ξ1 ⊕ ξ2 ⊕ ξ′

where ξ1 = ζ and ξ2 are complex line bundles. Moreover, the homomorphisms
q∗ : H∗(M ;C) → H∗(P (ξ);C) and q∗1 : H∗(P (ξ);C) → H∗(P (ζ⊥);C) are injective
and hence so is (q ◦ q1)∗.

Repeating this construction we get a finite sequence of smooth proper maps

Pn−1
qn−1−→ · · · q2−→P1

q1−→P0 = P (ξ)
q−→M

such that each qj induces an injective homomorphism in cohomology and

(q ◦ q1 ◦ · · · qj)∗ξ ∼= ξ1 ⊕ ξ2 ⊕ · · · ⊕ ξj+1 ⊕ ξ′

for 1 ≤ j ≤ n − 1, where ξ1, ξ2,..., ξj+1 are smooth complex line bundles. Setting
f = q ◦ q1 ◦ · · · qn−1 and N = Pn−1 the assertion follows. �

The combination of the preceding Theorem 8.8.3 with Theorem 8.6.3 yields
that the Chern classes of a smooth complex vector bundle are actually real.

Corollary 8.8.4. If ξ = (E, p,M) is a smooth complex vector bundle over a
smooth manifold M , then ck(ξ) ∈ H2k(M) for every k ∈ Z+. �

Corollary 8.8.5. If ξ = (E, p,M) is a smooth complex vector bundle of rank n,
then ck(ξ) = 0 for k > n. �

In particular, for the tautological complex line bundle γn over CPn we have
ck(γn) = 0 for k > 1. From the Splitting Principle we obtain the following
characterization of the Chern classes.
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Theorem 8.8.6. For every smooth manifold M there exists exactly one set con-
sisting of cohomology classes ck(ξ) ∈ H2k(M), k ∈ Z+, for each isomorphic class of
smooth complex vector bundles ξ over M with the following properties:

(i)

∫

CP 1

c1(γ1) = −1 and c0(γn) = 1, ck(γn) = 0 for k > 1 and for every n ∈ N.

(ii) f∗(ck(ξ)) = ck(f
∗(ξ)) for every smooth map f : N →M .

(iii) ck(ξ1 ⊕ ξ2) =
k∑

j=0

cj(ξ1)⌣ ck−j(ξ2).

Proof. From what we have proved so far in this and the previous sections only
the uniqueness needs proof. Suppose that we have a set of cohomology classes ck,
k ∈ Z+, with the properties (i), (ii) and (iii). From (i) we have immediately that
c1(γ1) is the first Chern class of γ1.

Let now ξ = (L, p,M) be a smooth complex line bundle over M . There exists a
smooth complex vector bundle ξ̃ over M such that ξ ⊕ ξ̃ ∼= ǫn+1

C . We consider the
smooth map f : M → CPn with f(x) = pr(Lx), where pr : M × Cn+1 → Cn+1 is
the projection. In the commutative diagram

L Hn

M CPn

f̂

p

f

each f̂ |Lx is a linear isomorphism for every x ∈ M , which implies that f∗(γn) ∼= ξ
and from property (ii) we have c1(ξ) = f∗(c1(γn)) and ck(ξ) = 0 for k > 1.
These show that properties (i) and (ii) determine uniquely the Chern classes for
smooth complex line bundles. Using inductively property (iii), it follows that
ck(ξ1⊕· · ·⊕ξn) is uniquely determined from c1(ξj), 1 ≤ j ≤ k, for every finite family
ξ1,..., ξn of smooth complex line bundles. From Theorem 8.8.3 it follows immediately
that ck(ξ), k ∈ Z+ is uniquely determined for every smooth complex line bundle ξ. �

The total Chern class of a smooth complex vector bundle ξ = (E, p,M) is by
definition

c(ξ) =
∞∑

k=0

ck(ξ) ∈ H∗(M).

In case ξ is a line bundle, then c(ξ) = 1+ c1(ξ). If ξ ∼= ξ1 ⊕ · · · ⊕ ξn, where ξ1,..., ξn
are line bundles, then

c(ξ) =
n∏

k=1

(1 + c1(ξk)) =
n∑

k=0

σk(c1(ξ1), ..., c1(ξn))

and therefore ck(ξ) = σk(c1(ξ1), ..., c1(ξn)) for every k ∈ Z+.
Analogously, the total Chern character of ξ is defined to be

ch(ξ) =

∞∑

k=0

chk(ξ) ∈ H∗(M)
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and

chk(ξ) =

n∑

j=0

chk(ξj) =

n∑

j=0

1

k!
c1(ξj)

k,

by Proposition 8.4.5(a) and Example 8.4.4(a). Therefore,

ch(ξ) =

n∑

j=1

ec1(ξj)

where for a ∈ H2(M ;R) we have put

ea =
∞∑

k=0

1

k!
ak ∈ H∗(M).

8.9 Pontryagin classes and applications

Let ξ = (E, p,M) be a smooth complex vector bundle of rank n. Recall that from
it we derive its conjugate bundle ξ and its dual bundle ξ∗ which are isomorphic.
The Chern classes of ξ and ξ∗ are related as follows.

Proposition 8.9.1. If ξ = (E, p,M) is a smooth complex vector bundle of rank n,
then ck(ξ

∗) = (−1)kck(ξ) for every k ∈ Z+.

Proof. There exists a hermitian inner product on ξ and a compatible connection ∇,
which is also a connection on ξ. The connection form A of ∇ with respect to an

orthonormal local frame of ξ is skew-hermitian, that is A
T
= −A. The curvature

F∇ = dA + A ∧ A is also skew-hermitian. An orthonormal local frame of ξ is also
orthonormal for ξ and the corresponding connection form of ∇ is A. Thus, the
connection form of F∇ on ξ is F∇ = −(F∇)T . Thus,

ck(ξ) =

[
σk

(−1

2πi
F∇
)]

=

[
σk

(
1

2πi
(F∇)T

)]
.

On the other hand, for every B ∈ Cn×n we have

det(In − tBT ) = det(In − tB) =

n∑

k=1

σk(B)(−t)k

which means that σk(−BT ) = (−1)kσk(B), 1 ≤ k ≤ n. Therefore,

ck(ξ) =

[
σk

(
1

2πi
(F∇)T

)]
= (−1)k

[
σk

(−1

2πi
F∇
)]

= (−1)kck(ξ). �

Let now ξ = (E, p,M) be a smooth real vector bundle of rank n and let ξC =
ξ ⊗R ǫ

1
C be its complexification. Then,

ξC ∼= ξ ⊗R ǫ
1
C
∼= ξ ⊗R ǫ

1
C
∼= ξC,
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because the map f : ξ ⊗R ǫ
1
C → ξ ⊗R ǫ1C defined by f(v ⊗R z) = v ⊗R z is an

isomorphism of complex vector bundles since

f(i(v ⊗R z)) = f(v ⊗R (iz)) = v ⊗R (−iz) = if(v ⊗R z).

Consequently, (ξC)
∗ ∼= ξC ∼= ξ ⊗R ǫ

1
C

∼= ξ∗ ⊗R ǫ
1
C = (ξ∗)C and it follows from

Proposition 8.9.1 that

ck(ξC) = ck((ξ
∗)C) = ck((ξC)

∗) = (−1)kck(ξC).

Hence ck(ξC) = 0, if k is odd.

The cohomology classes

pk(ξ) = (−1)kc2k(ξC) ∈ H4k(M), k ∈ Z+,

are called the Pontryagin classes of the real vector bundle ξ. The total Pontryagin
class of ξ is by definition

p(ξ) =

∞∑

k=0

pk(ξ) ∈ H∗(M).

If now ξ is a smooth complex vector bundle, then the Pontryagin classes of the
underlying real vector bundle and its Chern classes satisfy certain quadratic poly-
nomial equations. To see this, let pk = pk(ξR) and ck = ck(ξ). Then, (ξR)C ∼= ξ⊕ ξ∗,
by Lemma 7.5.1, and so

pk = (−1)kc2k(ξ ⊕ ξ∗) = (−1)k
2k∑

j=0

(−1)jcj(ξ)⌣ c2k−j(ξ).

If we consider the total classes, we have

1− p1+ p2− · · ·+(−1)npn = (1+ c1+ c2+ · · ·+ cn)⌣ (1− c1+ c2− · · ·+(−1)ncn).

Specifically, p1 = c21 − 2c2, p2 = c22 − 2c1c3 + 2c4, etc, where the powers are taken
with respect to the cup product. These polynomial equations can serve as ob-
structions for a smooth real vector bundle of even rank to admit a complex structure.

Example 8.9.2. We shall calculate the Chern classes of the tangent bundle of the
n-dimensional complex projective space CPn, which is a complex manifold and so
its tangent bundle TCPn (when CPn is considered as a real smooth 2n-manifold)
is a smooth complex vector bundle of rank n. We shall need a generalization of
the canonical atlas of CPn. With the term line we mean a 1-dimensional (complex)
linear subspace of Cn+1. For each line ℓ let gℓ : Hom(ℓ, ℓ⊥) → CPn be the map which
sends φ ∈ Hom(ℓ, ℓ⊥) to its graph. The orthogonal complement ℓ⊥ is considered
with respect to the usual hermitian inner product and Hom = HomC. Obviously,
gℓ(0) = ℓ. For instance, if ℓ is the line which is generated by (1, 0, ..., 0), then
ℓ⊥ = {(0, z1, ..., zn) : z1, ..., zn ∈ C} and the map which sends φ ∈ Hom(ℓ, ℓ⊥) to
φ(1, 0, ..., 0) establishes an isomorphism Hom(ℓ, ℓ⊥) ∼= Cn. Using this identification,
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we have gℓ(φ) = [1, u1, ..., un], where φ(1, 0, ..., 0) = (0, u1, ..., un). Similarly, if ℓ is
generated by (0, ..., 0, 1, 0, ..., 0), using an analogous identification we have

gℓ(φ) = [u1, ..., 1, ..., un ]

where φ((0, ..., 0, 1, 0, ..., 0) = (u1, ..., 0, ..., un). The image of gℓ is the set Uℓ of
points in CPn, which as lines in Cn+1 are not orthogonal to ℓ. The pair (Uℓ, gl) is
a holomorphic chart of CPn.

Let γ⊥n = (H⊥
n , p

⊥,CPn) be the smooth complex vector bundle with total space

H⊥
n = {(ℓ, u) ∈ CPn × Cn+1 : u ∈ ℓ⊥}

and p⊥ the obvious projection. Then, γn ⊕ γ⊥n ∼= ǫn+1
C

∼= ǫ1C ⊕ · · · ⊕ ǫ1C. Moreover,
Hom(γn, γ

⊥
n )

∼= TCPn. Such a vector bundle isomorphism is for instance the map
which restricted on the fibre over ℓ ∈ CPn is the complex derivative of gℓ at 0. We
recall also that Hom(γn, γn) ∼= ǫ1C, since γn is a line bundle. Now we have

TCPn ⊕ ǫ1C
∼= Hom(γn, γ

⊥
n )⊕Hom(γn, γn) ∼= Hom(γn, γ

⊥
n ⊕ γn) ∼= Hom(γn, ǫ

n+1
C )

∼= Hom(γn, ǫ
1
C ⊕ · · · ⊕ ǫ1C)

∼= Hom(γn, ǫ
1
C)⊕ · · · ⊕Hom(γn, ǫ

1
C)

∼= γ∗n ⊕ · · · ⊕ γ∗n.

According to Proposition 8.9.1, the total Chern class of TCPn is

c(TCPn) = c(TCPn⊕ǫ1C) = c(γ∗n)
n+1 = (1−c1(γn))n+1 =

n+1∑

k=0

(−1)k
(
n+ 1
k

)
c1(γn)

k

where powers are considered with respect to the cup product. Hence

ck(TCP
n) = (−1)k

(
n+ 1
k

)
c1(γn)

k 6= 0, 0 ≤ k ≤ n.

Example 8.9.3. We can use the calculation of the preceding Example 8.9.2 in order
to prove that CP 2n is not the boundary of a relatively compact domain with smooth
boundary in any smooth (4n+1)-manifold for all n ∈ N. Suppose that there exists a
relatively compact domain with smooth boundary D in a smooth (4n+1)-manifold
M with ∂D = CP 2n and let j : CP 2n →M be the inclusion. From the existence of
collar along ∂D we conclude that

T∂D ⊕ ǫ1R
∼= j∗(TM).

Complexifying, it follows that

((TCP 2n)R)C ⊕ ǫ1C
∼= j∗((TM)C).

From Lemma 7.5.1 and the calculations of Example 8.9.2 we have

((TCP 2n)R)C ⊕ ǫ2C
∼= (TCP 2n ⊕ ǫ1C)⊕ ((TCP 2n)∗ ⊕ ǫ1C)

∼= γ∗2n ⊕ · · · ⊕ γ∗2n ⊕ γ2n ⊕ · · · ⊕ γ2n.
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The total Chern class is

c(((TCP 2n)R)C) = (1− c1(γ2n))
2n+1 ⌣ (1 + c1(γ2n))

2n+1 = (1− (c1(γ2n)
2)2n+1

=
2n+1∑

k=0

(−1)k
(
2n+ 1
k

)
(c1(γ2n))

2k.

If ω ∈ A4n(M) represents c2n((TM)C), then

[j∗ω] = j∗(c2n((TM)C)) = c2n(j
∗(TM)C) = (−1)n

(
2n+ 1
n

)
(c1(γ2n))

2n 6= 0.

It follows now from Stokes’ formula that

0 =

∫

D
dω =

∫

∂D
j∗ω 6= 0.

This contradiction proves the assertion.

Example 8.9.4. The non-triviality of the Chern or the Pontryagin classes can be
used as obstruction to embedding smooth manifolds into euclidean spaces. As an
illustration, we consider CP 4. Let X denote the standard generator of H2(CP 4).
The calculation of the preceding Example 8.9.3 gives

c(((TCP 4)R)C) = (1−X2)5 = 1− 5X2 + 10X4

in the deRham cohomology algebra H∗(CP 4).
Suppose that CP 4 can be smoothly embedded in Rn, where n ≥ 9 is a positive

integer. There is a normal bundle ξ over CP 4 such that

(TCP 4)R ⊕ ξ ∼= TRn|CP 4
∼= ǫnR.

From Proposition 8.4.5(b) we obtain c(((TCP 4)R)C)⌣ c(ξC) = 1 and therefore

c(ξC) =
1

(1−X2)5
= 1 + 5X2 + 15X4

in H∗(CP 4). Since 5X2 and 15X4 are non-zero in H4(CP 4) and H8(CP 4),
respectively, this implies that ξ must be of rank at least 4. In other words, CP 4

cannot be embedded in R11.

Example 8.9.5. If ξ = (E, p,M) is an orientable real smooth vector bundle of rank
2n, then from the definitions and Theorem 2.6.4 we have

pn(ξ) = c2n(ξC) = e((ξC)R) = e(ξ ⊕ ξ) = e(ξ)2.

Example 8.9.6. A (complex or real) vector bundle ξ of rank n is said to be
stably trivial, if there exists k ∈ N such that ξ ⊕ ǫk ∼= ǫn+k. For instance the
tangent bundle TSn of the n-sphere is stably trivial for every n ∈ N, because
the normal bundle of Sn in Rn+1 is trivial and so TSn ⊕ ǫ1 ∼= ǫn+1. From
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Proposition 2.4.5(b) follows that the Chern classes of a stably trivial smooth com-
plex vector bundle are trivial. Similarly, the Pontryagin classes of a stably trivial
real vector bundle are trivial. In particular, the Pontryagin classes of TSn are trivial.

Example 8.9.7. Using characteristic classes we can prove that the 4k-dimensional
sphere S4k, k ∈ N, does not admit any almost complex structure. We recall that
an almost complex structure on a smooth manifold M is a smooth vector bundle
endomorphism J : TM → TM such that J2 = −id. IfM admits an almost complex
structure J , then each tangent space TxM , x ∈M , becomes a complex vector space
and M must be even dimensional. Also, J extends to a smooth vector bundle
endomorphism of (TM)C = TM ⊗R ǫ

1
C and there exists a smooth complex vector

bundle ξ over M such that (TM)C = ξ⊕ ξ∗. Actually, ξ is the i-eigenspace of J and
ξ∗ is the (−i)-eigenspace of J . Note that ξR ∼= TM .

In case M = S4k the rank of ξ is 2k and from the previous Example 8.9.6 we
have

0 = (−1)kpk(TS
4k) = c2k(ξ ⊕ ξ∗) =

2k∑

j=0

cj(ξ)⌣ c2k−j(ξ
∗)

= c2k(ξ
∗) + c2k(ξ) = (−1)2kc2k(ξ) + c2k(ξ) = 2c2k(ξ) = 2e(TS4k),

by Theorem 8.6.3. Thus, e(TS4k) = 0, which contradicts the fact that e(TS4k) is
twice the standard generator of H4k(S4k), as we have calculated in Example 8.6.5.



Chapter 9

Prequantization

9.1 Classification of complex line bundles

In this section we shall describe the smooth complex line bundles over a smooth
manifold M in terms of the cohomology of M . Let ξ = (L, p,M) be a smooth
complex line bundle and let U be an open cover of M consisting of open sets U
over each of which there is a trivialization hU : p−1(U) → U × C of ξ. If U , V ∈ U
are such that U ∩ V 6= ∅, there exists a smooth map gUV : U ∩ V → C×, called
transition function, such that

(hU ◦ h−1
V )(x, z) = (x, gUV (x)z)

for every x ∈ U ∩V and z ∈ C×, where C× = C \ {0}. It is obvious that gV U = g−1
UV

and gUW = gUV gVW , if U ∩ V ∩W 6= ∅.
We can change the local trivializations hU , U ∈ U to new ones h̃U on each U so

that the new corresponding transition functions take values in S1 and are

g̃UV =
gUV
|gUV |

.

Indeed, sU : U → L defined by sU (x) = h−1
U (x, 1) is a smooth local section and

gUV sU (x) = sV (x) for every x ∈ U ∩ V . Choosing any hermitiam inner product on
ξ and defining hU : p−1(U) → U × C by

h̃U

(
z
sU (x)

‖sU (x)‖

)
= (x, z)

for every z ∈ C, we have

(h̃U ◦ h̃−1
V )(x, z) = h̃U

(
z

sV
‖sV (x)‖

)
= h̃U

(
z
gUV (x)

|gUV (x)|
· sU
‖sU (x)‖

)
=

(
x,

gUV (x)

|gUV (x)|
z

)
.

On the set of isomorphism classes of complex line bundles over a given smooth
manifold M , one can define a group structure induced by the tensor product of
complex line bundles. The inverse of the isomorphism class of the complex line
bundle ξ = (L, p,M) is represented by its dual bundle ξ∗ ∼= ξ. Indeed, there
exists an open cover U of M over the elements of which ξ is trivial such that the

235
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corresponding transitions functions gUV for U , V ∈ U with U ∩ V 6= ∅ take values
in S1. Then, ξ∗|U is also trivial for every U ∈ U and the corresponding transition
functions are gUV . Since the transition functions for the tensor product ξ ⊗ ξ∗ are
gUV gUV = 1, it follows that ξ ⊗ ξ∗ ∼= ǫ1C. We shall denote by Pic∞(M) the group of
smooth complex line bundles over a smooth manifold M .

If now ξ = (L, p,M) is a smooth complex line bundle and U is an admissible open
cover ofM , then ξ|U is trivial for every U ∈ U . If U , V ∈ U are such that U ∩V 6= ∅
with transition function gUV : U ∩ V → S1, there exists a smooth function fUV :
U∩V → R such that gUV = e2πifUV , because U∩V is contractible. If U∩V ∩W 6= ∅,
then the relation gUW = gUV gVW implies that aUVW = fVW − fUW + fUV ∈ Z,
since U ∩ V ∩W is contractible, hence arcwise connected. Moreover, if U , V , W ,
Y ∈ U are such that U ∩ V ∩W ∩ Y 6= ∅, then

aVWY − aUWY + aUV Y − aUVW = 0.

This means that a = (aUVW ) is a Čech 2-cocycle with respect to the open cover U
with integer coefficients and so defines a Čech cohomology class

[a] ∈ Ȟ2(U ;Z) ∼= Ȟ2(M ;Z),

since U is an admissible open cover of M .
If f ′UV : U ∩ V → R is another set of smooth functions such that

gUV = e2πifUV = e2πif
′
UV ,

then nUV = fUV − f ′UV ∈ Z. If a′ = (aUVW ) is the corresponding Čech 2-cocycle,
we see that

aUVW = a′UVW + nUV − nUW + nVW .

Thus, a = a′+δn, where n = (nUV ) and δ is the coboundary operator in Čech coho-
mology. Hence, the Čech class [a] does not depend on the choice of the logarithms
of the transition functions.

In the sequel we shall show that actually [a] ∈ Ȟ2(M ;Z) depends only on the
isomorphic class of the line bundle. Suppose that ξ′ = (L′, q,M) is a smooth complex
line bundle and h : L → L′ be a smooth isomorphism of complex vector bundles
over M . If U is an admissible open cover of M and hU are local trivializations for of
ξ|U and U ∈ U with transition functions gUV , then hU ◦h−1 are local trivializations
of ξ′|U with the same transition functions. Thus, it suffices to prove that if hU ,
and h′U , U ∈ U , are two sets of local trivializations with corresponding transition
functions gUV and g′UV , then they define the same element of Ȟ2(U ;Z). The smooth
map h′U ◦ hU : U ×C → U × C is of the form

(h′U ◦ hU )(x, z) = (x, βU (x)z)

for some smooth function βU : U → C× and for every x ∈ U ∩ V we have

(x, gUV (x)βV (x)z) = (h′U ◦h−1
V )(x, z) = (h′U ◦h−1

U )(x, gUV (x)z) = (x, βU (x)gUV (x)z).

Thus, βUgUV = g′UV βV on U ∩ V . Since U is contractible, there exists a smooth
function µU : U → R such that βU = e2πiµU . There exist mUV ∈ Z such that
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fUV µU = f ′UV +µV +mUV , where g
′
UV = e2πif

′
UV . If now a′UVW = f ′VW−f ′UW+f ′UV ,

then
aUVW − a′UVW = mVW −mUW +mUV

which means that a = a′ + δm, if m = (mUV ). Hence [a] = [a′] ∈ Ȟ2(M ;Z).
Since the transition functions of the tensor product of two complex line bundles

over M are the products of the transition functions of the line bundles, we obtain a
well defined group homomorphism

c : Pic∞(M) → Ȟ2(M ;Z).

Theorem 9.1.1. c is an isomorphism of abelian groups.

Proof. Let U be an admissible open cover of M and let {ψU : U ∈ U} be a smooth
partition of unity subordinated to U . In order to prove that c is injective, we need
to show that if ξ = (L, p,M) is a smooth complex line bundle and c(ξ) = [a] = 0,
then ξ is trivial. For this it suffices to construct a nowhere vanishing smooth global
section of ξ. For each U ∈ U let hU be a trivialization of ξ|U and let gUV be the
corresponding transition functions. Since [a] = 0, there exists σ ∈ Č1(U ;Z) such
that a = δσ, that is

fVW − fUW + fUV = aUVW = σVW − σUW + σUV

on U ∩ V ∩W and using the same notation as above. Since σUV , σUW , σUV ∈ Z
and (fVW − σVW ) − (fUW − σUW ) + (fUV − σUV ) = 0, we may assume from the
very beginning that aUVW = 0 for every U , V , W ∈ U such that U ∩ V ∩W 6= ∅.

Let
φU =

∑

V ∈U
ψV · fUV

for U ∈ U . Then, φU −φV = fUV for every U , V ∈ U such that U ∩V 6= ∅, because
aUVW = 0 for every U , V , W ∈ U such that U ∩ V ∩W 6= ∅. Further, if we set
βU = e2πiφU , then βU = gUV βV on U ∩ V . This implies that the formula

s(x) = h−1
U (x, βU (x)), for x ∈ U,

defines a nowhere vanishing smooth global section s :M → L, because

(hU ◦ h−1
V )(x, βV (x)) = (x, βU (x))

for x ∈ U ∩ V . This shows that ξ ∼= ǫ1C.
In order to show that c is surjective, let a ∈ Č2(U ;Z) be a 2-cocycle. For each

pair U , V ∈ U with U ∩ V 6= ∅ we define the smooth function

fUV =
∑

W∈U
aUVWψW : U ∩ V → R.

Then,

fVW−fUW+fUV =
∑

Y ∈U
ψY (aVWY − aUWY + aUV Y ) =

(∑

Y ∈U
ψY

)
aUVW = aUVW ∈ Z
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on U ∩ V ∩W . If we define

gUV = e2πifUV : U ∩ V → S1,

then gUV gVW = gUW on U ∩ V ∩W . Since a is a 2-cocycle, taking U = V we have
aUWY − aUWY + aUUY − aUUW = 0 for all U , W , Y ∈ U such that U ∩W ∩ Y 6= ∅,
which implies that

fUU =
∑

Y ∈U
aUUY ψY = aUUU ∈ Z

and therefore gUU = 1 for every U ∈ U . There exists now a complex line bundle
over M having transition functions gUV , for U , V ∈ U with U ∩ V 6= ∅. For this it
suffices to take

L =
∐

U∈U
U × C

/
∼

where (x, z) ∼ (x, gUV (x)z), if (x, z) ∈ (U ∩ V )×C, and take as vector bundle map
p : L →M the obvious projection. This concludes the proof. �

9.2 Connections on complex line bundles

Let ξ = (L, p,M) be a smooth complex line bundle over a smooth manifold M and

∇ : Ω0(ξ) → A1(M ;C)⊗C∞(M ;C) Ω
0(ξ)

be a connection. Let U be an open cover of M consisting of open sets over each of
which ξ is trivial. On each U ∈ U there exists a nowhere vanishing smooth section
eU : U → L and if gUV : U ∩ V → C× are the corresponding transition functions,
then gUV eU = eV on U ∩ V .

For each U ∈ U we have a connection form ωU ∈ A1(U ;C) which by definition
satisfies ∇eU = ωU ⊗ eU . Thus,

gUV ωV ⊗ eU = ωV ⊗ eV = ∇eV = ∇(gUV eU ) = dgUV ⊗ eU + gUV ωU ⊗ eU

and therefore on U ∩ V we have

ωV − ωU =
dgUV
gUV

.

Conversely, given a set of differential 1-forms ωU ∈ A1(U ;C), U ∈ U , which
satisfies the above condition for every U , V ∈ U with U ∩ V 6= ∅, we can define a
connection on ξ by setting

∇s = dfU ⊗ eU + fUωU ⊗ eU

on U , where s ∈ Ω(ξ) and fU ∈ C∞(U ;C) is the unique function such that s|U =
fUeU . Indeed, on U ∩ V we have gUV fV = fU , because

fUeU = s|U∩V = fV eV = fV gUV eU ,

and therefore
∇(fV eV ) = dfV ⊗ eV + fV ωV ⊗ eV
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= gUV dfV ⊗ eU + fV gUV ωU ⊗ eU + fV · dgUV
gUV

⊗ (gUV eU )

= gUV dfV ⊗ eU + fUωU ⊗ eU + fV dgUV ⊗ eU

= d(fV gUV )⊗ eU + fUωU ⊗ eU

= dfU ⊗ eU + fUωU ⊗ eU = ∇(fUeU ).

A connection on a smooth complex line bundle ξ = (L, p,M) can be described
though a connection form on its associated principal C×-bundle (or circle bundle).
Let L0 = {v ∈ L : v 6= 0}. The multiplicative group C× acts freely on L0 by scalar
multiplication and the orbit space of this action is M . Thus, F(ξ) = (L0, p,M,C×)
is a fibre bundle from which ξ can be recovered as follows. The multiplicative group
C× acts on L0 × C by

λ · (v, z) = (λ−1v, λz)

and the map f : L0 × C → L with f(v, z) = zv is constant on orbits. So we get a
smooth diffeomorphism f̃ : L0×C× C → L, where L0×C× C denotes the orbit space.
If q[v, z] = p(v), then (L0 ×C× C, q,M) is a smooth complex line bundle and f̃ is a
vector bundle isomorphism.

The correspondence of F(ξ) = (L0, p,M,C×) to ξ is a functor F from the cate-
gory LM of complex line bundles over M to the category of principle C×-bundles
PM over M . In both categories the morphisms are the bundle isomorphisms over
M . Trivially, if f is a vector bundle isomorphism from ξ to some complex line
bundle ξ′, then F(f) = f |L0 is a fibre bundle isomorphism.

Proposition 9.2.1. The functor F is an equivalence of categories.

Proof. We need to show that every object of PM comes from LM and if ξ, ξ′ are
two objects of LM , then the corresponding map

HomLM (ξ, ξ′) → HomPM (F(ξ),F(ξ′))

is bijective. The first assertion has already been shown above. For the second
assertion, it is easy to see that if two principle C×-bundles over M with total spaces
L0 and L′

0 are isomorphic and f : L0 → L0 is such an isomorphism, then the map
f̃ : L0×C× C → L′

0×C× C with f̃ [v, z] = [f(v), z] is a vector bundle isomorphism. �

According to Proposition 9.2.1, no piece of information is lost if instead of the
smooth complex line bundle ξ we consider its associated principle C×-bundle F(ξ).
In order to describe a connection on ξ in terms of F(ξ), we note first that the
C-valued differential 1-form

dz

z
=

1

2r2
d(r2) + idθ = d(log r) + idθ, (in polar coodinates (r, θ))

remains invariant under scalar multiplication with non-zero complex numbers. This
implies that there exists a unique invariant C-valued differential 1-form βx on each
fibre p−1(x)∩L0 for x ∈M , such that if τ : C× → p−1(x)∩L0 is any C×-equivariant
smooth map, we have

τ∗(βx) =
dz

z
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where the action of C× on itself is the scalar multiplication, because if we have two
such C×-equivariant smooth maps τ1, τ2 : C× → p−1(x) ∩ L0 and λ = τ−1

1 (τ2(1)),

then τ2(z) = τ1(λz) for every z ∈ C×. Thus, τ∗1 (βx) =
dz

z
implies that τ∗2 (βx) =

dz

z
.

A connection form on F(ξ) is a C-valued differential 1-form a on L0 which is
invariant under the action of C× and a|p−1(x)∩L0

= βx for every x ∈M .
Let now U ⊂ M be an open set for which there exists a nowhere vanishing

smooth section s : U → L0 of ξ. Let σ : U × C → p−1(U) be the corresponding
parametrization σ(x, z) = z ·s(x), so that h = σ−1 is a trivialization of ξ|U . Suppose
that a is a connection form on F(ξ). For every x ∈ U we have

σ∗a|{x}×C× =
dz

z

because σ|{x}×C× is C×-equivariant. On the other hand, for every z ∈ C× we have
σ∗a|U×{z} = s∗a, because a is C×-invariant. Consequently,

σ∗a = s∗a+
dz

z
.

Let t : U → L0 be another nowhere vanishing section of ξ on U and τ(x, z) = z · t(x)
be the corresponding parametrization of p−1(U). There exists a unique smooth
function g : U → C× such that

(σ−1 ◦ τ)(x, z) = (x, g(x)z)

for every x ∈ U and z ∈ C×. In other words, τ = σ ◦ ρ, where ρ(x, z) = (x, g(x)z),
and

τ∗a = ρ∗(σ∗a) = ρ∗(s∗a, 0) + ρ∗(0,
dz

z
) = σ∗a+

dg

g
.

These remarks imply that if we choose an open cover U of M consisting of open sets
U over which there exist a trivializations hU of ξ|U with transition functions gUV ,
then

(h−1
V )∗a = (h−1

U )∗a+
dgUV
gUV

and therefore there exists a unique connection on ξ such that ∇eU = (h−1
U )∗a⊗ eU ,

for every U ∈ U , where eU = h−1
U (., 1).

Conversely, if we start with a connection ∇ on ξ, using the same notation, we
put

aU = h∗U

(
ωU +

dz

z

)

on every p−1(U) ∩ L0. A similar computation as above gives

(h−1
V )∗aU = ωU +

dgUV
gUV

+
dz

z
= ωV +

dz

z

and thus aU = aV on p−1(U ∩ V ) ∩ L0. This means that we have a well defined
connection form a on F(ξ) such that

(h−1
U )∗a = ωU +

dz

z
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which is unique with the property ωU = e∗Ua for every U ∈ U .
The curvature form F∇ of a connection ∇ on the smooth complex line bundle

ξ = (L, p,M) is a C-valued differential 2-form on M , because Hom(ξ, ξ) is trivial.
Taking an open cover U of M as above we have

F∇|U = dωU − ωU ∧ ωU = dωU .

If a is the corresponding connection form on F(ξ), it follows immediately that

da = (p|L0)
∗(F∇)

and F∇ is unique with this property, since p|L0 : L0 →M is a submersion.

9.3 Hermitian connections

Let ξ = (L, p,M) be a smooth complex line bundle over a smooth manifold M .
Since M is paracompact, there exists a smooth hermitian inner product h on ξ.
Given such a hermitian inner product, we recall that a connection ∇ on ξ is called
hermitian (or the other way round h is called invariant under ∇) if it is compatible
with h, that is

dh(s, t) = h(∇s, t) + h(s,∇t)
for every s, t ∈ Ω0(ξ), where h(θ ⊗ s, t) = θ · h(s, t) and h(s, θ ⊗ t) = θ · h(s, t) for
θ ∈ A1(M ;C).

The curvature form F∇ is then skew-hermitian and actually if U is an open cover
of M over each element U of which there exists a nowhere vanishing smooth section
eU : U → L and ∇eU = ωU ⊗ eU , we have

dh(eU , eU ) = h(ωU ⊗ eU , eU ) + h(eU , ωU ⊗ eU ) = (ωU + ωU)h(eU , eU )

and so ωU + ωU = d(log h(eU , eU )). Therefore,

F∇ + F∇ = dωU + dωU = 0

on U . In other words
1

2πi
F∇ is a real closed differential 2-form on M , which

represents −c1(ξ).
Let hU : p−1(U) → U ×C be the trivialization of ξ|U such that eU = h−1

U (., 1). If
a is the connection 1-form on the associated principal C×-bundle F(ξ) = (L0, p,M)
defined by ∇, then

a|U = h∗U

(
ωU +

dz

z

)
,

as we saw in the previous section and so

a|U + a|U = h∗U (d(log(h(eU , e
2
U ))) + d(log |z|2)) = d(log |H|2)

where |H|2 : p−1(U) ∩ L0 → [0,+∞) is the smooth function defined by

|H|2(h−1
U (x, z)) = h(zeU (x), zeU (x)) = h(h−1

U (x, z), (h−1
U (x, z)).
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In other words, |H|2 is the quadratic form defined by the hermitian inner product
h, which is defined everywhere on L0. Hence

a+ a = d(log |H|2), on L0

and since L0 is connected, |H|2 is unique with this property, up to a constant.

Proposition 9.3.1. Given a connection ∇ on ξ with corresponding connection
1-form a on the associated principle C×-bundle F(ξ), there exists an invariant
hermitian inner product h on ξ if and only if a + a is exact. In this case, the
invariant hermitian inner product is unique, up to a constant.

Proof. The above considerations show that only the converse needs proof. Thus,
suppose that there exists some smooth function ψ : L0 → R such that a+ a = dψ.
Putting φ = eψ we have

a+ a =
dφ

φ
, on L0

and
dφ

φ
= a+ a = h∗U

(
ωU + ωU +

1

|z|2 d(|z|
2)

)

on p−1(U) ∩ L0. If we fix a point x ∈ U and let χ : C× → (0,+∞) be the smooth
function defined by χ(z) = φ(h−1

U (x, z)), it follows that

dχ

χ
= ((hU |p−1(x))

−1)∗(
dφ

φ
) =

d(|z|2)
|z|2

or equivalently d(log χ) = d(log(|z|2)) on C×. Integrating, we conclude

log χ(λz)− logχ(z) = log |λz|2 − log |z|2

or equivalently χ(λz) = |λ|2χ(z) for every λ ∈ C× and z ∈ C×. Thus,

φ(λv) = |λ|2φ(v)

for every λ ∈ C× and v ∈ L0.
For every u, v ∈ p−1(x)∩L0 there exists a unique λ ∈ C× such that u = λv. We

set then h(u, v) = λφ(v). If either u = 0 or v = 0, we set h(u, v) = 0. It is easy to
see now that h is a smooth hermitian inner product on ξ.

On U ∈ U we have

d(log h(eU , eU )) = e∗U

(
dφ

φ

)
= (e∗U ◦ h∗U )

(
ωU + ωU +

d(|z|2)
|z|2

)

= pr∗
(
ωU + ωU +

d(|z|2)
|z|2

)
= ωU + ωU

and thus

dh(eU , eU ) = ωUh(eU , eU ) + ωUh(eU , eU ) = h(∇eU , eU ) + h(eU ,∇eU ).
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Finally, if f1, f2 : U → C are two smooth functions we compute

h(∇(f1eU ), f2eU ) + h(f1eU ,∇(f2eU ))

= h(df1 ⊗ eU , f2eU ) + h(f1∇eU , f2eU ) + h(f1eU , df2 ⊗ eU )) + h(f1eU , f2∇eU )
= f2h(eU , eu)df1 + f1f2h(∇eU , eU ) + f1h(eU , eU )df2 + f1f2h(eU ,∇eU )

= f1f2h(eU , eU ) + h(eU , eU )d(f1f2) = dh(f1eU , f2eU ). �

It is evident from the above that given a hermitian inner product h on the
complex line bundle ξ, then a connection ∇ on ξ is hermitian if and only if locally

ωU + ωU = d(log h(eU , eU ))

on every U ∈ U . If we choose unit local sections, that is h(eU , eU ) = 1 on U , then
ωU + ωU = 0 and ωU is purely imaginary. If L1 = {v ∈ L : h(v, v) = 1}, then
(L1, p|L1 ,M, S1) is the associated principle circle bundle to ξ and this is equivalent
to saying that the corresponding connection 1-form a on L1 is purely imaginary.

9.4 Integer cohomology classes in degree 2

Let M be a smooth manifold and Ω ∈ A2(M) be a (real) closed differential 2-form.
In this section we shall be concerned with the problem of finding necessary and
sufficient conditions in order the cohomology class [Ω] ∈ H2(M) to be equal to c1(ξ)
for some smooth complex line bundle ξ over M . We recall from Chapter 6 the
Čech-deRham isomorphism

Ȟ2(U ;R) ∼= Ȟ2(M ;R) ∼= H2(M)

in degree 2 for an admissible open cover U of M .
Since each U ∈ U is contractible and Ω is closed, there exists ωU ∈ A1(U) such

that Ω|U = dωU . If U , V ∈ U are such that U ∩ V 6= ∅, there is a smooth function
fUV : U ∩ V → R such that dfUV = ωV − ωU on U ∩ V , because dωU = dωV on
U ∩ V and the latter is contractible. If now W ∈ U and U ∩ V ∩W 6= ∅, then

dfVW − dfUW + dfUV = 0, on U ∩ V ∩W

and from the connectivity of U ∩ V ∩W there exists aUVW ∈ R such that

fVW − fUW + fUV = aUVW , on U ∩ V ∩W.

It is obvious that a = (aUVW ) ∈ Č2(U ;R) is a Čech 2-cocycle. In this way one
constructs the Čech-deRham isomorphism H2(M) ∼= Ȟ2(U ;R), which sends [Ω] to
[a]. It is well defined because if Ω′ is another representative of [Ω], there exists
some differential 1-form η such that Ω′ = Ω+ dη. If f ′UV are the smooth functions
corresponding to Ω′, there are gU ∈ C∞(U) such that ω′

U − ωU = η + dgU and
therefore

df ′UV = dfUV + dgV − dgU , on U ∩ V ,
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Thus, βUV = f ′UV − fUV + gU − gV is a constant on U ∩ V . Consequently,

a′UVW − aUVW = βVW − βUW + βUV , on U ∩ V ∩W,

which means that a′ − a = δβ, where β = (βUVW ) ∈ Č1(U ;R).
The inclusion ǫ : Z → R induces a homomorphism ǫ2 : Ȟ2(U ;Z) → Ȟ2(U ;R)

(and in any other degree). We say that the cohomology class [Ω] ∈ H2(M) is integer
if there exists some admissible open cover U of M such that its corresponding Čech
class [a] ∈ Ȟ2(U ;R) under the Čech-deRham isomorphism belongs to the image of
ǫ2, which is equivalent to fVW − fUW + fUV ∈ Z for every U , V , W ∈ U such that
U ∩ V ∩W 6= ∅.

Proposition 9.4.1. The Chern class c1(ξ) of a smooth complex line bundle
ξ = (L, p,M) over M is integer and actually c1(ξ) = −ǫ2(c(ξ)).

Proof. Let ∇ be any connection on ξ. Let U be an admissible open cover of M .
For each U ∈ U let eU : U → L be a nowhere vanishing smooth section of ξ and
corresponding transition functions gUV : U∩V → S1. Let also ωU be the connection
form of ∇ on U with respect to eU . Then,

ωV − ωU =
dgUV
gUV

, on U ∩ V

and F∇|U = dωU . From Theorem 8.6.3, the Chern class

c1(ξ) =

[−1

2πi
F∇
]

is real. Hence there exists a real closed differential 2-form F ∈ A2(M) and a C-
valued differential 1-form η on M such that

1

2πi
F∇ = F + dη.

Since each U ∈ U is contractible, there exists FU ∈ A1(U) such that dfU = F |U . If
now gUV = e2πifUV on U ∩ V , then

FV − FU =
1

2πi
(ωV − ωU) =

1

2πi
· dgUV
gUV

= dfUV

on U ∩ V . From the constructions of the Čech-deRham isomorphism and the
isomorphism c : Pic∞(M) ∼= Ȟ2(U ;Z) follows immediately that c1(ξ) = −ǫ2(c(ξ)).
�

The preceding Proposition 9.4.1 combined with the Splitting Principle for
complex vector bundles implies the following corollary.

Corollary 9.4.2. If ξ = (E, p,M) is a smooth complex vector bundle over a
smooth manifold M , then the Chern classes ck(ξ), k ∈ Z+, of ξ are integer. �
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Corollary 9.4.3. If ξ1 and ξ2 are two smooth complex line bundles over the same
smooth manifold, then c1(ξ1 ⊗ ξ2) = c1(ξ1) + c1(ξ2). �

A combination of the Splitting Principle and Proposition 9.4.1 also gives the
following important property of the total Chern character which says that it is a
ring homomorphism from the K-ring of a smooth manifold to its cohomology ring
with rational coefficients.

Corollary 9.4.4. If ξ and ζ are two smooth complex vector bundles over the
smooth manifold M , then ch(ξ ⊗ ζ) = ch(ξ) ⌣ ch(ζ).

Proof. If ξ has rank n and ζ has rank m, then there are smooth complex line bundles
ξ1, ..., ξn, ζ1, ..., ζm over M such that ξ ∼= ξ1 ⊕ · · · ⊕ ξn and ζ ∼= ζ1 ⊕ · · · ⊕ ζm. Thus,

ξ ⊗ ζ ∼=
⊕

k,l

ξk ⊗ ζl and

ch(ξ ⊗ ζ) =
∑

k,l

ch(ξk ⊗ ζl) =
∑

k,l

ec1(ξk⊗ζl)

=
∑

k,l

ec1(ξk)+c1(ζl) =

( n∑

k=1

ec1(ξk)
)
⌣

( m∑

l=1

ec1(ζl)
)

= ch(ξ)⌣ ch(ζ)

from Proposition 8.4.5(a) and Corollary 9.4.3. �

The converse of Proposition 9.4.1 also holds.

Theorem 9.4.5. (B. Kostant) Let M be a smooth manifold and Ω ∈ A2(M) a real
closed differential 2-form on M . The cohomology class [Ω] is integer if and only if
2πiΩ is the curvature form of a hermitian connection on some smooth complex line
bundle over M .

Proof. Only the direct assertion needs proof, as the converse is Proposition 9.4.1.
So, let [Ω] be integer. Using the same notation as in the beginning of this section
with respect to an admissible open cover U of M , we have

fVW − fUW + fUV ∈ Z, on U ∩ V ∩W.

Putting gUV = e2πifUV , for U , V ∈ U with U ∩ V 6= ∅, we have gUV = g−1
V U , since

fUU ∈ Z, and gUV gVW = gUW . As in the last part of the proof of Theorem 3.1.1,
there exists a smooth complex line bundle ξ = (L, p,M) with transition functions
gUV with respect to U . Since

ωV − ωU = dfUV =
1

2πi
· dgUV
gUV

,

there exists a connection ∇ on ξ with curvature form 2πiΩ. It remains to show that
there is an invariant hermitian inner product on ξ. We consider the hermitian inner
product h defined by

h(h−1
U (x, z1), h

−1
U (x, z2)) = z1z2
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where hU is a trivialization of ξ|U . This defines h globally, because |gUV | = 1. In
order to show that ∇ is hermitian with respect to h, it suffices to check that

2πiωU + 2πiωU = d(log h(eU , eU ))

where eU = h−1
U (., 1) for every U ∈ U . But this is trivial since both sides are equal

to zero, the left hand side of this equality being zero because ωU = Ω|U is real. �
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[5] V. Guillemin and A. Pollack, Differential Topology, Prentice Hall, 1974.

[6] S.T. Hu, Differentiable manifolds, Holt, Rinehart and Winston, 1969.

[7] D. Husemoller, Fibre Bundles, Third Edition, Springer, 1994.

[8] B. Kostant, Quantization and unitary representations, Lectures in Modern
Analysis and Applications III, Lecture Notes in Mathematics vol. 170, Springer,
1970.

[9] I. Madsen and J. Tornehave, From Calculus to Cohomology, Cambridge Uni-
versity Press, 1997.

[10] J.W. Milnor and J.D. Stasheff, Characteristic Classes, Princeton University
Press, 1974.

[11] A. Mischenko and A. Fomenko, A course of Differential Geometry and Topology,
Mir Publishers Moscow, 1988.

[12] M. Postnikov, Lectures in Geometry: Semester III Smooth manifolds, Mir Pub-
lishers Moscow, 1987.

[13] L.W. Tu, An introduction to manifolds, Springer, 2008.

[14] F. W. Warner, Foundations of Differentiable Manifolds and Lie Groups,
Springer, 1983.

247


