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Abstract

We prove a Bendixson–Dulac type criterion for the nonexistence of nontrivial compact minimal sets of
C1 vector fields on orientable 2-manifolds. As a corollary we get that the divergence with respect to any
volume 2-form of such a vector field must vanish at some point of any nontrivial compact minimal set. We
also prove that all the nontrivial compact minimal sets of a C1 vector field on an orientable 2-manifold are
contained in the vanishing set of any inverse integrating factor. From this we get that if a C1 vector field on
an orientable 2-manifold has a nontrivial compact minimal set, then an infinitesimal symmetry is inessential
on the minimal set.
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1. Introduction

A classical problem in the qualitative theory of 2-dimensional ordinary differential equations,
with many applications in the physical sciences, is to examine the existence (or nonexistence) of
limit cycles and describe their distribution in phase space. The Poincaré–Bendixson theorem and
its generalizations can be used to prove the existence of periodic orbits, and in particular limit
cycles, in various situations. One method to locate limit cycles that has appeared in the literature
makes use of certain functions called inverse integrating factors (see Definition 2.1 below). More
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precisely, it has been proved in [5] that if a C1 vector field X on an open subset U of R
2 admits

a C1 inverse integrating factor f :U → R, then every limit cycle of X is contained in f −1(0).
We refer the reader to [2] for further applications of inverse integrating factors in the qualitative
study of planar C1 vector fields.

In this work we are mainly concerned with the divergence and inverse integrating factors of
C1 vector fields on 2-manifolds. We were originally motivated by the question what kind of
information can they give about the location and shape of compact limit sets, and in particular
compact minimal sets, since a compact limit set always contains a compact minimal set. A C1

vector field on a 2-manifold can have compact minimal sets which are not periodic orbits and
are locally homeomorphic to the product of an open interval and a Cantor set. This kind of min-
imal sets are usually called nontrivial. The phenomenon of the existence of nontrivial compact
minimal sets does not occur in C2 vector fields on 2-manifolds (see [8]) and this is their great
difference from C1 vector fields. In Section 3 we prove a nonexistence result for nontrivial com-
pact minimal sets of C1 vector fields on orientable, connected, smooth 2-manifolds, which is
analogous to the Bendixson–Dulac criterion on the nonexistence of periodic orbits for planar C1

vector fields. More precisely, we prove that if the divergence with respect to some C∞ volume
2-form is everywhere nonnegative (or everywhere nonpositive) then there are no nontrivial com-
pact minimal sets (see Theorem 3.3). It follows from this that the divergence of a C1 vector field
with respect to any C∞ volume 2-form always has a vanishing point on a nontrivial compact
minimal set. This leads to the question whether for any nontrivial compact minimal set of a C1

vector field on an orientable, connected, smooth 2-manifold there exists a C∞ volume 2-form
such that its divergence with respect to that volume 2-form vanishes identically on the minimal
set. In the case of the Denjoy C1 vector field on the 2-torus, which is concisely described in the
Appendix of [9], such a C∞ volume 2-form exists and is the riemannian volume element induced
by the euclidean flat riemannian metric. An obstruction for a general positive answer is provided
by the Gottschalk–Hedlund theorem (see [3]).

In Section 4 we prove that a nontrivial compact minimal set of a C1 vector field X on an
orientable, connected, smooth 2-manifold is contained in the vanishing set of every inverse inte-
grating factor of X. Thus, in case a solution to the above question exists, it cannot have density
(with respect to any given C∞ volume 2-form) which is an inverse integrating factor of X on a
neighborhood of the nontrivial compact minimal set. As a corollary we obtain that if X admits
an inverse integrating factor for which 0 is a regular value, then X has no nontrivial compact
minimal set. As one can get inverse integrating factors from infinitesimal symmetries, another
corollary is that if X has a nontrivial compact minimal set, then an infinitesimal symmetry is
inessential on the minimal set. Moreover, if it is C2 it must vanish at some point of the nontrivial
minimal set.

2. Divergence, inverse integrating factors and infinitesimal symmetries

Let M be an orientable, connected, smooth n-manifold, n � 2, oriented by a C∞ volume n-
form ω. If X is a C1 vector field on M , then the divergence of X with respect to ω is defined as
the unique continuous function divω X :M → R such that d(iXω) = (divω X)ω. It is known (see
Section 3 in Chapter I of [6]) that the (local) flow of X preserves ω if and only if divω X = 0. In
this case X is called ω-incompressible.
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If we have a C1 vector field X on M and we want to reparametrize its flow so that it becomes
ω-incompressible, then we must find an everywhere positive C1 function f :M → R such that
1
f

· X is ω-incompressible. Therefore,

0 = divω

(
1

f
· X

)
= X

(
1

f

)
+ 1

f
· divω X = − 1

f 2
· Xf + 1

f
· divω X.

In other words, we must find an everywhere positive C1 solution of the linear partial differential
equation Xf = f · divω X. Thus we come to the following.

Definition 2.1. An inverse integrating factor (IIF) for X is a C1 function f :M → R satisfying
the linear partial differential equation

Xf = f · divω X. (1)

The set HX of C1 solutions of (1) is a linear subspace of C1(M,R), which is closed with
respect to the C1 topology. It is clear that (1) may have no nowhere vanishing C1 solution.

To describe the way that HX depends on the choice of the volume form ω of M , let θ be
another C∞ volume n-form of M . There exists a unique nowhere vanishing C∞ function g :
M → R such that θ = gω. Since

d(iXθ) = dg ∧ iXω + g(divω X)ω

and

(Xg) · ω − dg ∧ iXω = iX(dg ∧ ω) = 0,

we have

(divθ X)θ = (Xg) · ω + g(divω X)ω

and therefore

divθ X = 1

g
· Xg + divω X.

If now f is an IIF with respect to ω, then

f · divθ X = f

g
· Xg + f · divω X = f

g
· Xg + Xf

and so

X(gf ) = (gf ) · divθ X

or in other words gf is an IIF with respect to θ . This shows that the space of IIFs of X with
respect to θ is g · HX , which is naturally isomorphic to HX . Thus, HX is essentially independent
on the choice of the volume form on M .

The following two lemmas give basic properties of inverse integrating factors.
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Lemma 2.2. If f :M → R is an IIF for X, then f −1(0) is invariant under the flow of X.

Proof. Let γ : I → M be a maximal integral curve of X, where I is an open interval containing
zero. The C1 function f ◦ γ is a solution of the ordinary differential equation

x′ = x · divω X
(
γ (t)

)
(2)

which is defined on I × R. It follows that

f
(
γ (t)

) = f
(
γ (0)

) · exp

( t∫
0

(divω X)
(
γ (s)

)
ds

)
(3)

for every t ∈ I . Hence γ (I) ⊂ M \ f −1(0), if f (γ (0)) 	= 0. �
On the invariant open set M \ f −1(0) the C1 function log |f | is a solution of the cohomolog-

ical equation Xu = divω X.

Lemma 2.3. For an IIF f :M → R of X the following hold:

(i) The C1 (n − 1)-form 1
f
iXω on M \ f −1(0) is closed.

(ii) If D ⊂ M \ f −1(0) is an open set on which 1
f
iXω is exact and η is a C2 (n − 2)-form such

that 1
f
iXω|D = dη, then iX(dη) = 0 on D. In particular, if n = 2, then η is a C2 function

and a first integral of X on D.

Proof. (i) Indeed, we have

d

(
1

f
iXω

)
= − 1

f 2
· df ∧ iXω + 1

f
· d(iXω) = − 1

f 2
· df ∧ iXω + 1

f
· (divω X)ω

= 1

f 2
· [−df ∧ iXω + (Xf ) · ω] = 1

f 2
· [−df ∧ iXω + iX(df ) ∧ ω

] = 0.

(ii) This is obvious. �
The first assertion of Lemma 2.3 is equivalent to saying that the (local) flow of 1

f
· X on

M \ f −1(0) preserves the C∞ volume n-form ω (see [4,6]). The integral curves of 1
f

· X are
reparametrizations of the integral curves of X and so both have the same (unoriented) orbits in
M \ f −1(0).

By a theorem of E. Hopf which generalizes the Poincaré Recurrence Theorem to σ -finite
measures, there exists a Borel set P ⊂ M \ f −1(0) such that the volume of M \ P ∪ f −1(0) is
zero and if x ∈ P then either x ∈ L+(x) ∩ L−(x) or L+(x) ∪ L−(x) ⊂ M \ f −1(0), possibly
empty, where L+(x) denotes the positive limit set and L−(x) denotes the negative limit set of
the orbit of x (see [7, pp. 454–459]). Since the measure defined by a volume form is positive on
nonempty open sets, P is a dense subset of M \ f −1(0).

Under certain circumstances it may be possible to describe the flow outside f −1(0). One such
case is given by the following.
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Proposition 2.4. Let M be an orientable, connected, smooth n-manifold, n � 2, oriented by a
C∞ volume n-form ω and X be a C1 vector field on M . Let M be noncompact and divω X > 0
everywhere on M . If f :M → R is an IIF, then there exists a continuous function g :M → R

+
such that g−1(0) = f −1(0) and g is strictly increasing along the orbits of X in M \ f −1(0). If
in addition ∂f −1(0) is compact, then f −1(0) is globally negatively asymptotically stable.

Proof. If N is a connected component of M \f −1(0), then f |N > 0 or f |N < 0. So, if we define
g :M → R

+ by

g(x) =
⎧⎨
⎩

0, if f (x) = 0,

f (x), if f (x) > 0,

−f (x), if f (x) < 0,

then g is continuous and satisfies our requirements. In other words, it is a global Lyapunov
function for the closed invariant set f −1(0) with respect to −X. It is well known that if ∂f −1(0)

is compact, this implies that f −1(0) is globally negatively asymptotically stable with respect
to X. �
Example 2.5. On R

2 consider the volume element ω = dx ∧ dy and let X be the (complete) C∞
vector field defined by

X(x,y) = ∂

∂x
+ y

∂

∂y
.

Then divω X = 1 and the flow of X is given by φt (x, y) = (t + x, yet ), t ∈ R, (x, y) ∈ R
2. If

f : R2 → R is the C∞ function f (x, y) = y, then f is an IIF and in this case f −1(0) = R × {0}
does not have compact boundary.

Remarks 2.6.

(a) In case divω X < 0 everywhere on M , if f :M → R is an IIF, then the closed invariant set
f −1(0) admits a Lyapunov function and if ∂f −1(0) is compact, then f −1(0) is globally
positively asymptotically stable.

(b) Proposition 2.4 is true under the weaker assumption (divωX)−1(0) ⊂ f −1(0).
(c) If M is a closed manifold, then by Stoke’s formula the continuous function divω X cannot

be everywhere strictly positive (or negative) on M .

If X is a C1 vector field on an orientable, connected, smooth 2-manifold M with C∞ volume
2-form ω, the IIFs of X are closely related to its infinitesimal symmetries. This observation is
originally due to Sophus Lie. An infinitesimal symmetry of X is another C1 vector field Y on M

such that [X,Y ] = h · X for some continuous function h :M → R. It is well known that if Y is
a C2 complete infinitesimal symmetry of X then the C2 diffeomorphisms constituting its flow
send oriented orbits of X onto oriented orbits of X. If Y is C2 but not necessarily complete, this
is true at least locally.

If g :M → R is a C1 function, then g · X is an infinitesimal symmetry of X, but note that
the orbits of g · X are subsets of orbits of X. So, in a way, g · X is not essential, since every C1

diffeomorphism belonging to its flow induces the identity on the orbit space of X. In general,
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let A ⊂ M be an invariant set with respect to X. An infinitesimal symmetry Y of X is called
inessential (or trivial) on A if there exists a continuous function g :A → R such that Xg exists,
is continuous on A and Y = g · X on A. Then, [X,Y ] = (Xg) · X on A.

Proposition 2.7. If X, Y are C1 vector fields on an orientable, connected, smooth 2-manifold M

with C∞ volume 2-form ω and f = ω(X,Y ), then

Xf = ω
(
X, [X,Y ]) + f · divω X.

Proof. Suppose first that X is C2. Then,

LXiY θ = i[X,Y ]θ + iY LXθ

for every C1 1-form θ , where LX is the Lie derivative with respect to X and i denotes contraction.
So,

Xf = LXiY iXω = i[X,Y ]iXω + iY LXiXω

= ω
(
X, [X,Y ]) + iY iXLXω = ω

(
X, [X,Y ]) + f · divω X.

If X is only C1, it can be approximated by a sequence of C2 vector fields in the C1 topology,
and taking limits we arrive at the conclusion. �

The following corollary has its origins back to Sophus Lie.

Corollary 2.8. Let M be an orientable, connected, smooth 2-manifold with a C∞ volume 2-form
ω and X be a C1 vector field on M . If Y is a C1 vector field on M such that [X,Y ] = h · X for
some continuous function h :M \ F → R, where F is the vanishing set of X, then f = ω(X,Y )

is an IIF of X.

If X is a C∞ vector field on an orientable, connected, smooth 2-manifold with C∞ volume
2-form ω, the set SX of the C∞ infinitesimal symmetries of X is a Lie subalgebra of the Lie
algebra of C∞ vector fields on M . The set IX of the inessential C∞ infinitesimal symmetries of
X is an ideal of SX . The map from SX to the vector space of the C∞ IIFs of X sending Y ∈ SX

to ω(X,Y ) provided by Corollary 2.8 is linear, and its kernel is precisely IX , if X is nowhere
vanishing on M .

Conversely, suppose that the C1 function f :M → R is an IIF of the C1 vector field X and
divω X 	= 0 everywhere on M . Let Xf be the continuous Hamiltonian vector field with Hamil-
tonian f defined by iXf

ω = df . Then,

f · divω X = df (X) = ω(Xf ,X)

and therefore

f = ω

(
X,− 1 · Xf

)
.

divω X
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The vector field Y = −(1/divω X) · Xf is only continuous, but if X and f are C∞, then Y is
also C∞ and there is a C∞ function h :M \ F → R such that [X,Y ] = h · X on M \ F , since
[X,Y ] ∈ Ker iXω.

3. Divergence of vector fields and Poincaré maps

Let X be a C1 vector field on an orientable, connected, smooth n-manifold M , n � 2, and
p ∈ M be such that X(p) 	= 0. There exist then ε > 0 and a C1 embedding ψ : (−ε, ε)×Dn−1 →
M , where Dn−1 is the (n − 1)-dimensional open unit disc, such that ψ(0,0) = p, the set V =
ψ((−ε, ε) × Dn−1) is an open neighborhood of p, called a flow box around p, and

X|V = ψ∗
(

∂

∂t

)
.

For every x ∈ Dn−1 let r(x) = inf{t > 0: φt (ψ(0, x)) ∈ ψ({0} × Dn−1)}, where φ is the flow
of X. The continuity of the flow implies that the set {x ∈ Dn−1: r(x) < +∞} is open, but
maybe empty. If p ∈ L+(p), then it is not empty. If moreover the orbit of p does not intersect
ψ({0} × Dn−1)\ψ({0}×Dn−1), there exists an open neighborhood U of 0 in Dn−1 such that the
function r :U → (ε,+∞) is C1, because the flow is C1. Consequently, the map T :U → Dn−1

defined by

(ψ ◦ j)
(
T (x)

) = φ
(
r(x), (ψ ◦ j)(x)

)
is a C1 embedding of U onto an open subset of Dn−1, where j :Dn−1 → (−ε, ε) × Dn−1 is the
natural embedding j (x) = (0, x). T is called the first return map or Poincaré map associated to
the flow box.

If ω is a C∞ volume n-form on M , it is easy to see that the continuous n-form ψ∗ω is given
by the formula ψ∗ω = dt ∧ ψ∗(iXω). Let Ω = (ψ ◦ j)∗(iXω).

Lemma 3.1. For every x ∈ U we have

(
T ∗Ω

)
x

= exp

( r(x)∫
0

(divω X)
(
φs

(
ψ(0, x)

))
ds

)
· Ωx.

Proof. Since ψ ◦ j ◦ T = φ ◦ (r,ψ ◦ j), from the chain rule we have

(
T ∗Ω

)
x

= (iXω)φr(x)(ψ(0,x)) ◦
(

∂φ

∂t

(
r(x),ψ(0, x)

) ◦ r∗x + (φr(x))∗ψ(0,x) ◦ (ψ ◦ j)∗x

)
,

where the subscript ∗ means derivative. On the other hand,

∂φ

∂t

(
r(x),ψ(0, x)

) ◦ r∗x(v) = r∗x(v) · X(
φr(x)

(
ψ(0, x)

))
,

for every v ∈ TxD
n−1 and X(φr(x)(ψ(0, x))) = (φr(x))∗ψ(0,x)(X(ψ(0, x))) because φ is the flow

of X. If now v1, v2, . . . , vn−1 ∈ TxD
n−1, then
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(
T ∗Ω

)
x
(v1, v2, . . . , vn−1)

= (
(φr(x))

∗ω
)
ψ(0,x)

(
X

(
ψ(0, x)

)
, (ψ ◦ j)∗x(v1), . . . , (ψ ◦ j)∗x(vn−1)

)
.

However, from Liouville’s formula (see Theorem 3.2 in Chapter I of [6]) we get

(
(φr(x))

∗ω
)
ψ(0,x)

= exp

( r(x)∫
0

(divω X)
(
φs

(
ψ(0, x)

))
ds

)
· ωψ(0,x).

Substituting we arrive at the required formula. �
In case M is 2-dimensional there exists a continuous function g :D1 → (0,+∞) such that

Ω = g dx on D1 = (−1,1). From Lemma 3.1 follows that the derivative of T is given by

T ′(x) = g(x)

g(T (x))
· exp

( r(x)∫
0

(divω X)
(
φs

(
ψ(0, x)

))
ds

)
(4)

for every x ∈ U . More generally, if x ∈ U is such that the nth iterate T n of T is defined at x, then
from the chain rule and the group property of the flow we get

(
T n

)′
(x) =

n−1∏
k=0

T ′(T k(x)
) = g(x)

g(T n(x))
· exp

( Snr(x)∫
0

(divω X)
(
φs

(
ψ(0, x)

))
ds

)
, (5)

where Snr(x) = ∑n−1
k=0 r(T k(x)) > nε.

It is well known that the phase portrait of a C1 vector field X on a connected, orientable,
smooth 2-manifold M can contain 1-dimensional compact minimal sets that are not periodic
orbits (see the Appendix in [9]). Minimal sets of this kind are called nontrivial, and are locally
homeomorphic to the cartesian product of an open interval with a Cantor set. However, a C2

vector field on a 2-manifold cannot have nontrivial compact minimal sets (see [8]).
Let A be a nontrivial compact minimal set of X, let p ∈ A and let V be a flow box around p

as above. Then K = {x ∈ D1: ψ(0, x) ∈ A} is a Cantor set and shrinking V , if necessary, we can
choose so that A∩ (ψ({0} × D1) \ψ({0}×D1)) = ∅. Thus, there is an open neighborhood U of
K in D1 such that the function r :U → (ε,+∞) is defined and is C1. Moreover, K is minimal
under the corresponding Poincaré map T .

Lemma 3.2. For every open neighborhood W of K in U there exists a connected component I

of U \ K at least one of whose endpoints is contained in K such that T n is defined on I and
T n(I ) ⊂ W for every n � 0.

Proof. Since K is a Cantor set, there exists some a ∈ K which is an endpoint of some connected
component of U \K . Then T n(a) is defined and is endpoint of a connected component of U \K

for every n � 0. Let δ = inf{dist(x,U \W): x ∈ K}. Then δ > 0 and since the sum of the lengths
of these connected components must be at most 2, there exists some n0 such that the connected
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component of U \ K with one endpoint T n(a) has length less that δ for every n � n0. It suffices
now to take I to be the connected component of U \ K with one endpoint T n0(a). �

The above calculations lead to the following nonexistence result of Poincaré–Bendixson type,
which is analogous to the Bendixson–Dulac criterion on the nonexistence of periodic orbits for
planar C1 vector fields.

Theorem 3.3. Let X be a C1 vector field on an orientable, connected, smooth 2-manifold M . If
there exists a C∞ volume 2-form ω on M such that divω X � 0 everywhere on M , then X has no
nontrivial compact minimal set.

Proof. Suppose that A is a nontrivial compact minimal set. Using the preceding notations, let
I = (a, b) be the connected component of U \ K given by Lemma 3.2, starting with any open
neighborhood W of K having compact closure contained in U . By the Mean Value Theorem, for
every n � 1 there exists some a < ζn < b such that T n(b) − T n(a) = (T n)′(ζn) · (b − a). Since
W is compact, there exists some c > 1 such that 1

c
< g(x) < c for every x ∈ W . From Eq. (5)

giving (T n)′ and our hypothesis follows now that (T n)′(ζn) > 1
c2 for every n � 1. Therefore,

2

b − a
�

∞∑
n=1

T n(b) − T n(a)

b − a
=

∞∑
n=1

(
T n

)′
(ζn) >

∞∑
n=1

1

c2
= +∞.

This contradiction proves the conclusion. �
Since the vector fields X and −X have the same unoriented orbits, Theorem 3.3 is also true

under the assumption divω X � 0 everywhere on M . Thus, if A is a nontrivial compact minimal
set of a C1 vector field X on an orientable, connected, smooth 2-manifold M with a fixed C∞
volume 2-form, then in every connected open neighborhood of A the divergence of X takes
positive and negative values, and so there are points at which it vanishes. Since A is a continuum
and M is a manifold, A has a neighborhood basis consisting of connected open subsets of M ,
and so we get the following corollary which can also be proved directly using a similar argument
as in the proof of Theorem 3.3.

Corollary 3.4. Let X be a C1 vector field on an orientable, connected, smooth 2-manifold M . If
A ⊂ M is a nontrivial compact minimal set of X, then for every C∞ volume 2-form ω on M the
divergence divω X of X with respect to ω vanishes at some point of A.

4. Nontrivial compact minimal sets and inverse integrating factors

Let M be an orientable, connected, smooth n-manifold, n � 2, oriented by a C∞ volume
n-form ω and let X is a C1 vector field on M with (local) flow φ. Let also A be a compact
minimal set of X. Suppose that θ = 1

f
· ω is another C∞ volume n-form for some C∞ function

f :M → R\{0}. If the divergence of X with respect to both volume forms ω and θ vanishes on A,
then Xf = 0 on A and so f must be constant on A, because A is minimal. By Corollary 3.4, if M

is 2-dimensional and A is a nontrivial compact minimal set, then for every C∞ volume 2-form θ

on M there exists some point of A at which divθ X vanishes. The above observation shows that
it is not true that the divergence of X vanishes everywhere on A for every C∞ volume 2-form
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on M . The question now arises whether there exists a C∞ volume 2-form θ = 1
f

· ω on M such
that divθ X = 0 on A. As we saw in the beginning of Section 2, this question is equivalent to
the problem of the existence of a C∞ function f :M → R \ {0} which satisfies the linear partial
differential equation Xf = f · divω X on A. Recall that by the Gottschalk–Hedlund theorem
for compact minimal sets, there exists a (necessarily unique up to constant) continuous function
f :A → R \ {0} such that X(log |f |) = divω X on A if and only if there exists a point p ∈ A and
c > 0 such that ∣∣∣∣∣

t∫
0

(divω X)
(
φs(p)

)
ds

∣∣∣∣∣ < c

for every t ∈ R (see [3]). So an obvious obstruction for a positive answer is the following. If there
exists a C∞ volume 2-form ω on M , a point p ∈ A and a sequence tn → +∞ such that

lim
n→+∞

tn∫
0

(divω X)
(
φs(p)

)
ds = +∞ (or −∞)

then there is no C∞ volume 2-form θ on M such that divθ X = 0 on A.
In the rest of this section we shall prove that such a (even C1) solution on A, if it exists, cannot

be the restriction to A of an IIF of X on a neighborhood of A and derive some corollaries.
In [1] we have given the following description of the flow near a nontrivial compact minimal

set A (of a general continuous flow) on an orientable 2-manifold M . There exists a connected,
open, invariant neighborhood E of A with the following properties:

(a) The restricted flow on E \ A is completely unstable.
(b) If x ∈ E, then L+(x) ∪ L−(x) ⊂ A ∪ ∂E and L+(x) = A or L−(x) = A.
(c) Every connected component of E \ A contains at least one point x such that L+(x) =

L−(x) = A.
(d) ∂E contains no nontrivial compact minimal set, and if M is compact, it contains no periodic

orbit also.

Proposition 4.1. Let X be a C1 vector field on a connected, orientable, smooth 2-manifold M ,
which is oriented by a C∞ volume 2-form ω. If f :M → R is an IIF for X, then every nontrivial
compact minimal set of X is contained in f −1(0).

Proof. Let A ⊂ M be a nontrivial compact minimal set of X and E be the connected, open,
invariant neighborhood of A as above. Suppose that A is not contained in f −1(0). Then
A∩f −1(0) = ∅, because A is minimal and f −1(0) is closed and invariant, by Lemma 2.2. Prop-
erty (b) of E implies that E ∩ f −1(0) = ∅ also. Since 1

f
· X restricted to E preserves the volume

2-form ω, by Lemma 2.3, it follows from E. Hopf’s generalization of the Poincaré Recurrence
Theorem that there exists a dense subset P of E such that if x ∈ P then either x ∈ L+(x)∩L−(x)

or L+(x)∪ L−(x) ⊂ M \E, possibly empty. Therefore P ∩ (E \A) 	= ∅ and we get a contradic-
tion with property (b) of E. �

The above proposition has a number of corollaries. First we obtain the following analytic
criterion of Poincaré–Bendixson type.
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Corollary 4.2. Let X be a C1 vector field on a connected, orientable, smooth 2-manifold M ,
which is oriented by a C∞ volume 2-form ω. If X admits an IIF f :M → R such that 0 is a
regular value of f , then X has no nontrivial compact minimal set.

If C is a limit cycle of a C1 vector field X on a connected, orientable, smooth 2-manifold M ,
then C ⊂ f −1(0) for every IIF f :M → R of X. This is proved in [5, Theorem 9] in case M

is an open subset of R
2, but the proof works for any orientable 2-manifold. So we arrive at the

following.

Corollary 4.3. Let X be a C1 vector field on a connected, orientable, smooth 2-manifold M and
x ∈ M . If L+(x) is a 1-dimensional compact minimal set, then L+(x) ⊂ f −1(0) for every IIF
f :M → R of X.

Finally, we obtain the following corollary concerning infinitesimal symmetries.

Corollary 4.4. Let X be a C1 vector field on a connected, orientable, smooth 2-manifold M .
If A ⊂ M is a nontrivial compact minimal set of X, then every infinitesimal symmetry of X is
inessential on A.

Proof. Let Y be an infinitesimal symmetry of X and h :M → R be a continuous function such
that [X,Y ] = h · X. If ω is any C∞ volume 2-form on M , then f = ω(X,Y ) is an IIF of X,
by Corollary 2.8. Therefore, A ⊂ f −1(0) from Proposition 4.1, which means that there is a
continuous function g :A → R such that Y = g · X on A, since X nowhere vanishes on A.
Moreover, Xg exists on A and h|A = Xg. So, Xg :A → R is continuous. Hence Y is inessential
on A. �
Remark 4.5. Note that a C2 infinitesimal symmetry Y of X in the situation of Corollary 4.4
must vanish at some point of A. Indeed, if Y nowhere vanishes on A, then A is also a nontrivial
compact minimal set of Y and so Y cannot be C2 by [8].

Proposition 4.1 or Corollary 4.3 can be used as a substitute to Poincaré–Bendixson theory
to exclude the existence of nontrivial compact minimal sets for C1 vector fields on orientable
2-manifolds. As an illustration we give a specific example.

Example 4.6. Let ψ : R → R be the 2π -periodic C1 function given by the formula

ψ(x) =
{

1
2 sin2 x, if (2k − 1)π � x � 2kπ ,
2
3 sin3/2 x, if 2kπ � x � (2k + 1)π ,

where k ∈ Z. Let f̃ : R
2 → R be the 2πZ

2-invariant C1 function with

f̃ (x, y) = ψ(x) + ψ(y).

The vanishing set of f̃ consists of the points

(2nπ,2mπ),
(
(2n + 1)π,2mπ

)
,
(
2nπ, (2m + 1)π

)
,
(
(2n + 1)π, (2m + 1)π

)
, n,m ∈ Z.
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If λ, μ : R → R are 2π -periodic C1 functions (take for instance λ = μ = ψ ), the C1 vector field

X̃(x, y) = μ(y)f (x, y)
∂

∂x
+ λ(x)f (x, y)

∂

∂y

is 2πZ
2-invariant. So X̃ projects to a C1 vector field X on the 2-torus T 2 = R

2/2πZ
2. The

vanishing set F of X consists of the four points p(0,0), p(π,0), p(π,0) and p(π,π), where
p : R2 → T 2 is the quotient map. Also f̃ induces a C1 function f :T 2 → R with f −1(0) = F .
Let ω denote the euclidean volume 2-form on T 2. This means that p∗ω = dx ∧ dy. An easy
calculation shows that f is an IIF for X with respect to ω. Now Proposition 4.1 ensures that X

has no nontrivial compact minimal set in T 2 \ F , and therefore on T 2, since F is finite. Note
that the main result of [8] cannot be applied here, as X is not twice differentiable. The classical
Poincaré–Bendixson theory cannot be applied either, since F is finite.
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