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In this paper we analyze the problem of partitioning a continuous curve into n parts
with equal successive chords, the curve EquiPartition problem (EP). The goal is to locate
n − 1 consecutive curve points, so that the curve can be divided into n segments with
equal chords under a distance function. We adopt a level set approach to prove that
for any continuous injective curve in a metric space and any number n there always
exists at least one n-equipartition (EP). A new approximate algorithm, that is the first EP
algorithm, inspired from the level set approach is proposed for finding all solutions with
high accuracy. Finally, EP based applications are presented and special properties of their
solutions are discussed.
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1. Introduction

The equipartition problem (EP) is the following. Let (X,ρ) be a metric space and let c : [0,1] → X be an injective
continuous curve. We seek 0 < t1 < · · · < tn < 1 such that ρ(c(ti−1), c(ti)) = ρ(c(ti), c(ti+1)), where t0 = 0 and tn+1 = 1.
This problem was posed by J.F. Pal in 1940. In 1954 K. Urbanik gave a proof of the existence of a solution to the problem
based on the Brouwer fixed point theorem [20]. An alternative proof based again on the Brouwer fixed point theorem was
presented recently in [11]. A problem of this kind is also the “square-peg” problem for which we refer the reader to [7].

Our approach is based on the topological study of the zero level set of a certain continuous function defined on the
standard n-dimensional simplex �n (see Fig. 1). As far as we know, this idea is new and has not been used before for the
EP problem.

Of course the case n = 1 is trivial, because if F : [0,1] → R is the continuous function

F (t) = ρ
(
c(t), c(1)

) − ρ
(
c(0), c(t)

)
,

then F (0) > 0 and F (1) < 0 and by the Intermediate Value Theorem there exists some 0 < t1 < 1 such that F (t1) = 0. Every
point in F −1(0) is a solution to the problem. Our level set approach is an extension of this elementary idea. The fact that
F changes signs on the boundary points of [0,1] is equivalent to saying that the restriction of F to the boundary {0,1} of
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[0,1] with values in R \ {0} is not homotopic to a constant. For n > 1 this is replaced by Proposition 2.1 below, which says
that the restriction of a certain continuous function to the boundary of �n is not homotopic to a constant.

In general, the number of solutions depends on the curve shape and n. There exist degenerate cases for which the
number of solutions for a particular value of n is infinite. A brief exposition of the basic issues of the EP can be found
in [16].

Generalizing the EP, one can take X to be a topological space and ρ : X × X → R
+ a continuous function such that

ρ(x, y) = 0 if and only if x = y (not necessarily a distance function). One can ask then, given a positive integer n and real
numbers λ0 > 0, λ1 > 0, . . . , λn > 0, if there exists a partition 0 < s1 < s2 < · · · < sn < 1, such that

λ0ρ
(
c(0), c(s1)

) = λ1ρ
(
c(s1), c(s2)

) = · · · = λn−1ρ
(
c(sn−1), c(sn)

) = λnρ
(
c(sn), c(1)

)
.

This is equivalent to the following. Let �2 = {(s1, s2) ∈ R
2: 0 � s1 � s2 � 1} be the standard 2-dimensional simplex. Let

d : �2 → R
+ be a continuous function, such that d(s1, s2) = 0 if and only if s1 = s2. Given a positive integer n and real

numbers λ0 > 0, λ1 > 0, . . . , λn > 0, does there exist a partition 0 < s1 < s2 < · · · < sn < 1 such that

λ0d(0, s1) = λ1d(s1, s2) = · · · = λn−1d(sn−1, sn) = λnd(sn,1)?

Curve segmentation is a challenging problem in computational geometry, particularly for pattern recognition applica-
tions. Object boundary representation and curve simplification are based on curve segmentation. Another example of such
segmentation approach is the polygonal approximation [2], which is a well-known and widely studied problem. In some
applications it could be interesting to have a uniform representation according to an appropriate quality measure. We have
adopted such an approach for 3D modelling and non-articulated motion tracking [17], leading to the curve equipartition
problem. The objective is the partition of the feature sequence into “homogeneous” segments with uniform characteristics
according to a predefined error criterion.

Shape representation [12] by polygonal approximation has become a popular technique for constructing a concise de-
scription of a boundary in the form of a sequence of straight lines. There are two main approaches to the problem:
(1) Approximate the curve by a polygon minimizing an error criterion and (2) finding a subset of dominant points as vertices
of the approximating polygon. Under the first approach, the goal is to capture the main characteristics of the boundary shape
with the least number of line segments. The second approach works by locating the vertices of the approximating polygon
directly through detecting points of high curvature. These vertices contain useful information concerning the curve shape
and they can be used on image and shape analysis. On the other hand constraining the length of the line segments to be
constant, as the equipartition does, gives a more concise representation, allowing more flexibility for studying deformations
of the polygons, and finally of the original curve.

In Section 2 we adopt a level set approach to give a new geometric proof that the generalized EP has a solution for
any n (see Theorem 2.5 below). An approximate algorithm inspired from the level set approach is described in Section 3
for finding all solutions with high accuracy. Finally, in Section 4, applications based to the EP are presented and special
properties of their solutions are discussed.

2. A level set approach to the equipartition problem

In this section we give a new proof of existence of a solution to the general equipartition problem for any number of
pieces. Our approach is based on the analysis of the connected components of the zero level set of a certain function using
methods of Combinatorial and Algebraic Topology. For definitions and properties of homotopy and Brouwer degree we refer
the reader to any standard text on Algebraic Topology, such as for instance [5].

Fig. 1. (a) The triangle ABO is �2. (b) The tetrahedron ABCO is �3.
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Let

�n = {
(s1, s2, . . . , sn) ∈ R

n: 0 � s1 � s2 � · · · � sn � 1
}

be the n-dimensional simplex. Its boundary is ∂�n = B1 ∪ B2 ∪ · · · ∪ Bn+1, where

B j = {
(s1, s2, . . . , sn) ∈ �n: s j−1 = s j

}
,

1 � j � n + 1, are the (n − 1)-faces of �n , putting s0 = 0 and sn+1 = 1. Fig. 1 illustrates �n in cases n = 2 (triangle) and
n = 3 (tetrahedron).

Let d :�2 → R
+ be a continuous function such that d(s1, s2) = 0 if and only if s1 = s2. Let also λ0 > 0, λ1 > 0, . . . , λn > 0

be real numbers. For each 1 � j � n let f j :�n → R be the function defined by

f j(s1, s2, . . . , sn) = λ jd(s j, s j+1) − λ j−1d(s j−1, s j),

where again we have set s0 = 0 and sn+1 = 1.
If f = ( f1, f2, . . . , fn−1) :�n → R

n−1, then obviously

f −1(0) ⊂ {
(0,0, . . . ,0)

} ∪ int Bn+1 ∪ int�n,

because d−1(0) = B2 in �2, where int denotes topological interior.
If Fn = ( f1, f2, . . . , fn−1, fn), then Fn vanishes nowhere on ∂�n . A key property of Fn is the following.

Proposition 2.1. For every integer n � 2, the continuous map Fn|∂�n : ∂�n → R
n \ {0} has Brouwer degree (−1)n.

Proof. Examining the signs of f j , 1 � j � n, on ∂�n , we observe that the vector Fn(s1, s2, . . . , sn) at (s1, s2, . . . , sn) points
inward �n for every (s1, s2, . . . , sn) ∈ ∂�n . Indeed, the (n − 1)-face B j , 1 � j � n + 1, is contained in the affine hy-
perplane g−1

j (0), where g j : R
n → R is the affine map g j(s1, s2, . . . , sn) = s j − s j−1. As above, s0 = 0 and sn+1 = 1. If

(s1, s2, . . . , sn) ∈ B j , then

f j−1(s1, s2, . . . , sn) = −λ j−2d(s j−2, s j) � 0,

f j(s1, s2, . . . , sn) = λ jd(s j, s j+1) � 0

and therefore〈
Fn(s1, s2, . . . , sn),∇g j(s1, s2, . . . , sn)

〉 = λ j−2d(s j−2, s j) + λ jd(s j, s j+1),

for 1 < j < n + 1, while

〈
Fn(s1, s2, . . . , sn),∇g j(s1, s2, . . . , sn)

〉 =
{

λ1d(0, s2), if j = 1, and
λn−1d(sn−1,1), if j = n + 1.

Since 〈Fn(s1, s2, . . . , sn),∇g j(s1, s2, . . . , sn)〉 � 0 for every (s1, s2, . . . , sn) ∈ B j and for every 1 � j � n + 1, we conclude that
the vector Fn(s1, s2, . . . , sn) at (s1, s2, . . . , sn) points inward for every (s1, s2, . . . , sn) ∈ ∂�n .

It follows now from Hopf’s formula that

(−1)n deg Fn = χ(�n) = 1,

where deg denotes the Brouwer degree and χ the Euler characteristic (see Example 4.8 on p. 269 and Proposition 4.9 on
p. 270 of [5]). �

It follows from Proposition 2.1 that Fn|∂�n : ∂�n → R
n \ {0} is not homotopic to a constant. This will be used in the

proof of the main Lemma 2.4 below. In order to give the reader the idea of proof, we shall first treat the case n = 2, which
corresponds to equipartition in three pieces and is relatively elementary.

Lemma 2.2. If n = 2, the connected component C of f −1(0) which contains (0,0, . . . ,0) has non-empty intersection with int B3 .

Proof. Let K be the connected component of Y = f −1(0) ∪ [0,1] × {1} which contains [0,1] × {1}. Suppose that the conclu-
sion is not true. Then C ∩ K = ∅ and there exists a polygonal simple arc I which separates C form K in �2 with endpoints
(0, t) and (s, s), for some 0 < t < 1 and 0 < s < 1, whose any other point is contained in the interior of �2 \ Y . This follows
directly from Theorem 3.3 on p. 143 in [14], which says that any two connected components of a compact subset of the
plane are separated by a simple closed polygonal curve in its complement. It is also proved in any dimension in the course
of proof of Lemma 2.4 below. Since f = f1 and f (0, t) > 0, f (s, s) < 0, it follows from the Intermediate Value Theorem that
I ∩ f −1(0) �= ∅, contradiction. �
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Proposition 2.3. Let d :�2 → R
+ be a continuous function such that d(s1, s2) = 0 if and only if s1 = s2 . For any set of real numbers

λ0 > 0, λ1 > 0, λ2 > 0, there exist 0 < s1 < s2 < 1 such that

λ0d(0, s1) = λ1d(s1, s2) = λ2d(s2,1).

Proof. We denote as in the proof of Lemma 2.2 by C the connected component of f −1(0) which contains (0,0). We have
f2(0,0) = λ2d(0,1) > 0. Lemma 2.2 says that there exists some 0 < s < 1 such that (s,1) ∈ C . Since f2(s,1) = −λ1d(s,1) < 0,
there exists some (s1, s2) ∈ C such that f2(s1, s2) = 0, by the Intermediate Value Theorem. Obviously, (s1, s2) ∈ F −1

2 (0). �
Lemma 2.4. If n � 3, the connected component C of f −1(0) which contains (0,0, . . . ,0) has non-empty intersection with int Bn+1 .

Proof. Suppose that C ∩ Bn+1 = ∅. Then there exists an embedded polyhedral, compact, connected (n−1)-manifold D ⊂ �n \
f −1(0) whose boundary ∂ D is a topological (n−2)-dimensional sphere Sn−2 such that ∂ D ⊂ ∂�n \ Bn+1 and D \∂ D ⊂ int �n .
One way to construct D is the following. Let Y = Bn+1 ∪ f −1(0) and let K be the connected component of Y which contains
Bn+1. Then C ∩ K = ∅ and so there are two disjoint compact sets A1, A2 ⊂ Y such that C ⊂ A1, K ⊂ A2 and A1 ∪ A2 = Y
(see Theorem 5.6 on p. 82 in [14]). Obviously, A1 ∩ ∂�n = {(0,0, . . . ,0)}. Let 0 < δ < 1

4 dist(C, K ) and I0 = [0, δ/
√

n]n , where
dist(C, K ) = inf{‖x − y‖: x ∈ C and y ∈ K }. Then I0 has diameter δ and therefore is disjoint from A2. Let now

0 < ε <
1√
n

min

{
δ,

1

4
dist(A1 \ int I0, ∂�n)

}

and let P = {0 = t0 < t1 < · · · < tk = 1} be a partition of [0,1] such that δ/
√

n ∈ P and t j − t j−1 < ε , for all integers
1 � j � k. Let P n be the corresponding partition of [0,1]n and let Q 0 be the union of all n-cubes I in P n such that
I ∩ A1 �= ∅ and I ∩ int I0 = ∅. Note that if I and J are n-cubes of P in Q 0, then I ∩ J is a common face of I and J , if
non-empty, which can be thickened to an n-dimensional parallelepiped which does not intersect A2. In case I ∩ J does
not intersect Y we may thicken it to a n-dimensional parallelepiped with the same property. Adding these thickenings to
Q 0 we obtain a set Q which is a polyhedral, connected, compact n-manifold with boundary contained in int�n . Moreover,
A1 \ I0 ⊂ int Q , Q ∩ A2 = ∅ and

f −1(0) ∩ ∂ Q = A1 ∩ ∂ Q ⊂ I0 ∩ Q = I0 ∩ ∂ Q = intF (F ∩ ∂ Q ),

where F = [0, δ/
√

n]n−1 × {δ/√n} is the top (n − 1)-face of I0, and intF denotes topological interior relative to the set F .
The set G = F ∩ �n \ intF (F ∩ ∂ Q ) is homeomorphic to a (n − 1)-dimensional disc with a finite number of holes. Note that
the (n − 2)-simplex F ∩ ∂�n is contained in G . Let now D be the connected component of (∂ Q \ intF (F ∩ ∂ Q )) ∪ G which
contains F ∩ ∂�n . Then D is a polyhedral, connected, compact (n − 1)-manifold with boundary, whose boundary is precisely
F ∩ ∂�n , hence homeomorphic to Sn−2, and therefore ∂ D ⊂ ∂�n \ Bn+1. Also, D \ ∂ D ⊂ int �n and D ⊂ �n \ f −1(0), by
construction.

Since f vanishes nowhere on ∂�n \ {(0,0, . . . ,0)} ∪ int Bn+1, it vanishes nowhere on D . Consequently, the continuous
map f |∂ D : ∂ D → R

n−1 \ {0} has Brouwer degree zero and so does the continuous map f |∂ Bn+1 for the same reason, that
is because it is the restriction of a continuous map, namely f , from the compact connected (n − 1)-dimensional manifold
D ∪ (∂�n \ (I0 ∪ int Bn+1)) with boundary ∂ Bn+1 to R

n−1 \ {0}. However, this contradicts Proposition 2.1, because f |∂ Bn+1 is
identified with Fn−1|∂�n−1 . �

We can now state and prove the main result of this section from which the existence of solution to the general equipar-
tition problem follows.

Theorem 2.5. Let d :�2 → R
+ be a continuous function such that d(s1, s2) = 0 if and only if s1 = s2 . Then for every positive integer

n and real numbers λ0 > 0, λ1 > 0, . . . , λn > 0, there exists a partition 0 < s1 < s2 < · · · < sn < 1 such that

λ0d(0, s1) = λ1d(s1, s2) = · · · = λn−1d(sn−1, sn) = λnd(sn,1).

Proof. This follows from Lemma 2.4 in the same manner as Proposition 2.3 follows from Lemma 2.2, since on one
hand fn(0,0, . . . ,0) = λnd(0,1) > 0 and on the other fn(s1, s2, . . . , sn−1,1) = −λn−1d(sn−1,1) < 0 for (s1, s2, . . . , sn−1,1) ∈
int Bn+1. �

Let now (X,ρ) be a metric space or even more generally let X be a topological space and ρ : X × X → R
+ be a con-

tinuous function such that ρ(x, y) = 0 if and only if x = y. Let c : [0,1] → X be an injective continuous curve, that is c
is a topological embedding. Taking the continuous function d :�2 → R

+ defined by d(s1, s2) = ρ(c(s1), c(s2))
2, we see that

d(s1, s2) = 0 if and only if s1 = s2, since c is injective. In this case, F −1
n (0) is the set of solutions to the equipartition problem

in n + 1 pieces for c. A direct application of Theorem 2.5 gives now the existence of solution to the general equipartition
problem.
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Theorem 2.6. Let X be a topological space and c : [0,1] → X be a topological embedding. Then for every continuous function ρ : X ×
X → R

+ with the property ρ(x, y) = 0 if and only if x = y, and every positive integer n and real numbers λ0 > 0, λ1 > 0, . . . , λn > 0,
there exist 0 < s1 < s2 < · · · < sn < 1 such that

λ0ρ
(
c(0), c(s1)

) = λ1ρ
(
c(s1), c(s2)

) = · · · = λn−1ρ
(
c(sn−1), c(sn)

) = λnρ
(
c(sn), c(1)

)
.

3. Iso-level algorithm (ILA)

3.1. Description of the algorithm

In this section we propose a new approximate algorithm inspired from the level set approach to the EP of Section 2. To
our knowledge, this kind of algorithm is used for the first time for the EP problem. It is named Iso-Level Algorithm (ILA),
because an equipartition in n + 1 pieces is determined by a finite sequence (0, s1), (s1, s2), . . . , (sn,1) of points in �2, which
belong to the same level set of the function d :�2 → R

+ of Theorem 2.5, if we take λ0 = λ1 = · · · = λn = 1, which we do in
the sequel. In order to implement ILA we approximate d by a piecewise linear function d̂ and solve precisely the problem
for d̂. The ILA computes all the solutions and is inductive. Thus, when it is executed for n, it also solves the problem for any
positive integer number less than n.

We proceed now to the description of the ILA. Let d :�2 → R
+ be a continuous function such that d(s1, s2) = 0 if and

only if s1 = s2.
Let P = {0 = t0 < t1 < t2 < · · · < tm−1 < tm = 1} be a partition of [0,1]. On �2 we consider the triangulation into

triangles of the form

D1
i j = {

(s1, s2) ∈ [ti, ti+1] × [t j, t j+1]: s2 − t j � s1 − ti
}
,

D2
i j = {

(s1, s2) ∈ [ti, ti+1] × [t j, t j+1]: s1 − ti � s2 − t j
}
,

for 0 � i < j < m, or

D2
ii = {

(s1, s2) ∈ [ti, ti+1] × [ti, ti+1]: ti � s1 � s2 � ti+1
}
,

for 0 � i < m.
We take d̂ :�2 → R

+ to be the simplicial function defined by the vertex map which sends each vertex (ti, t j) of this

triangulation to d(ti, t j), 0 � i � j � m. Then d̂ is continuous and d̂(s1, s2) = 0 if and only if s1 = s2. For each 1 � j � n let

f̂ j :�n → R be the function defined by

f̂ j(s1, s2, . . . , sn) = d̂(s j, s j+1) − d̂(s j−1, s j),

where s0 = 0 and sn+1 = 1. We put f̂ = ( f̂1, f̂2, . . . , f̂n−1) and F̂n = ( f̂1, f̂2, . . . , f̂n−1, f̂n). The points of F̂ −1
n (0) are approxi-

mate solutions to the EP for d.
At each iteration step k, k = 1,2, . . . ,n, the algorithm computes a (possibly non-connected) polygonal curve Lk from the

corresponding polygonal curve Lk−1 of the previous step. At the initial step we take L1 = {0} × [0,1] and at the k-th step
we put

Lk = {
(u, z) ∈ �2: 0 < u < z and d̂(u, z) = d̂(v, u) for some v < u with (v, u) ∈ Lk−1

}
.

Since Lk−1 is a polygonal curve and d̂ is a simplicial function, it is elementary to see that Lk is polygonal (possibly non-
connected). Actually, a line segment of Lk−1 in a triangle of the triangulation gives a set of line segments of Lk , each one of
them is contained in a different triangle of the triangulation.

Note that if (sn−1, sn) ∈ Ln , there exist 0 < s1 < s2 < · · · < sn−1 < sn < 1, such that (sn−2, sn−1) ∈ Ln−1, . . . , (0, s1) ∈ L1 and

d̂(0, s1) = d̂(s1, s2) = · · · = d̂(sn−1, sn).

Using the notations of Section 2, the level set

f̂ −1(0) = {
(s1, s2, . . . , sn) ∈ �n: (0, s1) ∈ L1, (s1, s2) ∈ L2, . . . , (sn−1, sn) ∈ Ln

}
approximates f −1(0). The points of f̂ −1(0) at which f̂n vanishes are the solutions for the EP for d̂ and approximate solutions
for d in n + 1 pieces.

We shall describe now a pseudo-code of the above procedure (see the end of this section). At each iteration step k, for
each line segment Lk−1(i) in Lk−1, i = 1,2, . . . , |Lk−1|, where |Lk−1| denotes the number of the line segments composing
Lk−1, which belongs to a specific triangle Dτ ′

i′ j , τ ′ = 1,2, i′ � j, of the triangulation (we get it by using the getTriangle()
function), we compute the line segment LS(Lk−1(i), Dτ

jh). LS(Lk−1(i), Dτ
jh) corresponds to Lk−1(i), according to the definition

of Lk , and is contained in the triangle Dτ
jh , τ = 1,2, j � h. An efficient way to store the line segments is by using their

endpoints. In the initial step we break L1 as follows:

L1 = [
(0,0), (0, t1)

] ∪ [
(0, t1), (0, t2)

] ∪ · · · ∪ [
(0, tm−1), (0,1)

]
.
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Fig. 2. An example of a tree data structure.

Algorithm 1. Iso-level algorithm.

At each step we store the correspondence between Lk−1(i) (parent node) and LS(Lk−1(i), Dτ
jh) (child node) in a tree data

structure. The root of tree data structure is the trivial segment [(0,0), (0,0)]. The function addNode(Lk−1(i), LS(Lk−1(i), Dτ
jh))

connects the new child node LS(Lk−1(i), Dτ
jh) to the parent node Lk−1(i). Finally, line segments of Ln are leaves of the Tree.

Fig. 2 illustrates an example of tree data structure.
In the final n-th step we also compute the roots of f̂n on Ln , which are points (sn−1, sn) ∈ Ln and by moving backwards

we compute the points (sn−2, sn−1) ∈ Ln−1, . . . , (0, s1) ∈ L1, by backtracking (from leaves to root) the Tree. Fig. 3 illustrates
a triangulation, the recursive computation of {s1, s2, s3}, and the curves L1, L2 and L3.

There does not exist an upper bound of the number of line segments in Lk . As our experiments show, it may increase
exponentially with k. In order to reduce this number and the computational cost, an optional line segments simplification
procedure can be applied. If we want to bound the maximum number of line segments in Lk that belong to a triangle of
the triangulation, we merge successive line segments in Lk in the same triangle that are almost collinear. We give more
details about this optional procedure in the next section.
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Fig. 3. An example of curve equipartition into 4 chords.

3.2. Computational complexity and error analysis

Concerning the method complexity, the computational cost for each line segment Lk−1(i), i = 1,2, . . . , |Lk−1| of Lk−1 is
O (m), since the search space for the L S computation has O (m) triangles. The number |Lk| of the line segments composing
Lk is normally O (m) and the total computational cost is O (n · m2).

However, |Lk| may increase exponentially. In these cases, the line segment simplification procedure is executed by keep-
ing a limited number of line segments per triangle. Let |Lτ ,i j

k | be the number of line segments of Lk that belong to the
triangle Dτ

i j , τ = 1,2, i � j. According to the procedure, we merge the most collinear line segments of each triangle until

|Lτ ,i j
k | � T . T is a threshold denoting the maximum allowed number of line segments that belong to the same triangle

and is predefined by the user. Thus, in the worst case, |Lk| is O (T · m2), since there are O (m2) triangles on �2. The total
computational cost is O (T · n · m3).

We can estimate the normalized error (NE) of an approximated equipartition of length chords r1 = d(0, s1), r2 =
d(s1, s2), . . . , rn = d(sn−1, sn), rn+1 = d(sn,1) (d̂(0, s1) = d̂(s1, s2) = · · · = d̂(sn−1, sn) = d̂(sn,1)) by getting the standard de-
viation of the n + 1 estimated length chords of this equipartition σ divided by the mean length segment of this equiparti-
tion (r̄), NE = σ

r̄ .

It holds that NE decreases as m increases. Therefore, the mean error of the approximation d̂ of d is

E
(|d̂ − d|) = O

(
1

m2

)
.

Let e(u, v) = d̂(u, v) − d(u, v) = O ( 1
m2 ). Under the assumption that e has zero mean and e and d are independent, we can

prove that NE decreases by the same factor O ( 1
m2 ) (see Fig. 4(a)) when the line segment simplification procedure is not

executed.

NE2 = var(r)

r̄2
=

∑n+1
i=1 d2(si−1,si)

(n+1)2 − r̄2

r̄2

⇒ NE =
√∑n+1

i=1 (e(si−1, si))
2

(n + 1)r̄
(by hypothesis)

⇒ NE �
∑n+1

i=1 (|e(si−1, si)|)
(n + 1)r̄

= O

(
1

r̄m2

)
.

When the simplification procedure is executed, the error cannot be bounded.
Moreover, NE is not straightforwardly affected as n increases (see Fig. 4(b)). However, NE = O ( 1

r̄m2 ) increases when
r̄ decreases, that is true when n is getting very high. For example, in the case of the Euclidean distance it holds that
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Fig. 4. The normalized error (NE) computed on a curve on which the EP has an infinite number of solutions for 4 segments. When we get more than one
solutions, the NE was computed by the mean of normalized errors on these solutions. (a) The NE and its approximation function J (m) = 3

m2 computed for
different values of M and for n = 3. (b) The NE computed for different values of N and for m = 50.

d(1,0)
n+1 < r̄ <

curveLength
n+1 . This is the main reason why m should be greater than n, while our experiments show that it should

be m > 2n. Moreover, m can be bounded by bounding NE or E . Therefore, m is an intrinsic input parameter of the algorithm
and it is related to the error of the approximation.

3.3. Experimental results

The method has been implemented using C and Matlab. For our experiments, we used a Pentium 4 CPU at 2.8 GHz.
A typical processing time, when m = 100 and n = 10, is about 4 seconds. Figs. 5 and 6 illustrate the results of the proposed
algorithm for different 2-D or 3-D curves and values of n. The estimated solutions are projected via d̂ with black circles and
on input curve c(t) (right) with the same color points belonging to the same equipartition.

The curves Lk , k > 1, are projected via d̂, with gray colors, at both sides of the diagonal x = y, by mirroring Lk for odd
values of k, for illustration reasons. L1 is not projected, since it is always the trivial polygonal curve:[

(0,0), (0, t1)
] ∪ [

(0, t1), (0, t2)
] ∪ · · · ∪ [

(0, tm−1), (0,1)
]
.

For each k, there exists a continuous curve from (0,0) with endpoint on the axis y = 1. The second coordinate of Lk
corresponds to a continuous path (sweep) along the curve c(t) that starts at c(0) ((0,0) ∈ Lk) and ends at c(1) (intersection
of Lk with the axis y = 1, see Fig. 3). The first coordinate of Lk gives the correspondence to Lk−1 (isolevel). The complexity
|Lk| of Lk varies depending on the curve c. At least one solution approximately belongs to the connected component of
f −1(0) which contains (0,0, . . . ,0).

We shall give now a detailed description for how the Lk ’s and the tree data structure are developed using the curve of
Fig. 5(f). In this example, we divide the curve into 12 pieces. Therefore, L1, L2, . . . , L11 are computed. Fig. 5(e) illustrates
them apart from L1. The curve L2 is illustrated with black color on Fig. 5(e), consisting of two connected polygonal curves.
It holds that some nodes of the first level (L1 nodes) of the tree data structure are connected with at least two nodes of
the next level (L2 nodes), having at least two child nodes, e.g. the nodes that correspond to the second connected polygonal
curve. In the case of two child nodes, it holds that there exists some pair of points of L2: (u1, v), (u2, v), 0 < v < u1 < 1,
0 < v < u2 < 1, so that c(u1) and c(u2) are equidistant from c(v), that is d̂(v, u1) = d̂(v, u2) = d̂(0, v). Some of the nodes
of first level (L1 nodes) of the tree data structure are connected with a node of the next level (L2 nodes), having one child
node. According to the Fig. 5(e), about 15% of the nodes of the first level (L1 nodes) are not connected with nodes of the
next level (L2 nodes), these nodes correspond to points close to the end of the curve. This is due to the fact that there
exists v , 0 < v < 1, so that there does not exist u, v < u < 1 with d̂(0, v) = d̂(u, v). L3 is illustrated with dark gray color on
Fig. 5(e) consisting of two connected polygonal curves. Lk , k > 3, are illustrated with lighter gray colors as k increases on
Fig. 5(e), consisting of one connected polygonal curve.

4. Applications

In this section, we present two EP based applications and the properties of the extracted solutions are discussed. First,
an algorithm based on equal errors principle is proposed, which solves the General Polygonal Approximation problem
(GPA) [18].

The EP can be also applied to the key frames selection problem [15] yielding a key frames selection algorithm based
on Iso-Content Distance, Distortion principles. In both cases, the equality principle provides selected key frames with the
property that they are equivalent in terms of content video summarization. Moreover, the EP has been successfully applied
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Fig. 5. Results of the of ILA for 2-D input curves.

to snake motion analysis [17] yielding equally spaced skeleton points, so that the time correspondence between the tracked
skeleton points is done automatically.

The polygonal approximation [18] is an important topic in the area of pattern recognition, computer graphics and com-
puter vision, because the polygonal approximation process saves memory space, reduces the rendering time on graphics
applications and gives a more compact representation.
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Fig. 6. Results of ILA for a helix [13] for N = 6. (a) The four solutions are projected via ĝ with black circles and (b), (c), (d), (e) on c(t) (blue curve) with
the green color points connected with red line segments. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 7. Polygonal approximations (red polygon) with six segments of the same given curve (blue polygon). (a) A general polygonal approximation and (b) a
“classical” polygonal approximation of the given curve. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Given a polygonal curve c in R
m with N vertices, a curve approximation of c is another polygonal curve c′ with, say,

M vertices that approximates the original curve c, according to a predefined error criterion. Let P = {p1, p2, . . . , pN } and
P ′ = {p′

1, p′
2, . . . , p′

M} be the set of the vertices of the given polygonal curve c and its approximation c′ , respectively. Ac-
cording to the general polygonal approximation problem (GPA), the vertices of c′ are an ordered finite sequence of points
on the trace of c, which need not be vertices of c as the polygonal approximation problem (PA) demands (see Fig. 7). There-
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fore, under this constraint relaxation, the solutions of the GPA problem give approximations of the polygonal curve c with
possibly smaller error than the error of the solutions of PA problem.

Different error criteria have been proposed for polygonal approximation problems.

• A frequently used error criterion is the tolerance zone criterion [3,8]. Let p′
k p′

k+1 be a segment of c′ , for some 1 � k < M ,
and S = [p′

k, pm, pm+1, . . . , pm+s, p′
k+1] be the corresponding part of c. Under this criterion, the error between the

segment p′
k p′

k+1 and S is defined to be the maximum distance between p′
k p′

k+1 and each point on S , with respect to
one of the distance functions L1, L2 or L∞ .

• Another frequently used error criterion is the local integral square error (LISE) [4]. Under this criterion, the error be-
tween the segment p′

k p′
k+1 and S is defined to be the sum of squared Euclidean distances of p′

k p′
k+1 from each vertex

of S .
• Finally, according to these error criteria the approximation error between c′ and c is defined to be the maximum error

between the segments of c′ and their corresponding parts of c like S .

The polygonal approximation problem can be formulated in two ways: The problem of minimum error (min-ε) and the
problem of minimum number of segments (min-#) [8,9]:

• The problem of minimum error (min-ε), where the approximation error is minimized given the number of segments.
• The problem of minimum number of segments (min-#), where the approximation error is bounded and the goal is to

find the minimum number of segments that gives error lower than the given error.

Concerning the 2-D min-# problem and the min-ε problem under the tolerance zone criterion [8], the lowest computation
cost method [2] has cost O (M2) and O (M2 log M), respectively, M being the initial number of segments. The 3-D and 4-D
polygonal approximation problems require near-quadratic time and sub-cubic time, respectively [1].

A near optimal solution of the GPA problem is achieved when the approximation errors per line segment D(p′
1, p′

2), . . . ,

D(p′
M−1, p′

M) are equal, as the error is shared between all the segments and the total (maximum) error ε (e.g. under
tolerance zone criterion or LISE) is minimized [18], that is

ε = D(p′
1, p′

2) = D(p′
2, p′

3) = · · · = D(p′
M−1, p′

M). (1)

The solution under the Equal Error (EE) criterion can be computed approximately using the EquiPartition method (EP).
We have seen that for a specific M the EP algorithm computes M vertices of c′ under the EE criterion and a predefined
error distance function. The input of the EP algorithm is the number M and the symmetric matrix D(tk, tl), k, l = 1,2, . . . , N
solving the min-ε problem directly. The min-# problem can be solved by the EP method under the same time-space re-
quirements as the min-ε problem [18].

We have approximated various 2-D, 3-D and higher dimensional polygonal curves under the tolerance zone or the LISE
criterion using the distance function L2. We compare our method with the optimal PA methods for min-# [8] and min-
ε [19]. Fig. 8 illustrates results of Perez–Vidal [19] and proposed GPA methods under LISE or tolerance zone criterion for
different values of M .

Consequently, the proposed GPA algorithm approximates in a lot of cases the given curve with lower error than the
optimal PA algorithm. When,

1. c′ , derived by the EE criterion, is the optimal solution of the GPA problem,
2. the EP method accuracy is high
3. and the error of the optimal GPA approximation is significantly lower than the error of optimal PA approximation,

the proposed solution will be, with a great probability, better than the optimal solution of the PA problem. It holds that
when the given polygonal curve is smooth, the proposed algorithm yields, with a great probability, lower error results than
the optimal PA method. Otherwise, the result of which algorithm gives better solution is unpredictably changing with M .
A detailed analysis on optimality of the proposed solutions and more comparisons are given in [18].

5. Conclusions and discussion

In this paper, we have discussed the curve equipartition problem (EP). We have given a new geometric proof that it has at
least one solution for every injective continuous curve and for any number of chords. Our approach is based on the analysis
of the connected components of the zero level set of a certain function using methods of Combinatorial and Algebraic
Topology. Inspired by this proof, we have implemented a new approximate algorithm (ILA) for solving the equipartition
problem, which is the first EP algorithm.

The EP is a generic problem and can be applied to many applications. Energy minimizations problems that MINimize the
MAXimum “per segment” (frame) distortion (MINMAX) [10] can be solved (almost optimally [18]) under equal error crite-
rion. Applying the EP to polygonal approximation under LISE or tolerance zone criterion, we get equal errors per segment,
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Fig. 8. Min-ε results of the Perez–Vidal and proposed GPA methods under LISE or tolerance zone criterion for different values of M . The curves P , P ′ are
projected with blue and red colors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

yielding low error values, since the global error will be shared between all the segments. The derived approximations are
sufficient to provide a lower error than the optimal polygonal simplification methods with about the same computational
cost. This result comes from the relaxation of constraint that approximate polygon vertices are a subset of the initial polygon
vertices.

Another challenging application is the key-frames extraction out of a video sequence. The equipartition applied to video
summarization provides selected key frames with the property of equivalent content. We can use any distance function
relevant to the video content. Moreover, undulatory locomotion analysis can be based on the proposed method. Until now,
we have applied the methodology to snake motion analysis [17]. The time correspondence between the tracked points is
done automatically, since they are equally spaced. The EP can be probably applied to approximate curves [6] and to compute
minimal energy curves [13].
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