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1. Introduction

In this paper we give a description of the qualitative behaviour of the orbits near
a non-trivial compact minimal set of a continuous flow on a 2-manifold. The first
results in this direction were obtained in [1] and the present paper can be regarded
as a continuation of that work. The main result can be stated as follows:

THEOREM 1*1. Let (IR, Jf,/) be a continuous flow on a 2-manifold M and A <=M a non-
trivial compact minimal set. Then, there exists a connected, open, invariant
neighbourhood E of A with the following properties:

(a) the restricted flow on E\A is completely unstable;
(b) ifxsE, then L+(x) U L~(x) cA[)dE and L+(x) = A or L~(x) = A;
(c) every connected component of E\A contains at least one orbit C(x) such that

L+(x) = LT{x) = A;
(d) the boundary dE of E contains no non-trivial compact minimal set;
(e) if M is closed and orientable, then dE does not contain periodic orbits.

The above theorem is proved in Section 2. In Section 3 we apply it to the case of
continuous flows on closed, orientable 2-manifolds without saddle fixed points and
prove a characterization of Den joy flows. Finally, we show that the depth of the
centre of continuous flows without saddle fixed points defined on closed, orientable
2-manifolds is 1.

2. Non-trivial minimal sets

Let (U,M,f) denote a continuous flow on a metric space M. We shall use the
notation f(t,x) = tx and IA = {tx.tel, xeA}, if / a U and A <= M. The orbit of the
point xeM will be denoted by C(x), its positive semi-orbit by C+(x) and its negative
semiorbit by C~(x).

We recall that
L+(x) = {y eM: tn x -*• y for some <„-> +oo}

and J+(x) = {yeM:tnxn->y for some xn-*• x and tn-»• + oo}

are the positive limit set and the positive prolongational limit set of the point x eM
respectively, whose negative versions are defined analogously.

A set A cz M is called minimal if it is non-empty, closed, invariant and has no
proper subset with these properties. A minimal set is called trivial if it consists of only
one orbit or is homeomorphic to the torus T2.

A set A is called positively (resp. negatively) stable if every neighbourhood of A
contains a positively (resp. negatively) invariant neighbourhood of A. A positively
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stable set is called positively asymptotically stable if its region of positive attraction
is an open neighbourhood of it. The region of positive attraction of a compact set A
is the set of points xeM such that 0 #= L+(x) <z A (see [3], p. 56).

A subset A of M is a saddle set if it has a neighbourhood U such that every
neighbourhood VofA contains a point a; with C+(x) <£ Ua,ndC~(x) £ £/([2], definition
61).

We refer the reader to [3] and [2] for the undefined terms of this paper. The
following result was proved in [1].

THEOREM 2 1 . A compact minimal set of a continuous flow on a 2-manifold is trivial
whenever it is positively {or negatively) stable or a saddle set.

In the rest of this section A will always denote a non-trivial compact minimal set
of a continuous flow denned on a 2-manifold M. Let V be an open neighbourhood of
A such that its closure in M is a connected, compact 2-manifold with boundary.
Considered as a 2-manifold V has finite genus. It follows from lemmas 5 and 6 in [8]
that A has a neighbourhood which contains no minimal set disjoint from A.

Let E*(A) (resp. E~(A)) denote the region of positive (resp. negative) strong
attraction of A. Since A is compact and minimal E*(A) is the set of points xeM with
the property J+(x) = A and similarly for Ej(A) (see [3], p. 56). By Theorem 21 and
[2], theorem 6-12, the set E = A U E+{A) U Ej(A) is an open invariant neighbourhood
of A. If xeE\A, then J+(x) = A or J~(x) =A and hence x$J+(x). This means that
the restricted flow on E\A is completely unstable. This also implies that the limit sets
L+(x),L~(x) do not intersect with E\A for every xeE. Hence L+(x) U L~(x) cA\J dE.

PROPOSITION 2-2. Every connected component K ofE\A contains at least one orbit G(x)
such that L+(x) = L~(x) = A.

Proof. We may assume without loss of generality that M = E. Suppose that the
conclusion is false and let K* = {xsK:L±(x) = A}. Then K+, K~ are disjoint and
K = K+ U K~. Since A is non-saddle, they are also open. Hence K = K+ or K = K~.
We shall assume the former, the proof being similar if the latter holds. The closure
K = A\)K o{ K \$ a, connected, locally compact, invariant subspace of M and A is
globally positively asymptotically stable with respect to the restricted flow on K. It
follows that the flow on K is parallelizable with a compact global section S which
must be a simple closed curve (see [5], chapter VII, 16). Since A is non-trivial,
there is a closed transversal through A. More precisely, there exist e > 0 and a
simple closed curve C in M such that C f) A is non-empty and the flow / maps
[ — e, e] x C homeomorphically onto the closure of an open neighbourhood of C ([4],
lemma 2). We can choose C so that it does not intersect with S. For every xeS let
g(x) = inf{< > O.txsC}. Then g(x)xeC and the function g:S^>U+ defined in this
way is continuous. Let h:S^-C be the map defined by h(x) = g(x)x. Since S is a
global section to the flow in K, h is injective and therefore a topological embedding.
Consequently h(S) = C, which contradicts the fact that C 0 A is non-empty.

COROLLARY 2-3. The boundary dE ofE contains no non-trivial compact minimal set.

Proof. Suppose that BE contains a non-trivial compact minimal set B and let
E' =BU E+(B) U E~(B). Then E 0 W is a non-empty, open, invariant set. Let N be a
connected component of E f] E' contained in some connected component K of E\A.
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The set N is open and closed in K because A is non-saddle. Therefore N = K, which
is impossible according to Proposition 22.

COROLLARY 2-4. Every orbit closure in a continuous flow on a 2-manifold contains at
most one non-trivial compact minimal set.

In other words two non-trivial compact minimal sets on a 2-manifold are not
joined by an orbit.

PROPOSITION 2-5. If M is closed and orientable, then dE does not contain periodic
orbits.

Proof. Suppose that dE contains a periodic orbit C(z). By Corollary 23 and the
compactness of M, C(z) is isolated from minimal sets with respect to the flow on E.
So we may assume that there is a point yeE such that L+(y) = C(z) by [2], theorem
6-12 and corollary 611, that is, the positive semiorbit C+(y) spirals around C(z). There
is an open neighbourhood U of C(z) homeomorphic ( — 1,1) x AS1 so that C(z) separates
U in two annular regions Ult U2 such that U1 is positively invariant, contains y and
every positive semiorbit in £/j spirals around C(z). This follows from the orientability
of M and [6], chapter VII, 5-1. The set E C\ C/x is non-empty, open and closed in Uv

since A is non-saddle. Hence U^ is contained in some connected component K of E\A.
Note that C(z) is globally positively asymptotically stable with respect to the flow
on the locally compact subspace WUl U C(z) of M. Therefore the flow on RU1 is
parallelizable and admits a compact global section S, which is a simple closed curve
bounding an annulus with C(z). It follows from this that K = IRC/j and hence
L+(x) = C(z) for every xeK. This contradicts Proposition 2-2.

The proof of Theorem 1-1 is now complete.

3. Flows without saddle fixed points

In this section we shall apply Theorem 11 to the study of the qualitative
behaviour of continuous flows on closed, orientable 2-manifolds without saddle fixed
points. By the term saddle fixed point we mean a fixed point of the flow which is
a saddle set as defined in Section 2. Thus the notion of saddle fixed point used here
is more general than the usual one. For instance an isolated saddle fixed point in our
sense may have index zero.

The main result of the present section gives a characterization of Denjoy flows. A
continuous flow on the torus T2 is called a Denjoy flow if it is topologically equivalent
to the suspension of an orientation-preserving homeomorphism of S1 onto itself with
a unique Cantor minimal set.

Let (M,M,f) be a continuous flow without saddle fixed points on a closed,
orientable 2-manifold M. We allow the flow to have infinitely many (hence non-
isolated) fixed points. For every xeM, the positive limit setL+(a;) contains a minimal
set X. If X is a periodic orbit or non-trivial then X = L+(x). If X is a singleton, then
again we have X = L+(x) because otherwise X would consist of one saddle fixed point.
These show that in such a flow every positive limit set is minimal and the same is true
for negative limit sets. Therefore an orbit is positively (or negatively) Poisson stable
and not periodic or singular if and only if it is contained in a non-trivial minimal
set, unless the flow is topologically equivalent to some irrational flow on the torus.
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THEOREM 3 1 . A continuous flow on a closed, orientable 2-manifold is a Denjoy flow
if and only if it satisfies the following two conditions:

(a) there are no saddle fixed points;
(b) there exists at least one non-trivial minimal set.

Proof. Let A c:M be a non-trivial minimal set and E the open invariant
neighbourhood of A given by Theorem 1-1. We shall show that dE must be empty by
proving that the opposite assertion contradicts condition (a). If dE is non-empty,
then it is a saddle set with respect to the restricted flow on E, by Theorem 11 and
[2], theorem 6-12. This means that there are a sequence {xn:neN} of points of
E\A converging to a point xedE and an open neighbourhood U of dE such that
C+{xn) <t U and C~{xn) + U. By (d) and (e) of Theorem 11, L+(x) must be a fixed
point. Let V be an open neighbourhood of L+(x) contained in U and t > 0 such that
txeV. There is a neighbourhood W of x such that tW a V and [0,t]W <= U. Thus
eventually txn e W and [0, t] xn a U. This implies that C+(txn) <£ U and G~(txn) * U,
i.e. L+(x) is a saddle fixed point, which is contrary to condition (a). Hence M = E
and there are no fixed points or periodic orbits. It follows that M must be a torus
and the flow a Denjoy flow (see [7], chapter I, 4-3-3).

Remark 3-2. A fixed point s of a continuous flow on a closed, orientable 2-manifold
M is called simple if the restriction of the flow to some open neighbourhood of s is
topologically equivalent to the restriction of the flow of a linear vector field on IR2

with non-zero determinant to an open neighbourhood of the origin. If i f is not the
sphere S2 or the torus T2 and the flow has only simple fixed points, then it must have
at least one saddle fixed point. On the other hand, the sphere S2 does not carry flows
with non-trivial minimal sets. Thus, within the class of flows having only simple
fixed points, Theorem 3-1 takes the following form:

COROLLARY 3-3. Let (U, T2,/) be a continuous flow on the torus having only simple
fixed points and no saddle fixed points. If there exists a non-trivial minimal set, then the
flow is topologically equivalent to a Denjoy flow.

Finally, we shall prove that the non-wandering set of a continuous flow without
saddle fixed points on a closed, orientable 2-manifold consists of fixed and periodic
points, unless the flow is a Denjoy or irrational flow. We shall need the following
general proposition.

PROPOSITION 3-4. A periodic orbit in a continuous flow on a closed, orientable 2-
manifold M is a non-saddle set.

Proof. Let C(z) be a periodic orbit and suppose first that it is isolated from other
periodic orbits. Then it is also isolated from minimal sets. If there exist points x, y
such that L+(x) = L~(y) = C(z), then C(z) has an open neighbourhood V homeo-
morphic to ( —^lJXiS1 separated by C(z) in two annular regions Vx and V2 such
that the orbit of every point in Vt (resp. F2) spirals around C(z) in positive (resp.
negative) time. Clearly then C(z) is non-saddle. If there do not exist points x, y with
the above property, then C(z) is non-saddle by [2], corollary 611. So the conclusion
is true in case C(z) is isolated from other periodic orbits. Let now U be an annular
open neighbourhood of C(z) separated by C{z) in two annular regions U1 and U2 and
a sequence {C(zn):neN} of disjoint periodic orbits converging to C(z). If the
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convergence is two-sided, then obviously C(z) is stable and hence non-saddle.
Suppose that the convergence is one-sided. Let » e N be large enough so that C(zn)
and C(z) bound an invariant closed annulus G. The connected component Y of the
invariant set ilf\int (G) which contains C(z) is a connected, compact 2-dimensional
submanifold with boundary of M, one of whose boundary components is G(z). Clearly
C(z) is isolated from minimal sets with respect to the restricted flow on Y. If C(z) is
a saddle set in M, then it is also a saddle set in Y and there exist x, y e Y such that
L+(x) = L~(y) = C(z). This is impossible by [6], chapter VII, 5-1, and hence C(z) must
be non-saddle.

COKOLLABY 3-5. Let (R,M,f) be a continuous flow without saddle fixed points on a
closed orientable 2-manifold, which is not a Denjoy or irrational flow on the torus T2.
Then the non-wandering set consists of fixed and periodic points.

Proof. Let xeM be non-wandering, that is xeJ+(x). The positive limit set L+(x) is
either a singleton or a periodic orbit, by Theorem 31 . If x$L+(x), then L+{x) is a
saddle set because x is non-wandering. This contradicts Proposition 3-4 and our
assumptions.

This work was written during the authors stay at the Freie Universitat Berlin as
a fellow of the Alexander von Humboldt Foundation. The author thanks the referee
for his valuable suggestions.
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