Mathematische zeitschrift

(c) Springer-Verlag 1996

One-dimensional chain recurrent sets of flows in the $\mathbf{2}$-sphere

K. Athanassopoulos
Department of Mathematics, University of Crete, GR-71409 Iraklion, Greece
e-mail: athanako@talos.cc.uch.gr

Received 19 September 1994; in final form 27 February 1995

1. Introduction

The subject of the classical Poincare-Bendixson theory is the study of the structure of the limit sets of flows in the 2 -sphere S^{2} and the behavior of the orbits near them. A fairly complete account of the theory is given in [3]. A limit set of a flow in S^{2} which contains at least one nonsingular point is 1-dimensional, compact, connected, invariant and the restricted flow on it is chain recurrent. The motivation of this note was to examine what properties of limit sets can be extended to the class of 1-dimensional invariant chain recurrent continua for flows in S^{2}. It seems that some basic properties do extend. For instance, an assertion similar to the Poincare-Bendixson theorem is true in this wider class. Precisely, if a 1 -dimensional invariant chain recurrent continuum of a flow in S^{2} contains no singular point, then it is a periodic orbit (see Corollary 3.5).

As far as the topological structure is concerned, it is well known that any 1dimensional invariant chain recurrent continuum of a flow in S^{2} separates S^{2}, if it contains at least one nonsingular point (see [4]). On the other hand, such a set may not be locally an arc at each of its nonsingular points, as simple examples show, while a limit set of a flow in S^{2} always is (see [3, Ch. VIII, Lemma 1.8]). It turns out that the additional assumptions needed are the maximality and the existence of finitely many singular points. Precisely, a 1-dimensional chain component Y of a flow in S^{2} with finitely many singularities is locally an arc at each of its nonsingular points (see Theorem 4.1). Moreover, in this case Y consists of finitely many orbits and is topologically a finite graph (see Corollary 4.4). The assumption that there are finitely many singular points is essential. In a final remark we describe a 1 -dimensional continuum in S^{2} which is not locally an arc at some of its points and is a chain component of a flow in S^{2} whose set of singular points is countably infinite. The points at which this 1-dimensional continuum is not an arc are nonsingular.

2. Chain recurrence

Let X be a compact metrisable space with a compatible metric d and $v: \mathbf{R} \times X \rightarrow$ X a continuous flow. We shall usually write $v(t, x)=t x$ and $v(I \times A)=I A$, if $I \subset \mathbf{R}$ and $A \subset X$. The orbit of the point $x \in X$ will be denoted by $C(x)$, the positive semiorbit by $C^{+}(x)$ and the negative by $C^{-}(x)$. The positive limit set of x will be denoted by $L^{+}(x)$ and the negative by $L^{-}(x)$.

Given $\epsilon, T>0$ an (ϵ, T)-chain from x to y is a pair of finite sets of points $\left\{x_{0}, \ldots, x_{p+1}\right\}$ and times $\left\{t_{0}, \ldots, t_{p}\right\}$ such that $x=x_{0}, y=x_{p+1}, t_{j} \geq T$ and $d\left(t_{j} x_{j}, x_{j+1}\right)<\epsilon$ for every $j=0,1, \ldots, p$. If for every $\epsilon, T>0$ there is an (ϵ, T) chain from x to y, we write $x P y$. The binary relation P is closed, transitive, flow invariant and depends only on the topology of X. The set $\Omega^{+}(x)=\{y \in X: x P y\}$ is called the positive chain limit set of x and the set $\Omega^{-}(x)=\{y \in X: y P x\}$ the negative chain limit set of x. Clearly $L^{+}(x) \subset \Omega^{+}(x)$. A point $x \in X$ is called chain recurrent if $x P x$ and the set $R(v)$ of all chain recurrent points is closed and invariant. If $X=R(v)$, the flow v is called chain recurrent. It is well known (see [1, Theorem 3.6D]) that the connected components of $R(v)$ are the classes of the following equivalence relation in $R(v): x \sim y$ if and only if $x P y$ and $y P x$. Moreover the restricted flow on each connected component of $R(v)$ is chain recurrent. The connected components of $R(v)$ will be called chain components in the sequel. It is also well known that the restricted flow on a positive or negative limit set in X is chain recurrent (see [2, Theorem 3.1]). In the next section we shall use the following:

Lemma 2.1. Let A be a nonempty, positively Lyapunov stable compact invariant set. Suppose that there is a neighbourhood base $\left\{V_{n}: n \in \mathbf{N}\right\}$ of A consisting of open, positively invariant sets and times $T_{n}>0$ such that $T_{n} \bar{V}_{n} \subset V_{n}$ for all $n \in$ \mathbf{N}. Then $\Omega^{+}(x) \subset A$ for every $x \in A$.

Proof. Let $x \in A$ and $y \in \Omega^{+}(x)$. It suffices to prove that $y \in V_{n}$ for all $n \in$ \mathbf{N}. Since V_{n} is supposed to be an open neighbourhood of the compact set $T_{n} \bar{V}_{n}$, there exists $\epsilon>0$ such that $S(z, \epsilon) \subset V_{n}$ whenever $z \in X$ and $S(z, \epsilon) \cap T_{n} \bar{V}_{n} \neq \emptyset$, where $S(z, \epsilon)$ denotes the open ball of radius ϵ centered at z. Now let $\left\{x_{0}, \ldots, x_{p+1}\right\}$ be an (ϵ, T)-chain from x to y with times $\left\{t_{0}, \ldots, t_{p}\right\}$. Then $t_{0} x_{0}=t_{0} x \in A \subset T_{n} V_{n}$ and $d\left(t_{0} x_{0}, x_{1}\right)<\epsilon$. Therefore $x_{1} \in V_{n}$ and $t_{1} x_{1} \in T_{n} V_{n}$, because V_{n} is positively invariant. Since $d\left(t_{1} x_{1}, x_{2}\right)<\epsilon$, we have $x_{2} \in V_{n}$. Inductively, after a finite number of steps we have $y=x_{p+1} \in V_{n}$.

The assumptions of Lemma 2.1 are satisfied if A is positively asymptotically stable and in this case the conclusion is true for every point in the region of attraction of A.

3. The Poincare-Bendixson theorem for chain recurrent sets

In this section we shall generalise the Poincare-Bendixson theorem to 1 -dimensional invariant chain recurrent continua. The proofs are not independent of the
classical theory. In fact we shall make extensive use of Chapter VIII of [3]. In what follows we fix a flow v in S^{2}.

Proposition 3.1. Let $x \in S^{2}$ be a nonperiodic point such that $L^{+}(x)$ contains at least one nonsingular point. If D is the connected component of $S^{2} \backslash L^{+}(x)$ which contains x, then $\Omega^{+}(z) \subset S^{2} \backslash D$ for every $z \in S^{2} \backslash D$.
Proof. Let $y \in L^{+}(x)$ be a nonsingular point. There is a local section Σ at y of some extent $\epsilon>0$, which can be chosen to be an open arc (see [3,Ch. VIII, Theorem 1.6]). There is also a sequence $t_{n} \rightarrow+\infty$ such that $\left\{t_{n} x_{n}: n \in \mathbf{N}\right\}$ is a sequence of points of Σ which monotonically converges to y and $\left(t_{n}, t_{n+1}\right) x \cap \Sigma=\emptyset$ for every $n \in \mathbf{N}$ (see [3, Ch. VII, Theorem 4.10]). If $\left[t_{n} x, t_{n+1} x\right]$ denotes the closed interval in Σ with endpoints $t_{n} x$ and $t_{n+1} x$, then the set $C_{n}=\left[t_{n} x, t_{n+1} x\right] \cup\left(t_{n}, t_{n+1}\right) x$ is a simple closed curve and is the common boundary of two discs D_{n} and E_{n} such that $S^{2}=D_{n} \cup E_{n}$, by the Jordan-Schoenflies theorem (see [5, p.71]). Moreover, $D_{n}{ }^{\prime}$ is positively invariant. E_{n} is negatively invariant, $L^{+}(x) \subset \operatorname{int} D_{n}$, $C_{n} \subset D$ and $\partial D=L^{+}(x)$ (see [3, Ch. VIII, Proposition 1.18]). The set $S^{2} \backslash D$ is compact, invariant and positively Lyapunov stable, because $\left\{\operatorname{int} D_{n}: n \in \mathbf{N}\right\}$ is a neighbourhood base of $S^{2} \backslash D$ consisting of open, positively invariant sets. Since $\left(t_{n+1}-t_{n}+\epsilon\right) D_{n} \subset \operatorname{int} D_{n}$ for every $n \in \mathbf{N}$, Lemma 2.1 applies and gives the conclusion.

Corollary 3.2. If $x \in S^{2}$ is a nonperiodic chain recurrent point, then $L^{+}(x)$ and $L^{-}(x)$ consist of singular points.

Proof. Suppose that $L^{+}(x)$ contains a nonsingular point y. If D is the connected component of $S^{2} \backslash L^{+}(x)$ which contains x, then $\Omega^{+}(y) \subset S^{2} \backslash D$, by Proposition 3.1. On the other hand, y is chain recurrent and belongs to the same chain component which contains x. This means that $x \in \Omega^{+}(y)$, and we have a contradiction.

Lemma 3.3. Let C_{1} and C_{2} be two periodic orbits which bound an annulus K with no singular point. If C_{1} and C_{2} belong to an invariant chain recurrent continuum X, then the flow in K is periodic and $K \subset X$.

Proof. By the Jordan-Schoenflies theorem, C_{1} and C_{2} bound invariant discs D_{1} and D_{2} respectively in S^{2} such that $D_{2}=K \cup D_{1}$ and $K \cap D_{1}=C_{1}$. Suppose that $x \in \operatorname{int} K$ were a nonperiodic point. Then, $C_{1}=L^{+}(x)$ and $C_{2}=L^{-}(x)$ are periodic orbits by the Poincare-Bendixson theorem, since K contains no singular point. For the same reason C_{1} and C_{2} are not nullhomotopic in K and therefore divide K into three subannuli (some may be trivial) K_{1}, K_{2} and K_{3} which have no interior point in common and are such that either $\partial K_{1}=C_{1} \cup C_{1}, \partial K_{2}=C_{1} \cup C_{2}$ and $\partial K_{3}=C_{2} \cup C_{2}$ or $\partial K_{1}=C_{1} \cup C_{2}, \partial K_{2}=C_{1} \cup C_{2}$ and $\partial K_{3}=C_{1} \cup C_{2}$. In the former case, $K_{1} \cup D_{1}$ is a positively asymptotically stable invariant disc, which contains C_{1} but not C_{2}. Hence no point of C_{1} is chained to a point of C_{2}. In the later case $K_{1} \cup D_{1}$ is a negatively asymptotically stable invariant disc and no point of C_{2} is chained to a point of C_{1}. Thus in both cases C_{1} and C_{2} cannot belong to the same invariant chain recurrent continuum. This proves that the flow in K is periodic. The connectedness of X implies now that $K \subset X$.

Theorem 3.4. Let X be a 1-dimensional invariant chain recurrent continuum in S^{2}. If X contains a periodic orbit C, then $X=C$.

Proof. By the Jordan-Schoenflies theorem, C is the boundary of an invariant disc D in S^{2} and $E=\overline{S^{2} \backslash \operatorname{int} D}$ is also a disc. Suppose that $X \cap \operatorname{int} D \neq \emptyset$. If there is a point $x \in \operatorname{int} D$ such that $L^{+}(x)=C$, respectively $L^{-}(x)=C$, then C is one-sided positively, respectively negatively, asymptotically stable and therefore $X \subset \Omega^{+}(C) \subset E$, respectively $X \subset \Omega^{-}(C) \subset E$, contradiction. So, according to [3, Ch. VIII, Theorem 3.3], E is bilateraly Lyapunov stable and there is a sequence of periodic orbits $\left\{C_{n}: n \in \mathbf{N}\right\}$ in intD such that C_{n} together with C bound an annulus $A_{n} \subset D$ with no singular point and $\left\{E \cup A_{n}: n \in \mathbf{N}\right\}$ is a decreasing neighbourhood base of E. Since X is connected, $X \cap A_{n} \neq \emptyset$ for every $n \in \mathbf{N}$. If $z_{n} \in X \cap A_{n}$, then $L^{-}\left(z_{n}\right)$ is a periodic orbit in $A_{n} \backslash C$ with C bounding an annulus $B_{n} \subset A_{n}$. But since $L^{-}\left(z_{n}\right) \subset X$, it follows from Lemma 3.3 that $B_{n} \subset X$ and hence X is not 1-dimensional.This contradiction shows that $X \cap$ int $D=\emptyset$ and it is similarly proved that $X \cap \operatorname{int} E=\emptyset$. Hence $X=C$.

Corollary 3.5. Let X be a 1-dimensional invariant chain recurrent continuum of a flow in S^{2}. If X contains no singular point, then X is a periodic orbit.

4. The structure of 1 -dimensional chain components

Throughout this section we assume that v is a flow in S^{2} with finitely many singular points. Our purpose is to examine the topological structure of the 1 dimensional chain components of v.

Theorem 4.1. Every 1 -dimensional chain component Y is locally an arc at its nonsingular points.

Proof. In view of Theorem 3.4 we consider only the case where Y contains no periodic point. Let $x \in Y$ be a nonsingular point. There is a local section S at x of some extent $\epsilon>0$, homeomorphic to an open interval, such that $S \cap C(x)=\{x\}$. Suppose that Y is not locally an arc at x. Then there is a sequence $\left\{x_{n}: n \in \mathbf{N}\right\}$ of points of $S \cap Y$ which monotonically converges to x on S. Since there are finitely many singular points, by Corollary 3.2 we may assume that there are singular points z_{1}, z_{2} (possibly identical) such that $L^{+}\left(x_{n}\right)=\left\{z_{1}\right\}$ and $L^{-}\left(x_{n}\right)=\left\{z_{2}\right\}$ for every $n \in \mathbf{N}$. We may moreover assume that $C\left(x_{n}\right) \cap C\left(x_{m}\right)=\emptyset$, if $n \neq m$, again by Corollary 3.2. Each orbit $C\left(x_{n}\right)$ meets S in a finite number of points. Let s_{n} and t_{n} be the first and last time respectively, the orbit $C\left(x_{n}\right)$ meets S. Passing to a subsequence if necessary, we may assume that the sequences $\left\{s_{n} x_{n}: n \in \mathbf{N}\right\}$ and $\left\{t_{n} x_{n}: n \in \mathbf{N}\right\}$ are monotone in S. For any $a, b \in S$ let $[a, b]$ and (a, b) denote the closed and open interval in S, respectively, with endpoints a, b. From [6, Lemma 2.8] we may assume that for every $n \in \mathbf{N}$ the simple closed curve $\left[t_{n} x_{n}, t_{n+1} x_{n+1}\right] \cup C^{+}\left(t_{n} x_{n}\right) \cup C^{+}\left(t_{n+1} x_{n+1}\right)$ bounds a positively invariant disc D_{n} such that $D_{n} \cap[-\epsilon, 0] S=\emptyset$. Similarly, the simple closed curve $\left[s_{n} x_{n}, s_{n+1} x_{n+1}\right] \cup C^{-}\left(s_{n} x_{n}\right) \cup C^{-}\left(s_{n+1} x_{n+1}\right)$ bounds a negatively invariant disc E_{n} such that $E_{n} \cap[0, \epsilon] S=\emptyset$.

It follows now that $C\left(x_{n}\right) \cap$ int $D_{m}=C\left(x_{n}\right) \cap E_{m}=\emptyset$ for every $n, m \in \mathbf{N}$. For if $C\left(x_{n}\right) \cap \operatorname{int} D_{m} \neq \emptyset$, there is some $s \in \mathbf{R}$ such that $s x_{n} \in \partial D_{m}$, because $x_{n} \notin \operatorname{int} D_{m}$. If $s x_{n} \in\left(t_{m} x_{m}, t_{m+1} x_{m+1}\right)$, then $(0,+\infty)\left(s x_{n}\right) \subset \operatorname{int} D_{m}$ and hence $s=t_{n}$, which contradicts the monotonicity. If $s x_{n} \in C^{+}\left(t_{m} x_{m}\right)$, then $s x_{n}=\left(t+t_{m}\right) x_{m}$ for some $t \geq 0$ and hence $(s-t) x_{n}=t_{m} x_{m}$. Since x_{n} and x_{m} do not belong to the same orbit unless $n=m$, we conclude that $x_{n}=x_{m}$ and $t_{n}=s-t=t_{m}$. Similarly, if $s x_{n} \in C^{+}\left(t_{m+1} x_{m+1}\right)$, then $x_{n}=x_{m+1}$ and $t_{n}=s-t=t_{m+1}$. In both cases this is a contradiction, because obviously $C\left(x_{m}\right) \cap \operatorname{int} D_{m}=\emptyset$ for every $m \in \mathbf{N}$.

We claim that $\operatorname{int} D_{n} \cap \operatorname{int} D_{m}=\operatorname{int} E_{n} \cap \operatorname{int} E_{m}=\emptyset$ for $n \neq m$. This follows from the fact that $\operatorname{int} D_{n} \cap \operatorname{int} D_{m}$ is an open and closed set in int D_{n} and $\operatorname{int} D_{m}$. Indeed, let $\left\{y_{k}: k \in \mathbf{N}\right\}$ be a sequence in int $D_{n} \cap \operatorname{int} D_{m}$ converging to some point $y \in \operatorname{int} D_{n}$. Then, $y \in D_{m} \backslash S$ and since $C\left(x_{m}\right) \cap \operatorname{int} D_{n}=C\left(x_{m+1}\right) \cap \operatorname{int} D_{n}=\emptyset$, it follows that $y \in \operatorname{int} D_{m}$. This shows that $\operatorname{int} D_{n} \cap \operatorname{int} D_{m}$ is open and closed in int D_{n} and similarly in $\operatorname{int} D_{m}$. Thus, if it were nonempty, we would have $D_{n}=D_{m}$, contradiction.

Since there are finitely many singular points and $\operatorname{int} D_{n}, n \in \mathbf{N}$, are pairwise disjoint, we may assume that z_{1} is the only singular point in D_{n} and similarly that z_{2} is the only singular point in E_{n}, for every $n \in \mathbf{N}$. It follows that D_{n} and E_{n} contain no periodic orbit either, because they are discs. Consequently, $z_{1} \in L^{+}(p)$ and $z_{2} \in L^{-}(q)$ for every $p \in D_{n}$ and $q \in E_{n}$. It suffices to consider now the following two cases:
(a) $C\left(x_{n}\right) \cap S=\left\{x_{n}\right\}$ for all $n \in \mathbf{N}$. Then, $t_{n}=s_{n}=0$ and $z_{1} \in L^{+}(p)$, $z_{2} \in L^{-}(p)$, for every $p \in\left[x_{n}, x_{n+1}\right]$. Hence $\left[x_{n}, x_{n+1}\right] \subset \Omega^{-}\left(z_{1}\right) \cap \Omega^{+}\left(z_{2}\right)=Y$, which implies that $\operatorname{dim} Y=2$.
(b) $C\left(x_{n}\right) \cap S \neq\left\{x_{n}\right\}$ for all $n \in \mathbf{N}$. Then, the Poincare map r is defined for S and $s_{n} x_{n}$ belongs to the domain of some power $r^{k}, k \in \mathbf{N}$, such that $r^{k}\left(s_{n} x_{n}\right)=t_{n} x_{n}$. Since S^{2} is orientable, r is increasing and by continuity there is a (nontrivial) interval $I \subset\left[s_{n} x_{n}, s_{n+1} x_{n+1}\right]$ in S with one endpoint $s_{n} x_{n}$ which is mapped by r^{k} to an interval in $\left[t_{n} x_{n}, t_{n+1} x_{n+1}\right]$ with one endpoint $t_{n} x_{n}$. It follows that $z_{1} \in L^{+}(p)$ for every $p \in I$ and as in case (a) we have $I \subset Y$. Hence again $\operatorname{dim} Y=2$. This contradiction proves the Theorem.

Finally, we shall investigate the structure of a 1-dimensional chain component Y of v near its nonsingular points. Note that a singular point of Y cannot be positively or negatively asymptotically stable.
Theorem 4.2. If Y is a 1-dimensional chain component and $z \in Y$ is a singular point, then $\{z\}$ is an isolated invariant set in S^{2}.
Proof. Suppose that $\{z\}$ is not isolated in S^{2}. Then, there are a neighbourhood base $\left\{V_{n}: n \in \mathbf{N}\right\}$ of z consisting of interiors of discs, so that $\bar{V}_{n+1} \subset V_{n}$ and orbits $C\left(x_{n}\right) \subset V_{n}$, where $z \neq x_{n}$, for every $n \in \mathbf{N}$. Since there are finitely many singular points, we may assume that z is the only singular point in \bar{V}_{1}. If $L^{+}\left(x_{n}\right)$ is a periodic orbit for infinitely many values of n, then passing to a subsequence we may assume it is for all. In this case, $L^{+}\left(x_{n}\right)$ bounds a disc $D_{n} \subset \bar{V}_{n}$ containing z in its interior and $\left\{D_{n}: n \in \mathbf{N}\right\}$ is a neighbourhood base of z. Since $Y \neq\{z\}$, the connectedness of Y implies that $L^{+}\left(x_{n}\right) \subset Y$ for some $n \in \mathbf{N}$ and therefore Y is
a periodic orbit, by Theorem 3.4. This contradiction shows that we may assume that for every $n \in \mathbf{N}$ the limit sets $L^{+}\left(x_{n}\right)$, and similarly $L^{-}\left(x_{n}\right)$, are not periodic. If $L^{+}\left(x_{n}\right)$ and $L^{-}\left(x_{n}\right)$ consist of singular points, then $L^{+}\left(x_{n}\right)=L^{-}\left(x_{n}\right)=\{z\}$. If $L^{+}\left(x_{n}\right)$ (or $L^{-}\left(x_{n}\right)$) contains a nonsingular point y_{n}, then $L^{+}\left(y_{n}\right)=L^{-}\left(y_{n}\right)=\{z\}$ (see [3, Ch. VIII, Proposition 1.11]). Thus, considering the point y_{n} instead of x_{n} if necessary, we may assume that $L^{+}\left(x_{n}\right)=L^{-}\left(x_{n}\right)=\{z\}$ for every $n \in \mathbf{N}$. The simple closed curve $\overline{C\left(x_{n}\right)}$ bounds an invariant disc $E_{n} \subset \bar{V}_{n}$. Then int E_{n} contains no singular point and hence no periodic orbit either. It follows that $z \in L^{+}(x) \cap L^{-}(x)$ for every $x \in E_{n}$ and therefore $E_{n} \subset Y$. This contradicts $\operatorname{dim} Y=1$.

Corollary 4.3. If Y is a I-dimensional chain component and $z \in Y$ is a singular point, then the set of orbits in $Y \backslash\{z\}$ whose positive or negative limit set is $\{z\}$ is nonempty and finite.
Proof. Suppose that there is a sequence $\left\{x_{n}: n \in \mathbf{N}\right\}$ in $Y \backslash\{z\}$ such that $L^{+}\left(x_{n}\right)=\{z\}$ and $C\left(x_{n}\right) \cap C\left(x_{m}\right)=\emptyset$ for every $n \neq m$. Since there are finitely many singular points, we may assume that there is a singular point $z_{1} \in Y$ such that $L^{-}\left(x_{n}\right)=\left\{z_{1}\right\}$ for every $n \in \mathbf{N}$, by Corollary 3.2. By Theorem 4.2 there exists an isolating neighbourhood V of z in S^{2}. Then $C\left(x_{n}\right) \not \subset V$ and hence for each $n \in \mathbf{N}$ there exists a point $y_{n} \in C\left(x_{n}\right) \cap \partial V$. Since ∂V is compact, the sequence $\left\{y_{n}: n \in \mathbf{N}\right\}$ has a limit point $y \in \partial V$. Then y is a nonsingular point of Y and Y is not locally an arc at y. This contradicts Theorem 4.1.
Corollary 4.4. Every 1-dimensional chain component of a flow in S^{2} with finitely many singularities consists of finitely many orbits and is homeomorphic to a finite graph.
Remark. The assumption that the flow has finitely many singularities is essential for the validity of the results of this section. For example let $z_{0}=(-1,0)$, $z_{\infty}=(1,0), z_{n}=(\cos (\pi /(n+1)), \sin (\pi /(n+1))), n \in \mathbf{N}$ and let

$$
Y=S^{1} \cup\left[z_{\infty}, z_{0}\right] \cup \bigcup_{n=1}^{\infty}\left[z_{n}, z_{0}\right]
$$

where S^{1} is the unit circle in \mathbf{R}^{2} and $[a, b]$ denotes the closed line segment with endpoints $a, b \in \mathbf{R}^{2}$ directed from a to b. Then Y is not an arc at any point of $\left[z_{\infty}, z_{0}\right]$. There is a continuous flow on $S^{2}=\mathbf{R}^{2} \cup\{\infty\}$ whose singular points are $\infty,(-1 / 2,0),(-2 / 3,2 / 3), z_{0}, z_{\infty}, z_{n}$ and $u_{n}=(1-\sin (\pi /(n+2)), \sin (\pi /(n+2)))$, $n \in \mathbf{N}$, which has the following properties:

1. The unit disc D^{2} is invariant and positively asymptotically stable and $\{\infty\}$ is negatively asymptotically stable with region of attraction $\mathbf{R}^{2} \backslash D^{2}$.
2. Every orbit in $\mathbf{R}^{2} \backslash D^{2}$ has positive limit set $\left\{z_{1}\right\}$ except one whose positive limit set is $\left\{z_{0}\right\}$.
3. The clockwise directed open segment on S^{1} from z_{0} to z_{1} and the counterclockwise directed open segments on S^{1} from z_{0} to z_{∞} and from z_{n+1} to $z_{n}, n \in$ \mathbf{N}, are complete orbits.
4. The directed open line segments from z_{∞} to z_{0}, from z_{n} to z_{0} and from u_{n} to $z_{n+1}, n \in \mathbf{N}$, are complete orbits.
5. The positive limit set of every orbit in $D_{n} \backslash\left[u_{n}, z_{n+1}\right]$ is $\left\{z_{0}\right\}$, where D_{n} is the open "triangle" formed by $\left[z_{n}, z_{0}\right],\left[z_{n+1}, z_{0}\right]$ and the segment on S^{1} with endpoints z_{n} and z_{n+1}. The singular point u_{n} is negatively asymptotically stable with region of attraction D_{n}.
6. The singular point $(-1 / 2,0)$ is negatively asymptotically stable with region of attraction the open lower half unit disc.
7. The singular point $(-2 / 3,2 / 3)$ is negatively asymptotically stable with region of attraction the open area bounded by $\left[z_{1}, z_{0}\right]$ and the segment on S^{1} with endpoints z_{1} and z_{0}.

It follows from the above properties that Y is a 1-dimensional chain component of this flow.

Fig. 1.

References

1. Conley, C.C.: The gradient structure of a flow: I. Ergod. Th. Dynam. Systems 8, 11-26 (1988)
2. Franke J., Selgrade J.: Abstract ω-limit sets, chain recurrent sets and basic sets for flows. Proc. Amer. Math. Soc. 60, 309-316 (1976)
3. Hajek O.: Dynamical Systems in the plane. London New York: Academic Press 1968
4. Hirsch M.W., Pugh C.C.: Cohomology of chain recurrent sets. Ergod. Th. Dynam. Systems 8, 73-80 (1988)
5. Moise E.E.: Geometric Topology in dimensions 2 and 3 (Graduate Texts in Math. 47) Berlin Heidelberg New York: Springer-Verlag 1977
6. Neumann D.: Smoothing continuous flows on 2-manifolds. J. Differ. Equations 28, 327-344 (1978)
