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ASYMPTOTICALLY STABLE
ONE-DIMENSIONAL COMPACT MINIMAL SETS

Konstantin Athanassopoulos

Abstract. It is proved that an asymptotically stable, 1-dimensional, com-

pact minimal set A of a continuous flow on a locally compact, metric space
X is a periodic orbit, if X is locally connected at every point of A. So, if the

intrinsic topology of the region of attraction of an isolated, 1-dimensional,

compact minimal set A of a continuous flow on a locally compact, metric
space is locally connected at every point of A, then A is a periodic orbit.

1. Introduction

This note is concerned with Poincaré–Bendixson theory of 1-dimensional
compact minimal sets in general locally compact, metric spaces. We are mo-
tivated by the question how the qualitative bahaviour of a continuous flow near
a compact minimal set affects its structure. More precisely, we are interested
in finding conditions refering to the flow near a 1-dimensional compact minimal
set, which imply that it is a periodic orbit. Results in this direction, have been
proved in [1] for almost periodic minimal sets. The almost periodicity is a rather
restrictive internal property, which is equivalent to saying that the restricted flow
on the compact minimal set is equicontinuous.

In [2] it was shown that on a locally compact ANR an asymptotically stable,
1-dimensional, invariant continuum without fixed points of a flow must be a pe-
riodic orbit. In particular this is true for asymptotically stable, 1-dimensional,
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compact minimal sets. The main tools used in the proof of this result were Čech
cohomology and the Lefschetz Fixed Point Theorem. The purpose of this note
is to weaken the assumption that the phase space is an ANR to local connect-
edness. More precisely, we prove that an asymptotically stable, 1-dimensional,
compact minimal set A of a continuous flow on a locally compact, metric space
X is a periodic orbit, if X is locally connected at every point of A (Theorem 4.2).
This is based on a slight generalization of one of the two main results of [4], say-
ing that an asymptotically stable, compact, invariant set A of a continuous map
of a locally compact, metric space X has only a finite number of connected com-
ponents, if X is locally connected at the points of A (Theorem 2.2). The main
result follows then by constructing a suitable local section of the flow at some
point of the minimal set, so that we have a well defined continuous Poincaré map
and applying Theorem 2.2 to this map. The author makes no great claim to the
originality of the methods, which do not exceed the level of pointset topology.

The reader may wonder about the necessity of the generalization from ANR
to locally connected. One reason we need this, is the following. Recall that
a compact invariant set is isolated if it is maximal in some of its compact neigh-
bourhoods. This is a much more general property than asymptotic stability. An
isolated invariant set A may not be asymptotically stable with respect to the
restricted flow in its region of attraction W+(A). It is however possible to define
on the set W+(A) a finer topology than the subspace topology such that the flow
remains continuous and A becomes asymptotically stable (see [6], [3]). This is
called the intrinsic topology. If W+

i (A) denotes the set W+(A) equiped with the
intrinsic topology, then W+

i (A) is a locally compact, metric space. So, our main
result implies that if A is an isolated, 1-dimensional, compact minimal set of
a continuous flow on a locally compact, metric space and W+

i (A) is locally con-
nected at every point of A, then A is a periodic orbit (Corollary 4.3). Evidently,
it is easier to check that W+

i (A) is locally connected than an ANR.

Examples of nonperiodic, isolated, 1-dimensional, compact minimal sets are
known. In [1, Section 4] examples of nonperiodic (but almost periodic) isolated
1-dimensional, compact minimal sets of flows on n-manifolds with n ≥ 4 are
constructed. Also, the C1 counterexample to Seifert’s conjecture constructed by
P. A. Schweitzer in [7] is a nowhere vanishing C1 vector field on the 3-sphere S3

having two nonperiodic, isolated, 1-dimensional minimal sets, both copies of the
Denjoy minimal set. It is worth to note that we do not know an example of a C∞

vector field on a 3-manifold with a nonperiodic, isolated, 1-dimensional, compact
minimal set. In any case, if such an example exists, the intrinsic topology of its
region of attraction must be non-locally-connected, as it is in Schweitzer’s C1

example.
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2. Asymptotically stable sets

Let X be a locally compact, metric space and let (φt)t∈R be a continuous
flow on X. A set A ⊂ X is called invariant if φt(A) = A for every t ∈ R. A
set A ⊂ X is called minimal if it is nonempty, closed, invariant and has no
proper subset with these properties. The orbit of a point x ∈ X is the set
C(x) = {φt(x) : t ∈ R}. The point x is fixed if C(x) = {x}, and periodic if C(x)
is a simple closed curve.

The positive limit set of the orbit of the point x ∈ X is the closed, invariant
set

L+(x) = {y ∈ X : φtn
(x) → y for some tn →∞}.

A compact invariant set A is minimal if and only if A = L+(x) for every x ∈ A.
If A ⊂ X is a compact invariant set, the invariant set

W+(A) = {x ∈ X : ∅ 6= L+(x) ⊂ A}

is called the region of attraction of A. If W+(A) is an open set, then A is called
attractor.

A compact invariant set A ⊂ X is called (Lyapunov) stable if every open
neighbourhood U of A contains a smaller open neighbourhood V of A such
that φt(V ) ⊂ U for every t ≥ 0. An asymptotically stable set is a compact
invariant set which is a stable attractor. If A is asymptotically stable, there
exists an open neighbourhood V of A such that φt(V ) ⊂ φs(V ) for t > s ≥ 0
and A =

⋂
t≥0 φt(V ).

These notions can be defined also for continuous maps. Let U ⊂ X be an
open set and f :U → X be a continuous map. The positive limit set of x ∈ U

with respect to f is the set

L+(x, f) = {y ∈ X : fnk(x) → y for some nk →∞}.

We shall call a set A ⊂ U f -invariant if f(A) = A. A compact f -invariant set
A ⊂ U is called (Lyapunov) stable with respect to f if every open neighbourhood
W ⊂ U of A contains a smaller open neighbourhood V ⊂ U of A such that
fn(V ) ⊂ W for every integer n ≥ 0. A compact f -invariant set A ⊂ U is called
asymptotically stable if it is stable and there is an open neighbourhood V ⊂ U

of A such that ∅ 6= L+(x, f) ⊂ A for every x ∈ V .

Lemma 2.1. Let X be a locally compact, metric space, U ⊂ X an open
set and f :U → X a continuous map. Let A ⊂ U be an asymptotically stable,
compact, f-invariant set and W be an open neighbourhood of A with compact
closure W ⊂ U such that fn(W ) ⊂ U for every n ∈ N, and ∅ 6= L+(x, f) ⊂ A

for every x ∈ W . Then, for every open neighbourhood V ⊂ U of A there exists
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some n0 ∈ N such that fn(W ) ⊂ V for all n ≥ n0 and

A =
⋂
n≥0

fmn(W ) for every m ∈ N.

Proof. Since X is locally compact, there is an open neighbourhood C of
A such that C is a compact subset of V . By stability, there is an open neigh-
bourhood N of A such that fn(N) ⊂ C for every integer n ≥ 0. For every
x ∈ W there is some n(x) such that fn(x)(x) ∈ N and, by continuity, there is
an open neighbourhood Wx ⊂ U of x such that fn(x)(Wx) ⊂ N . Since W is
compact, there are x1, . . . , xk ∈ W such that W ⊂ Wx1 ∪ . . . ∪ Wxk

. If now
n0 = max{n(x1), . . . , n(xk)}, then fn(W ) ⊂ C ⊂ C ⊂ V and so fn(W ) ⊂ V for
all n ≥ n0.

To prove the last assertion, it suffices to show that if y ∈
⋂

n≥0 fmn(W ), then
y belongs to every open neighbourhood V ⊂ U of A. There exists a sequence
(xn)n∈N in W such that y = fmn(xn) for every n ∈ N. Since W is compact,
there exists a subsequence (xnk

)k∈N converging to some point x ∈ W . Let N

be an open neighbourhood of A such that fn(N) ⊂ V for every integer n ≥ 0.
Since ∅ 6= L+(x, f) ⊂ A, there is some n0 ∈ N such that fn0(x) ∈ N and so
fn0(Wx) ⊂ N for some open neighbourhood Wx ⊂ U of x, by continuity. It
follows that there exists k0 ∈ N such that fn0(xnk

) ∈ N for every k ≥ k0 and
therefore fn(xnk

) ∈ V for every n ≥ n0 and k ≥ k0. Since nk → ∞, there is
some k ∈ N such that mnk ≥ n0 and therefore y = fmnk(xnk

) ∈ V . �

Recall that a space X is locally connected at a point x ∈ X if x has a neigh-
bourhood basis in X which consists of connected, open sets.

Theorem 2.2. Let X be a locally compact, metric space, U ⊂ X an open
set and f :U → X a continuous map. Let A ⊂ U be a nonempty, asymptotically
stable, compact, f-invariant set. If X is locally connected at every point of A,
then A has a finite number of connected components and they are permuted by f .

Proof. Since X is locally compact and A is asymptotically stable, there
exists an open neighbourhood V of A with compact closure V ⊂ U such that
fn(V ) ⊂ U for every n ∈ N and ∅ 6= L+(x, f) ⊂ A for every x ∈ V . By
assumption, every point x ∈ A has a connected, open neighbourhood Wx ⊂ V .
There are x1, . . . , xl ∈ A such that A ⊂ Wx1 ∪ . . . ∪ Wxl

. If now W = Wx1 ∪
. . . ∪Wxl

, then by Lemma 2.1 there is some m ∈ N such that fm(W ) ⊂ W and

A =
⋂
n≥0

fmn(W ) =
⋂
n≥0

fmn(W ).

It is evident that W has a finite number of connected components C1, . . . , Ck,
where k ≤ l, and A ∩ Ci 6= ∅ for every 1 ≤ i ≤ k. Each fm(Ci) is contained in
a connected component Cj . Since fm(W ) has at most k connected components
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and each Cj contains at least one connected component of fm(W ), because A

is fm-invariant, it follows that fm(W ) has exactly k connected components.
Each one of them is contained in a unique connected component of W . Induc-
tively, fmn(W ) has exactly k connected components and each one is contained
in a unique connected component of fm(n−1)(W ). It follows that A has exactly
k connected components, because A is nonempty and compact, and they are
permuted by f . �

The preceeding theorem generalizes the following result, which was proved
in [4].

Corollary 2.3. Let X be a locally connected, locally compact, metric space,
U ⊂ X an open set and f :U → X a continuous map. If A ⊂ U is an asymptot-
ically stable, compact f-invariant set, then A has a finite number of connected
components and they are permuted by f .

3. Local sections of continuous flows

Let X be a locally compact, metric space and let (φt)t∈R be a continuous
flow on X. A set S ⊂ X is called a local section of extent ε > 0 if the flow maps
(−ε, ε) × S homeomorphically onto an open subset of X. Local sections can
be constructed from continuous functions that are monotone along the pieces of
orbits in an open set.

Proposition 3.1. Let V ⊂ X be an open set and g:V → R be a continuous
function such that g(φt(x)) > g(x) whenever t > 0 is such that φt(x) 6= x and
φs(x) ∈ V for every 0 ≤ s ≤ t. Let W ⊂ X be an open set such that W is
compact and contained in V . If c ∈ R is such that S = W ∩ g−1(c) is nonempty
and S contains no fixed point of the flow, then S is a local section.

Proof. Since W is compact, so is S and there exists ε > 0 such that φt(x) ∈
V for every |t| ≤ 2ε and x ∈ S. We shall prove that S is a local section of extent
ε. First we shall show that the flow maps [−ε, ε] × S homeomorphically onto
a compact subset of X. For this, it suffices to show that if t, s ∈ [−ε, ε] and x,
y ∈ S are such that φt(x) = φs(y), then t = s and x = y, because [−ε, ε]× S is
compact. Indeed, suppose that t > s. If φt−s(x) 6= x, then

c = g(y) = g(φt−s(x)) > g(x) = c,

because 0 ≤ t − s ≤ 2ε, contradiction. So, φt−s(x) = x, which means that
the orbit of x is periodic, since S contains no fixed points by assumption. Let
0 < τ < t− s be such that φτ (x) 6= x. Then,

g(x) < g(φτ (x)) < g(φt−s(x)) = g(x),

contradiction again.
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It remains to prove that the set U = {φt(x) : |t| < ε, x ∈ S} is open. We
proceed by contradiction. Suppose that U is not open, and so there exists some
|t| < ε and x ∈ S for which there is a sequence (xn)n∈N of points in X \ U

converging to φt(x). Since V is an open neighbourhood of φt(x), we may assume
that xn ∈ V for all n ∈ N.

Suppose first that t = 0. Then xn → x and we may moreover assume that
xn ∈ W for all n ∈ N. There exists some n0 ∈ N such that for every n ≥ n0

there exists |sn| < ε with g(φsn(xn)) = c. Indeed, if this is not true, there exists
a sequence nk →∞ such that g(φs(xnk

)) < c for every |s| < ε or g(φs(xnk
)) > c

for every |s| < ε. In the first case

c = g(x) < g(φs(x)) = lim
k→∞

g(φs(xnk
)) ≤ c

for 0 < s < ε and in the second case

c ≤ lim
k→∞

g(φs(xnk
)) = g(φs(x)) < g(x) = c

for −ε < s < 0, contradiction. Let now |s| ≤ ε be a limit point of the sequence
(sn)n≥n0 . Then, g(φs(x)) = c and so s = 0, by monotonicity. This implies that
sn → 0 and φsn(xn) → x. Thus, eventually φsn(xn) ∈ W ∩ g−1(c) = S, and
therefore xn ∈ U , contradiction.

Suppose now that t > 0. Since g(φt(x)) > g(x) = c, we may assume that
g(xn) > c for all n ∈ N. As before we see that there is some n0 ∈ N such that
for every n ≥ n0 there exists −ε < sn < 0 such that g(φt+sn

(xn)) = c. Indeed,
otherwise there exists a sequence nk →∞ such that g(φt+s(xnk

)) > c for every
−ε < s < 0 and by continuity

c ≤ g(φs(φt(x))) < g(x) = c

for −ε < s < −t, contradiction. If −ε ≤ s ≤ 0 is a limit point of the sequence
(sn)n≥n0 , then g(φt+s(x)) = c and so s = −t, because |t + s| < ε. Therefore,
sn → −t and eventually φt+sn

(xn) ∈ W ∩ g−1(c) = S. Thus, eventually xn ∈ U ,
contradiction. The case t < 0 is treated similarly. �

Remark 3.2. Note that the local section constructed in Proposition 3.1 has
the additional property that S \ S is a closed subset of X. Indeed, if (xn)n∈N is
a sequence in S ⊂ W ∩ g−1(c) converging to x ∈ S, then eventually xn ∈ W and
so xn ∈ S = W ∩ g−1(c). This property will be useful later.

Theorem 3.3. Let X be a locally compact, metric space and (φt)t∈R be
a continuous flow on X. If x0 ∈ X is not a fixed point of the flow, there exists
a locally compact local section S through x0 such that S \ S is a closed subset
of X. If X is moreover locally connected at x0, then S is in addition locally
connected at x0.
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Proof. Since x0 is not fixed, there exists T > 0 such that φT (x0) 6= x0. Let
d be a compatible distance on X and g:X → R be the continuous function

g(x) =
∫ T

0

d(x0, φs(x)) ds.

If G: R×X → R is defined by G(t, x) = g(φt(x)), then

∂G

∂t
(t, x) = d(x0, φt+T (x))− d(x0, φt(x)).

Since (∂G/∂t)(0, x0) = d(x0, φT (x0)) > 0 and ∂G/∂t: R×X → R is continuous,
there exists an open neighbourhood V of x0 and some δ > 0 such that ∂G/∂t > 0
on (−δ, δ)× V . Let now x ∈ V and t > 0 be such that φt(x) 6= x and φs(x) ∈ V

for every 0 ≤ s ≤ t. Let 0 = t0 < . . . < tk = t be a partition of [0, t] with
ti+1 − ti < δ for i = 0, . . . , k − 1. Then,

g(x) < g(φt1(x)) < . . . < g(φtk−1(x)) < g(φt(x)).

Let c = g(x0). Since X is locally compact, there exists an open neighbourhood
W of x0 such that W is a compact subset of V . By Proposition 3.1, the set
S = W ∩ g−1(c) is a local section through x0. It is also locally compact, because
it is the intersection of an open subset and a closed subset of the locally compact
space X.

If X is in addition locally connected at x0, and ε > 0 is the extent of S, the
open set U = {φt(x) : |t| < ε, x ∈ S} is locally connected at x0. Since U is
homeomorphic to (−ε, ε)× S, it follows that S is locally connected at x0. �

Remark 3.4. If X is an open subset of Rn, n ≥ 1, and the flow is generated
by a locally Lipschitz vector field ξ on X, then through every point x0 ∈ X such
that ξ(x0) 6= 0 there exists a local section which is a (n − 1)-dimensional open
ball with center x0. This follows from Proposition 3.1 taking the continuous
function g:X → R defined by

g(x) = 〈x, ξ(x0)〉,

where 〈 · , · 〉 denotes the euclidean inner product, and proceeding as in the proof
of Theorem 3.3. Here c = g(x0) = ‖ξ(x0)‖2 and g−1(c) = X ∩H, where H is the
hyperplane through x0 which is orthogonal to ξ(x0). Also W can be chosen to be
an open n-ball with center x0. Thus, S = W ∩ g−1(c) is an (n− 1)-dimensional
open ball with center x0.

4. One-dimensional compact minimal sets

Let X be a locally compact, metric space and (φt)t∈R be a continuous flow
on X. Let S ⊂ X be a local section of extent ε > 0. For every x ∈ S let

r(x) = inf{t > 0 : φt(x) ∈ S}.
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The continuity of the flow implies that the set {x ∈ S : r(x) < ∞} is open in S,
but maybe empty. If there exists a point x ∈ S such that x ∈ L+(x), then it
is not empty. If moreover, the orbit of x does not pass through S \ S, there
exists an open neighbourhood U of x in S such that the function r:U → (ε,∞)
is continuous.

Let now A ⊂ X be a compact minimal set and suppose that there exists
a local section S of extent ε > 0 through some point x ∈ A with the property
A ∩ (S \ S) = ∅. Since x ∈ L+(x) for every x ∈ A, there exists an open
neighbourhood U of the compact set A ∩ S in S such that r:U → (ε,∞) is
continuous. The map f :U → S defined by f(x) = φr(x)(x), for x ∈ U , is
a topological embedding of U onto an open subset of S, and is called the Poincaré
map.

Lemma 4.1. If A ⊂ X is a 1-dimensional compact minimal set, then through
any point of A there exists a locally compact local section S such that S \ S is
a closed set and A ∩ (S \ S) = ∅. If X is locally connected at the points of A,
then S is in addition locally connected at every point of A ∩ S.

Proof. Through any point of A there exists a locally compact local section
S0 of some extent ε > 0 such that S0 \ S0 is a closed set, by Theorem 3.3 and
Remark 3.2. Moreover, the flow maps [−ε, ε]×S0 homeomorphically onto a com-
pact subset of X, as the proof of Proposition 3.1 shows. Since A has dimension
1, the set A ∩ S0 is a 0-dimensional, compact, metric space (see [5, Remark 2,
p. 302] and the reference therein). If now x ∈ A∩S0, there exists an open neigh-
bourhood B ⊂ S0 of x in S0 such that B∩A is an open-compact neighbourhood
of x in A∩S0 [5, Theorem 1, p. 277]. Let S be an open neighbourhood of B ∩A

in S0 such that S ⊂ B. Then S is a local section through x of extent ε > 0
such that S \ S is a closed set and S ∩ A ⊂ B ∩ A ⊂ S ∩ A, which implies that
A ∩ (S \ S) = ∅. The rest follows as in the proof of Theorem 3.3. �

We can prove now the main result of this note.

Theorem 4.2. Let X be a locally compact, metric space and (φt)t∈R be
a continuous flow on X. Let A ⊂ X be an asymptotically stable, 1-dimensional,
compact minimal set. If W+(A) is locally connected at every point of A, then A

is a periodic orbit.

Proof. From Lemma 4.1 and since W+(A) is an open neighbourhood of A,
through any point of A there exists a locally compact local section S ⊂ W+(A)
of some extent ε > 0 such that S \ S is a closed set and A ∩ (S \ S) = ∅.
So, we have a well defined continuous Poincaré map f :U → S on some open
neighbourhood U of K = A∩S in S. Moreover, K is a 0-dimensional, compact,
f -invariant (actually minimal) set, as the proof of Lemma 4.1 shows, and S is
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locally connected at every point of K. Also, K is stable with respect to f .
Indeed, let G be an open neighbourhood of K in U . Let V = {φt(x) : 0 ≤ t ≤
r(x), x ∈ G}. Since A is contained in the interior of V and it is stable, there
exists an open neighbourhood W of A such that φt(W ) ⊂ int V for every t ≥ 0.
The set H = G ∩ W is an open neighbourhood of K in U and fn(H) ⊂ G for
every integer n ≥ 0, because if x ∈ H is such that fn(x) /∈ G for some n > 0
such that fk(x) ∈ G for 0 ≤ k < n, then φt(fn(x)) /∈ V for t = r(fn(x)) + ε

2 ,
contradiction. Moreover, K is asymptotically stable with respect to f , since
L+(x) = A for every x ∈ V , and in particular for x ∈ G. It follows now
from Theorem 2.2 that K has a finite number of connected components and f

permutes them. This means that K is a periodic orbit of f and so A is a periodic
orbit of the flow. �

The above theorem gives directly a periodicity criterion for isolated 1-dimen-
sional minimal sets. Recall that a compact invariant set A ⊂ X is call isolated
if it has a compact neighbourhood V such that A is the maximal invariant set
in V . It is not true in general that a compact invariant set A is asymptotically
stable with respect to the restricted flow in W+(A), even if the latter is locally
compact. If however A is isolated, there is a finer topology on the set W+(A)
than the subspace topology, called the intrinsic topology, with respect to which
the flow remains continuous and A becomes asymptotically stable (see [6], [3]).
Let W+

i (A) denote the set W+(A) equiped with the intrinsic topology. The
space W+

i (A) is locally compact and metrizable [3]. From Theorem 4.2 we have
immediately the following.

Corollary 4.3. Let X be a locally compact, metric space and (φt)t∈R be
a continuous flow on X. Let A ⊂ X be an isolated, 1-dimensional, compact min-
imal set. If W+

i (A) is locally connected at every point of A, then A is a periodic
orbit.
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