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Preface

These lecture notes correspond to the introductory graduate course on Rieman-
nian Geometry that I have taught several times in the graduate program of the
Department of Mathematics of the University of Crete. The reader is required to
have a background in basic Algebra, basic Topology, Differential Calculus of func-
tions of several variables and in the basic theory of Ordinary Differential Equations.

The first two chapters give an introduction to the basics of smooth manifolds.
The next three chapters constitute the core of these notes. The third chapter is
concerned with the metric space structure of Riemannian manifolds. The fourth
chapter is devoted to the notion of curvature and its variants. The fifth chapter
presents the elementary comparison theorems of Riemannian Geometry including
the general description of spaces of constant sectional curvature. The last sixth
chapter is devoted to the Riemannian volume comparison theorems and is optional.
It can be taught according to the background and interests of the audience.

K. Athanassopoulos
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Chapter 1

Manifolds

1.1 Topological and smooth manifolds

Problems of Classical Physics lead to the need for the development of differential and
integral calculus on subsets of the phase space, like for instance level sets of constant
energy, which are not open subsets of any euclidean space. Since differentiability of
a function at a given point depends only on its local behaviour near the point, it
is reasonable to try to develop differential calculus on topological spaces which are
locally like euclidean space.

A topological space M is said to be a topological n-manifold, where n ∈ Z+, if
it is a Hausdorff space with a countable basis for its topology and has the following
property: there exists an open cover U of M every element of which is homeomor-
phic to some open subset of Rn. Since the topology of M is assumed to have a
countable basis, there exists a countable open cover U of M every element of which
is homeomorphic to Rn. If U ∈ U , a homeomorphism φ : U → φ(U), where φ(U) is
an open subset of Rn, is called a chart of M and is usually denoted by (U, φ). The
non-negative integer n is the dimension on M .

A topological manifold is a locally compact space, hence regular, and it follows
from Uryshn’s theorem that its topology is defined by some metric.

If now f :M → R is a continuous function, it is reasonable to call f differentiable
at a point p ∈ M , if there exists a chart φ : U → φ(U) ⊂ Rn with p ∈ U such that
f ◦ φ−1 : φ(U) → R is differentiable at φ(p).

U R

φ(U)

f

φ−1

f◦φ−1

However, in order such a definition to be good it must be independent of the
choice of the chart φ. If ψ : V → ψ(V ) ⊂ Rn is another chart with p ∈ V , we have

f ◦ φ−1 = (f ◦ ψ−1) ◦ (ψ ◦ φ−1).

1



2 CHAPTER 1. MANIFOLDS

Therefore, in order the differentiability of f ◦ φ−1 at φ(p) to be equivalent to that
of f ◦ ψ−1 at ψ(p) it suffices ψ ◦ φ−1 to be differentiable at φ(p) and φ ◦ ψ−1 to be
differentiable at ψ(p). We are thus led to the following.

Definition 1.1.1. Two charts (U, φU ) and (V, φV ) of a topological n-manifold M
are called smoothly related if U ∩ V 6= ∅ and the transition map

φV ◦ φ−1
U : φU (U ∩ V ) → φV (U ∩ V )

is a smooth diffeomorphism of open subsets of Rn.

Definition 1.1.2. A smooth atlas of a topological n-manifold M is a family
A = {(U, φU ) : U ∈ U} consisting of smoothly related charts of M such that U is
an open cover of M .

Two smooth atlases of M are called equivalent if their union is again a smooth
atlas. Evidently, this is an equivalence relation on the set of smooth atlases of M .
Every smooth atlas is contained in a unique maximal smooth atlas, which is the
union of all smooth atlases in its equivalence class.

Definition 1.1.3. A smooth structure on a topological n-manifold is a maximal
smooth atlas A of M . In this case the couple (M,A) is called a smooth n-manifold.
The smooth atlas A is usually omitted if it is clear which one is considered. The
elements of A are called the smooth charts of M .

It is clear from the above that a smooth structure on a topological manifold
can be described by a single, not necessarily maximal, smooth atlas. So, we can
describe a smooth structure by defining a smooth atlas of minimum cardinality.

Examples 1.1.4. (a) The trivial example of a smooth n-manifold is an open subset
M of Rn, whose smooth structure is defined by the smooth atlas A = {(M, idM )}.
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Also, if M is a smooth manifold, then any open set X ⊂ M is a smooth manifold.
If A is the smooth structure of M , the smooth structure of X is

A|X = {(X ∩ U, φ|X∩U ) : (U, φ) ∈ A}.

(b) The n-sphere SnR = {Z ∈ Rn+1 : ‖Z‖ = R} of radius R > 0 is a smooth
n-manifold. Its smooth structure is defined by the smooth atlas consisting of the
stereographic projections with respect to the north and the south poles. More
precisely, the stereographic projection with respect to the north pole is the homeo-
morphism π+ : SnR \ {Ren+1} → Rn defined by

π+(Z1, ..., Zn, Zn+1) =
R

R− Zn+1
· (Z1, ..., Zn)

and the stereographic projection with respect to the south pole is the homeomor-
phism π− : SnR \ {−Ren+1} → Rn defined by

π−(Z1, ..., Zn, Zn+1) =
R

R+ Zn+1
· (Z1, ..., Zn).

Since the inverse π−1
+ is given by the formula

π−1
+ (z1, ..., zn) =

(
2R2z1

R2 +
∑n

j=1 z
2
j

, ...,
2R2zn

R2 +
∑n

j=1 z
2
j

,
R
(
−R2 +

∑n
j=1 z

2
j

)

R2 +
∑n

j=1 z
2
j

)
,

the transition map π− ◦ π−1
+ : Rn \ {0} → Rn \ {0} is given by

(π− ◦ π−1
+ )(z) =

R2

‖z‖2 · z.

In other words, π− ◦ π−1
+ is the inversion with respect to Sn−1

R and is of course a
smooth diffeomorphism. The standard smooth structure of SnR is defined by the
smooth atlas A = {(SnR \ {Ren+1}, π+), (SnR \ {−Ren+1}, π−)}. In case R = 1, we
usually write Sn instead of Sn1 .

(c) If M1 is a smooth n1-manifold and M2 is a smooth n2-manifold, then their
product M1 ×M2 is a smooth (n1 + n2)-manifold. Indeed, if Aj is a smooth atlas
of Mj, j = 1, 2, then

A = {(U × V, φ× ψ) : (U, φ) ∈ A1, (V, ψ) ∈ A2}
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is a smooth atlas of M1 ×M2.
In particular, the n-dimensional torus T n = S1 × S1 × · · · × S1 (n times) is a

smooth n-manifold.

(d) The complex projective space CPn, n ∈ Z+, is the quotient space of the equiva-
lence relation ∼ in Cn+1 \{0} such that z ∼ w if and only if there exists λ ∈ C \{0}
with w = λz. In other words, the equivalence classes of ∼ are the complex 1-
dimensional linear subspaces of Cn+1 minus 0 ∈ Cn+1. Alternatively, CPn, can
be defined as the quotient space of the equivalence relation ∼ on S2n+1 such that
z ∼ w if and only if there exists λ ∈ S1 with w = λz. Thus, CPn is the or-
bit space of the continuous action of the unit circle S1 on the (2n + 1)-sphere
S2n+1 by scalar multiplication, whose orbits are great circles. The quotient map
π : S2n+1 → CPn is a continuous, open, surjection and is called the Hopf map.
We usually write π(z0, z1, ..., zn) = [z0, z1, ..., zn] and call the complex numbers z0,
z1,..., zn the homogeneous coordinates od the point [z0, z1, ..., zn] ∈ CPn. Obviously,
[z0, z1, ..., zn] = [w0, w1, ..., wn] if and only if

∣∣∣∣
zj wj
zk wk

∣∣∣∣ = 0

for every j, k = 0, 1, ..., n.
If [z0, z1, ..., zn] 6= [w0, w1, ..., wn], there exist 0 ≤ j, k ≤ n such that zjwk 6= zkwj .

The sets

U = {[u0, u1, ..., un] ∈ CPn : |ukzj − ujzk| < |ukwj − ujwk|},

W = {[u0, u1, ..., un] ∈ CPn : |ukzj − ujzk| > |ukwj − ujwk|}
are open, disjoint and [z0, z1, ..., zn] ∈ U , [w0, w1, ..., wn] ∈W . This shows that CPn

is a Hausdorff space. Since the Hopf map is a continuous, open surjection, CPn is a
connected, compact space with a countable basis for its topology, hence metrizable.

For every integer 0 ≤ k ≤ n the set

Uk = {[z0, z1, ..., zn] ∈ CPn : zk 6= 0}

is open and the map φk : Uk → Cn with

φk([z0, z1, ..., zn]) =
(z0
zk
, ...,

zk−1

zk
,
zk+1

zk
, ...,

zn
zk

)

is a homeomorphism whose inverse is given by

φ−1
k (t1, ..., tn) = [t1, ..., tk−1, 1, tk, ..., tn].

Thus, CPn is a topological 2n-manifold, since

CPn = U0 ∪ U1 ∪ · · · ∪ Un.

Moreover, if Uj ∩ Uk 6= ∅ and j 6= k, then

φk(Uj ∩ Uk) =
{
{(t1, ..tn) ∈ Cn : tj 6= 0} if j < k

{(t1, ..tn) ∈ Cn : tj−1 6= 0} if j > k.
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Thus, for j < k we have

(φj ◦ φ−1
k )(t1, ..., tn) =

( t1
tj
, ...,

tj−1

tj
,
tj+1

tj
, ...,

tk−1

tj
,
1

tj
,
tk
tj
, ...,

tn
tj

)

and for j > k we have

(φj ◦ φ−1
k )(t1, ..., tn) =

( t1
tj−1

, ...,
tk−1

tj−1
,

1

tj−1
,
tk
tj−1

, ...,
tj−2

tj−1
,
tj
tj−1

, , ...,
tn
tj−1

)
.

So, A = {(Uk, φk) : k = 0, 1, ...n} is a smooth atlas which defines a smooth structure
and is called the canonical atlas of CPn.

(e) The real projective space RPn, n ∈ Z+, is defined in the same way simply
by replacing the field C with the field R. Now RPn is the quotient space of the
equivalence relation ∼ on Sn such that x ∼ −x for every x ∈ Sn. Again RPn is a
connected, compact metrizable space and a smooth n-manifold.

Definition 1.1.5. Let M be a smooth m-manifold and N be a smooth n-manifold.
A continuous map f : M → N is clalled smooth if for every p ∈ M there exist a
smooth chart (U, φ) of M and smooth chart (V, ψ) of N such that p ∈ U , f(U) ⊂ V
and ψ ◦f ◦φ−1 : φ(U) → ψ(V ) is a smooth map of open subsets of euclidean spaces.
We call ψ ◦ f ◦ φ−1 the local representation of f with respect to the smooth charts
(U, φ) and (V, ψ).

The sbove definition is independent of the choice of the smooth charts (U, φ) and
(V, ψ), because if (U1, φ1) and (V1, ψ1) is another pair of smooth charts with p ∈ U1

and f(U1) ⊂ V1, then

ψ1 ◦ f ◦ φ−1
1 = (ψ1 ◦ ψ−1) ◦ (ψ ◦ f ◦ φ−1) ◦ (φ ◦ φ−1

1 )

and thus ψ ◦ f ◦ φ−1 is smooth if and only if ψ1 ◦ f ◦ φ−1
1 .

The class of smooth manifolds are the objects of a category whose morphisms
are the smooth maps between smooth manifolds. The isomorphisms in the category
are called diffeomorphisms. More precisely, a smooth map f : M → N as in
Definition 1.1.5 is called a smooth diffeomorphism if there exists a smooth map
g : N →M such that g ◦ f = idM and f ◦ g = idN .

Definition 1.1.6. Two smooth manifolds M and N are called (smoothly) diffeo-
morphic if there exists a smooth diffeomorphism f :M → N .

Obviously, two diffeomorphic manifolds must have the same dimension. If (U, φ)
is a smooth chart of a smooth manifold M , then φ : U → φ(U) is a smooth diffeo-
morphism.

It is not true in general that any topological manifold admits a smooth structure.
Also, a topological manifold may carry many non-diffeomorphic smooth structures
(with the same underlying topology). J. Milnor proved in 1956 that on the 7-
sphere S7 there are non-diffeomorphic smooth structures. His work was the birth
of Differential Topology. In 1982 S. Donaldson showed that already on R4 there
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exist uncountably many non-diffeomorphic smooth structures. On any topological
n-manifold for n = 1, 2, 3 there exists a unique up to diffeomorphism smooth struc-
ture. In dimension 1 this is easy to prove. In dimension 2 this follows from the
classification of topological surfaces and the uniformization theorem. In dimension
3 it was proved by J. Munkres in 1960. In both cases of dimensions 2 and 3 an im-
portant step in the proof is the non-trivial fact that topological 2- and 3-manifolds
can be triangulated.

1.2 The tangent space

In order to define the derivative of a smooth map between manifolds, we shall
describe the derivative of a map defined on a open subset of euclidean space in a
suitable way that it can be carried over to smooth manifolds.

Let A ⊂ Rn be an open set and p = (p1, ..., pn) ∈ A. We denote by C∞(A, p) the
set of smooth real functions defined on some open neighbourhood of p contained in
A. Let also

S(A, p) = {γ|γ : (−ǫ, ǫ) → A is smooth for some ǫ > 0, with γ(0) = p}.

Two curves γ1, γ2 ∈ S(A, p) are tangent at p if and only if (f ◦ γ1)′(0) = (f ◦ γ2)′(0)
for every f ∈ C∞(A, p). Tangency at p is an equivalence relation ∼p on S(A, p).
The quotient set TpA = S(A, p)/ ∼p is called the tangent space of A at p and carries
a vector space structure which is defined as follows. If [γ1]p, [γ2]p ∈ TpA and λ1,
λ2 ∈ R, then λ1[γ1]p + λ2[γ2]p is the element of TpA represented by

γ(t) = λ1γ1(t) + λ2γ2(t)− (λ1 + λ2 − 1)p.

The zero element of TpA is represented by the constant curve at p. The elements
of TpA are called tangent vectors of A at p. If γj(t) = p + tej , j = 1, 2, ..., n, then
{[γ1]p, [γ2]p, ...[γn]p} is a basis of TpA.

We shall give an alternative ”algebraic” description of the tangent space. To
every tangent vector [γ]p ∈ TpA corresponds a linear operator D[γ]p : C∞(A, p) → R

which is defined by

D[γ]p(f) = (f ◦ γ)′(0).

This is a fancy way to consider the directional derivative with respect to the velocity
of γ at p. Recall that two functions f , g ∈ C∞(A, p) are said to define the same
germ at p if they agree on some small neighbourhood of p and this is an equivalence
relation on C∞(A, p) whose classes are called the germs of smooth functions at
p. Note that if two functions f , g ∈ C∞(A, p) define the same germ at p, then
D[γ]p(f) = D[γ]p(g).

The set Gp of germs of smooth functions at p can be endowed with the structure
of a commutative, associative real algebra with a unity in the obvious way. The
unity is the germ of the constant function with value 1. It is evident now that to
every tangent vector [γ]p ∈ TpA corresponds a linear operator D[γ]p : Gp → R, as
above, and this correspondence is injective by definition. Moreover, it satisfies the
Leibniz rule for the derivative of a product of functions. Thus, we are led to the
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following.

Definition 1.2.1. A derivation on the algebra Gp of germs of smooth functions at
p is a linear operator D : Gp → R which satisfies the Leibniz rule

D(α · β) = ep(β)D(a) + ep(α)D(β)

for every α, β ∈ Gp, where ep : Gp → R denotes the evaluation at p.

A derivation of Gp vanishes on the germs of constant functions, because

D(1) = D(1 · 1) = 1 ·D(1) + 1 ·D(1) = 2D(1).

The set Tp of all derivations of Gp is obviously a linear subspace of the algebraic
dual of the vector space Gp and the map F : TpA→ Tp defined by

F ([γ]p) = D[γ]p

is a linear monomorphism, because if Dj,p = F ([γj ]p), then

Dj,p(f) =
∂f

∂xj
(p)

for j = 1, 2, ..., n and the set {D1,p,D2,p, ...,Dn,p} is linearly independent, since

Dj,p(x
k) = δjk

where xk : Rn → R denotes the projection onto the k-th coordinate.
It is a non-trivial fact that F is actually a linear isomorphism. Its proof is based

on the following lemma from advanced calculus.

Lemma 1.2.2. For every f ∈ C∞(A, p) there exist g1,..., gn ∈ C∞(A, p) and a
convex open neighbourhood W of p such that

f(x) = f(p) +

n∑

k=1

(xk − pk)gk(x)

for every x = (x1, ..., xn) ∈W , and

gk(p) =
∂f

∂xk
(p)

for every k = 1, 2, ..., n.

Proof. Let W be any convex open neighbourhood of p on which f is defined and let

gk(x) =

∫ 1

0

∂f

∂xk
(tx+ (1− t)p)dt

for every x = (x1, ..., xn) ∈ W and k = 1, 2, ...n. From the Fundamental Theorem
of Calculus and the chain rule we have

f(x)− f(p) =

∫ 1

0

d

dt
(f(tx+ (1− t)p))dt
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=

∫ 1

0

[ n∑

k=1

(xk − pk)
∂f

∂xk
(tx+ (1− t)p)

]
dt =

n∑

k=1

(xk − pk)gk(x).

The rest is obvious. �

Proposition 1.2.3. The set {D1,p,D2,p, ...,Dn,p} is a basis of Tp and therefore F
is a linear isomorphism.

Proof. It suffices to prove that {D1,p,D2,p, ...,Dn,p} generates Tp. Let D ∈ Tp and
ak = D(xk), k = 1, 2, ..., n. For every f ∈ C∞(A, p) we apply Lemma 1.2.2 and then
we have

D(f) = D(f(p))+
n∑

k=1

D((xk − xk(p))gk) =
n∑

k=1

D(xk)gk(p)+
n∑

k=1

(xk(p)− xk(p))D(g)

=

n∑

k=1

ak
∂f

∂xk
(p) =

( n∑

k=1

akDk,p

)
(f). �

Thus, henceforth we shall identify the linear space Tp with TpA.
Let now f = (f1, f2, ..., fm) : A → Rm be a smooth map. The linear map

f∗ : TpA→ Tf(p)R
m defined by

f∗([γ]p) = [f ◦ γ]f(p)
is just the derivative of f at p, since (f ◦γ)′(0) = Df(p) ·γ′(0) for every γ ∈ S(A, p).
This is a convenient way to consider the derivative of a smooth function that can
be carried over to smooth manifolds.

Let M be a smooth n-manifold and p ∈M . We can define

S(M,p) = {γ|γ : (−ǫ, ǫ) →M is smooth for some ǫ > 0, with γ(0) = p}
and consider the set C∞(M,p) of smooth real functions defined on some open
neighbourhood of p in M . As before we call γ1, γ2 ∈ S(M,p) tangent at p if
(f ◦ γ1)′(0) = (f ◦ γ2)′(0) for every f ∈ C∞(M,p) and define the tangent space
TpM of M at p to be the quotient set of this equivalence relation. Let (U, φU )

be a smooth chart of M such that p ∈ U . The map φ̃U : TpM → TφU (p)φ(U)

defined by φ̃U ([γ]p) = [φU ◦ γ]φU (p) is a bijection whose inverse is given by

φ̃U
−1

([ζ]φU (p)) = [φ−1
U ◦ ζ]p. We transfer the vector space structure of TφU (p)φU (U)

to TpM so that φ̃U becomes a linear isomorphism. This vector space structure does
not depend on the choice of the smooth chart (U, φU ), because if (V, φV ) is another
smooth chart of M with p ∈ V , then φ̃U ◦ φ̃−1

V = (φU ◦φ−1
V )∗φV (p) is a linear isomor-

phism, since it is the derivative at φV (p) of the transition map φU ◦ φ−1
V , which is a

smooth diffeomorphism.

TpM TpM

TφV (p)φV (V ) TφU (p)φU (U)

id

φ̃V φ̃U

(φU◦φ−1
V )∗φV (p)
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The elements of the tangent space TpM are called tangent vectors of M at the
point p. From the above discussion, the tangent vectors ofM at p can be considered
as derivations of the algebra of germs Gp(M) of real smooth functions defined on
some open neighbourhood of p in M . If (U, φU ) is a smooth chart of M , where
φU = (x1, x2, ..., xn), and

(
∂

∂xj

)

p

= φ̃U
−1

(Dj,φU (p))

for j = 1, 2, ..., n, then the set of tangent vectors

{(
∂

∂x1

)

p

,

(
∂

∂x2

)

p

, ...,

(
∂

∂xn

)

p

}

is a basis of TpM which depends on φU and is called the canonical basis of TpM
with respect to the chart φU .

If now f :M → P is a smooth map into a smooth m-manifold P , the derivative
of f at the point p ∈M is defined to be the linear map f∗p : TpM → Tf(p)P with

f∗p([γ]p) = [f ◦ γ]f)p)

for every [γ]p ∈ TpM . In particular, φ̃U = (φU )∗p by definition.

Let (U, φ) be a smooth chart of M with p ∈ U and (W,ψ) be a smooth chart of
P with f(U) ⊂W . If φ = (x1, x2, ..., xn) and ψ = (y1, y2, ..., ym), then

ψ∗f(p)

(
f∗p

((
∂

∂xj

)

p

))
= (ψ ◦ f ◦ φ−1)∗φ(p)(Dj,φ(p))

for j = 1, 2, ..., n and therefore the matrix of f∗p with respect to the ordered basis

[(
∂

∂x1

)

p

,

(
∂

∂x2

)

p

, ...,

(
∂

∂xn

)

p

]

of TpM and [(
∂

∂y1

)

p

,

(
∂

∂y2

)

p

, ...,

(
∂

∂ym

)

p

]

of Tf(p)P is the Jacobian matrix at φ(p) of the local representation ψ ◦ f ◦ φ−1 of f .

TpM Tf(p)P

Tφ(p)φ(U) Tψ(f(p))ψ(W )

f∗p

φ∗p ψ∗f(p)

(ψ◦f◦φ−1)∗φ(p)
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1.3 Submanifolds

Let M be a smooth m-manifold and 0 ≤ n ≤ m be an integer. A set N ⊂M is said
to be a (regular or embedded) n-dimensional smooth submanifold of M if for every
p ∈ N there exists smooth chart (U, φ) of M such that p ∈ N and

φ(N ∩ U) = Q ∩ (Rn × {0})

for some open set Q ⊂ Rm. The smooth chart (U, φ) of M is said to be N -
straightening.

If we denote by π : Rm = Rn × Rm−n → Rn the projection onto the first n
coordinates and by i : Rn → Rn × {0} ⊂ Rm the inclusion, then the map

(π ◦ |N∩U )
−1 = φ−1 ◦ i : i−1(Q) →M

is smooth and is usually called local parametrization of N .
Obviously, a n-dimensional smooth submanifold N of M is a topological n-

manifold, with respect to the subspace topology which it inherits fromM . Moreover,

A|N = {(N ∩ U, π ◦ φ|N∩U ) : (U, φ) is a N -straightening smooth chart of M}

is a smooth atlas of N . If (U, φ) and (V, ψ) are two N -straightening smooth charts
of M with N ∩ U ∩ V 6= ∅, the transition map of the corresponding elements of
A|N is π ◦ (ψ ◦φ−1) ◦ i defined on an open subset of Rn. Thus N becomes a smooth
n-manifold.

The local representation of the inclusion iN : N →֒ M with respect to a N -
straightening smooth chart (U, φ) of M and the corresponding smooth chart of N
in A|N , as above, is

φ ◦ iN ◦ (π ◦ φ|N∩U )
−1 = i|i−1(Q) : i

−1(Q) → Rm.

Therefore, iN is smooth and its derivative at every point of N is a linear monomor-
phism. Generalizing, we give the following.
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Definition 1.3.1. Let N be a smooth n-manifold and M be a smooth m-manifold,
with n ≤ m. A smooth map f : N → M is called immersion if its derivative
f∗q : TqN → Tf(q)M is a linear monomorphism for every q ∈ N . If moreover f is a
topological embedding, then f is called a smooth embedding.

Perhaps the most important examples of submanifolds are the level sets of
smooth maps. Conditions which ensure that this kind of subsets of a given
smooth manifold are smooth submanifolds are provided from the Implicit Function
Theorem or the more general Constant Rank Theorem of advanced calculus, which
we shall prove as a consequence of the Inverse Map Theorem.

Theorem 1.3.2. Let A ⊂ Rn be an open set and let f : A→ Rm be a smooth map.
If p ∈ A and the Jacobian matrix Df(x) has constant rank k for every x in some
open neighbourhood of p in A, then there exist an open neighbourhood U ⊂ A of p
and a smooth diffeomorphism φ : U → φ(U) onto an open set φ(U) ⊂ Rn, and an
open neighbourhood V of f(p) and a smooth diffeomorphism ψ : V → ψ(V ) onto an
open set ψ(V ) ⊂ Rm such that the smooth map

ψ ◦ f ◦ φ−1 : φ(U) → ψ(V ) ⊂ Rm

is given by the formula

(ψ ◦ f ◦ φ−1)(x1, ..., xk , xk+1, ..., xn) = (x1, ..., xk, 0, ..., 0)

for every (x1, .., xn) ∈ φ(U).

Proof. Up to translations and linear isomorphisms of Rn and Rm, which are of
course diffeomorphisms, we may assume that p = 0, f(p) = 0 and

∣∣∣∣∣∣∣∣∣

∂f1
∂x1

· · · ∂f1
∂xk

∂f2
∂x1 · · · ∂f2

∂xk
...

...
∂fk
∂x1 · · · ∂fk

∂xk

∣∣∣∣∣∣∣∣∣
6= 0

on an open neighbourhood A0 ⊂ A of 0, where f = (f1, ..., fk, fk+1, ..., fm).
We consider the smooth map F : A0 → Rn defined by

F (x1, ..., xn) = (f1(x
1, ..., xn), ..., fk(x

1, ..., xn), xk+1, ..., xn).

Then, F (0) = 0 and

detDF (0) =

∣∣∣∣∣∣∣∣∣

∂f1
∂x1

(0) · · · ∂f1
∂xk

(0)
∂f2
∂x1

(0) · · · ∂f2
∂xk

(0)
...

...
∂fk
∂x1

(0) · · · ∂fk
∂xk

(0)

∣∣∣∣∣∣∣∣∣
6= 0.

Applying the Inverse Map Theorem, there exist an open neighbourhood U0 ⊂ A0 of
0 such that F (U0) is an open subset of Rn and φ = F |U0 is a smooth diffeomorphism.
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Shrinking, we can take U0 such that φ(U0) is an open cube in Rn with center 0. Now
there exist smooth functions gk+1,..., gm : φ(U0) → R such that

(f ◦ φ−1)(z1, ..., zn) = (z1, ..., zk, gk+1(z
1, ..., zn), ..., gm(z1, ..., zn))

for every (z1, ..., zn) ∈ φ(U0) and gk+1(0) = · · · = gm(0) = 0. Moreover,

Df(φ−1(z))·D(φ−1)(z) = D(f◦φ−1)(z) =




1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
...

...
...

0 0 · · · 1 0 · · · 0

∗ ∗ · · · ∗ ∂gk+1

∂xk+1 (z) · · · ∂gk+1

∂xn (z)
...

...
...

...
...

∗ ∗ · · · ∗ ∂gm
∂xk+1 (z) · · · ∂gm

∂xn (z)




for every z = (z1, ..., zn) ∈ φ(U0). Since Df(φ−1(z)) has constant rank k and
D(φ−1)(z) is invertible for every z = (z1, ..., zn) ∈ φ(U0), we must have

∂gj
∂xl

= 0

on φ(U0) for every j = k+1, ...,m and l = k+1, ..., n. This implies that the smooth
functions gk+1,..., gm do not depend on the variables xk+1,.., xn and descent to
smooth functions (again denoted by) gk+1,..., gm : P → R, where the open cube
P ⊂ Rk is the image of φ(U0) under the projection onto the first k coordinates.

If now ψ : P × Rm−k → Rm is the smooth map defined by

ψ(y1, ..., ym) = (y1, ..., yk, yk+1 − gk+1(y
1, ..., yk), ..., ym − gm(y

1, ..., yk)),

then

Dψ(0) =

(
Ik 0
∗ Im−k

)

and by the Inverse Map Theorem there exists an open neighbourhood V of 0 in
Rm such that ψ(V ) is an open neighbourhood of ψ(0) = 0 and ψ|V is a smooth
diffeomorphism. Let U ⊂ U0 be an open neighbourhood of 0 such that f(U) ⊂ V .
Then,

(ψ ◦ f ◦ φ−1)(z1, ..., zk, zk+1, ..., zn) = (z1, ..., zk , 0, ..., 0)

for every (z1, .., zn) ∈ φ(U). �

Corollary 1.3.3. Let N be a smooth n-manifold, M be a smooth m-manifold, with
n ≤ m, and let f : N → M be an immersion. Then, for every p ∈ N there exist a
smooth chart (U, φ) of N with p ∈ U and a smooth chart (V, ψ) of M with f(U) ⊂ V
such that the corresponding local representation of f is

(ψ ◦ f ◦ φ−1)(x1, ..., xn) = (x1, ..., xn, 0, ..., 0). �

Corollary 1.3.4. Let N be a smooth n-manifold and M be a smooth m-manifold,
with n ≤ m. If f : N → M is a smooth embedding, then f(N) is a n-dimensional



1.4. SMOOTH PARTITIONS OF UNITY 13

smooth submanifold of M . �

Let M be a smooth m-manifold, P be a smooth n-manifold, with n ≤ m,
and let f : M → P be a smooth map. We call p ∈ M a critical point of f if the
derivative f∗p : TpM → Tf(p)P is not a linear epimorphism. Note that if p ∈M is a
non-critical point of f , then f∗q has constant maximal rank n for every point q in
some open neighbourhood of p in M . A point c ∈ P is called a regular value of f if
the level set f−1(c) does not contain any critical point of f .

Corollary 1.3.5. Let M be a smooth m-manifold, P be a smooth n-manifold, with
n ≤ m, and let f : M → P be a smooth map. If c ∈ P is a regular value of f , then
the level set f−1(c) is a (m−n)-dimensional smooth submanifold ofM , if non-empty.

Proof. By Theorem 1.3.2, for every point p ∈ f−1(c) there exists a smooth chart
(U, φ) of M with p ∈ U and a smooth chart (V, ψ) of P with f(U) ⊂ V such that
the corresponding local representation of f is

(ψ ◦ f ◦ φ−1)(x1, ..., xm) = (x1, ..., xn)

for every (x1, .., xm) ∈ φ(U). Now we have

φ(f−1(c) ∩ U) = φ(U) ∩ ({ψ(c)} × Rm−n)

and therefore (U, φ) is a f−1(c)-straightening chart of M . �

Definition 1.3.6. Let M be a smooth m-manifold and P be a smooth n-manifold,
with n ≤ m. A smooth map f :M → P onto P is called submersion if its derivative
f∗p : TpM → Tf(p)P is a linear epimorphism for every p ∈M .

Thus, if f : M → P is a submersion, then f−1(c) is a (m − n)-dimensional
smooth submanifold of M for every c ∈ P .

Example 1.3.7. The determinant is a smooth function det : Rn×n → R and the
general linear group GL(n,R) = {A ∈ Rn×n : detA 6= 0} is an open subset of Rn×n.
Let A ∈ GL(n,R) and γ(t) = (1 + t)A. Then, γ(0) = A and

(det)∗A([γ]A) = [det ◦γ]detA.

Also, (det ◦γ)(t) = (1 + t)n detA, and so (det ◦γ)′(0) = n detA 6= 0. This
implies that (det)∗A is non-zero, and hence an epimorphism. This shows that
det : GL(n,R) → R is a submersion. In particular, the special linear group
SL(n,R) = {A ∈ Rn×n : detA = 1} is a (n2 − 1)-dimensional smooth submani-
fold of Rn×n.

1.4 Smooth partitions of unity

Our requirement a smooth manifold to have a countable basis for its topology
implies the existence of technically very useful families of smooth functions, the
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construction of which will be the subject of this section.

Definition 1.4.1. Let M be a smooth manifold and let U be an open cover of
M . A smooth partition of unity subordinated to U is a family of smooth functions
fU :M → [0, 1], U ∈ U , with the following properties:
(i) suppfU = {p ∈M : fU (p) 6= 0} ⊂ U for every U ∈ U .
(ii) The family {suppfU : U ∈ U} of closed subsets of M is a locally finite cover of
M .
(iii)

∑

U∈U
fU (p) = 1 for every p ∈M .

Recall that a family F of subsets of a topological space X is called locally finite
if every point x ∈ X has an open neighbourhood V in X such that the set

{F ∈ F : F ∩ V 6= ∅}

is finite. A family S of subsets of X is called a refinement of F if for every F ∈ F
there exists some S ∈ S such that S ⊂ F .

In order to prove the existence of smooth partitions of unity we shall need some
preliminary lemmas. In the sequel we shall denote by B(x, r) the open ball in Rn

with center x ∈ Rn and radius r > 0.

Lemma 1.4.2. For every 0 < ρ < r there exists a smooth function f : Rn → [0, 1]
such that B(0, ρ) ⊂ f−1(1) and Rn \B(0, r) ⊂ f−1(0).

Proof. It suffices to consider the smooth function g : R → R with

g(t) =

{
e−

1
t , if t > 0,

0, if t ≤ 0

and take f : Rn → [0, 1] defined by

f(x) =
g(r2 − ‖x‖2)

g(r2 − ‖x‖2) + g(‖x‖2 − ρ2)
. �

Functions like f in Lemma 1.4.2 are usually called bump functions.

Lemma 1.4.3. Let M be a smooth n-manifold and let U be an open cover of M .
There exists a countable smooth atlas A of M with the following properties:
(a) The open cover V = {V : (V, φV ) ∈ A} is a locally finite refinement of U .
(b) φV (V ) = B(0, 3) ⊂ Rn, for every (V, φV ) ∈ A.
(c) {φ−1

V (B(0, 1)) : (V, φV ) ∈ A} is an open cover of M .

Proof. There exists a countable open cover {Ak : k ∈ N} of M such that Ak ⊂ Ak+1

and Ak is compact for every k ∈ N , because M is locally compact and its topology
has a countable basis. This sort of cover can be constructed inductively, starting
with any countable open cover {Ck : k ∈ N} such that Ck is compact for every
k ∈ N . First we choose any open set A1 ⊂ M with compact closure such that
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C1 ⊂ A1 and once Ak−1 has been defined we choose Ak ⊂ M to be any open set
with compact closure such that Ak−1 ∪ Ck ⊂ Ak.

The set Ak+1 \ Ak is compact and contained in the open set Ak+2 \ Ak−1. For
every p ∈ Ak+1 \ Ak there exist Up ∈ U and a smooth chart (Vk,p, φVk,p) of M such

that p ∈ Vk,p ⊂ Up ∩ Ak+2 \ Ak−1 and φVk,p(Vk,p) = B(0, 3) with φVk,p(p) = 0. By

compactness of Ak+1 \Ak, there exist p1,...,pmk
∈ Ak+1 \Ak, for some mk ∈ N, such

that
Ak+1 \Ak ⊂ φ−1

Vk,p1
(B(0, 1)) ∪ · · · ∪ φ−1

Vk,pmk

(B(0, 1)).

It suffices now to take

A =
∞⋃

k=1

{(Vk,p1 , φVk,p1 ), ..., (Vk,pmk
, φVk,pmk

)}. �

Theorem 1.4.4. If M is a smooth n-manifold and U is an open cover of M , then
there exists a smooth partition of unity subordinated to U .

Proof. Let A be the smooth atlas of M provided by Lemma 1.4.3. By Lemma
1.4.2, there exists a smooth function f : Rn → [0, 1] such that B(0, 1) ⊂ f−1(1)
and Rn \B(0, 2) ⊂ f−1(0). For every (V, φV ) ∈ A we consider the smooth function
gV :M → [0, 1] defined by

gV (p) =

{
f(φV (p)), if p ∈ V ,

0, if p ∈M \ V .

According to Lemma 1.4.3, V = {V : (V, φV ) ∈ A} is a locally finite open cover of

M . So the function
∑

V ∈V
gV :M → [0,+∞) is well defined and smooth. Since V is

also a refinement of U , there exists a function σ : V → U such that V ⊂ σ(V ) for
every V ∈ V. For every U ∈ U we define now

fU =
1∑

V ∈V gV
·
∑

σ(V )=U

gV :M → [0, 1].

In case σ−1(U) = ∅ we put fU = 0. It follows from Lemma 1.4.3(c) that fU is a
well defined smooth function Obviously,

suppfU ⊂
⋃

σ(V )=U

suppgV ⊂
⋃

σ(V )=U

V ⊂ U.

and {suppfU : U ∈ U} is locally finite, because V is locally finite. Finally,

∑

U∈U
fU =

1∑
V ∈V gV

·
∑

U∈U

∑

σ(V )=U

gV =
1∑

V ∈V gV
·
∑

V ∈V
gV = 1. �

Corollary 1.4.5. Let M be a smooth manifold and F ⊂ A ⊂M , where F is closed
in M and A is open in M . Then, then exists a smooth function f :M → [0, 1] such
that F ⊂ f−1(1) and M \ A ⊂ f−1(0).
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Proof. From Theorem 1.4.4, there exists a smooth partition of unity {fM\F , fA}
subordinated to the open cover {M \ F,A} of M . It suffices to take f = fA. �

As an application of the existence of smooth partitions of unity we shall give
a partial answer to the following question. Is a smooth manifold diffeomorphic to
a smooth submanifold of some RN for sufficiently large N ∈ N and what is the
minimum value of N for which this is possible?

Theorem 1.4.6. If M is a compact smooth n-manifold, there exist N ∈ N and a
smooth embedding g :M → RN .

Proof. From Lemma 1.4.3 and the compactness of M , there exist some m ∈ N,
a finite family {(Ui, φi) : 1 ≤ i ≤ m} of smooth charts of M and a finite family
{Vi : 1 ≤ i ≤ m} of open subsets of M such that V i ⊂ Ui for all 1 ≤ i ≤ m and

M = U1 ∪ · · · ∪ Um = V1 ∪ · · · ∪ Vm.

For each 1 ≤ i ≤ m there exists a smooth function fi : M → [0, 1] such that
V i ⊂ f−1

i (1) and suppfi ⊂ Ui, from Corollary 1.4.5. The map ψi :M → Rn defined
by

ψi(p) =

{
fi(p)φi(p), if p ∈ Ui,

0, otherwise,

is smooth. The map g :M → (Rn)m × Rm defined by

g(p) = (ψ1(p), ..., ψm(p), f1(p), ..., fm(p))

is smooth and actually an immersion, because for every p ∈ M there exists some
1 ≤ i ≤ m with p ∈ Vi and ψi|Vi = φi|Vi maps Vi diffeomorphically onto an open
subset of Rn. To see that g is injective, let p, q ∈ M be such that g(p) = g(q).
Then, ψi(p) = ψi(q) and fi(p) = fi(q) for every 1 ≤ i ≤ m. There exists however
some 1 ≤ j ≤ m with p ∈ Vj and so fj(q) = fj(p) = 1. Therefore, q ∈ Uj and
φj(p) = ψj(p) = ψj(q) = φj(q), hence p = q. Finally, g is a topological embedding,
since M is compact. �

It has been proved by H. Whitney that a compact smooth n-manifold can be
smoothly embedded in R2n. Also any smooth n-manifold can be embedded in R2n+1

as a closed subset. The presentation of these topics are beyond the scope of these
notes.

1.5 Exercises

1. On R we consider the smooth structure B defined by the smooth atlas {(R, ψ)},
where ψ : R → R is the map ψ(t) = t3. Let A denote the standard smooth structure
of R.
(a) Prove that A 6= B.
(b) Prove that id : (R,A) → (R,B) is not a smooth diffeomorphism.
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(c) Are the smooth 1-manifolds (R,A), (R,B) diffeomorphic?

2. For every t > 0 we consider the map ht : R → R with ht(x) = x, if x ≤ 0 and
ht(x) = tx, if x ≥ 0. Let At be the smooth structure on R defined by the smooth
atlas {(R, ht)}, t > 0.
(a) Prove that At 6= As for t 6= s.
(b) Are the smooth 1-manifolds (R,At) and (R,As) diffeomorphic for all t, s > 0?

3. Let U+
i = {(x1, ..., xn+1) ∈ Sn : xi > 0}, U−

i = {(x1, ..., xn+1) ∈ Sn : xi < 0},
and let h±i : U±

i → Rn be the map with

h±i (x1, ..., xn+1) = (x1, ..., xi−1, xi+1, ..., xn+1), 1 ≤ i ≤ n+ 1.

(a) Prove that B = {(U±
i , h

±
i ) : 1 ≤ i ≤ n+ 1} is a smooth atlas on Sn.

(b) Prove that B is equivalent to the smooth atlas

A = {(Sn \ {en+1}, π+), (Sn \ {−en+1}, π−)},

where π± : Sn \ {±en+1} → Rn is the stereographic projection.

4. Let (V, 〈, 〉) be a finite dimensional inner product real vector space and let

S(V ) = {x ∈ V : ‖x‖ = 1},

where ‖x‖ = 〈x, x〉1/2.
(a) If p ∈ S(V ), prove that for every x ∈ S(V ) \ {p} the intersection point of the
line through p and x with the orthogonal complement 〈p〉⊥ is

φ(x) =
x− 〈x, p〉p
1− 〈x, p〉 .

The map φ : S(V ) \ {p} → 〈p〉⊥ is the stereographic projection with respect to p.
(b) Compute φ−1 : 〈p〉⊥ → S(V ) \ {p}.
(c) If ψ : S(V ) \ {−p} → 〈p〉⊥ is the stereographic projection with respect to −p,
compute ψ ◦ φ−1 : 〈p〉⊥ → 〈p〉⊥.

5. Consider the canonical smooth atlas {(U0, φ0), (U1, φ1)} of CP 1 and observe that
CP 1 \ U0 = {[0, 1]} and CP 1 \ U1 = {[1, 0]}. Prove that g : CP 1 → S2 defined by

g[z0, z1] =

{
(π−1

+ ◦ φ0)[z0, z1], if z0 6= 0

(0, 0, 1), if z0 = 0.

is a smooth diffeomorphism, where π+ : S2 \ {(0, 0, 1)} → C denotes the stereo-
graphic projection with respect to the north pole.

6. Let X be a Hausdorff topological space and H(X) be the group of the home-
omorphisms of X onto itself. A subgroup G of H(X) defines on X the following
equivalence relation: x ∼ y if and only if there exists some g ∈ G with y = g(x).
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The equivalence classes are called the orbits of G. Let π : X → X/G denote the
quotient map. We say that G acts properly discontinuously on X if every point
x ∈ X has some open neighbourhood U in X such that U ∩ g(U) = ∅, for every
g ∈ G, g 6= id.
(a) If G acts properly discontinuously, prove that every point [x] ∈ X/G has an
open neighbourhood V ∗ such that

π−1(V ∗) =
⋃

g∈G
g(V ),

where V is a suitable open neighbourhood of x ∈ X, so that g1(V )∩ g2(V ) = ∅, for
g1 6= g2 and π|V : V → V ∗ is a homeomorphism.
(b) Let M be a smooth n-manifold and G be a group of smooth diffeomorphisms
which acts properly discontinuously on M . If the quotient space M/G is Hausdorff,
prove that it is a smooth n-manifold.
(c) Let M be a smooth n-manifold and G be a finite group of smooth diffeomor-
phisms of M . If g(x) 6= x for every x ∈ M , g ∈ G, g 6= id, prove that G acts
properly discontinuously on M , the quotient space M/G is Hausdorff and therefore
a smooth n-manifold.
(d) On Sn the antipodal map a : Sn → Sn with a(x) = −x is a smooth diffeomor-
phism. If G = {id, a}, determine the smooth n-manifold Sn/G.
(e) On the 2-torus T 2 = S1 × S1 let f : T 2 → T 2 be the map

f(e2πix, e2πiy) = (e−2πix,−e2πiy).

If G = {id, f}, Prove that K2 = T 2/G is a smooth 2-manifold. This manifold is
called Klein bottle.
(f) Prove that the group of translations by vectors with integer coordinates, which is
isomorphic to Zn, acts properly discontinuously on Rn and Rn/Zn is diffeomorphic
to the n-torus T n.

7. Prove that the 1-dimensional real projective space RP 1 is deffeomorphic to the
circle S1.

8. Let f :M → N be a bijective smooth map of smooth manifolds. If its derivative
f∗p : TpM → Tf(p)N is a linear isomorphism for every p ∈ M , prove that f is a
smooth diffeomorphism.

9. Let f : M → Q be a smooth map of smooth manifolds and q ∈ Q be a regular
value of f with N = f−1(q) 6= ∅. If iN : N →֒ M is the inclusion, show that
(iN )∗p(TpN) = Kerf∗p for every p ∈ N .

10. Prove that TpS
n = {[γ]p ∈ TpR

n+1 : 〈γ′(0), p〉 = 0} for every p ∈ Sn, where 〈, 〉
is the euclidean inner product.

11. Let n > 1 and p : Rn → R be a homogeneous polynomial of degree m ∈ N.
Prove that p−1(c) is a (n−1)-dimensional smooth submanifold of Rn for every c 6= 0.
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12. Let M be a smooth m-manifold, N be a smooth n-manifold and let f :M → N
be a smooth map. If q ∈ N is such that f−1(q) 6= ∅ and f has constant rank
k on some open neighbourhood of f−1(q), prove that the level set f−1(q) is a
(m− k)-dimensional smooth submanifld of M .

13. Prove that the set N = {A ∈ R2×2 : A has rank 1} is a 3-dimensional smooth
submanifold of R2×2.

14. The set S of all real n× n symmetric matrices is a vector subspace of Rn×n of
dimension n(n+ 1)/2. Let f : GL(n,R) → S be the map f(A) = A · At.
(a) Prove that f∗A(H) = AHt +HAt for every H ∈ TAGL(n,R), A ∈ GL(n,R).
(b) Prove that the identity In ∈ S is a regular value of f .

(c) Prove that the orthogonal group O(n,R) is a n(n−1)
2 -dimensional smooth

submanifold of GL(n,R).
(d) Prove that TInO(n,R) = {H ∈ Rn×n : H +Ht = 0}.

15. Prove that the map g : T 2 → R3 with

g(e2πiφ, e2πiθ) = ((2 + cos θ) cosφ, (2 + cos θ) sinφ, sin θ)

is an embedding of the 2-torus T 2 into R3 and its image is

g(T 2) = {(x, y, z) ∈ R3 : (
√
x2 + y2 − 2)2 + z2 = 1}.

16. Prove that the map f : S2 → R6 with

f(x, y, z) = (x2, y2, z2,
√
2yz,

√
2zx,

√
2xy)

an immersion which induces an embedding of the real projective plane RP 2 into
R6.

17. Prove that the map f : RP 2 → R3 with f([x, y, z]) = (yz, zx, xy) is an
immersion and the map g : RP 2 → R4 with g([x, y, z]) = (yz, zx, xy, x2 +2y2 +3z2)
is an embedding.

18. Let M , N be two smooth n-manifolds and let f :M → N be an immersion.
(a) Prove that f is an open map.
(b) If M is compact and N is connected, prove that f(M) = N .

19. Let J : R2n → R2n be the orthogonal transformation (complex structure of R2n)
with J(x, y) = (−y, x) for every (x, y) ∈ R2n = Rn ×Rn.
(a) Prove that the set S = {A ∈ R2n×2n : AtJA = J} is a smooth submanifold of
R2n×2n.
(b) Describe TI2nS as a vector subspace of R2n×2n.
(c) Find the dimension of S.
(Hint : Prove that J ∈ R2n×2n is a regular value of the smooth map
f : GL(2n,R) → {H ∈ R2n×2n : H +Ht = 0} with f(A) = AtJA.)
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20. Let d ∈ N, n ≥ 2 and denote by V 2n
d the set of points (z0, z1, ..., zn) ∈ Cn+1 \{0}

which are solutions of the equation

zd0 + z21 + · · ·+ z2n = 0.

(a) Prove that V 2n
d is a smooth 2n-manifold.

(b) Prove that the set W 2n−1
d = V 2n

d ∩S2n+1 is a smooth (2n− 1)-manifold. W 2n−1
d

is called Brieskorn manifold.

21. The unit tangent bundle of the 2-sphere S2 is the subset

T 1S2 = {(p, v) ∈ R3 × R3 : ‖p‖ = 1, ‖v‖ = 1, 〈p, v〉 = 0}

of R6, where 〈, 〉 is the euclidean inner product on R3.
(a) Prove that T 1S2 is a 3-dimensional smooth submanifold of R6.
(b) Prove that F : SO(3,R) → T 1S2 with F (A) = (Ae3, Ae1) is a smooth diffeo-
morphism.
(c) Let D3 = {x ∈ R3 : ‖x‖ ≤ 1} and let g : D3 → SO(3,R) be the map with
g(0) = I3 and such that if x ∈ D3 \ {0} then g(x) is the rotation with respect
to the axis generated by x by the angle ‖x‖ · π. Prove that g induces a smooth
diffeomorphism from RP 3 onto SO(3,R).
(Hint : Observe that T 1S2 = f−1(0), where f : R3 × R3 → R3 is the smooth map
f(p, v) = (‖p‖2 − 1, ‖v‖2 − 1, 〈p, v〉).)



Chapter 2

Vector fields

2.1 The tangent bundle and vector fields

In this section we shall define the notion of vector field on a smooth manifold, which
is a generalization and globalization of the notion o ordinary differential equation
on an open subset of euclidean space. A continuous vector field is a map which to a
point p assigns a tangent vector with point of application p and varies continuously
with p. So, first we need to consider the set of all tangent vectors.

Let M be a smooth n-manifold and consider the disjoint union of all tangent
spaces at points of M , that is the set

TM =
⋃

p∈M
{p} × TpM.

Let π : TM → M denote the natural projection π(p, v) = p, for v ∈ TpM , p ∈ M .
We shall endow TM with the structure of a smooth manifold, so that π becomes
smooth and a submersion.

If A is a smooth atlas of M , we define the class

Ã = {(π−1(U), φ̃U ) : (U, φU ) ∈ A}

where φ̃U : π−1(U) → φU (U)× Rn is the bijection defined by

φ̃U (p, v) = (φU (p), (φU )∗p(v))

for every p ∈ U , v ∈ TpM . In other words, if φU = (x1, ..., xn), then for p ∈M and

v =
n∑

k=1

vk
(

∂

∂xk

)

p

∈ TpM

we have φ̃U (v, v) = (x1(p), ..., xn(p), v1, ..., vn).

If now (U, φU ), (V, φV ) ∈ A are such that U ∩ V 6= ∅, then the transition map
φ̃U ◦ φ̃−1

V : φV (U ∩ V )× Rn → φU (U ∩ V )× Rn is given by the formula

(φ̃U ◦ φ̃−1
V )(x, y) = ((φU ◦ φ−1

V )(x),D(φU ◦ φ−1
V )(x)(y))

21
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and is thus a smooth diffeomorphism. This means that Ã would be a smooth atlas
of TM , if we had a topology on TM making it a topological 2n-manifold in such
a way the the sets π−1(U) were open and the maps φ̃U homeomorphisms. This
topology is provided by the following.

Lemma 2.1.1. Let X be a non-empty set and U be a family of subsets of X which
covers X. We assume that for every U ∈ U there exist a topological space XU and a
bijection ψU : U → XU such that for U , V ∈ U with U ∩ V 6= ∅ the set ψV (U ∩ V )
is open in XV and the map ψU ◦ ψ−1

V : ψV (U ∩ V ) → XU is continuous.
Then there exists a unique topology on X with respect to which every element of

U becomes an open set and every map ψU becomes a homeomorphism.

Proof. Our assumptions imply that ψU ◦ ψ−1
V : ψV (U ∩ V ) → ψU (U ∩ V ) is a

homeomorphism for every U , V ∈ U with U ∩ V 6= ∅. The family

T = {A ⊂ X : ψU (U ∩A) is open in XU for every U ∈ U}

is a topology on X which contains the family U . By the definition of T , each ψU is
an open map. For the continuity of ψU let W ⊂ XU be an open set. Then,

(ψU ◦ ψ−1
V )(ψV (ψ

−1
U (W ) ∩ V )) =W ∩ ψU (U ∩ V )

is open in XU for every U , V ∈ U with U ∩ V 6= ∅. Since ψU ◦ ψ−1
V is a homeomor-

phism, ψV (ψ
−1
U (W ) ∩ V )) must be open in XV . This shows that ψ−1

U (W ) ∈ T and
that ψU is continuous. The uniqueness of the topology T is obvious. �

Applying now Lemma 2.1.1, we obtain a unique topology on TM with re-
spect to which each set π−1(U) is open and each map φ̃U is a homeomorphism
for (U, φU ) ∈ A. Since M and Rn are Hausdorff spaces and have countable
basis for their topologies, the same is true for TM . Thus, TM becomes a
smooth 2n-manifold. For every (U, φU ) ∈ A the corresponding local representation
φU ◦ π ◦ φ̃−1

U : φU (U)×Rn → φU (U) of π is the projection (φU ◦ π ◦ φ̃−1
U )(x, y) = x.

Hence π is a submersion.
The triple (TM,π,M) is the tangent bundle of M . The natural projection π

is the bundle map and M is the base space of the bundle. The total space of the
bundle is TM . Abusing terminology, we shall also use the term tangent bundle for
TM itself.

Definition 2.1.2. A smooth vector field on a smooth n-manifold M is a smooth
map X : M → TM which to every p ∈ M assigns a tangent vector X(p) ∈ TpM .
Briefly, X ◦ π = idM or in other words X is a smooth section of π.

The set X (M) of all smooth vector fields of a smooth manifold M is an infi-
nite dimensional real vector space. It is also a module over the commutative ring
C∞(M) of all real valued smooth functions defined on M . Every smooth diffeo-
morphism f : M → M induces a linear isomorphism f∗ : X (M) → X (M) defined
by (f∗X)(f(p)) = f∗p(X(p)) for every p ∈ M . The smooth vector field X of M is
called f -invariant if f∗X = X.
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Let X be a smooth vector field on a smooth n-manifold M . If A is a smooth
atlas of M anf Ã is the corresponding smooth atlas of TM , then X(U) ⊂ π−1(U)
for every (U, φU ) ∈ A. There exists a smooth map FU : φU (U) → Rn, which is
called the principal part of X with respect to (U, φU ), such that the corresponding
local representation φ̃U ◦X ◦ φ−1

U : φU (U) → φU (U)× Rn of X is

(φ̃U ◦X ◦ φ−1
U )(x) = (x, FU (x)).

Thus, if φU = (x1, ..., xn) and FU = (F 1, ...Fn), then

X(p) =

n∑

k=1

F k(φ(p))

(
∂

∂xk

)

p

for every p ∈ U and the smoothness of X is equivalent to the smoothness of FU . In
particular, on U we have the basic smooth vector fields

∂

∂x1
,
∂

∂x2
, ...,

∂

∂xn

defined by the smooth chart φU .

Apart for the notion of tangent vector field on a smooth manifold we need to
have a notion of tangent vector field along a smooth curve.

Definition 2.1.3. A smooth vector field along a smooth curve γ : I → M on a
smooth n-manifold M , for I ⊂ R an open interval, is a smooth map X : I → TM
which to every s ∈ I assigns a tangent vector X(s) ∈ Tγ(s)M .

If γ : I →M is a smooth curve on a smooth n-manifold M , then for every s ∈ I
the tangent vector

γ̇(s) = γ∗s

((
d

dt

)

s

)

is the velocity of γ at γ(s), where
d

dt
is the basic vector field on R. Thus, γ̇ : I → TM

is a smooth vector field along γ, which is called the velocity field of γ.

Recall that

(
d

dt

)

s

is the usual derivation at s. Using the notation of section

1.4, note that [γ]p and γ̇(0) denote one and the same vector in TpM for p ∈M and
γ ∈ S(M,p), namely the velocity of γ at p = γ(0).

If γ(I) ⊂ U for the smooth chart (U, φU ) of M and φU ◦ γ = (γ1, ..., γn) is the
corresponding local representation of γ, then

γ̇(s) =

n∑

k=1

(γk)′(s)

(
∂

∂xk

)

γ(s)

for every s ∈ I.
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2.2 Flows of smooth vector fields

LetM be a smooth n-manifold and let X be a smooth vector field onM . An integral
curve of X is a smooth curve γ : I → M , defined on an open interval I ⊂ R, such
that

γ̇(s) = X(γ(s))

for every s ∈ I.

If (U, φU ) is a smooth chart of M with φU = (x1, ..., xn) and FU = (F 1, ..., Fn)
is the principal part of X on U with respect to φU , the discussion in the preceding
section 2.1 shows that a smooth curve γ : I → U is an integral curve of X on U if and
only if its local representation φU ◦ γ = (γ1, ..., γn) is a solution of the autonomous
n-dimensional ordinary differential equation x′(s) = FU (x(s)), which means that it
satisfies the system of ordinary differential equations

(γk)′(s) = F kU ((γ
1(s), ..., γn(s)), s ∈ I, k = 1, 2, ..., n.

Thus, locally on M the integral curves of smooth vector fields on M are the so-
lutions of autonomous ordinary differential equations. The standard existence and
uniqueness theorems combined with continuous and differentiable dependence on
initial conditions imply that if X is a smooth vector field onM , then for every point
p ∈ M there exist an open neighbourhood V of p in M , some ǫ > 0 and a smooth
map ΦV : (−ǫ, ǫ)× V →M such that ΦV (0, q) = q for every q ∈ V and

∂ΦV

∂t
(s, q) = X(ΦV (s, q))

for every (s, q) ∈ (−ǫ, ǫ) × V . Moreover, the map ΦV is unique, in the sense that
if W , δ > 0 and ΦW : (−δ, δ) ×W → M is another triple like V , ǫ and ΦV , then
ΦV = ΦW on (−ǫ, ǫ) × V ∩ (−δ, δ) ×W . Thus, for every q ∈ V the smooth curve
ΦV (·, q) : (−ǫ, ǫ) → M is the unique integral curve of X defined on the interval
(−ǫ, ǫ) and satisfying the initial condition ΦV (0, q) = q. The map ΦV is called the
local flow of X on the open set V .

The existence of maximal integral curves globally on M can be established in
the usual way.

Proposition 2.2.1. If X is a smooth vector field on M , then for every p ∈ M
there exist ap < 0 < bp and a maximal integral curve Φp : (ap, bp) → M of X with
Φp(00 = p in the sense that if γ : I → M is any other integral curve of X defined
on an open interval I ⊂ R which contains 0 such that γ(0) = p then I ⊂ (ap, bp)
and γ = Φp|I .

Proof. Let γj : Ij → M , j = 1, 2, be integral curves of X defined on open intervals
such that 0 ∈ I1 ∩ I2, with γ1(0) = γ(0) = p. Then, I1 ∩ I2 is a non-empty open
interval and the set I∗ = {s ∈ I1 ∩ I2 : γ1(s) = γ2(s)} is non-empty and closed in
I1 ∩ I2, by continuity. If s ∈ I∗, there exists δ > 0 such hat (s − δ, s + δ) ⊂ I1 ∩ I2.
The smooth curves βj : (−δ, δ) → M defined by βj(t) = γ(t + s), j = 1, 2, are
integral curves of X with β1(0) = γ1(s) = γ2(s) = β2(0). By uniqueness of



2.2. FLOWS OF SMOOTH VECTOR FIELDS 25

solutions, there exists some 0 < η ≤ δ such hat β1 = β2 on (−η, η). Therefore,
(s−η, s+η) ⊂ I∗, which shows that I∗ is open in I1∩ I2. By connectedness now we
must have I∗ = I1 ∩ I2. This shows that the union of all open intervals I containing
0 on which there is an integral curve γ : I → M of X with γ(0) = p, is an open
interval (ap, bp) on which a maximal integral curve Φp : (ap, bp) → M of X with
Φp(00 = p is well defined. �

Recall that the open interval on which a maximal integral curve is defined is
not necessarily the whole real line R. For instance, the maximal solution of the
autonomous ordinary differential equation x′(s) = (x(s))2 on R with initial condition
x(0) = 1 is Φ : (−∞, 1) → R given by the formula

Φ(s) =
1

1− s
.

Lemma 2.2.2. Let p ∈ M and Φp : (ap, bp) → M be a maximal integral curve
of a smooth vector field X om M with Φp(0) = p. If t ∈ (ap, bp) and q ∈ Φp(t),
then the maximal integral curve Φq with Φq(0) = q is defined on the open interval
(ap − t, bp − t) and Φq(s) = Φp(s+ t).

Proof. Since the smooth curve γ : (ap − t, bp − t) → M with γ(s) = Φp(s + t) is an
integral curve of X with γ(0) = q, the maximal integral curve Φq with Φq(0) = q is
defined at least on (ap − t, bp − t). Conversely, if the interval of definition of Φq is
the open interval (aq, bq), then aq ≤ ap − t, bp − t ≤ bq and δ : (aq + t, bq + t) →M
defined by δ(s) = Φq(s − t) is an integral curve with δ(0) = p. Hence ap ≤ aq + t,
bq + t ≤ ap. �

Using the notation of Lemma 2.2.2 for a smooth vector field X on M , we define

D =
⋃

p∈M
(ap, bp)× {p}

and Φ : D →M by Φ(s, p) = Φp(s), which has the following properties:
(i) Φ(0, p) = p for every p ∈M and
(ii) Φ(t,Φ(s, p)) = Φ(t + s, p) for every p ∈ M and s, t ∈ R such that at least one
side of this equality is defined.

Theorem 2.2.3. The set D is open in R×M and Φ : D →M is smooth.

Proof. For p ∈M we consider the set I∗ consisting of all ap < t < bp for which there
exist δ > 0 and an open neighbourhood U of p in M such that (t− δ, t+ δ)×U ⊂ D
and Φ is smooth on (t− δ, t+ δ)× U . Then, 0 ∈ I∗ and I∗ is an open set. Thus, it
suffices to prove that I∗ is closed in the interval (ap, bp), by connectedness. Suppose
that ap < s < bp lies in the closure of I∗. There exist an open neighbourhood
V of Φ(s.p) in M , some ǫ > 0 and a local flow ΦV : (−ǫ, ǫ) × V → M , so that

ΦV = Φ|(−ǫ,ǫ)×V . By continuity, there exists some t ∈ I∗ with |t− s| < ǫ

3
and

Φ(t, p) ∈ V . Since t ∈ I∗, there exist 0 < δ <
ǫ

3
and an open neighbourhood U of
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p in M such that (t − δ, t + δ) × U ⊂ D and Φ is smooth on (t − δ, t + δ) × U . By
continuity of Φ(t, .) : U →M and the fact that Φ(t, p) ∈ V , shrinking U if necessary,
we may take U so that Φ({t} × U) ⊂ V . So, from Lemma 2.2.2 we have

(−ǫ, ǫ) ⊂ (aΦ(t,q), bΦ(t,q)) = (aq − t, bq − t)

for every q ∈ U , which implies that (t − ǫ, t + ǫ) × U ⊂ D, and Φ is smooth on
(t− ǫ, t+ ǫ)× U , because

Φ(r, q) = ΦV (r − t,Φ(t, q))

for every (r, q) ∈ (t− ǫ, t+ ǫ)× U . Now

(s, p) ∈ (s − δ, s + δ) × U ⊂ (t− ǫ, t+ ǫ)× U ⊂ D,

which means that s ∈ I∗. �

The fact that D is an open subset of R ×M is equivalent to saying that the
function a : M → [−∞, 0) is upper semicontinuous and b : M → (0,+∞] is lower
semicontinuous.

The smooth map Φ : D → M is called the flow of the smooth vector field X.
The vector field X can be reconstructed from its flow by setting

X(p) =
∂Φ

∂t
(0, p)

for every p ∈ M . The image Φ((ap, bp) × {p}) of the maximal integral curve of X
through the point p ∈M is called the orbit of p with respect to X.

A smooth vector field X on M is called complete if every maximal integral curve
of X is defined on the whole real line R or D = R ×M , using the above notation.
In this case, the flow Φ : R ×M → M is a smooth action of the additive group of
real numbers R on M . For every t ∈ R the map Φt = Φ(t, .) : M →M is a smooth
diffeomorphism. Moreover, Φ0 = idM and Φt ◦Φs = Φt+s for every t, s ∈ R and the
family (Φt)t∈R is called the one-parameter group of diffeomorphisms defined by X.
For every t ∈ R and p ∈M we have

(Φt)∗p(X(p)) = (Φt)∗p

(
∂Φ

∂t
(0, p)

)
=
∂(Φt ◦Φp)

∂t
(0).

However,
(Φt ◦Φp)(s) = Φ(t,Φ(s, p)) = Φ(t+ s, p) = Φ(s,Φ(t, p))

for every s ∈ R and therefore

(Φt)∗p(X(p)) = X(Φt(p)).

This means that X is Φt-invariant for every t ∈ R.
In case the smooth vector field X is not complete, the smooth diffeomorphisms

Φt are defined on suitable open subsets of M .
The integral curves of a smooth vector field X which are not defined on the

whole real line must necessarily explode at infinity. This is made more precise in
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the following.

Lemma 2.2.4. Let X be a smooth vector field with flow Φ : D → M and p ∈ M .
If bp < +∞, then for every compact set K ⊂ M there exists 0 < T < bp such that
Φ(t, p) ∈M \K for every T < t < bp.

Proof. For every q ∈ K there exist δq > 0 and an open neighbourhood Vq of q
such that (−δq, δq) × Vq ⊂ D. By compactness of K, there exist q1,..., qm ∈ K,
for some m ∈ N, such that K ⊂ Vq1 ∪ · · · ∪ Vqm . If now δ = min{δq1 , ..., δqm}, then
(−δ, δ) ×K ⊂ D. Thus, if there exists a sequence tk ր bp such that Φ(tk, p) ∈ K
for every k ∈ N, we arrive at the contradiction 0 < δ < bp − tk for all k ∈ N. �

This implies the following important fact.

Corollary 2.2.5. Every smooth vector field on a compact smooth manifold is
complete. �

It is possible to find all integral curves of a given smooth vector field only in very
rare cases. The aim of the qualitative (or geometric) theory of dynamical systems
is to find the distribution of the time oriented orbits of vector fields studying their
asymptotic behaviour. In this point of view, we may replace X with f · X where
f : M → (0,+∞) is a smooth function, because both vector fields have the same
orbits. Indeed, if Φ : D → M is the flow of X, for every p ∈ M the smooth map
h : (ap, bp) → R defined by

h(s, p) =

∫ s

0

1

f(Φ(t, p))
dt

is strictly increasing and h((ap, bp)) is an open interval. Also, (h−1)′(s) =
f(Φ(h−1(s)), p). It follows now that the maximal integral curve of f ·X through p
is just Φp ◦ h−1 : h((ap, bp)) → M . In other words, the maximal integral curves of
f ·X are reparametrizations of the maximal integral curves of X.

The following can be obtained as a consequence of the existence of smooth
partitions of unity.

Theorem 2.2.6. If X is a smooth vector field of a smooth manifold M , then there
exists a smooth function f : M → (0, 1] such that the smooth vector field f · X is
complete.

Proof. Let Φ : D → M be the flow of X as above. Since D is an open subset of
R×M , the function g :M → (0, 1] defined by

g(p) = min{1,−ap, bp}

is lower semicontinuous. Thus, every p ∈ M has an open neighbourhood Wp such

that g(q) >
1

2
g(p) for every q ∈ Wp. By Theorem 1.4.4, there exists a smooth
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partition of unity {fp : p ∈M} subordinated to the open cover {Wp : p ∈M}. The
function f :M → (0, 1] defined by

f(q) =
1

2

∑

p∈M
g(p)fp(q)

is smooth and for every q ∈M there exist p1,..., pk ∈M , for some k ∈ N, such that
q ∈ suppfp1 ∩ · · · ∩ suppfpk and fp(q) = 0 for p 6= p1, ..., pk. It follows that

f(q) =
1

2

k∑

j=1

g(pj)fpj(q) <
k∑

j=1

g(q)fpj(q) = g(q) = min{1,−aq, bq}

for every q ∈M .

Let now ψ : D → R be the smooth function defined by

ψ(s, p) =

∫ s

0

1

f(Φ(t, p))
dt.

The smooth map h : D → R ×M with h(s, p) = (ψ(s, p), p) is obviously injective,
since

∂ψ

∂t
(s, p) =

1

f(Φ(s, p))
≥ 1.

Moreover, ψ(s, p) ≥ s for 0 ≤ s < bp and ψ(s, p) ≤ s for ap < s ≤ 0. Thus,
lim
s→bp

ψ(s, p) = +∞, if bp = +∞. In case bp < +∞, for every 0 < s < bp we have

ψ(s, p) >

∫ s

0

1

bΦ(t,p)
dt =

∫ s

0

1

bp − t
dt = − log

(
1− s

bp

)

and therefore again lim
s→bp

ψ(s, p) = +∞. Similarly, lim
s→ap

ψ(s, p) = −∞ for all p ∈M .

This shows that h is surjective.

Since h is a bijection and its derivative h∗(s,p) is a linear isomorphism at every
point (s, p) ∈ D, it follows from the Inverse Map Theorem that h is a smooth
diffeomorphism.

D R×M

M

h

Φ Ψ

The proof is now concluded by the observation that Ψ = Φ ◦ h−1 : R×M →M
is the flow of f ·X, because

∂Ψ

∂t
(0, p) = f(Φ(h−1(0, p))) · ∂Φ

∂t
(h−1(0, p)) = f(p) · ∂Φ

∂t
(0, p) = f(p) ·X(p)

for every p ∈M . �
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2.3 The Lie bracket

Let M be a smooth n-manifold and let X be a smooth vector field on M . At every
point p ∈ M the value X(p) ∈ TpM of X is a derivation on the algebra of germs
Gp(M) of smooth functions defined on neighbourhoods of p and

X(p)(f) = lim
t→0

f(Φ(t, p))− f(p)

t

for every smooth function f which is defined on some open neighbourhood of p in
M , where Φ is the flow of X.

Apart from functions, it is possible to define a special kind of derivation of
another smooth vector field Y with respect to X, by transporting Y along the
integral curves of X by the flow of X. The result can be defined in a purely algebraic
way as follows.

Let p ∈ M . If f ∈ C∞(M,p), then Y f(q) = Y (q)(f) is a smooth function
Y f ∈ C∞(M,p) for every Y ∈ X (M). We define

[X,Y ](p)(f) = X(p)(Y f)− Y (p)(Xf)

for every f ∈ C∞(M,p) and X, Y ∈ X (M). We observe that

[X,Y ](p)(f · g) = X(p)(f · Y g + g · Y f)− Y (p)(f ·Xf + g ·Xf)

= f(p)X(p)(Y g) + Y (p)(g)X(p)(f) + Y (p)(f)X(p)(g) + g(p)X(p)(Y f)

−f(p)Y (p)(Xg) − Y (p)(f)X(p)(g) − Y (p)(g)X(p)(f) − g(p)Y (p)(Xf)

= f(p) · [X,Y ](p)(g) + g(p) · [X,Y ](p)(f).

Therefore, [X,Y ](p) is a derivation of the algebra of germs Gp(M) and so is a tangent
vector in TpM .

Let (U, φ) be a smooth chart of M with φ = (x1, ..., xn). Then

[
∂

∂xi
,
∂

∂xj

]
=

∂

∂xi

(
∂

∂xj

)
− ∂

∂xj

(
∂

∂xi

)
= 0

on U for all i, j = 1, 2, ..., n. If now X, Y ∈ X (U) and

X =

n∑

i=1

Xi ∂

∂xi
, Y =

n∑

j=1

Y j ∂

∂xj
,

then for every p ∈ U and f ∈ C∞(M,p) we have

[X,Y ](p)(f) =

n∑

i,j=1

Xi(p)

(
∂

∂xi

)

p

(
Y j ∂f

∂xj

)
−

n∑

i,j=1

Y j(p)(p)

(
∂

∂xj

)

p

(
Xi ∂f

∂xi

)

=
n∑

i,j=1

Xi(p)
∂Y j

∂xi
(p)

∂f

∂xj
(p) +

n∑

i,j=1

Xi(p)Y j(p)
∂

∂xi

(
∂f

∂xj

)
(p)
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−
n∑

i,j=1

Y j(p)
∂Xi

∂xj
(p)

∂f

∂xi
(p)−

n∑

i,j=1

Y j(p)Xi(p)
∂

∂xj

(
∂f

∂xi

)
(p)

=
n∑

j=1

( n∑

i=1

Xi(p)
∂Y j

∂xi
(p)− Y i(p)

∂Xj

∂xi
(p)

)
∂f

∂xj
(p).

This means that

[X,Y ] =

n∑

j=1

( n∑

i=1

Xi ∂Y
j

∂xi
− Y i ∂X

j

∂xi

)
∂

∂xj

on U .
The above show that [X,Y ] ∈ X (M) for every X, Y ∈ X (M), and is called the

Lie derivative of Y with respect to X. The so defined function

[., .] : X (M)× X (M) → X (M)

is called the Lie bracket and has the following rather obvious properties:
(i) It is bilinear and alternating.
(ii) It satisfies the Jacobi identity, that is

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0

for every X, Y , Z ∈ X (M).
(iii) [X, fY ] = f [X,Y ] +Xf · Y for every f ∈ C∞(M) and X, Y ∈ X (M).
(iv) If F : M → M is a smooth diffeomorphism, then [F∗X,F∗Y ] = F∗[X,Y ] for
every X, Y ∈ X (M). More generally, letM be a smooth n-manifold, L be a smooth
k-manifold, k ≤ n, and let g : L→M be an injective immersion. Let X, Y ∈ X (M)
be such that X(g(x)), Y (g(x)) ∈ g∗x(TxL) for every x ∈ L. Then, there exist unique
X̃(x), Ỹ (x) ∈ TxL such that g∗x(X̃(x)) = X(g(x)) and g∗x(Ỹ (x)) = Y (g(x)) and it
follows from the local presentation of immersions provided by the Constant Rank
Theorem 1.3.2 that X̃ , Ỹ ∈ X (L). Now we have

g∗x([X̃, Ỹ ](x)) = [X,Y ](g(x))

for every x ∈ L. Indeed, let x ∈ L and let f be a smooth function defined on some
open neighbourhood of g(x). Note first that the chain rule implies that

Ỹ (f ◦ g) = Y f ◦ g.

From the definitions now we have

g∗x([X̃, Ỹ ](x))f = [X̃, Ỹ ](x)(f ◦ g) = X̃(x)(Ỹ (f ◦ g))− Ỹ (x)(X̃(f ◦ g))

= X̃(x)(Y f ◦ g) − Ỹ (x)(Xf ◦ g) = X(g(x))(Y f)− Y (g(x))(Xf) = [X,Y ](g(x))f.

The structure on a vector space E imposed by an alternating, bilinear map
[., .] : E × E → E, which satisfies the Jacobi identity is called a Lie algebra. The
following formula reveals the true nature of the Lie bracket.
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Theorem 2.3.1. Let M be a smooth n-manifold and X, Y ∈ X (M). If Φ : D →M
is the flow of X, then

[X,Y ](p) = lim
t→0

1

t

(
(Φ−t)∗Φ(t,p)(Y (Φ(t, p))− Y (p)

)

for every p ∈M .

For the proof we shall need the following technical lemma.

Lemma 2.3.2. Let U , V ⊂ M be two open neighbourhoods of the point p ∈ M
for which there exists ǫ > 0 such that Φ((−ǫ, ǫ) × V ) ⊂ U . Then, for every smooth
function f : U → R there exists a smooth function g : (−ǫ, ǫ) × V → R with the
following properties:
(i) f(Φ(−t, q)) = f(q)− tg(t, q) for every (t, q) ∈ (−ǫ, ǫ)× V .
(ii) X(q)(f) = g(0, q) for every q ∈ V .

Proof. If h : (−ǫ, ǫ) × V → R is the smooth function defined by h(s, q) =
f(Φ(−s, q))− f(q), and if we define g : (−ǫ, ǫ)× V → R by

g(t, q) = −
∫ 1

0

∂h

∂s
(ts, q)ds,

then

−tg(t, q) =
∫ t

0

∂h

∂s
(s, q)ds = h(t, q).

By continuity, we also have

g(0, q) = lim
t→0

g(t, q) = lim
t→0

f(Φ(−t, q))− f(q)

−t = X(q)(f). �

Proof of Theorem 2.3.1. Let f : U → R be a smooth function defined on an open
neighbourhood U of the point p ∈ M . There exist an open neighbourhood V of p
and ǫ > 0 such that Φ((−ǫ, ǫ)× V ) ⊂ U . Let g be the smooth function supplied by
Lemma 2.3.2 and let gt = g(t, .). Then, Xf = g0 and

lim
t→0

1

t

(
(Φ−t)∗Φ(t,p)(Y (Φ(t, p))− Y (p)

)
(f)

= lim
t→0

1

t

[
f∗p
(
(Φ−t)∗Φ(t,p)(Y (Φ(t, p)))

)
− Y (p)(f)

]

= lim
t→0

1

t

[
Y (Φ(t, p))(f ◦ Φ−t)− Y (p)(f)

]

= lim
t→0

1

t

[
Y (Φ(t, p))(f − tgt)− Y (p)(f)

]

= lim
t→0

1

t

[
Y (Φ(t, p))(f)− Y (p)(f)

]
− lim
t→0

Y (Φ(t, p))(gt)
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= lim
t→0

1

t

[
Y f(Φ(t, p))− Y f(p)

]
− Y (p)(Xf)

= X(p)(Y f)− Y (p)(Xf) = [X,Y ](p)(f). �

Definition 2.3.3. Two complete smooth vector fields X, Y on a smooth manifold
M commute if [X,Y ] = 0.

This terminology is justified by the following.

Proposition 2.3.4. Let X and Y be two smooth vector fields on a smooth manifold
M . Let (Φt)t∈R be the one-parameter group of smooth diffeomorphisms of M defined
by the flow of X and (Ψt)t∈R be the one-parameter group of smooth diffeomorphisms
defined by the flow of Y . Then [X,Y ] = 0 if and only if Φt ◦Ψs = Ψs ◦Φt for every
t, s ∈ R.

Proof. If Φt ◦ Ψs = Ψs ◦ Φt for every t, s ∈ R, differentiating with respect to s at
0, we get (Φt)∗Y = Y for every t ∈ R. It follows now from Theorem 2.3.1 that
[X,Y ] = 0.

Conversely, let [X,Y ] = 0 and let p ∈M and s ∈ R. The velocity of the smooth
curve γ : R → TΨs(p)M defined by γ(t) = (Φ−t)∗Φt(Ψs(p))(Y ((Φt(Ψs(p)))) is

γ̇(t) = lim
h→0

1

h

[
(Φ−t+h)∗Φt+h(Ψs(p))(Y (Φt+h(Ψs(p)))− (Φ−t)∗Φt(Ψs(p))(Y ((Φt(Ψs(p))))

]

= (Φ−t)∗Φt(Ψs(p))

(
lim
h→0

1

h

[
(Φ−h)∗Φt+h(Ψs(p))(Y (Φh(Φt(Ψs(p))))) − Y (Φt(Ψs(p)))

])

= (Φ−t)∗Φt(Ψs(p))([X,Y ](Φt(Ψs(p)))) = 0.

Thus, γ is constant, which means that (Φ−t)∗Φt(Ψs(p))(Y ((Φt(Ψs(p)))) = Y (Ψs(p))
or equivalently

Y (Φt(Ψs(p))) = (Φt)∗Ψs(p)(Y (Ψs(p)))

for every p ∈ M and t, s ∈ R. In other words, Y is Φt-invariant for every t ∈ R.
This implies that Φt ◦ Ψp is an integral curve of Y and since (Φt ◦ Ψp)(0) = Φt(p),
we must necessarily have Φt ◦Ψp = ΨΦt(p), hence Φt(Ψs(p)) = Ψs(Φt(p)). �

If X and Y are two commuting complete smooth vector fields on a smooth
manifold M with corresponding one-parameter groups of smooth diffeomorphisms
(Φt)t∈R and (Ψt)t∈R, respectively, then F : R2 ×M →M defined by

F (t, s, p) = (Φt ◦Ψs)(p)

is a smooth action of the abelian group (R2,+) onM . More generally, a finite family
of mutually commuting complete smooth vector fields X1,..., Xk with corresponding
one-parameter groups of smooth diffeomorphisms (Φ1

t )t∈R,..., (Φ
k
t )t∈R, respectively,

defines a smooth action F : Rk × M → M of the abelian group (Rk,+) by the
formula

F (t1, ..., tk, p) = (Φ1
t1 ◦ · · ·Φ

k
tk
)(p).
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2.4 Exercises

1. Let M be a smooth n-manifold, A = {(Ui, φi) : i ∈ I} be a smooth atlas of M
and Ā = {(π−1(Ui), φ̄i) : i ∈ I} be the corresponding smooth atlas of TM , where
π : TM →M is the tangent bundle projection. Prove that

detD(φ̄i ◦ φ̄−1
j )(x, v) > 0

for every i, j ∈ I with Ui ∩ Uj 6= ∅ and (x, v) ∈ φj(Ui ∩ Uj)× Rn.

2. Let M be a smooth manifold and G be a group of diffeomorphisms of M which
acts properly discontinuously on M . If X ∈ X (M) and g∗X = X for every g ∈ G,
prove that there exists a unique X̃ ∈ X (M/G) such that p∗p(X(p)) = X̃(π(p)))
for every p ∈ M , where π : M → M/G is the quotient map. Construct a smooth
vector field on the real projective plane RP 2, which vanishes at exactly one point
and every other maximal integral curve is periodic.

3. A smooth n-manifoldM is called parallelizable if there are X1,X2,...,Xn ∈ X (M)
such that {X1(p),X2(p), ...,Xn(p)} is a basis of TpM for every p ∈ M . Prove that
M is parellelizable if and only if its tangent bundle is trivial, which means that there
exists a smooth diffeomorphism f : TM →M ×Rn such that the following diagram
commutes

TM M × Rn

M

f

π projection

and f maps linearly TpM onto {p} × Rn for every p ∈ M . Prove that the circle S1

and the n-torus T n are parallelizable.

4. On R2n the nowhere vanishing smooth vector field

X = x2
∂

∂x1
− x1

∂

∂x2
+ ...+ x2n

∂

∂x2n−1
− x2n−1 ∂

∂x2n

is tangent to S2n−1. In case n = 2, complete this vector field with two other vector
fields to prove that the 3-sphere S3 are parallelizable.

5. Let M be a smooth manifold and f : M → M be a diffeomorphism. If
X ∈ X (M) has flow Φ : D → M , prove that the flow Ψ of f∗X is given by the
formula Ψ(t, f(p)) = f(Φ(t, p)).

6. Let h : [0, 1] → [0, π] be a smooth function with h−1(0) = [0, 1/5] ∪ [4/5, 1] and
h−1(π/2) = [2/5, 3/5]. We extend h on R periodically by h(x + 1) = h(x). Prove
that the smooth vector fields

X(t) = t2 cos2 h(t)
d

dt
and Y (t) = t2 sin2 h(t)

d

dt
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on R are complete, but X + Y is not complete.

7. Let M be a smooth manifold, X ∈ X (M) with flow φ : D →M , where

D =
⋃

p∈M
(ap, bp)× {p}.

If f : M → (0, 1] is a smooth function such that f(p) < min{−ap, bp} for every
p ∈M , prove that the smooth vector field f ·X is complete.

8. On R3 we consider the smooth vector fields

X = z
∂

∂y
− y

∂

∂z
, Y = x

∂

∂z
− z

∂

∂x
, Z = y

∂

∂x
− x

∂

∂y
.

Prove that the map g : R3 → X (R3) with

g(a, b, c) = aX + bY + cZ

is a linear monomorphism which has the additional property g(A×B) = [g(A), g(B)]
for every A, B ∈ R3, where × is the usual exterior product on R3.

9. LetM be a smooth manifold and X, Y ∈ X (M) be complete with flows Φ and Ψ,
respectively. If there exists a smooth function h : M → R such that [X,Y ] = hX,
prove

(Ψt ◦ Φs)(p) = (ΦTp(t,s) ◦Ψt)(p)

for every p ∈M , t, s ∈ R, where Tp : R× R → R is the smooth function

Tp(t, s) =

∫ s

0

(
exp
(∫ t

0
h(ψτ (φσ(p)))dτ

))
dσ.



Chapter 3

Riemannian manifolds

3.1 Connections

A straight line segment in euclidean n-space Rn is the unique piecewise smooth
curve of minimum length between its endpoints. Equivalently, straight lines in Rn

are the smooth curves whose acceleration vanishes identically. One way to define
a notion of ”straight line” on a smooth manifold is by defining first the notion of
acceleration. The difficulty now lies in the fact that if M is a smooth manifold,
I ⊂ R is an open interval and γ : I → M is a smooth curve, the velocity vectors
γ̇(t) and γ̇(s) belong to different vector spaces for t 6= s and their difference has no
meaning. This difference can become meaningful if we have a way to connect the
tangent spaces of M at the points γ(t), t ∈ I. This requires the endowment of M
with an extra structure. This structure can be described elegantly in an algebraic
way.

Definition 3.1.1. A (linear) connection on a smooth n-manifold M is a map

∇ : X (M)× X (M) → X (M)

with the following properties, writing ∇XY instead of ∇(X,Y ):
(i)∇f1X1+f2X2Y = f1∇X1Y + f2∇X2Y , for every f1, f2 ∈ C∞(M) and X1, X2,
Y ∈ X (M).
(ii) ∇X(a1Y1 + a2Y2) = a1∇XY1 + a2∇XY2 for every a1, a2 ∈ R and X, Y1,
Y2 ∈ X (M).
(iii) ∇X(fY ) = f∇XY +Xf · Y for every f ∈ C∞(M) and X, Y ∈ X (M).

The smooth vector field ∇XY is called the covariant derivative of Y in the
direction of X. Some immediate consequences of the above definition are given in
the following lemmas.

Lemma 3.1.2. If ∇ is a connection on a smooth n-manifold M and p ∈ M , then
for every X, Y ∈ X (M) the vector (∇XY )(p) ∈ TpM depends only on the values of
X and Y in arbitrarily small open neighbourhoods of p.

35
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Proof. By bilinearity, it suffices to prove that (∇XY )(p) = 0 in case there exists
an open neighbourhood V of p such that X|V = 0 or Y |V = 0. By Corollary 1.4.5,
there exists a smooth function f :M → [0, 1] such that f(p) = 1 and suppf ⊂ V .

If Y |V = 0, then fY = 0 on M and so

0 = ∇X(fY )(p) = f(p)(∇XY )(p) + (Xf)(p) · Y (p) = (∇XY )(p).

If X|V = 0, we have fX = 0 on M , and

0 = (∇fXY )(p) = f(p)(∇XY )(p) = (∇XY )(p). �

Lemma 3.1.3. If ∇ is a connection on a smooth n-manifold M and p ∈ M , then
for every X, Y ∈ X (M) the vector (∇XY )(p) ∈ TpM depends only on the tangent
vector X(p) and the values of Y in arbitrarily small open neighbourhoods of p.

Proof. It suffices to prove that (∇XY )(p) = 0 if X(p) = 0. In view of the preceding
Lemma 3.1.2, we can work locally in the domain of a smooth chart (U, φ) of M with
p ∈ U . If φ = (x1, ..., xn), there exist X1,..., Xn ∈ C∞(U) such that

X|U =
n∑

k=1

Xk ∂

∂xk
.

If X(p) = 0, we have Xk(p) = 0 for 1 ≤ k ≤ n and

(∇XY )(p) =
n∑

k=1

Xk(p)
(
∇ ∂

∂xk
Y
)
(p) = 0. �

According to the above Lemma 3.1.3, it is legitimate to write henceforth ∇X(p)Y
instead of (∇XY )(p). The same argument of the proof shows that if

S : X (M)× · · · × X (M) → X (M)

is a C∞(M)-m-multilinear map, then for every X1,..., Xm ∈ X (M) and p ∈ M the
value S(X1, ...,Xm)(p) depends only on the values X1(p),..., Xm(p) and so we can
write S(X1(p), ...,Xm(p)) instead.

Lemma 3.1.4. If ∇ is a connection on a smooth n-manifold M and p ∈ M , then
for every X, Y ∈ X (M) the vector (∇XY )(p) ∈ TpM depends only on the tangent
vector X(p) and the values Y (γ(t)) for any smooth curve γ : (−ǫ, ǫ) → M , ǫ > 0,
such that γ(0) = p and γ̇(0) = X(p).

Proof. According to the preceding Lemmas 3.1.2 and 3.1.3, we may assume that
γ((−ǫ, ǫ)) ⊂ U for some smooth chart (U, φ) of M with p ∈ U . Let φ = (x1, ..., xn).
There exist Y 1,..., Y n ∈ C∞(U) such that

Y |U =

n∑

k=1

Y k ∂

∂xk
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and

∇X(p)Y =

n∑

k=1

Y k(p)∇X(p)
∂

∂xk
+

n∑

k=1

(Y k ◦ γ)′(0)
(

∂

∂xk

)

p

.

If Y (γ(t)) = 0 for all |t| < ǫ, then obviously ∇X(p)Y = 0. �

We can now find a local formula for a given connection ∇ in the domain of a
smooth chart (U, φ) of M with φ = (x1, ..., xn). There exist unique Γkij ∈ C∞(U),
1 ≤ i, j, k ≤ n, such that

∇ ∂

∂xi

∂

∂xj
=

n∑

k=1

Γkij
∂

∂xk

for every 1 ≤ i, j ≤ n. The smooth functions Γkij are called the Christoffel symbols
of ∇ with respect to the smooth chart (U, φ). If now

X =

n∑

k=1

Xk ∂

∂xk
and Y =

n∑

k=1

Y k ∂

∂xk
,

a routine computation shows that on U we have

∇XY =
n∑

k=1

(
X(Y k) +

n∑

i,j=1

ΓkijX
iY j

)
∂

∂xk
.

Conversely, given smooth functions Γkij : U → R, 1 ≤ i, j, k ≤ n, the above
formula defines a connection on U , because for every f ∈ C∞(U) we have

∇X(fY ) =
n∑

k=1

(
X(fY k) +

n∑

i,j=1

ΓkijX
ifY j

)
∂

∂xk

=
n∑

k=1

(
Xf · Y k + fX(Y k) + f

n∑

i,j=1

ΓkijX
iY j

)
∂

∂xk
= Xf · Y + f∇XY.

The connection on Rn with Christoffel symbols identically equal to zero is called
the euclidean connection and is given by the formula

∇XY =

n∑

k=1

X(Y k)
∂

∂xk
.

In other words, the covariant derivative of Y in the direction of X with respect to
the euclidean connection is the directional derivative of Y in the direction of X.

Example 3.1.5. A (n − 1)-dimensional smooth submanifold M of Rn is usually
called hypersurface. We identify the tangent space TpM at a point p ∈ M with
its image under the derivative of the inclusion and consider it a vector subspace of
TpR

n. The euclidean connection ∇ on Rn induces a connection on any hypersurface
M in Rn. We observe first that if p ∈ M and (U, φ) is a M -straightening chart of
Rn with φ(U ∩M) ⊂ Rn−1 × {0} and p ∈ U ∩M , then for every X ∈ X (M) there
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exists an extension X̃ ∈ X (U), that is X̃|U∩M = X|U∩M . For every X, Y ∈ X (M)
we put now

∇X(p)Y = πp(∇X(p)Ỹ )

where πp : TpR
n → TpM is the projection with respect to the orthogonal splitting

TpR
n = TpM ⊕ (TpM)⊥. By Lemma 3.1.4, this definition does not depend on the

choice of the extension Ỹ . Obviously, ∇ is a connection on M and is called the
euclidean connection of the hypersurface M .

Proposition 3.1.6. On every smooth manifold M there are connections.

Proof. From the above, there are connections locally onM . Let A be a smooth atlas
of M . For every (U, φU ) ∈ A there is a connection ∇U on U . Let {fU : (U, φU ) ∈ A}
be a smooth partition of unity subordinated to the open cover {U : (U, φU ) ∈ A} of
M . Then, the formula

∇XY =
∑

(U,φU )∈A
fU∇U

XY

for X, Y ∈ X (M), defines a connection on M because if f ∈ C∞(M), we have

∇X(fY ) =
∑

(U,φU )∈A
fU∇U

X(fY ) =
∑

(U,φU )∈A
fU(Xf · Y + f∇U

XY )

=

( ∑

(U,φU )∈A
fU

)
Xf · Y + f

∑

(U,φU )∈A
fU∇U

XY = Xf · Y + f∇XY. �

In view of Lemma 3.1.4, given a connection it is possible to define a covariant
differentiation of smooth vector fields along a smooth curve. Let I ⊂ R be an open
interval and γ : I → M be a smooth curve. The set X (γ) of smooth vector fields
along γ is a vector space.

Proposition 3.1.7. Let ∇ be a connection on a smooth n-manifold M . For every
smooth curve γ : I →M there exists a unique linear operator

D

dt
: X (γ) → X (γ)

with the following properties:

(i)
D

dt
(fX) = f ′X + f

DX

dt
for every X ∈ X (γ) and smooth function f : I → R.

(ii) If X ∈ X (γ) has a smooth extension X̃ ∈ X (V ) on an open set V which contains
γ(I), then

DX

dt
(t) = ∇γ̇(t)X̃, t ∈ I.

The vector field
DX

dt
along γ is called the covariant derivative of X along γ.

Proof. We shall prove uniqueness first. As in the proof of Lemma 3.1.2 we see

that for every t0 ∈ I the value
DX

dt
(t0) depends only on the values of X on an
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arbitrarily small open interval with center t0. Let (U, φ) be a smooth chart of M
with φ = (x1, ..., xn) and γ(t0) ∈ U . There exist ǫ > 0 such that γ((t0−ǫ, t0+ǫ)) ⊂ U
and smooth functions X1,..., Xn : (t0 − ǫ, t0 + ǫ) → R such that

X(t) =
n∑

k=1

Xk(t)

(
∂

∂xk

)

γ(t)

for |t− t0| < ǫ. By linearity and properties (i), (ii) we compute

DX

dt
(t) =

n∑

k=1

(Xk)′(t)

(
∂

∂xk

)

γ(t)

+

n∑

k=1

Xk(t)∇γ̇(t)
∂

∂xk

=
n∑

k=1

(
(Xk)′(t) +

n∑

i,j=1

Γkij(γ(t))(γ
i)′(t)Xj(t)

)(
∂

∂xk

)

γ(t)

,

where (φ◦γ)(t) = (γ1(t), ..., γn(t)) for every |t− t0| < ǫ. This proves the uniqueness.

The existence follows covering γ(I) by the domains of smooth charts of M

and defining
D

dt
locally by the above formula. By uniqueness, the local definitions

coincide on overlapping intervals. �

In the rest of the section we shall see that the algebraic definition of a connection
indeed gives a mechanism of ”connecting” tangent spaces at various points of a
smooth manifold. Let ∇ be a connection on a smooth n-manifold M .

Definition 3.1.8. If γ : I → M is a smooth curve defined on an open interval

I ⊂ R, a smooth vector field X ∈ X (γ) is said to be parallel along γ, if
DX

dt
= 0 on

I. A smooth vector field X ∈ X (M) is called parallel if ∇YX = 0 on M for every
Y ∈ X (M).

Example 3.1.9. The parallel vector fields on Rn with respect to the euclidean
connection are the constant ones, that is the vector fields

n∑

k=1

ak
∂

∂xk

for a1,..., an ∈ R.

Let (U, φ) be a smooth chart of M with φ = (x1, ..., xn) and let γ : I → U be
a smooth curve with local representation φ ◦ γ = (γ1, ..., γn). From the formula of
the covariant differentiation along γ derived in the proof of Proposition 3.1.7 follows
that a smooth vector field

X(t) =

n∑

k=1

Xk(t)

(
∂

∂xk

)

γ(t)

, t ∈ I
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along γ is parallel if and only if the smooth functions X1,..., Xn satisfy the system
of linear ordinary differential equations

(Xk)′(t) = −
n∑

i,j=1

Γkij(γ(t))(γ
i)′(t)Xj(t), t ∈ I, 1 ≤ k ≤ n.

From the existence and uniqueness of solutions for linear ordinary differential
equations we have that for every t0 ∈ I and every v ∈ Tγ(t0)M there exists a unique
parallel vector field X along γ satisfying the initial condition X(t0) = v.

Proposition 3.1.10. Let I ⊂ R be an open interval and γ : I → M be a smooth
curve. For every t0 ∈ I and every v ∈ Tγ(t0)M there exists a unique parallel vector
field X along γ such that X(t0) = v.

Proof. From the above there exists b > t0 such that there exists a unique parallel
vector field along γ|[t0,b] with X(t0) = v. It suffices to prove that the supremum T
of all such b does not belong to I. Suppose that it does. Choosing a smooth chart
(V, ψ) ofM with γ(T ) ∈ V , there exists δ > 0 such that γ((T −δ, T +δ)) ⊂ V . From
the above, there exists a unique parallel vector field X̃ along γ|(T−δ,T+δ) satisfying
the initial condition X̃(T − δ

2
) = X(T − δ

2
). From the uniqueness of solutions we

get X̃ = X on (T − δ, T ) and so X has a smooth extension on [t0, T + δ). This
contradicts the definition of T . �

Let I ⊂ R be an open interval and γ : I →M be a smooth curve. The preceding
Proposition 5.1.9 implies that for every a, b ∈ I with a < b there is a well defined
map τb,a : Tγ(a)M → Tγ(b)M where τb,a(u) is the value X(b) of the unique parallel
vector field X along γ with X(a) = u. Since the parallel vector fields along γ
are the solutions of a system of linear ordinary differential equations, τb,a is a
linear isomorphism and it is called the parallel translation along γ form γ(a) to γ(b).

Theorem 3.1.11. If I ⊂ R be an open interval and γ : I →M is a smooth curve,
then for every X ∈ X (γ) and s ∈ I we have

DX

dt
(s) = lim

h→0

1

h
[τs,s+h(X(s + h)) −X(s)].

Proof. It suffices to prove the assertion in case there exists a smooth chart (U, φ)
and γ(I) ⊂ U . Since the parallel vector fields along γ are the solutions of a system
of linear ordinary differential equations, there are parallel vector fields E1,..., En
along γ such that {E1(t), ..., En(t)} is a basis of Tγ(t)M for every t ∈ I. Now there
are unique smooth functions f1,..., fn : I → R such that

X(t) =

n∑

k=1

fk(t)Ek(t), t ∈ I.

Therefore,

DX

dt
=

n∑

k=1

f ′k · Ek.
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On the other hand, τs,s+h(Ek(s + h)) = Ek(s), because Ek is parallel along γ,
1 ≤ k ≤ n, and hence

τs,s+h(X(s+ h)) −X(s) =

n∑

k=1

fk(s+ h)τs,s+h(Ek(s + h))−
n∑

k=1

fk(s)Ek(s)

=

n∑

k=1

(fk(s + h)− fk(s))Ek(s).

It follows that

lim
h→0

1

h
[τs,s+h(X(s+h))−X(s)] = lim

h→0

n∑

k=1

fk(s+ h)− fk(s)

h
·Ek(s) =

n∑

k=1

f ′k(s) ·Ek(s). �

3.2 Geodesics and exponential map

Let M be a smooth n-manifold and ∇ a connection on M . The acceleration of a
smooth curve γ : I → M , where I ⊂ R is an open interval, is the smooth vector

field
Dγ̇

dt
along γ.

Definition 3.2.1. A smooth curve γ : I →M , where I ⊂ R is an open interval, is

called geodesic of the connection ∇ if
Dγ̇

dt
= 0.

Note that the differential equation of geodesics is independent of local coordi-
nates of M . Its expression in the local coordinates of a smooth chart (U, φ) of M
with φ = (x1, ..., xn), where φ ◦ γ = (γ1, ..., γn), is

(γk)′′(t) +
n∑

i,j=1

Γkij(γ(t))(γ
i)′(t)(γj)′(t) = 0, 1 ≤ k ≤ n.

In the particular case of the euclidean connection on Rn, where the Christoffel
symbols vanish, it follows that the geodesics are the euclidean straight lines.

The geodesics in U are the projections under the tangent bundle projection
π : TM →M of the integral curves of the smooth vector field

n∑

k=1

vk
∂

∂xk
+

n∑

k=1

(
−

n∑

i,j=1

Γkijv
ivj
)

∂

∂vk

on π−1(U), where φ̃ = (x1, ..., xn, v1, ..., vn) is the smooth chart of TM corre-
sponding to (U, φ). Since the differential equation of geodesics does not depend
on smooth charts, we conclude that this is the local representation in the smooth
chart (π−1(U), φ̃) of a smooth vector field G which is globally defined on TM and
is called the geodesic vector field of the connection ∇. Its flow is called the geodesic
flow of ∇.

The homogeneity of the differential equation of geodesics implies the following
property.
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Lemma 3.2.2. If γ : I → M is the geodesic of the connection ∇ defined on the
open interval I and satisfying the initial conditions γ(0) = p and γ̇(0) = v, then for
every λ ∈ R\{0} the maximal geodesic γλ satisfying the initial conditions γλ(0) = p

and γ̇λ(0) = λv is defined on the open interval
1

λ
I and is given by γλ(t) = γ(λt).

Proof. Indeed γ̇λ = λγ̇ and therefore
Dγ̇λ
dt

= λ2
Dγ̇

dt
. Hence γλ is a geodesic if and

only if γ is. �

In the rest of the section we fix a connection ∇ on a smooth n-manifold M .
Let E ⊂ TM denote the set of all points (p, v) ∈ TM such that the geodesic γ(p,v)
from p with initial velocity v is defined on the unit interval [0, 1]. Let exp : E →M
be the smooth map exp(p, v) = γ(p,v)(1). From Lemma 3.2.2, for every p ∈ M
the set Ep = E ∩ TpM is an open neighbourhood of 0 ∈ TpM and the map
expp(v) = exp(p, v) is smooth.

Lemma 3.2.3. For every p ∈M the set Ep is star-shaped with respect to 0 ∈ TpM
and the geodesic γ(p,v) from p with initial velocity v is given by the formula

γ(p,v)(t) = expp(tv)

for all t ∈ R for which at least one of the two sides is defined.

Proof. From Lemma 3.2.2. we have γ(p,v)(t) = γ(p,v)(t · 1) = expp(tv) for every
t ∈ R such that at least one of the two sides is defined. Moreover, if v ∈ Ep, then
γ(p,v) is defined at least on [0, 1] and hence tv ∈ Ep for all 0 ≤ t ≤ 1. This means
that Ep is star-shaped with respect to 0 ∈ TpM . �

Proposition 3.2.4. For every point p ∈ M there exist an open neighbourhood V
of 0 ∈ TpM and an open neighbourhood U of p in M such that expp(V ) = U and
expp : V → U is a smooth diffeomorphism.

Proof. According to the Inverse Map Theorem it suffices to prove that the derivative
(expp)∗0 : T0(TpM) ∼= TpM → TpM is a linear isomorphism. If v ∈ TpM and
σ : R → TpM is the straight line σ(t) = tv, and γ(p,v) is the geodesic from p with
initial velocity v, we have

(expp)∗0(v) =
d

dt

∣∣∣∣
t=0

expp(σ(t)) = γ̇(p,v)(0) = v.

Hence (expp)∗0 = idTpM . �

Choosing a basis of TpM , that is a linear isomorphism h : TpM → Rn, the pair
(U, h ◦ (expp |V )−1) is a smooth chart of M and is called a normal chart of M at p
(with respect to the connection ∇). The neighbourhood U of p in Proposition 5.2.4 is
called normal. Observe that the local representations of geodesics emanating from p
with respect to a normal chart at p are straight lines through 0. Thus, if (γ1, ..., γn)
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is the local representation of any geodesic γ emanating from p with respect to a
normal chart at p, then

n∑

i,j=1

Γkij(p)(γ
i)′(0)γj)′(0) = 0, 1 ≤ k ≤ n.

This means that the polynomial

n∑

i,j=1

Γkij(p)v
ivj

vanishes identically on some open neighbourhood of 0 ∈ Rn. Therefore,

Γkij(p) + Γkji(p) = 0

for every 1 ≤ i, j, k ≤ n.

Given a connection ∇ on a smooth n-manifold M , we define its torsion to be
the C∞(M)-bilinear map T : X (M)× X (M) → X (M) with

T (X,Y ) = ∇XY −∇YX − [X,Y ].

Thus the value of T (X,Y ) at a point p ∈ M depends only on the values X(p) and
Y (p).

The connection ∇ is said to be symmetric if its torsion vanishes. This terminol-
ogy is justified as follows. Let (U, φ) be a smooth chart of M with φ = (x1, ..., xn).
If X, Y ∈ X (M) and

X|U =
n∑

k=1

Xk ∂

∂xk
and Y |U =

n∑

k=1

Y k ∂

∂xk
,

we have

T (X,Y )|U =

n∑

k=1

( n∑

i,j=1

(Γkij − Γkji)X
iY j
)

∂

∂xk
.

Hence ∇ is symmetric if and only if the Christoffel symbols with respect to any
smooth chart are symmetric with respect to the lower indices, that is Γkij = Γkji for
every 1 ≤ i, j, k ≤ n.

It follows from the above that if ∇ is a symmetric connection and p ∈ M ,
then the Christoffel symbols with respect to a normal chart at p vanish at the point p.

Proposition 3.3.5. For every connection ∇ on a smooth n-manifold M there
exists a unique symmetric connection ∇ on M which has the same geodesics as ∇.

Proof. If T is the torsion of ∇, we define the connection ∇ by

∇XY = ∇XY − 1

2
T (X,Y ).
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Since T (X,X) = 0 for every X ∈ X (M), it follows that ∇ and ∇ have the same
geodesics. The uniqueness is the fact that two symmetric connections with the same
geodesics coincide. Indeed, if ∇1 and ∇2 are two symmetric connections, then

S = ∇1 −∇2 : X (M)× X (M) → X (M)

is a symmetric C∞(M)-bilinear map. If ∇1 and ∇2 have the same geodesics,
S(X,X) = 0 for every X ∈ X (M) and therefore

2S(X,Y ) = S(X + Y,X + Y ) = 0

for every X, Y ∈ X (M). �

3.3 Riemannian metrics

A Riemannian metric on a smooth n-manifold M is a family g = (gp)p∈M of inner
products

gp : TpM × TpM → TpM

which depend smoothly on p in the sense that if U ⊂ M is an open set and X,
Y ∈ X (U), then the function f : U → R with f(p) = gp(X(p), Y (p)) is smooth. A
Riemannian manifold is a smooth manifold endowed with a Riemannian metric.

Let (M,g) and (N,h) be two Riemannian manifolds. A smooth map f :M → N
is called (Riemannian) isometry if it is a smooth diffeomorphism and its derivative
at each point preserves the Riemannian metrics, that is

hf(p)(f∗p(v), f∗p(w)) = gp(v,w)

for every v, w ∈ TpM and p ∈M . The isometries are the isomorphisms of the cate-
gory with objects the Riemannian manifolds and the aim of Riemannian Geometry
is the classification of Riemannian manifolds up to isometry.

In the sequel we shall use in any case the symbol 〈., .〉 to denote the Riemannian
metric and the symbol ‖.‖ for its corresponding norm on tangent spaces, if there is
no danger of confusion.

If M is a Riemannian manifold, the set I(M) of all isometries of M onto itself is
a subgroup of its group of diffeomorphisms and is called the isometry group of M .
If the action of I(M) on M by evaluation is transitive, M is called homogeneous.
Recall that the isotropy group (or stabilizer) at a point p is the subgroup

Ip(M) = {f |f ∈ I(M) and f(p) = p}

of I(M). The derivative of an element f ∈ Ip(M) is an orthogonal transformation,
that is linear isometry, f∗p : TpM → TpM . It follows from the chain rule, that
the assignment of f∗p to f ∈ Ip(M) is a homomorphism of Ip(M) into the group
of the orthogonal transformations of TpM which is usually called the isotropic
representation at p. The point p is called isotropic if the action of Ip(M) on the
unit sphere in TpM via the isotropic representation at p is transitive. Thus p ∈ M
is isotropic if for every v, w ∈ TpM with ‖v‖ = ‖w‖ = 1 there exists f ∈ Ip(M)
such that f∗p(v) = w. A Riamannian manifold M is called isotropic if every point
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of M is isotropic.

Example 3.3.1. On every open set M ⊂ Rn, n ≥ 1 the euclidean inner product
of Rn defines a Riemannian metric in the obvious way which is called the euclidean
Riamannian metric. Evidently, the euclidean n-space Rn is a homogeneous and
isotropic Riemannian manifold.

Proposition 3.3.2. On every smooth n-manifold there are Riemannian metrics.

Proof. Let M be a smooth n-manifold and let A be a smooth atlas of M . For every
(U, φU ) ∈ A there is a Riemannian metric gU on U defined by

gUp (v,w) = 〈(φU )∗p(v), (φU )∗p(w)〉

for v, w ∈ TpM , p ∈ U , where 〈., .〉 is the euclidean inner product in Rn. Let
{fU : (U, φU ) ∈ A} be a smooth partition of unity subordinated to the open cover
U = {U : (U, φU ) ∈ A} of M . For every p ∈M and v, w ∈ TpM we define

gp(v,w) =
∑

(U,φU )∈A
fU (p)g

U
p (v,w).

Since g is locally a convex combination of Riemannan metrics, it is a Riemannian
metric itself. �

In the rest of the section we shall give in some detail several examples of
Riemannian manifolds.

Example 3.3.3. Let (M,g) be a Riemannian manifold and let i : N → M be an
immersion of the smooth manifold N into M . There is an induced by i Riemannian
metric gN on N defined by

gNp (v,w) = gi(p)(i∗p(v), i∗p(w))

for every v, w ∈ TpN and p ∈ N . In particular, every smooth submanifold of M
inherits a Riemannian metric.

The n-sphere SnR = {p ∈ Rn+1 : ‖p‖ = R} of radius R > 0 inherits a Riamannian
metric from the euclidean Riemannian metric 〈., .〉 of Rn+1. Obviously, the orthog-
onal group O(n+1,R) is contained in the isometry group of I(SnR). Actually, it can
be proved that O(n + 1,R) coincides with I(SnR), but we will not need this for the
time being. We shall show that SnR is homogeneous and isotropic with one strike.
Let p ∈ SnR and let {E1, ..., En} be an orthonormal basis of TpS

n
R. Then,

{
E1, ..., En,

1

R
p}

is an orthonormal basis of TpR
n+1 ∼= Rn+1 and there exists f ∈ O(n + 1,R) such

that

f(ek) = Ek, 1 ≤ k ≤ n, f(Ren+1) = p.
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This implies that SnR is homogeneous and isotropic, since every point p is the image
of the north pole Ren+1 and IRen+1(S

n
R) acts transitively on the set of orthonormal

basis of TRen+1S
n
R.

Example 3.3.4. The hyperbolic metric on the upper half plane

H2 = {z ∈ C : Imz > 0}

is defined by

gz(v,w) =
1

(Imz)2
〈v,w〉 = 1

(Imz)2
Re(vw)

for v, w ∈ TzH
2, z ∈ H2, where 〈v,w〉 = Re(vw) is the euclidean inner product in

complex notation.

The reflection with respect to the imaginary semi-axis ℓ = {it : t > 0} is the
map τ : H2 → H2 with τ(z) = −z and is an orientation reversing isometry of H2.

If a, b, c, d ∈ R and ad− bc = 1, for the Möbius transformation T : Ĉ → Ĉ with

T (z) =
az + b

cz + d

we have

Im(T (z)) =
Imz

|cz + d|2

and

T ′(z) =
1

(cz + d)2
.

Therefore, T (H2) = H2 and

gT (z)(T∗z(v), T∗z(w)) = gT (z)(T
′(z)v, T ′(z)w) =

1

(ImT (z))2
Re(|T ′(z)|2vw)

=
1

(Imz)2
Re(vw) = gz(v,w)

for every v, w ∈ TzH
2 and z ∈ H2. Therefore the group of Möbius transformations

with real coefficients, which is isomorphic to PSL(2,R), is a subgroup of the isom-
etry group I(H2). It can be proved that this is the group of orientation preserving
isometries of H2 and it has index 2 in I(H2), but we will not need this now.

The action of PSL(2,R) on H2 by Möbius transformations is transitive because
if z0 = a+ ib, a ∈ R, b > 0, then z0 = T (i), where T is the Möbius transformation

T (z) =

√
bz + a√

b

0z + 1√
b

= bz + a.

Thus, H2 is homogeneous. It is isotropic as well. Indeed, if v ∈ TiH
2 and gi(v, v) = 1,

there exists 0 ≤ θ < 2π such that v = e−2iθ. If

T (z) =
cos θ · z − sin θ

sin θ · z + cos θ
,
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then T (i) = i and T ′(i) = e−2iθ. Hence v = T∗i(1).
The Riemannian manifold H2 is the Poincaré upper half-plane model of the

hyperbolic plane.

Example 3.3.5. We shall describe three models of the higher dimensional version
of the hyperbolic plane. The first one resembles the case of the sphere. Let n ≥ 2,
R > 0 and

Hn
R = {(x1, , , , .xn, xn+1) ∈ Rn+1 : x21 + · · · + x2n − x2n+1 = −R2, xn+1 > 0}

be the upper connected component of the two-sheeted hyperboloid in Rn+1. On Hn
R

we consider the Riemannian metric which on each tangent space is the restriction
of the Minkowski non-degenerate symmetric bilinear form

〈x, y〉 = −xn+1yn+1 +
n∑

k=1

xkyk

where x = (x1, ..., xn+1), y = (y1, ..., yn+1). Although the Minkowski form is not
positive definite, its restriction on each tangent space TpH

n
R, p ∈ Hn

R, is. To see this,
suppose that p = (p1, ..., pn+1). If v = (v1, ..., vn+1) ∈ TpHn

R, then

p1v1 + · · · + xnvn − pn+1vn+1 = 0

and

〈v, v〉 =
n∑

k=1

v2k −
1

p2n+1

( n∑

k=1

pkvk

)2

≥
(
1− p2n+1 −R2

p2n+1

) n∑

k=1

v2k ≥ 0

from the Cauchy-Schwartz inequality, and 〈v, v〉 = 0 if and only if v1 = · · · = vn = 0
and therefore vn+1 = 0 as well, since pn+1 > 0.

The Riemannian manifold Hn
R is called the hyperbolic n-space of radius R > 0.

An alternative model is the upper half n-space, which we denote temporarily by
UnR = {(p1, ..., pn) ∈ Rn : pn > 0}, endowed with the Riemannian metric

gp(v,w) =
R2

p2n

n∑

k=1

vkwk

where p = (p1, ..., pn) ∈ UnR and v = (v1, ..., vn), w = (w1, ..., wn) ∈ TpU
n
R. A tedious

calculation shows that the map F : Hn
R → UnR defined by

F (x1, ..., xn, xn+1) =

(
x1(R + xn+1)

xn+1 − xn
, ...,

xn−1(R + xn+1)

xn+1 − xn
,

R2

xn+1 − xn

)

is an isometry. So we use henceforth the notation Hn
R for both models.

The group O+(n, 1) of linear automorphisms of Rn+1 which preserve the
Minkowski form and send Hn

R onto itself is contained in the isometry group I(Hn
R).

In this case too, it can be proved that this is the entire isometry group, but we
will not need this fact now. In a similar way as in the case of the n-sphere SnR
we can prove that Hn

R is homogeneous and isotropic. Let p = (p1, ..., pn) ∈ Hn
R,
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so 〈p, p〉 = −R2, pn+1 > 0. and let {E1, ..., En} be an orthonormal basis of TpH
n
R.

Then, 〈Ek, p〉 = 0, 1 ≤ k ≤ n and so

{
E1, ..., En,

1

R
p}

is a basis of Rn+1. If now A ∈ O+(n, 1) is the matrix with columns E1,..., En,
1

R
p, then A(Ren+1) = p, which shows that O+(n, 1) acts transitively on Hn

R, and

Aek = Ek, 1 ≤ k ≤ n, which shows that Hn
R is isotropic, since {e1, ..., en} is an

orthonormal basis of TRen+1H
n
R.

There is a third convenient model of the hyperbolic n-space of radius R > 0.
The affine diffeomorphism f : Rn → Rn given by the formula

f(x) = x+ (
1

2
− 2xn)en

for x = (x1, ..., xn) maps the upper-half space Hn
R onto the open half-space

E = {(y1, ..., yn) ∈ Rn : yn <
1

2
}. The hyperbolic Riemannian metric is mapped by

f to the Riemannian metric

〈u, v〉y =
R2

(12 − yn)2
〈u, v〉

for u,v ∈ TyE, y = (y1, ..., yn) ∈ E, where 〈., .〉 on the right hand side denotes the
euclidean inner product. The diffeomorphism g : Rn \ {en} → Rn \ {en} defined by

g(y) = en +
1

‖y − en‖2
(y − en)

is the inversion with respect to the sphere of radius 1 with center en and maps E onto
the open unit n-ball Dn = {z ∈ Rn : ‖z‖ < 1}. Note that g = g−1. Differentiating,

g∗y(u) =
1

‖y − en‖2
u− 2〈y − en, u〉

‖y − en‖4
(y − en)

for every u ∈ TyR
n, y ∈ Rn \ {en}. The hyperbolic Riemannian metric on Hn

R is
now mapped by g ◦ f to the Riemannian metric on Dn given by the formula

〈u,w〉z = 〈g−1
∗z (u), g

−1
∗z (w)〉g−1(z) =

4R2

(1− ‖z‖2)2 〈u,w〉

for z ∈ Rn with ‖z‖ < 1 and u, w ∈ TzD
n. The open unit n-ball endowed with this

Riemannian metric is thus an alternative model of the hyperbolic n-space of radius
R > 0 and will be denoted by DnR.

Example 3.3.6. Let n ≥ 1 and π : Cn+1 \{0} → CPn be the quotient map. Recall
that in the canonical atlas {(Vj , φj) : 0 ≤ j ≤ n} of CPn we have

Vj = {[z0, ..., zn] ∈ CPn : zj 6= 0}
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and
φj [z0, ..., zn] = (

z0
zj
, ...,

zj−1

zj
,
zj+1

zj
, ...,

zn
zj

).

The quotient map π is a submersion. To see this note first that its local represen-
tation φ0 ◦ π : π−1(V0) → Cn with respect to the smooth chart (V0, φ0) is given by
the formula

(φ0 ◦ π)(z0, ..., zn) = (
z1
z0
, ...,

zn
z0

).

Let z = (z0, ..., zn) ∈ π−1(V0) and v = (v0, ..., vn) ∈ TzC
n+1 ∼= Cn+1 be non-zero.

Then v = γ̇(0), where γ(t) = z + tv, and

(φ0 ◦ π ◦ γ)(t) =
(
z1 + tv1
z0 + tv0

, ...,
zn + tvn
z0 + tv0

)

so that

(φ0 ◦ π ◦ γ)′(0) =
(
v1
z0

− z1v0
z20

, ...,
vn
z0

− znv0
z20

)
.

This implies that v ∈ Ker π∗z if and only if [v0, ..., vn] = [z0, ..., zn]. In other words
Ker π∗z = {λz : λ ∈ C}. Obviously, for every (ζ0, ..., ζn) ∈ Cn there exists v =
(v0, ..., vn) ∈ Cn+1 such that

ζj =
vj
z0

− zjv0
z20

.

Since the same holds for any other chart (Vj , φj) instead of (V0, φ0), this shows that
π is a submersion.

The inclusion S2n+1 →֒ Cn+1\{0} is an embedding and so its derivative at every
point of S2n+1 is a linear monomorphism. For every z ∈ S2n+1 we have

Ker(π|S2n+1)∗z = Kerπ∗z ∩ TzS2n+1 = {λz : λ ∈ C and Reλ = 0}

which is a real line. On the other hand, π−1(π(z))∩S2n+1 is the trace of the smooth
curve σ : R → S2n+1 with σ(t) = eitz for which σ(0) = z and σ̇(0) = iz. Therefore
Ker(π|S2n+1)∗z is generated by σ̇(0).

Let h be the usual hermitian product on Cn+1. If

Wz = {η ∈ TzCn+1 : h(η, z) = 0},

then π∗z|Wz :Wz → T[z]CP
n is a linear isomorphism for every z ∈ Cn+1\{0}. Indeed,

for every v ∈ TzC
n+1 there are unique λ ∈ C and η ∈ Wz such that v = λz + η.

Obviously,

λ =
h(v, z)

h(z, z)
, η = v − h(v, z)

h(z, z)
· z.

The restricted hermitian product on Wz can be transfered isomorphically by π∗z on
T[z]CP

n. If now

g[z](v,w) = Re h((π∗z |Wz)
−1(v), (π∗z |Wz)

−1(w))

for v, w ∈ T[z]CP
n, then g is Riemannian metric on CPn called the Fubini-Study

metric. If z ∈ S2n+1, then Wz = {v ∈ TzS
2n+1 : 〈v, σ̇(0)〉 = 0}.
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Each element A ∈ U(n + 1) induces a diffeomorphism Ã : CPn → CPn. More-
over, A(Wz) = WA(z) for every z ∈ Cn+1 \ {0} and therefore Ã is an isometry of
the Fubini-Study metric. In this way, U(n + 1) acts on CPn by isometries. The
action is transitive and so CPn is a homogeneous Riemannian manifold with re-
spect to the Fubibi-Study metric. Indeed, U(n + 1) acts transitively on S2n+1,
because if z ∈ S2n+1, there exist E1, . . . En ∈ Cn+1 such that {E1, . . . En, z} is an
h-orthonormal basis of Cn+1. The matrix U with columns E1, . . . , En, z is an ele-
ment of U(n + 1) such that U(ej) = Ej for 1 ≤ j ≤ n and U(en+1) = z. This last
equality shows that U(n+ 1) acts transitively on CPn.

The isotropy group of [en+1] = [0, . . . , 0, 1] consists of all A ∈ U(n+1) such that
λA(en+1) = en+1 for some λ ∈ S1. This means that

λA =

(
B 0
0 1

)

for some B ∈ U(n). Since Ã = λ̃A, this implies that the isotropy group of [en+1]
is U(n), considered as a subgroup of U(n + 1) as above, and therefore CPn is
diffeomorphic to the homogeneous space U(n+ 1)/U(n).

If A ∈ U(n + 1), then detA ∈ S1 and taking a ∈ S1 such that an = detA we

have a−1A ∈ SU(n+ 1) and Ã = ã−1A. Hence SU(n + 1) acts also transitively on
CPn and CPn is diffeomorphic to SU(n + 1)/U(n), if we identify U(n) with the
subgroup of SU(n+ 1) consisting of matrices of the form

(
B 0
0 1

detB

)

for B ∈ U(n). If A ∈ SU(n+1) belongs to the isotropy group of [en+1] and λA has

the above form, then detB = λn+1 and putting B′ =
1

λ
B, we have now

A =

(
B′ 0
0 1

λ

)

where detB′ = λ. Therefore A ∈ U(n), as a subgroup of SU(n+ 1).

Example 3.3.7. If (M,g) and (N,h) are two Riemannian manifolds, on the product
manifold M ×N there is a Riemannian metric 〈., .〉 defined by

〈v,w〉p = gp1(v1, w1) + hp2(v2, w2)

for v = (v1, v2), w = (w1, w2) ∈ Tp(M ×N) = Tp1M ⊕ Tp2N , p = (p1, p2) ∈M ×N ,
which is called the product Riemannian metric.

Example 3.3.8. Let M be a Riemannian manifold and let G be a subgroup of
its isometry group I(M) which acts properly discontinuously on M , that is every
point p ∈ M has an open neighbourhood U in M such that g(U) ∩ U = ∅ for all
g ∈ G, g 6= idM . If the orbit space M/G is Hausdorff, it is a smooth manifold and
the quotient map π : M → M/G is a smooth covering map, in particular a local



3.4. THE LEVI-CIVITA CONNECTION 51

diffeomorphism as it maps each open neighbourhood like U above diffeomorphically
onto π(U).

Let p ∈ M , g ∈ G and q = g(p). Since π ◦ g = π, from the chain rule we have
π∗q ◦ g∗p = π∗p, and since g is an isometry, it follows that

〈π−1
∗q (v), π

−1
∗q (w)〉q = 〈g−1

∗p (π
−1
∗q (v)), g

−1
∗p (π

−1
∗q (w))〉p = 〈π−1

∗p (v), π
−1
∗p (w)〉p

for every v, w ∈ Tπ(p)(M/G). This means that there is a unique well defined
Riemannian metric g̃ on M/G with respect to which π becomes a local isometry, as
it maps each open neighbourhood U as above isometrically onto π(U).

In the special case M = Sn and G = {idSn , a} ∼= Z2, where a(x) = −x is the
antipodal map, we obtain a Riemannian metric on the real projective n-space RPn

which is locally isometric to the euclidean Riemannian metric on Sn. Similarly,
the group of translations of Rn by a vector in Zn is isomorphic to Zn and acts
properly discontinuously on Rn. The orbit space Rn/Zn is diffeomotphic to the n-
torus T n = S1 × · · · × S1, n-times. Since translations are euclidean isometries, we
obtain a Riemannian metric on T n such that the quotient map π : Rn → T n which
is given by

π(t1, ..., tn) = (eit1 , ..., eitn )

becomes a local isometry. The n-torus T n equipped with this Riemannian metric is
usually called flat n-torus.

3.4 The Levi-Civita connection

In this section we shall prove that on a Riemannian manifold there exists a unique
symmetric connection which is compatible with the Riemannian metric in the sense
that parallel translation along smooth curves with respect to this connection is a
linear isometry of inner product vector spaces. This result is sometimes called the
Fundamental Theorem of Riemannian Geometry. Connections on a Riamannian
manifold which are compatible with the Riemannian metric are characterized as
follows.

Proposition 3.4.1. Let M be a Riemannian smooth n-manifold. For a connection
∇ on M the following statements are equivalent.
(i) X〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉 for every X, Y , Z ∈ X (M).
(ii) If I ⊂ R is an open interval and γ : I →M is a smooth curve, then

d

dt
〈V,W 〉 = 〈DV

dt
,W 〉+ 〈V, DW

dt
〉

for every V , W ∈ X (γ).
(iii) If a, b ∈ R, a < b, and γ : [a, b] → M is a smooth curve, then the parallel
translation τb,a : Tγ(a)M → Tγ(b)M from γ(a) to γ(b) along γ with respect to ∇ is a
linear isometry of inner product vector spaces.

Proof. The equivalence of (i) and (ii) is an immediate consequence of Lemma 5.1.4
and Proposition 3.1.7. If (ii) holds and V , W are parallel along γ then

d

dt
〈V,W 〉 = 0
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and so 〈V,W 〉 is constant on [a, b]. This implies (iii). Conversely, there are parallel
E1,..., En ∈ X (γ) such that {E1(t0), ..., En(t0)} is n orthonormal basis of Tγ(t0)M
for some t0 ∈ I. If (iii) holds, {E1(t), ..., En(t)} is an orthonormal basis of Tγ(t)M
for every t ∈ I. If V , W ∈ X (γ), there are unique smooth functions fk, gk : I → R,
1 ≤ k ≤ n, such that

V =
n∑

k=1

fkEk and
n∑

k=1

gkEk.

Then, 〈V,W 〉 = f1g1 + · · · + fngn and

d

dt
〈V,W 〉 =

n∑

k=1

f ′kgk +
n∑

k=1

fkg
′
k = 〈DV

dt
,W 〉+ 〈V, DW

dt
〉. �

Corollary 3.4.2. Let M be a Riemannian smooth n-manifold and ∇ be a
connection on M . If ∇ is compatible with the Riemannian metric, then the velocity
field of each geodesic of ∇ has constant length.

Proof. Indeed, if γ is a geodesic of ∇ and the latter is compatible with the Rieman-
nian metric, we have

d

dt
‖γ̇‖2 = 〈Dγ̇

dt
, γ̇〉+ 〈γ̇, Dγ̇

dt
〉 = 0. �

For every c > 0 the set

T cM = {(p, v) ∈ TM : p ∈M,v ∈ TpM, ‖v‖ = c}

is a (2n − 1)-dimensional smooth submanifold of TM , by Corollary 1.3.5, because

T cM = f−1(
1

2
c2) and

1

2
c2 is a regular value of the kinetic energy f : TM → R

defined by

f(p, v) =
1

2
‖v‖2.

Indeed, if (U, φ) is a smooth chart of M and (π−1(U), φ̃) is the corresponding chart
of TM , then the local representation of f is

(f ◦ φ̃−1)(x1, ..., xn, v1, ..., vn) =
1

2

n∑

i,j=1

gij(φ
−1(x1, ..., xn))vivj

and differentiating

∂(f ◦ φ̃−1)

∂vi
(x1, ..., xn, v1, ..., vn) =

n∑

j=1

gij(φ
−1(x1, ..., xn))vj

because the matrix (gij)1≤i,j≤n of the Riemannian metric is symmetric. Since it is
invertible at every point as well,

∂(f ◦ φ̃−1)

∂vi
(x1, ..., xn, v1, ..., vn) = 0
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for all 1 ≤ i ≤ n if and only if v1 = · · · = vn = 0.
The tangent space T(p,v)T

cM is the Kerf∗(p,v) for every (p, v) ∈ T cM . Now
γ is a geodesic of a connection ∇ on M if and only if (γ, γ̇) is an integral curve
of the geodesic vector field G of ∇. If ∇ is compatible with the Riemannian
metric, Corollary 3.4.2 says that ‖γ̇‖ takes on a constant value c. If γ is not
constant, c > 0 and (γ, γ̇) lies entirely on the constant kinetic energy level set
T cM . Thus, the geodesic vector field is tangent to constant kinetic energy level
sets. In particular, T 1M is called the unit tangent bundle of M and from Lemma
3.2.2 every geodesic is a reparametrization of a geodesic whose velocities lie in T 1M .

Theorem 3.4.3. On every Riemannian smooth n-manifold M there exists a
unique symmetric connection which is compatible with the Riemannian metric.

Proof. We shall prove first the uniqueness by finding an explicit formula for such a
connection ∇. For every X, Y , Z ∈ X (M) we have

X〈Y,Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉 = 〈∇XY,Z〉+ 〈Y,∇ZX〉+ 〈Y, [X,Z]〉

Y 〈Z,X〉 = 〈∇Y Z,X〉 + 〈Z,∇YX〉 = 〈∇Y Z,X〉 + 〈Z,∇XY 〉+ 〈Z, [Y,X]〉
Z〈X,Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉 = 〈∇ZX,Y 〉+ 〈X,∇Y Z〉+ 〈X, [Z, Y ]〉

since ∇ is symmetric and compatible with the Riemannian metric. From these we
get

X〈Y,Z〉+ Y 〈Z,X〉 −Z〈X,Y 〉 = 2〈∇XY,Z〉+ 〈Y, [X,Z]〉+ 〈Z, [Y,X]〉 − 〈X, [Z, Y ]〉.

This equality uniquely determines∇ because the Riemannian metric on each tangent
space is a non-degenerate symmetric bilinear form.

The existence of ∇ will be proved locally by providing the Christoffel symbols
from which it is determined. Due to uniqueness the local definitions will coincide on
the overlapping domains. Let (U, φ) be a smooth chart of M with φ = (x1, ..., xn)
and let

gij =

〈
∂

∂xi
,
∂

∂xj

〉
, 1 ≤ i, j ≤ n.

By the above formula, a symmetric connection ∇ which is compatible with the
Riemannian metric must satisfy

n∑

k=1

Γkijgkm =

〈
∇ ∂

∂xi

∂

∂xj
,
∂

∂xm

〉
=

1

2

[
∂gjm
∂xi

+
∂gmi
∂xj

− ∂gij
∂xm

]

on U , for every 1 ≤ i, j,m ≤ n. The Christoffel symbols are uniquely determined
from the above linear systems, because the Riemannian metric on each tangent
space is a non-degenerate symmetric bilinear form and therefore the symmetric
matrix (gij)1≤i,j≤n is invertible at each point of U . If we denote by gij the entries of
the inverse matrix of the Riemannian metric (gij)

−1
1≤i,j≤n, the the Christoffel symbols

are

Γkij =
1

2

n∑

l=1

gkl
(
∂gjl
∂xi

+
∂gli
∂xj

− ∂gij
∂xl

)
1 ≤ i, j, k ≤ n.
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It remains to show that the connection on ∇ on U whose Christoffel symbols
are the solutions of the above linear systems is symmetric and compatible with Rie-
mannian metric. The first is obvious, because the matrix (gij)1≤i,j≤n is symmetric
and so the (i, j) linear system is the same as the (j, i) one. To prove compatibility,
we let

X =

n∑

k=1

Xk ∂

∂xk
, Y =

n∑

k=1

Y k ∂

∂xk
, Z =

n∑

k=1

Zk
∂

∂xk
,

and then we have

〈∇XY,Z〉+ 〈Y,∇XZ〉

=
n∑

k,l=1

[
gkl
(
Z lX(Y k) + Y kX(Z l)

)
+

n∑

i,j=1

XiY jΓkijgklZ
l +

n∑

i,j=1

XiZjΓlijgklY
k

]
.

Since the matrix (gij)1≤i,j≤n is symmetric, substituting we compute

n∑

j,k,l=1

(Y jZ lΓkijgkl + ZjY kΓlijgkl) =

n∑

j,k,l=1

Y jZ lΓkijgkl +

n∑

j,k,l=1

Y kZjΓkijgkl

=

n∑

j,l=1

(Z lY j + Y lZj)

( n∑

k=1

Γkijgkl

)

=
1

2

n∑

j.l=1

Z lY j

(
∂gjl
∂xi

+
∂gli
∂xj

− ∂gij
∂xl

)
+

1

2

n∑

j,l=1

ZjY l

(
∂gjl
∂xi

+
∂gli
∂xj

− ∂gij
∂xl

)

=

n∑

j,l=1

Z lY j ∂gjl
∂xi

.

Therefore,

〈∇XY,Z〉+ 〈Y,∇XZ〉 =
n∑

k,l=1

gkl
(
Z lX(Y k) + Y kX(Z l)

)
+

n∑

i,j,l=1

XiZ lY j ∂gjl
∂xi

= X

( n∑

k,l=1

gklY
kZ l
)

= X〈Y,Z〉. �

The unique connection of a Riemannian manifold M which is symmetric and
compatible with the Riemannian metric is called the Levi-Civita connection of M .
The geodesics of the Levi-Civita sonnection of M will be simply called geodesics of
M . It easy to see that if ∇ is a connection on M and f : M → M is a smooth
diffeomorphism, then the formula

∇XY = f−1
∗
(
∇f∗Xf∗Y

)

for X, Y ∈ X (M) defines a new connection on M . If ∇ is symmetric, so is ∇. If
∇ is compatible with the Riemannian metric of M and f is an isometry, then ∇ is
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also compatible with the Riemannian metric. By uniqueness, if ∇ is the Levi-Civita
connection of M , it is preserved by isometries, that is

f∗(∇XY ) = ∇f∗Xf∗Y

for every X, Y ∈ X (M) and f ∈ I(M). In particular, every isometry sends
geodesics to geodesics. This observation is crucial for the determination of the
geodesics of a Riemennian manifold with sufficiently large isometry group.

Example 3.4.4. The Levi-Civita connection of the euclidean n-space Rn is
the euclidean connection with vanishing Christoffel symbols. If M ⊂ Rn is a
hypersurface, the induced euclidean connection on M defined in Example 3.1.5 is
the Levi-Civita connection of M for the restricted euclidean Riemannian metric, as
it is easily seen.

Example 3.4.5. We shall describe the geodesics on a n-sphere SnR of radius R > 0.
Let γ : I → SnR be the geodesic satisfying the initial conditions γ(0) = Ren+1 and
γ̇(0) = e1, defined on some open interval I ⊂ R containing zero. Suppose that
γ(t) = (γ1(t), ..., γn+1(t)) for t ∈ I. For 2 ≤ j ≤ n, the reflection aj : R

n+1 → Rn+1

with

aj(x
1, ..., xn+1) = (x1, ..., xj−1,−xj , xj+1, ..., xn+1)

is an isometry of SnR such that aj(Ren+1) = Ren+1 and

(aj)∗Ren+1(γ̇(0)) = aj(e1) = e1 = γ̇(0).

From the invariance of geodesics under isometries and uniqueness follows now that
aj ◦γ = γ and hence γj(y) = −γj(t), that is γj(t) = 0 for every t ∈ I and 2 ≤ j ≤ n.
This means that γ(I) is an arc on the great circle which is the intersection of SnR
with the plane generated by {e1, en+1}. Since SnR is homogeneous and isotropic,
again the existence and uniqueness of geodesics implies that all geodesics are great
circles. In particular, the geodesic vector field on TSnR is complete.

As an illustration we shall write down the system of differential equations of
geodesics on S2 with respect to the spherical coordinates (θ, φ), where the point
(x, y, z) ∈ S2 is written

x = cosφ · sin θ, y = sinφ · sin θ, z = cos θ.

The basic vector fields are

∂

∂θ
=



cosφ cos θ
sinφ cos θ
− sin θ


 ,

∂

∂φ
=



− sinφ sin θ
cosφ sin θ

0



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and so the matrix of the Riemannian metric is

(gij)1≤i,j≤2 =

(
1 0
0 sin2 θ

)
.

It follows that almost all Christoffel symbols vanish except

Γ1
22 = −1

2
sin 2θ, Γ2

12 = cot θ.

Therefore, the system of differential equations of geodesics in spherical coordinates
is

θ′′ − 1

2
sin 2θ · (φ′)2 = 0,

φ′′ + 2cot θ · φ′θ′ = 0.

The meridians are obvious solutions of this system.

Example 3.4.6. The matrix of the hyperbolic Riemannian metric on the upper
half plane H2 is

(gij)1≤i,j≤2 =

(
1
y2

0

0 1
y2

)

and so the Christoffel symbols are

Γ1
12 = −1

y
, Γ2

11 =
1

y
, Γ2

22 = −1

y
,

and the rest are zero, at the point z = x + iy ∈ H2. So the system of differential
equations of geodesics is

x′′ − 2

y
x′y′ = 0,

y′′ +
1

y
[(x′)2 − (y′)2] = 0.

An obvious solution is ℓ(t) = iet, t ∈ R, whose image is the imaginary semi-axis.
Since H2 is homogeneous and isotropic with respect to the subgroup PSL(2,R) of its
isometry group which acts by Möbius transformations, the geodesics are euclidean
semi-circles with center on ∂H2 (the boundary taken in the Riemann sphere Ĉ),
because the Möbius transformations send circles onto circles on Ĉ and preserve
angles.
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The geodesics of the hyperbolic n-space Hn
R of radius R > 0, n ≥ 3, have a

similar description. First we observe that for 1 ≤ j < n each euclidean reflection
aj : R

n → Rn with
aj(x

1, ..., xn) = (x1, ...,−xj , ..., xn)
is a hyperbolic isometry which fixes en. As in Example 3.4.5, this implies that the
trace of a hyperbolic geodesic emanating from en with initial velocity in the plane
generated by {e1, en} is contained in the part of this plane in Hn

R. Since the latter is
clearly isometric to H2

R, it follows from the above that the trace of such a geodesic
is either the positive semi-axis generated by en or a euclidean semi-circle passing
through en with center on ∂Hn

R. Moreover, every orthogonal transformation of Rn

that fixes en is a hyperbolic isometry. This implies that the trace of any geodesic
emanating from en is either the positive semi-axis generated by en or a euclidean
semi-circle passing through en with center on ∂Hn

R. Since Hn
R is homogeneous and

isotropic in a strong sense, we conclude that the trace of any geodesic of Hn
R is either

a euclidean half-line orthogonal to ∂Hn
R or a euclidean semi-circle with center on

∂Hn
R. If f and g are the diffeomorphisms of Example 3.3.5, then (g ◦ f)(1

2
en) = 0

and it is easily seen that the geodesics through 0 in the open unit disc model DnR
are the euclidean diameters. The geodesics through the other points of DnR are arcs
of euclidean circles which intersect orthogonally the boundary sphere ∂DnR.

Let M be a Riemannian smooth n-manifold. On M we shall always consider
the Levi-Civita connection and all the related notions associated with it such as
parallel translation, geodesics and exponential map. Let p ∈M and U be a normal
neighbourhood of p, that is there exists an open neighbourhood V of 0 ∈ TpM in
TpM such that exp : V → U is a smooth diffeomorphism. We denote by Bp(0, ǫ)
the open ball in TpM of radius ǫ > 0 and center 0 ∈ TpM . There exists ǫ0 > 0 such

that Bp(0, ǫ0) ⊂ V . The set expp(Bp(0, ǫ)) will be called the closed geodesic ball of
radius 0 < ǫ ≤ ǫ0 and center p and its interior exp(Bp(0, ǫ)) open geodesic ball. Its
boundary expp(∂Bp(0, ǫ)) will be called geodesic sphere. Fixing an orthonormal basis
{E1, ..., En} of TpM we have a linear isometry of inner product spaces σ : Rn → TpM
with σ(ek) = Ek, 1 ≤ k ≤ n, and a normal chart (U, φ) where φ = σ−1 ◦ (expp |V )−1.
Let φ = (x1, ..., xn) and

gij =

〈
∂

∂xi
,
∂

∂xj

〉
, 1 ≤ i, j ≤ n.

Then gij(p) = δij , 1 ≤ i, j ≤ n, Since the Levi-Civita connection is symmetric, the
Christoffel symbols with respect to this normal chart vanish at p. From the formula
in the proof of Theorem 3.4.3 giving the Christoffel symbols we compute

n∑

k=1

Γkijgkl +

n∑

k=1

Γkilgkj =
∂gjl
∂xi

and in particular
∂gjl
∂xi

(p) = 0 for every 1 ≤ i, j, l ≤ n.

In order a normal neighbourhood of p, in particular a geodesic ball, to be useful
for local calculations near p, it is desirable to be a normal neighbourhood of nearby
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points also. An open set W ⊂ M will be called uniformly normal if it is a normal
neighbourhood of all its points. More precisely, W is uniformly normal if there ex-
ists some δ > 0 such that W ⊂ expp(Bp(0, δ)) and expp : Bp(0, δ) → expp(Bp(0, δ))
is a smooth diffeomorphism onto the open set expp(Bp(0, δ)) ⊂M for every p ∈W .
In order to prove the existence of uniformly normal neighbourhoods we shall need
the following technical remark which is a parametrized version of the equivalence
of norms in finite dimensional real vector spaces.

Lemma 3.4.7. If M is a Riemannian smooth n-manifold and p ∈ M , for every
open neighbourhood A ⊂ TM of (p, 0) there exists an open neighbourhood U of p in
M and some δ > 0 such that

Uδ = {(q, v) ∈ TM : q ∈ U, v ∈ Bq(0, δ)} ⊂ A.

Proof. Let (W,ψ) be a smooth chart of M with p ∈ W and ψ(p) = 0. Let
ψ = (x1, ..., xn). We denote by r the euclidean norm on Rn. If (π−1(W ), ψ̃) is the
corresponding smooth chart of TM , where π : TM → M is the tangent bundle
projection, we have ψ̃(p, 0) = 0 and we may assume that A ⊂ π−1(W ). Since
ψ̃(A) ⊂ Rn × Rn is open, there exists ǫ > 0 such that B(0, 2ǫ) × B(0, 2ǫ) ⊂ ψ̃(A).
The set

K =
{(
q,

n∑

k=1

vk

(
∂

∂xk

)

q

)
∈ π−1(W ) : r(ψ(q)) ≤ ǫ,

n∑

k=1

v2k = ǫ2
}

is compact and so there exist 0 < δ ≤ c such that

0 < δ2 ≤
n∑

i,j=1

gij(q)vivj ≤ c2

for
(
q,

n∑

k=1

vk

(
∂

∂xk

)

q

)
∈ K. If now r(ψ(q)) ≤ ǫ, then

(
q,

ǫ

(
∑n

k=1 v
2)1/2

·
n∑

k=1

vk

(
∂

∂xk

)

q

)
∈ K

and thus
δ

ǫ

( n∑

k=1

v2k

)1/2

≤
∥∥∥∥

n∑

k=1

vk

(
∂

∂xk

)

q

∥∥∥∥ ≤ c

ǫ

( n∑

k=1

v2k

)1/2

for every v1,..., vn ∈ R. If we take U = ψ−1(B(0, ǫ)), we have

Uδ ⊂ ψ̃−1(B(0, ǫ)×B(0, ǫ)) ⊂ A. �

Proposition 3.4.8. If M is a Riemannian smooth n-manifold and p ∈ M , then
every open neighbourhood of p contains a uniformly normal open neighbourhood of p.

Proof. Let E ⊂ TM be the domain of definition of the exponential map and let
F : E →M ×M be the smooth map

F (p, v) = (p, expp(v)).
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For every p ∈M , the derivative F∗(p,0) is a linear isomorphism and from the Inverse
Map Theorem there exists an open neighbourhood A ⊂ E ⊂ TM of (p, 0) such that
F (A) ⊂ M ×M is open and F |A : A → F (A) is a smooth diffeomorphism. From
the preceding Lemma 3.4.7 there exists an open neighbourhood U of p and some
δ > 0 such that Uδ ⊂ A. Since F (p, 0) = (p.p), there exists an open neighbourhood
W ⊂ U of p such that W ×W ⊂ F (Uδ). We shall show that W uniformly normal.
We observe first that expq is defined on Bq(0, δ) ⊂ TqM for all q ∈ W . Moreover,
(expq |Bq(0,δ))

−1 = (F |{0}×Bq(0,δ))
−1 is smooth for q ∈W . Finally, if (q, y) ∈W ×W ,

there exists v ∈ Bq(0, δ) such that (q, y) = F (q, v), that is y = expq(v). This shows
that W ⊂ expq(Bq(0, δ)) for every q ∈W . �

Note that if U is a (closed or open) geodesic ball with center p ∈ M , for every
q ∈ U there exists a unique geodesic path in U from p to q, but if p, q are two points
in a uniformly normal open set W , there exists a geodesic path from p to q, which
however may not lie entirely in W .

3.5 The Riemannian distance

On a Riemannian manifold M it is possible to define the length of curves as follows.
Let a, b ∈ R, a < b, and γ : [a, b] → M be a piecewise smooth parametrized curve.
The non-negative real number

L(γ) =

∫ b

a
‖γ̇(t)‖dt

is defined to be the length of γ with respect to the Riemennian metric. By the
change of variables formula, it is invariant by piecewise smooth reparametrizations.

If γ : I →M is a smooth parametrized curve defined on an open interval I ⊂ R

such that γ̇(t) 6= 0 for every t ∈ I, then taking any t0 ∈ I and putting

h(t) =

∫ t

t0

‖γ̇(s)‖ds

the smooth function h : I → R is strictly increasing and maps I diffeomorphically
onto an open interval h(I) ⊂ R. The smooth parametrized curve

σ = γ ◦ h−1 : h(I) →M

is a reparametriztion of γ such that ‖σ̇‖ = 1.
A smooth parametrized curve γ with ‖γ̇‖ = 1 is said to be parametrized

by arclength or unit speed. By Corollary 3.4.2, every non-constant geodesic is
parametrized proportionally to arclength and from Lemma 3.2.2 every such geodesic
can be reparametrized to a unit speed geodesic.

If M is connected, for every p, q ∈M the non-negative real number

d(p, q) = inf{L(γ)|γ : [a, b] →M is a piecewise smooth parametrized curve

with γ(a) = p and γ(b) = q for some a, b ∈ R, a < b}
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is called the (Riemannian) distance of p and q. The function d : M ×M → R has
the following obvious properties:
(i) d(p, q) ≥ 0 and d(p, p) = 0,
(ii) d(p, q) = d(q, p) and
(ii) d(p, q) ≤ d(p, z) + d(z, q)
for every p, q, z ∈ M . In other words, d is a pseudo-distance on M . It can be
proved directly that the topology defined by d coincides with the topology ofM and
hence d is actually a distance. However, we shall derive this from considerations
showing the strong connection of d with geodesics, at least locally. We shall need a
couple of lemmas, which are of independent interest.

Lemma 3.5.1. letM be a smooth n-manifold endowed with a symmetric connection
∇ and let A ⊂ R2 be an open set. If σ : A→M is a smooth map then

D

dt

(
∂σ

∂s

)
=
D

ds

(
∂σ

∂t

)
.

Proof. It suffices to prove the formula in case there is a smooth chart U, φ) of M
such that σ(A) ⊂ U . If φ = (x1, ..., xn) and φ ◦ σ = (σ1, ..., σn), we have

∂σ

∂s
=

n∑

k=1

∂σk
∂s

· ∂

∂xk

and
D

dt

(
∂σ

∂s

)
=

n∑

k=1

[
d

dt

(
∂σk
∂s

)
+

n∑

i,j=1

Γkij
∂σi
∂t

· ∂σj
∂s

]
∂

∂xk

and similarly

D

ds

(
∂σ

∂t

)
=

n∑

k=1

[
d

ds

(
∂σk
∂t

)
+

n∑

i,j=1

Γkij
∂σi
∂s

· ∂σj
∂t

]
∂

∂xk
.

Since ∇ is symmetric, Γkij = Γkji, 1 ≤ i, j, k ≤ n, and the result follows from
Schwartz’s theorem. �.

The next lemma is due to C.F. Gauss.

Lemma 3.5.2. Let M be a Riemannian smooth n-manifold, p ∈ M and let
V = expp(Bp(0, ǫ)) be an open geodesic ball of radius ǫ > 0 with center p. Then
every geodesic emanating from p intersects orthogonally the geodesic spheres
expp(∂Bp(0, δ)), 0 < δ < ǫ.

Proof. Let I ⊂ R be an open interval and let u : I → TpM be a smooth curve with
‖u(t)‖ = 1 for every t ∈ I. If σ : I × (−ǫ, ǫ) →M is the smooth map

σ(t, s) = expp(su(t)),

it suffices to prove that

〈
∂σ

∂t
,
∂σ

∂s

〉
= 0.
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We compute

∂

∂s

〈
∂σ

∂t
,
∂σ

∂s

〉
=

〈
D

ds

(
∂σ

∂t

)
,
∂σ

∂s

〉
+

〈
∂σ

∂t
,
D

ds

(
∂σ

∂s

)〉
=

〈
D

dt

(
∂σ

∂s

)
,
∂σ

∂s

〉
+ 0

by Lemma 3.5.1 and since σ(t, .) : (−ǫ, ǫ) → M is a geodesic for every t ∈ I. For
the same reason, ∥∥∥∥

∂σ

∂s

∥∥∥∥
2

= 1

by Corollary 3.4.2, and differentiating

2

〈
D

dt

(
∂σ

∂s

)
,
∂σ

∂s

〉
= 0.

Thus,
∂

∂s

〈
∂σ

∂t
,
∂σ

∂s

〉
= 0

and

〈
∂σ

∂t
,
∂σ

∂s

〉
is independent of s. However σ(t, 0) = p for all t ∈ I and so

∂σ

∂t
(., 0) = 0. Therefore,

〈
∂σ

∂t
(t, s),

∂σ

∂s
(t, s)

〉
=

〈
∂σ

∂t
(t, 0),

∂σ

∂s
(t, 0)

〉
= 0. �

As in the situation of the preceding Lemma 3.5.2, letM be a Riemannian smooth
n-manifold, p ∈M and V = expp(Bp(0, ǫ)) be an open geodesic ball of radius ǫ > 0
with center p. A piecewise smooth parametrized curve γ : [a, b] → V \ {p}, where a,
b ∈ R, a < b, is a the form

γ(t) = expp(r(t)u(t))

where r : [a, b] → (0, ǫ) is a unique piecewise smooth function and u : [a, b] → TpM is
a unique piecewise smooth parametrised curve with ‖u(t)‖ = 1 for t ∈ [a, b]. Using
the notation of the proof of Lemma 3.5.2 we have γ(t) = σ(t, r(t)) and

γ̇(t) =
∂σ

∂t
+ r′(t)

∂σ

∂s
.

From Lemma 3.5.2 we have

‖γ̇(t)‖2 =

∥∥∥∥
∂σ

∂t

∥∥∥∥
2

+ (r′(t))2
∥∥∥∥
∂σ

∂s

∥∥∥∥
2

≥ (r′(t))2

and the equality holds if and only if u is constant. This implies that

L(γ) ≥
∫ b

a
|r′(t)|dt ≥

∣∣∣∣
∫ b

a
r′(t)dt

∣∣∣∣ = |r(b)− r(a)|

and the equality holds if and only if u is constant and r is monotone.
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Proposition 3.5.3. Let M be a Riemannian smooth n-manifold, p ∈ M and let
V = expp(Bp(0, ǫ)) be an open geodesic ball of radius ǫ > 0 with center p. Let
γ : [0, ℓ] → V be a geodesic from γ(0) = p to a point q = γ(ℓ) ∈ V . If a, b ∈ R,
a < b, and σ : [a, b] →M is any piecewise smooth curve from σ(a) = p to σ(b) = q,
then L(γ) ≤ L(σ). Moreover, if L(γ) = L(σ), then σ([a, b]) = γ([0, ℓ]).

Proof. We may assume that γ is parametrized by arclength, so that ℓ = L(γ) and
γ is given by γ(t) = expp(tv), where v = γ̇(0) and ‖v‖ = 1. Obviously, ℓ < ǫ. We
shall prove first that L(σ) ≥ ℓ. Let 0 < δ < ℓ. By continuity and connectedness,
there exist a < c < d ≤ b such that σ(c) ∈ expp(∂Bp(0, δ)), σ(d) ∈ expp(∂Bp(0, ℓ))

and σ((c, d)) ⊂ expp(Bp(0, ℓ)) \ expp(Bp(0, δ)). Then,

L(σ) ≥ L(σ|[c,d]) ≥ ℓ− δ

from the above considerations and letting δ go to zero this implies that L(σ) ≥ ℓ.
This proves the first part.

Suppose now that L(σ) = ℓ. Applying what we have already proved to σ|[a,c] we
have L(σ|[a,c]) ≥ δ and therefore

L(σ|[c,d]) ≤ L(σ|[c,d]) + L(σ|[d,b]) = ℓ− L(σ|[a,c]) ≤ ℓ− δ.

Hence L(σ|[c,d]) = ℓ − δ and from the above the trace σ([c, d]) is the same as the
trace of a geodesic path expp(tv), δ ≤ t ≤ ℓ, for some v ∈ TpM with ‖v‖ = 1.
Letting again δ go to zero we get a geodesic expp(tv), 0 ≤ t ≤ ℓ whose trace is the
same as σ(|[a,d]. Thus, necessarily L(σ|[d,b]) = 0 and γ(l) = q = expp(lv). It follows
that γ(t) = expp(tv) for all 0 ≤ t ≤ ℓ. �

Corollary 3.5.4. Let M be a Riemannian smooth n-manifold with Riemannian
distance d. For every p ∈M there exists ǫ > 0 such hat

expp(Bp(0, δ)) = {q ∈M : d(p, q) < δ}

for every 0 < δ < ǫ.

Proof. By Proposition 3.2.4, there exists ǫ > 0 such that expp maps Bp(0, ǫ) ⊂ TpM
diffeomorphocally onto the open neighbourhood expp(Bp(0, ǫ)) of p. Obviously then

expp(Bp(0, δ)) ⊂ {q ∈M : d(p, q) < δ}

for every 0 < δ < ǫ, since each geodesic path in the open geodesic ball expp(Bp(0, δ))
emanating from p has length < δ.

Conversely, if q /∈ expp(Bp(0, δ)), then every piecewise smooth parametrized
curve σ from p to q intersects the geodesic sphere expp(∂Bp(0, ρ)) for all 0 < ρ < δ,
and so L(σ) ≥ ρ, by Proposition 3.5.3. Consequently, L(σ) ≥ δ. This shows that
d(p, q) ≥ δ. �

Corollary 3.5.5. On a Riemannian smooth manifold M the Riamannian distance
d induces the original manifold topology and the pair (M,d) is a metric space. �
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In the sequel we shall denote by B(p, δ) the open d-ball in M with radius δ and
center p.. According to Proposition 3.5.3, for every p ∈ M there exists some ǫ > 0
such that B(p, δ) is the geodesic open ball of radius δ and center p and for each
q ∈ B(p, δ) the distance d(p, q) is the length of the unique geodesic path in B(p, ǫ)
from p to q for all 0 < δ < ǫ. It follows from this that geodesics locally minimize
length.

Proposition 3.5.6. Let M be a Riamannian smooth manifold and γ : [a, b] → M ,
where a, b ∈ R, a < b, be a piecewise smooth parametrized curve from γ(a) = p to
γ(b) = q. If L(γ) = d(p, q), then γ([a, b]) is the trace of a geodesic path. In partic-
ular, if γ is parametrized by arclength, it is a geodesic path and in particular smooth.

Proof. Since being a geodesic is a local property, it suffices to show that the trace
of γ is locally the same as that of a geodesic. Let a < t0 < b. By Proposition
3.4.8, there exists a uniformly normal neighbourhood W of γ(t0). So there exists
ǫ > 0 such that W ⊂ expy(By(0, ǫ)) and expy |By(0,ǫ) is a diffeomorphism for every
y ∈ W . There exists η > 0 such that γ([[t0 − η, t0 + η]) ⊂ expγ(t0)(Bγ(t0)(0, ǫ)).
Our assumption implies that L(γ|[t0−η,t0+η]) = d(γ(t0 − η), γ(t0 + η)) and thus, by
Proposition 3.5.3, γ([t0 − η, t0 + η]) is the trace of a geodesic path. �

Definition 3.5.7. A geodesic path γ : [a, b] → M , a, b ∈ R, a < b, on a
Riemennian smooth manifold M with Riemannian distance d is called minimizing
if L(γ) = d(γ(a), γ(b)).

Note that if γ is a minimizing geodesic path as in the above definition, then
L(γ|[t,s]) = d(γ(t), γ(s)), that is γ|[t,s] is minimizing, for every a ≤ t < s ≤ b.
According to Proposition 3.5.3, every geodesic of a Riemannian manifold is locally
minimizing. However, the example of the sphere shows that on a Riemennian
manifold there may exist non-minimizing geodesic paths. The question now arises
whether any two points on a connected Riemennian manifold can be joined by a
minimizing geodesic path. This is answered by the following theorem which is due
to H. Hopf and his student W. Rinow. The proof we present here is due G. de Rham.

Theorem 3.5.8. Let M be a connected Riemannian smooth n-manifold. If the
geodesic vector field of M is complete, then any two given points of M can be joined
by a minimizing geodesic path.

Proof. Let p, q ∈M and r = d(p, q) > 0. According to Corollary 3.5.4, there exists
0 < ǫ < r such that expp(Bp(0, δ)) = B(p, δ) is a normal neighbourhood of p for
every 0 < δ < ǫ. Fixing such a δ, by compactness, there exists p0 ∈ expp(∂Bp(0, δ))
such that

d(p0, q) = inf{d(z, q) : z ∈ expp(∂Bp(0, δ))}.
Then, p0 = expp(δv) for some v ∈ TpM with ‖v‖ = 1 and the unit speed geodesic

γ(t) = expp(tv)

is defined on the entire real line R, because we assume the the geodesic vector field
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is complete. It suffices to prove now that d(γ(t), q) = r − t for every δ ≤ t ≤ r,
because then for t = r we will get γ(r) = q and γ|[0,r] will be minimizing.

Firstly, we have

r = d(p, q) ≤ d(p, γ(t)) + d(γ(t), q) ≤ t+ d(γ(t), q)

and hence d(γ(t), q) ≥ r − t for every 0 ≤ t ≤ r.
On the other hand we have

r ≥ inf{d(p, z) + d(z, q) : z ∈ expp(∂Bp(0, δ))} = δ + d(p0, q)

and so d(p0, q) ≤ r − δ. Hence d(γ(δ), q) = d(p0, q) = r − δ. Let

T = sup{t ∈ [δ, r] : d(γ(t), q) = r − t}.

By continuity, d(γ(T ), q) = r − T . Moreover, d(γ(t), q) = r − t for all δ ≤ t ≤ T ,
because

r − t ≤ d(γ(t), q) ≤ d(γ(t), γ(T )) + d(γ(T ), q) ≤ T − t+ r − t = r − t.

It remains to prove that T = r. Suppose that T < r. We apply what we have already
proved for p to γ(T ). Thus, there are some η > 0 and p′0 ∈ expγ(T )(∂Bγ(T )(0, η))
with

d(p′0, q) = inf{d(z, q) : z ∈ expγ(T )(∂Bγ(T )(0, η))}
and d(p′0, q) = d(γ(T ), q) − η = r − T − η. Therefore,

d(p, p′0) ≥ d(p, q)− d(p′0, q) = r − (r − T − η) = T + η.

However the piecewise smooth parametrized curve, which is the concatenation
of γ|0,T ] and the unique geodesic in expγ(T )(Bγ(T )(0, η)) from γ(T ) to p′0 has
length T + η, and from Proposition 5.5.6 its trace must be the trace of a geodesic
path. Since part of this path coincides with γ|0,T ], it follows from uniqueness
of geodesics that this geodesic path is γ|[0,T+η]. Hence p′0 = γ(T + η) and
d(γ(T + η), q) = r − (T + η). This contradicts the definition of T . �

A topological characterization of the completeness of the geodesic vector field
is given by the following theorem also due to H. Hopf and W. Rinow.

Theorem 3.5.9. For a connected Riemannian smooth manifold M with Rieman-
nian distance d the following statements are equivalent:
(i) The geodesic vector field of M is complete.
(ii) The metric space (M,d) is complete.

Proof. Suppose that the geodesic vector field of M is complete. In order to prove
that (M,d) is a complete metric space, it suffices to show that every d-bounded
set C ⊂ M is contained in a compact set. Let p ∈ M . Since C is bounded, there
exists c > 0 such that d(p, q) < c for every q ∈ C. From Theorem 3.5.8, there
exists some v ∈ TpM such that q = expp(v) and ‖v‖ = d(p, q). This shows that

C ⊂ expp(Bp(0, c)), and expp(Bp(0, c)) is compact, because expp is continuous.
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Conversely, suppose that there exists a geodesic parametrized by arclength γ
whose maximal interval of definition is an open interval (a, b) for some a < b < +∞.
Then, d(γ(t), γ(s)) ≤ |t − s| for every t, s ∈ (a, b). If (M,d) is complete, then
p = lim

t→b−
γ(t) exists in M . From Proposition 3.4.8 there exists a uniformly

normal open neighbourhood W of p, for which there exists some δ > 0 such that
W ⊂ expq(Bq(0, δ)) for every q ∈W . There exists b−δ < T < b such that γ(T ) ∈W
and then the geodesic form γ(T ) with initial velocity γ̇(T ) is defined at least on
the interval [0, δ). By uniqueness of geodesics, this implies that γ is defined at
least on (a, T+δ) and since T+δ > b this contradicts our assumption the b < +∞. �

If any of the two equivalent conditions of the preceding theorem is satisfied, we
shall call the Riemannian manifold M complete. As the proof shows, the following
also holds.

Corollary 3.5.10. A connected Riemannian smooth manifold M is complete if
and only if there exists a point p ∈ M such that expp is defined on the entire
tangent space TpM . �

Corollary 3.5.11. The geodesic vector field of a compact Riemannian smooth
manifold is complete. �

The fact that homogeneous Riemannian manifolds are complete is a consequence
of the following.

Proposition 3.5.12. Let (M,d) be a locally compact metric space. If it is
homogeneous in the sense that for every x, y ∈ M there exists a d-isometry
f :M →M such that f(x) = y, then it is complete.

Proof. Let p ∈ M . Since M is assumed to be locally compact, there exists some
r > 0 such that B(p, r) is compact. The homogeneity implies now that B(x, r)
is compact for every x ∈ M . If (xk)k∈N is a Cauchy sequence in M , there exists
some k0 ∈ N such that d(xk0 , xk) < r for every k ≥ k0. Hence the sequence
has a convergent subsequence, by compactness of B(xk0 , r), which implies that it
converges in M . �

Corollary 3.5.13. A homogeneous connected Riemannian smooth manifold is
complete. �

The euclidean space, the spheres and the hyperbolic spaces are all complete
Riemannian manifolds.

3.6 Geodesic convexity

Let M be a Riemannian smooth n-manifold and p ∈ M . By Proposition 3.4.8 and
Proposition 3.5.3, there exists a uniformly normal open neighbourhood W of p for
which there exists some δ > 0 such that W ⊂ expq(Bq(0, δ)), for every q ∈ W , and
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for every q1, q2 ∈ W there exists a unique minimizing geodesic path from q1 to q2
of length < δ. However this geodesic path may not lie entirely in W .

Definition 3.6.1. A subset C of a Riemannian smooth manifold is said to be
strongly (geodesically) convex if for every x, y ∈ C there exists a unique and
minimizing geodesic path γ : [a, b] → C, for some a, b ∈ R, a < b, from x = γ(a) to
y = γ(b) such that γ(t) ∈ C for a < t < b.

In this section we shall prove that sufficiently small geodesic balls with center
any given point on a Riemennian smooth manifold are strongly convex (and of
course uniformly normal). This result on the existence of strongly convex open
neighbourhoods is due to J.H.C. Whitehead and is based on the following.

Lemma 3.6.2. Let M be a Riemannian smooth n-manifold. For every p ∈ M
there exists some ǫ0 > 0 such that for 0 < δ < ǫ0 if I ⊂ R is an open interval and
γ : I → M is a geodesic which is tangent to the geodesic sphere expp(∂Bp(0, δ)) at
the point γ(t0), for some t0 ∈ I, then there exists some η > 0 such that

γ((t0 − η, t0 + η) \ {t0}) ⊂M \ expp(Bp(0, δ)).

Proof. There exists some ǫ > 0 such that expp maps Bp(0, ǫ) diffeomorphically onto
U = expp(Bp(0, δ)). Let 0 < δ < ǫ. We choose an orthonormal basis {E1, ..., En} of
TpM and consider the normal chart (U, φ) at p, where φ = h ◦ (expp |Bp(0,ǫ))

−1 and
h : TpM → Rn is the linear isommetry with h(Ei) = ei, 1 ≤ i ≤ n. Let γ : I → U
be a geodesic which is tangent to the geodesic sphere expp(∂Bp(0, δ)) at the point
γ(t0). Suppose that φ = (x1, ..., xn) and φ◦γ = (γ1, ..., γn). We consider the smooth
function f : I → R with

f(t) =
n∑

k=1

(γk(t))2.

Since γ is tangent to expp(∂Bp(0, δ)) at γ(t0), we have

f ′(t0) = 2

n∑

k=1

γk(t0)(γ
k)′(t0) = 0.

Since γ is a geodesic,

(γk)′′(t) = −
n∑

i,j=1

Γkij(γ(t))(γ
i)′(t)(γj)′(t)

and substituting

f ′′(t) = 2

n∑

k=1

[((γk)′(t))2 + (γk)(t)(γk)′′(t)]

=
n∑

i,j=1

(
2δij − 2

n∑

k=1

Γkij(γ(t))γ
k(t)

)
(γi)′(t)(γj)′(t)
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for every t ∈ I. Since Γkij(p) = 0, 1 ≤ i, j, k ≤ n, there exists some 0 < ǫ0 < ǫ such
that the quadratic form

n∑

i,j=1

(
δij −

n∑

k=1

Γkij(q)x
k(q)

)
vivj

is positive definite for every q ∈ expp(Bp(0, ǫ0)). Thus, if 0 < δ < ǫ0, then f
′′(t0) > 0

and f has has a strict local minimum at t0, which means that there exists η > 0
such that f(t) > δ2 for t ∈ (t0 − η, t0 + η) \ {t0}. This proves the assertion. �

We shall also use the following remark. If p ∈M , for every open neighbourhood
U of p there exists an open neighbourhood V of (p, 0) in TM such that expq(tv) ∈ U
for every 0 ≤ t ≤ 1 and (q, v) ∈ V . To see this, it suffices to consider the smooth
map g : [0, 1] × E →M with g(t, q, v) = expq(tv), where E ⊂ TM is the domain of
definition of the exponential map and note that g(t, p, 0) = p for all 0 ≤ t ≤ 1. By
continuity, for every t ∈ [0, 1] there exists an open neighbourhood Vt ⊂ E of (p, 0)
and δt > 0 such that g((t− δt, t+ δt)×Vt) ⊂ U . By compactness of [0, 1], there exist
t1,..., tm ∈ [0, 1], for some m ∈ N, such that

[0, 1] =

m⋃

k=1

(tk − δtk , tk + δtk).

It suffices now to take V = Vt1 ∩ · · · ∩ Vtm .

Theorem 3.6.3. If M is a Riemannian smooth n-manifold, then for every p ∈ M
there exists some ǫ > 0 such that for every 0 < δ < ǫ the geodesic ball expp(Bp(0, δ))
is strongly convex.

Proof. Let ǫ0 > 0 be as in the preceding Lemma 3.6.2 and let F : E → M ×M be
the smooth map F (q, v) = (q, expq(v)), where E ⊂ TM is the domain of definition
of the exponential map. As in the proof of Proposition 3.4.8, there exists an open
neighbourhood V ⊂ TM of (p, 0) and some 0 < ǫ < ǫ0 such that F maps V
diffeomorphically onto expp(Bp(0, ǫ))×expp(Bp(0, ǫ)) and expq(tv) ∈ expp(Bp(0, ǫ0))
for every (q, v) ∈ V and 0 ≤ t ≤ 1, form the above remark. Moreover, there exists
some η > 0 such that expp(Bp(0, ǫ)) ⊂ expq(Bq(0, η)) for every q ∈ expp(Bp(0, ǫ)).

We shall prove that expp(Bp(0, δ)) is strongly convex for every 0 < δ < ǫ.

Let q1, q2 ∈ expp(Bp(0, δ)) = expp(Bp(0, δ)), Since (q1, q2) ∈ F (V ) there exists
v ∈ Tq1M such that q1 = expq1(v) and γ(t) = expq1(tv) ∈ expp(Bp(0, ǫ0)) for every
0 ≤ t ≤ 1. By Proposition 3.5.3, γ is the unique and minimizing geodesic path from
q1 to q2 in expq1(Bq1(0, η)), hence in expp(Bp(0, ǫ0)), and it suffices to show that
γ(t) ∈ expp(Bp(0, δ)) for 0 < t < 1. Let (γ1, ..., γn) be its local representation with
respect to the normal chart on expp(Bp(0, ǫ0)) and let again f : [0, 1] → R be the
smooth function

f(t) =

n∑

k=1

(γk(t))2
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as in the beginning of the proof of Lemma 3.6.2. If γ((0, 1)) has points outside
expp(Bp(0, δ)), then f takes its maximal value on [0, 1] at some 0 < t0 < 1 and

δ2 ≤ f(t0) < ǫ20

or equivalently γ([0, 1]) ∈ expp(Bp(0,
√
f(t0))). On the other hand, we must have

0 = f ′(t0) = 2
n∑

k=1

(γk)(t0)(γ
k)′(t0)

which means that the geodesic path γ((0, 1)) is tangent to the geodesic sphere
expp(∂Bp(0,

√
f(t0))). This contradicts Lemma 3.6.2. �

Corollary 3.6.4. If M is a Riemennian smooth manifold with Riemannian
distance d, then for every p ∈ M there exists some ǫ > 0 such that for every
0 < δ < ǫ the open d-ball B(p, δ) is the geodesic ball with center p and radius δ and
is uniformly normal and strongly convex. �

The existence of strongly convex geodesic balls can be applied to facilitate alge-
braic calculations on smooth manifolds involving de Rham and Čech cohomology.

3.7 Isometries

Let M be a Riemannian manifold with Riemannian distance d. Every Riemennian
isometry f : M → M is a metric isometry of the metric space (M,d), that is f is
surjective and d(f(p), f(q)) = d(p, q) for every p, q ∈ M . The aim of this section
is to prove that actually the converse also holds. This is a famous theorem first
proved by S.B. Myers and N. Steenrod. The proof we present is due to R. Palais.
As expected, the non-trivial part of the proof consists of the argument showing the
differentiability of f . We shall need a preliminary fact.

Let (M,d) be a metric space. A continuous parametrized curve γ : [a, b] → M ,
a, b ∈ R with a < b, is called segment if

d(γ(t1), γ(t2)) + d(γ(t2), γ(t3)) = d(γ(t1), γ(t3))

for all a ≤ t1 ≤ t2 ≤ t3 ≤ b. Obviously, every unit speed minimizing geodesic in a
Riemannian manifold is a segment.

Lemma 3.7.1. Let M be a Riemannian manifold with Riemannian distance d.
The image of every segment of the metric space (M,d) coincides with the image of
a geodesic of M .

Proof. Let γ : [a, b] → M be a segment and p = γ(a). According to Corollary
3.6.4, there exists ǫ > 0 such that for every 0 < δ < ǫ the open d-ball B(p, δ) is
the geodesic ball with center p and radius δ and is uniformly normal and strongly
convex. There exists T > 0 such that γ([a, a + T ]) ⊂ B(p, ǫ). Let γ0 be the unique
and minimizing geodesic path in B(p, ǫ) from p = γ(a) to γ(a + T ). Suppose that
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there exists some a < t0 < a + T such that γ(t0) does not belong to the image of
γ0. There is a unique and minimizing geodesic γ1 in B(p, ǫ) from p = γ(a) to γ(t0)
and a unique and minimizing geodesic γ2 in B(p, ǫ) from γ(t0) to γ(a + T ). Since
the image of γ0 does not coincide with the image of the concatenation γ1 ∗ γ2 of γ1
and γ2, we have

d(γ(a), γ(a + T )) = L(γ0) < L(γ1 ∗ γ2) = L(γ1) + L(γ2)

= d(γ(a), γ(t0)) + d(γ(t0), γ(a+ T )).

This contradicts our assumption that γ is a segment and shows that the image of
γ([a, a+ T ]) coincides with the image of γ0. If now

s = sup{a < t ≤ b : γ([a, t]) coincides with the image of a geodesic path }

the same argument taking s in place of a shows that necessarily s = b. �

Theorem 3.7.2. Let M and M ′ be Riemannian n-manifolds with corresponding
Riemannian distances d and d′. If f : (M,d) → (M,d′) is a metric isometry, which
means that f is surjective and d′(f(p), f(q)) = d(p, q) for every p, q ∈M , then f is
a Riemannian isometry.

Proof. Let p ∈ M , p′ = f(p) and let ǫ > 0 be such that the open d′-ball B(p′, ǫ)
is the geodesic ball in M ′ with center p′ and radius ǫ and is uniformly normal and
strongly convex. We can choose ǫ > 0 such that f(B(p, ǫ)) = B(p′, ǫ) and B(p, ǫ)
is the geodesic ball in M with center p and radius ǫ and is uniformly normal and

strongly convex. Let v ∈ TpM be such that ‖v‖ = 1 and γ : [0,
ǫ

2
] → B(p, δ) be the

unique minimizing geodesic path with γ(0) = p and γ̇(0) = v. Then γ is a segment
and so f ◦ γ is a segment in B(p′, ǫ), since f is a metric isometry. By the preceding
Lemma 3.7.1, the image of f ◦ γ coincides with the image of a geodesic path in
B(p′, ǫ) with initial point p′, which is parametrized by arclength. Actually, f ◦ γ
itself is a unit speed geodesic path, because

d′(f(γ(t)), f(γ(s))) = d(γ(t), γ(s)) = |t− s|

for every t, s ∈ [0,
ǫ

2
]. If u ∈ Tp′M

′ is the initial velocity of f ◦ γ, we put F (v) = u.

This defines a map F from the unit sphere in TpM to the unit sphere in Tp′M
′,

which we extend to a map F : TpM → Tp′M
′ putting F (0) = 0 and

F (w) = ‖w‖ · F
(

1

‖w‖ · w
)

for every non-zero w ∈ TpM . Since f−1 is also a metric isometry, in a similar way
follows that F is injective and surjective. Moreover, from the definition of F we
have ‖F (w)‖ = ‖w‖ for every w ∈ TpM and f ◦ expp = expp′ ◦ F . Since B(p, ǫ) and
B(p′, ǫ) are uniformly normal neighbourhoods, it suffices to show that F is linear and
preserves the inner products. It is obvious that F (tw) = tF (w) for every w ∈ TpM
and t ≥ 0. If F preserves the inner products, then its linearity can be proved as
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follows. Let {v1, ..., vn} be an orthonormal basis of TpM . Then, {F (v1), ..., F (vn)}
is an orthonormal basis of Tp′M

′. For v, w ∈ TpM we have

〈F (v + w), F (Ej)〉 = 〈v + w,Ej〉 = 〈v,Ej〉+ 〈w,Ej〉

= 〈F (v), F (Ej)〉+ 〈F (w), F (Ej)〉 = 〈F (v) + F (w), F (Ej)〉
for every 1 ≤ j ≤ n. This implies that F (v +w)− F (v)− F (w) = 0 and hence F is
linear.

Since F (tv) = tF (v), for t ≥ 0 and v ∈ TpM , in order to prove that F preserves
the inner products, it is sufficient to show that 〈F (v), F (w)〉 = 〈v,w〉 for v, w ∈ TpM
with ‖v‖ = ‖w‖ = 1. Then also ‖F (v)‖ = ‖F (w)‖ = 1. We put cos θ = 〈v,w〉 and
cosφ = 〈F (v), F (w)〉. Let γ be the geodesic of M with γ(0) = p, γ̇(0) = v, and σ
be the geodesic with σ(0) = p, σ̇(0) = w. Then, f ◦ γ and f ◦ σ are the geodesics in
M ′ with initial point p′ and initial velocities F (v) and F (w), respectively. It suffices
now to prove that

sin
θ

2
= lim

t→0

1

2t
d(γ(t), σ(t)),

sin
φ

2
= lim

t→0

1

2t
d′(f(γ(t)), f(σ(t))),

because then

〈v,w〉 = 1− 2 sin2
θ

2
= 1− 2 sin2

φ

2
= 〈F (v), F (w)〉,

since f is a metric isometry. We shall prove the first equality, the proof of the second
being similar. On B(p, ǫ) we consider the euclidean Riemannian metric which makes
the diffeomorphism expp : Bp(0, ǫ) → B(p, ǫ) Riemannian isometry. Let ρ denote
the corresponding Riemannian distance on B(p, ǫ). We proceed by contradiction.
Suppose that

lim sup
t→0

1

2t
d(γ(t), σ(t)) > sin

θ

2
.

We choose some c > 1 such that

lim sup
t→0

1

2t
d(γ(t), σ(t)) > c sin

θ

2
.

As in the proof of Lemma 3.4.7, there exists 0 < δ < ǫ such that

1

c

( n∑

k=1

w2
k

)1/2

< ‖w‖ < c

( n∑

k=1

w2
k

)1/2

for every w ∈ TqM , q ∈ B(p, δ), where (w1, ..., wn) are the normal coordinates of w
(with respect to p). From the definition of d and ρ we have now

1

c
ρ(q1, q2) < d(q1, q2) < cρ(q1, q2)

for every q1, q2 ∈ B(p, δ). By continuity, there exists η > 0 such that

c

2t
ρ(γ(t), σ(t)) >

1

2t
d(γ(t), σ(t)) > c sin

θ

2
.
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But since ρ is the euclidean distance

1

2t
ρ(γ(t), σ(t)) = sin

θ

2
.

This contradiction shows that

lim sup
t→0

1

2t
d(γ(t), σ(t)) ≤ sin

θ

2
.

In a similar way we can prove that

lim inf
t→0

1

2t
d(γ(t), σ(t)) ≥ sin

θ

2
.

This concludes the proof. �

3.8 Exercises

1. Prove that the euclidean connection on Rn is the unique connection for which
∇XY = 0 for every X ∈ X (Rn) and every constant Y ∈ X (Rn).

2. Let ∇ be a connection on a smooth n-manifold M . A smooth diffeomorphism
f : M → M is called affine, if it preserves ∇, that is f∗(∇XY ) = ∇f∗Xf∗Y ,
for every X, Y ∈ X (M). The set of all affine diffeomorphisms of ∇ is a group.
Prove that in case M = Rn and ∇ is the euclidean connection, for every affine
diffeomorphism f there exist A ∈ GL(n,R) and b ∈ Rn such that f(x) = Ax+ b for
every x ∈ Rn.

3. A smooth n-manifold M is said to be affinely flat, if there exists a smooth atlas
A = {(Ui, φi) : i ∈ I} of M such that for every i, j ∈ I with Ui ∩Uj 6= ∅ there exist
Aij ∈ GL(n,R) and bij ∈ Rn such that

φi ◦ φ−1
j (x) = Aijx+ bij

for every x ∈ φj(Ui ∩ Uj). Prove that then there exists a natural connection ∇ on
M such that every φi : Ui → φi(Ui) transfers ∇|U to the euclidean connection on
φi(Ui) ⊂ Rn.

4. Let A ∈ Rn×n be a positive definite symmetric matrix and

M = {x ∈ Rn : 〈A−1x, x〉 = 1}

be the (n− 1)-dimensional ellipsoid with semi-axis the eigenvalues of A. Prove that
a smooth parametrized curve γ : R → M is a geodesic of M (with respect to the
euclidean connection) if and only if

γ′′ +
〈A−1γ′, γ′〉
‖A−1γ‖2 A−1γ = 0.
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5. On R2 we consider the connection whose Christoffel symbols are Γ1
11 = x,

Γ1
12 = 1, Γ2

22 = 2y and the rest vanish.
(a) Write down the system of differential equations of its geodesics.
(b) Let γ : [0, 1] → R2 be the smooth parametrized curve γ(t) = (t, 0). Find the

parallel translation of the vector

(
∂

∂y

)

(0,0)

along γ on (1, 0) with respect to this

connection.

6. Let M be a smooth manifold endowed with a connection ∇ and let ρ : M → R

be a smooth function. For every X, Y ∈ X (M) we put

∇ρ
XY = ∇XY − Y (ρ)X −X(ρ)Y.

(a) Prove that ∇ρ is a connection on M .
(b) Let ǫ > 0 and γ : (−ǫ, ǫ) → M be a geodesic of ∇ρ. If h : (−ǫ, ǫ) → R is the
smooth function with

h(t) =

∫ t

0
e2ρ(γ(s))ds,

prove that γ ◦ h−1 is a geodesic of ∇. Thus, the two connections ∇ and ∇ρ have
the same non-parametrized geodesics.

7. On R3 we define ∇ : X (R3)× X (R3) → X (R3) by

∇XY = DXY +
1

2
X × Y,

where DXY is the directional derivetive of Y with respect to X and X × Y is the
usual exterior product on R3.
(a) Prove that ∇ is a connection.
(b) Is ∇ symmetric?
(c) Is ∇ compatible with the euclidean Riemannian metric?

8. Let M , N be two connected Riemannian manifolds and let f : M → N be a
smooth diffeomorphism. Assume that there exists some point p ∈ M such that
f∗p : TpM → Tf(p)N is a linear isometry. Prove that f is an isometry if and only if
it preserves the corresponding Levi-Civita connections.

9. Let M be a Riemannian smooth n-manifold and let f : M → R be a smooth
function. The gradient of f is the unique smooth vector field gradf such that

f∗p(v) = 〈gradf(p), v〉
for every v ∈ TpM , p ∈M .
(a) Prove that in the local coordinates (x1, ..., xn) of a smooth chart of M the
gradient of f is given by the formula

gradf = (gij)
−1
1≤i,j≤n




∂f
∂x1

.

.

.
∂f
∂xn



.
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(b) If ‖gradf‖ = 1 everywhere on M , prove that the integral curves of gradf are
geodesics.

10. On D2 = {z ∈ C : |z| < 1} we consider the Riemannian metric

〈v,w〉 = 4

(1− |z|2)2 · Re(vw̄), v, w ∈ TzD
2, z ∈ D2.

(a) Prove that the map C : D2 → H2 defined by

C(z) = −iz + i

z − i

is an isometry. C is called the Cayley transformation.
(b) Prove that if a, b ∈ C and |a|2 − |b|2 = 1, then

h(z) =
az + b

b̄z + ā

is an isometry of D2.
(c) Describe the geodesics of D2.

11. Let γ : R → H2 be the smooth parametrized curve γ(t) = (t, 1). Find the paral-

lel vector fieldX along γ withX(0) =

(
∂

∂y

)

γ(0)

and drawX on the interval [−π
2
, π].

12. Let M and N be two connected Riemannian manifolds.
(a) Let p ∈ M , q ∈ N and T : TpM → TqN be a linear isometry. If there exists an
isometry h :M → N such that h(p) = q and h∗p = T , prove that there exist normal
open neighbourhoods V of p and W of q such that h(V ) =W and

h|V = expq ◦T ◦ exp−1
p .

(b) Prove that if g, h : M → N are two isometries for which there exists some
p ∈M such that g(p) = h(p) and g∗p = h∗p, then g = h.

13. Let M ne a Riemannian smooth n-manifold and let G be a non-empty set of
isometries of M . If F = {p ∈ M : g(p) = p for every g ∈ G}, prove that F is a
smooth submanifold of M .
(Hint: Consider for every p ∈ F the vector subspace

V = {v ∈ TpM : g∗p(v) = v for every g ∈ G}

of TpM and show that expp(U∩V ) = F ∩expp(U) for a suitable open neighbourhood
U of 0 ∈ TpM .)

14. Let M be a Riemannian smooth manifold with group of isometries I(M). For
a properly discontinuous subgroup G of I(M), the orbit space M/G inherits a
Riemannian metric, if it is a Hausdorff space, and the quotient map p :M →M/G
is a local isometry. If M is complete, prove that M/G is complete as well. Describe
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the geodesics of the flat 2-torus T 2 and the geodesics of RP 2 with respect to the
induced Riemannian metric from S2.

15. Prove that a connected isotropic and complete Riemannian manifold is
homogeneous.

16. Let M be a connected, non-compact, complete Riemannian manifold with
Riemannian distance d. Prove that for every p ∈ M there exists a geodesic
γ : [0,+∞) →M with γ(0) = p and d(p, γ(t)) = t for every t ≥ 0.

17. Let M and N be two Riemannian smooth manifolds and let h : M → N be a
smooth diffeomorphism for which there exists c > 0 such hat c‖h∗p(v)‖ ≤ ‖v‖ for
every v ∈ TpM and p ∈M . If N is complete, prove that M is also complete.

18. Let M be a Riemannian smooth manifold with Riemannian distance d. For
every piecewise smooth parametrized curve γ : [a, b] → M , where a, b ∈ R, a < b,
the non-negative real number

J(γ) =
1

2

∫ b

a
‖γ̇(t)‖2dt

is called the energy of γ and is not invariant under reparametrizations.
(a) Prove that (L(γ))2 ≤ 2(b − a)J(γ) and the equality holds if and only if ‖γ̇‖ is
constant.

For every p, q ∈M we define

e(p, q) = inf{2J(γ)|γ : [0, 1] →M piecewise smooth with γ(0) = p, γ(1) = q}.

(b) Prove that (d(p, q))2 = e(p, q) for every p, q ∈M .
(c) If p, q ∈ M and γ is a piecewise smooth parametrized curve from p to q, prove
that γ minimizes the energy, that is 2J(γ) = e(p, q), if and only if γ is a minimizing
geodesic.



Chapter 4

Curvature

4.1 The Riemann curvature tensor

A first important step towards the classification of Riemannian manifolds is the an-
swer to the following question: Are all Riemannian manifolds locally isometric? We
shall see in this chapter that the answer is negative, by constructing local isometric
invariants. All of them originate from the curvature tensor, which was introduced
by B. Riemann in a purely geometric manner and generalizes the Gauss curvature
of a surface in R3. Is should be noted that the local investigation of the Riemanian
manifolds is a highly non-trivial task contrary to other geometric structures such as
for instance the symplectic and contact structures which by Darboux’s theorem are
all locally isomorphic and thus have no local invariants.

Let ∇ be a connection on a smooth n-manifold M . The curvature of ∇ is
an algebraic tool which describes how much ∇ locally deviates from the euclidean
connection. For every X ∈ X (M) the linear map ∇X : X (M) → X (M) is a
derivation and one can ask whether ∇X∇Y Z = ∇Y∇XZ holds for every X, Y ,
Z ∈ X (M). This does not hold even for the euclidean connection on Rn. More
precisely, in this case we have

∇X∇Y Z −∇Y∇XZ = ∇[X,Y ]Z.

Thus, if ∇ is the Levi-Civita connection of a Riemannian metric on M and M is
locally isometric to the euclidean n-space, we must necessarily have

∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z = 0

for every X, Y , Z ∈ X (M). This leads to the following.

Definition 4.1.1. The curvature tensor of a connection ∇ on a smooth n-manifold
M is the C∞(M)-multilinear map R : X (M)×X (M)×X (M) → X (M) defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z.

An easy calculation shows that R is indeed C∞(M)-multilinear and therefore
the value of R(X,Y )Z at a point p ∈ M depends only on the values Xp, Yp and

75
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Zp. We can therefore write R(Xp, Yp)Zp. According to the definition, the curvature
tensor of the euclidean connection is zero.

If M and M̃ are two smooth manifolds carrying connections ∇ and ∇̃, respec-
tively, and f :M → M̃ is a smooth diffeomorphism such that f∗(∇XY ) = ∇̃f∗Xf∗Y
for every X, Y ∈ X (M) (such a diffeomorphism is called conformal), then from
the definition and the behaviour of the Lie bracket under diffeomorphisms we have
f∗(R(X,Y )Z) = R(f∗X, f∗Y )f∗Z for every X, Y , Z ∈ X (M). In particular this
holds in case ∇ and ∇̃ are the Levi-Civita connections of Riemennian metrics on
M and M̃ , respectively, and f :M → M̃ is an isometry.

Proposition 4.1.2. The curvature tensor R of a symmetric connection ∇ on a
smooth n-manifold M satisfies the following identities.
(a) R(X,Y )Z = −R(Y,X)Z, and
(b) R(X,Y )Z + R(Y,Z)X + R(Z,X)Y = 0 for every X, Y , Z ∈ X (M). This
second identity is called the first (algebraic) identity of Bianchi.

Proof. The first identity is obvious from the definition of the curvature tensor. Since

R is C∞(M)-multilinear, it suffices to check that (b) holds only in case X =
∂

∂xi
,

Y =
∂

∂xj
and Z =

∂

∂xk
are basic vector fields in some open set U ⊂M with respect

to a chart φ = (x1, ..., xn) : U → Rn. Now we have [X,Y ] = [Y,Z] = [Z,X] = 0 and

R(X,Y )Z +R(Y,Z)X +R(Z,X)Y

= ∇X(∇Y Z −∇ZY ) +∇Y (∇ZX −∇XZ) +∇Z(∇XY −∇YX)

= ∇X [Y,Z] +∇Y [Z,X] +∇Z [X,Y ] = 0

since ∇ is assumed to be symmetric. �

From now on we shall restrict ourselves in the case where ∇ is the Levi-Civita
connection of a Riemannian manifold M with Riemannian metric g = 〈., .〉. Since
g is a non-degenerate, symmetric bilinear form on each tangent space TpM , p ∈M ,
the value of the curvature tensor R(u, v)w for given u, v, w ∈ TpM is completely
determined by the values of 〈R(u, v)w, z〉 for z ∈ TpM . The C∞(M)-multilinear
form defined by

Rm(X,Y,Z,W ) = 〈R(X,Y )Z,W 〉
is called the covariant Riemann curvature tensor.

Proposition 4.1.3. The covariant Riemann curvature tensor has the following
properties.
(a) Rm(W,X, Y,Z) = −Rm(X,W,Y,Z),
(b) Rm(W,X, Y,Z) = −Rm(W,X,Z, Y ),
(c) Rm(W,X, Y,Z) = Rm(Y,Z,W,X),
(d) Rm(W,X, Y,Z) +Rm(X,Y,W,Z) +Rm(Y,W,X,Z) = 0
for every W , X, Y , Z ∈ X (M).
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Proof. Properties (a) and (d) are merely a restatement of Proposition 4.1.2. For (b)
we prove first that Rm(W,X, Y, Y ) = 0 for every W , X, Y ∈ X (M). Since ∇ is the
Levi-Civita connection, we have

W (X(‖Y ‖2)) =W (2〈∇XY, Y 〉) = 2〈∇W∇XY, Y 〉+ 2〈∇XY,∇WY 〉,

X(W (‖Y ‖2)) = X(2〈∇WY, Y 〉) = 2〈∇X∇WY, Y 〉+ 2〈∇WY,∇XY 〉
and [W,X](‖Y ‖2) = 2〈∇[W,X]Y, Y 〉. It follows that

2Rm(W,X, Y, Y ) = 2〈∇W∇XY, Y 〉 − 2〈∇X∇WY, Y 〉 − 2〈∇[W,X]Y, Y 〉

=W (X(‖Y ‖2))−X(W (‖Y ‖2))− [W,X](‖Y ‖2) = 0.

From this now we conclude that

Rm(W,X, Y,Z) +Rm(W,X,Z, Y ) = Rm(W,X, Y + Z, Y + Z) = 0.

Property (c) follows from the rest noting first that from the first identity of
Bianchi

Rm(W,X, Y,Z) +Rm(X,Y,W,Z) +Rm(Y,W,X,Z) = 0,

Rm(X,Y,Z,W ) +Rm(Y,Z,X,W ) +Rm(Z,X, Y, Z) = 0,

Rm(Z,W,X, Y ) +Rm(W,X,Z, Y ) +Rm(X,Z,W, Y ) = 0.

Summing up and using (a) and (b) we get

2Rm(Y,W,X,Z) − 2Rm(X,Z, Y,W ) = 0. �

If (U, φ) is a chart of M and φ = (x1, x2, ..., xn), there are uniquely determined
smooth functions Rlijk : U → R, 1 ≤ i, j, k, l ≤ n, such that

R(
∂

∂xi
,
∂

∂xj
)
∂

∂xk
=

n∑

l=1

Rlijk
∂

∂xl
,

which are called the local components of the curvature tensor with respect to the
given chart. A straightforward calculation gives the following expression of the local
components of the curvature tensor in terms of the Christoffel symbols

Rlijk =
n∑

m=1

ΓmjkΓ
l
im −

n∑

m=1

ΓmikΓ
l
jm +

∂Γljk
∂xi

− ∂Γlik
∂xj

due to C.F.Gauss.
The local components of the covariant Riemann curvature tensor are defined

analogously by

Rijkl = Rm(
∂

∂xi
,
∂

∂xj
,
∂

∂xk
,
∂

∂xl
) =

n∑

m=1

gmlR
m
ijk.

Thus, the local expressions of the properties (a)-(d) of Proposition 4.1.3 are now
(a) Rijkl = −Rjikl, (b) Rijkl = −Rijlk, (c) Rijkl = Rklij, (d) Rijkl+Rjkil+Rkijl = 0.



78 CHAPTER 4. CURVATURE

The variation of the covariant Riemann curvature tensor has a property called
the second (infinitesimal) identity of Bianchi. If

T : X (M) × · · · × X (M) → C∞(M)

is a C∞(M) − r−multilinear form on a Riemannian manifold M with Levi-Civita
connection ∇, the covariant derivative of T in the direction of the smooth vector
field X ∈ X (M) is by definition the C∞(M) − r−multilinear form given by the
formula

(∇XT )(Y1, ..., Yr) = X(T (Y1, ..., Yr))−
r∑

i=1

T (Y1, ..., Yi−1,∇XYi, Yi+1, ..., Yr)

for every Y1,...,Yr ∈ X (M).
If T : X (M) × · · · × X (M) → X (M) is a C∞(M) − r−multilinear map, its

covariant derivative in the direction of X ∈ X (M) is the C∞(M) − r−multilinear
map defined by

(∇XT )(Y1, ..., Yr) = ∇X(T (Y1, ..., Yr))−
r∑

i=1

T (Y1, ..., Yi−1,∇XYi, Yi+1, ..., Yr)

for every Y1,...,Yr ∈ X (M).
In both cases, T is called parallel if ∇XT = 0 for every X ∈ X (M). For example,

in the case of the Riemannian metric g, which is C∞(M)-bilinear, we have

(∇Xg)(Y1, Y2) = X〈Y1, Y2〉 − 〈∇XY1, Y2〉 − 〈Y1,∇XY2〉 = 0

for every X, Y1, Y2 ∈ X (M).

Example 4.1.4. If M is a Riemannian n-manifold, n ≥ 2, the map

T : X (M)× X (M)× X (M) → X (M)

defined by
T (X,Y,Z) = 〈Y,Z〉X − 〈X,Z〉Y

is C∞(M)-multilinear and parallel (with respect to the Levi-Civita connection),
because

(∇WT )(X,Y,Z) = ∇W (T (X,Y,Z))−T (∇WX,Y,Z)−T (X,∇WY,Z)−T (X,Y,∇WZ)

=W (〈Y,Z〉)X + 〈Y,Z〉∇WX −W (〈X,Z〉)Y − 〈X,Z〉∇WY − 〈Y,Z〉∇WX

+〈∇WX,Z〉Y − 〈∇WY,Z〉X + 〈X,Z〉∇WY − 〈Y,∇WZ〉X + 〈X,∇WZ〉Y = 0.

Putting (∇T )(X,Y1, ..., Yr) = (∇XT )(Y1, ..., Yr) the second identity of Bianchi
can be stated as follows.

Proposition 4.1.5. The curvature tensor R of a Riemannian n-manifold M sat-
isfies

(∇R)(W,X, Y,Z) + (∇R)(X,Y,W,Z) + (∇R)(Y,W,X,Z) = 0
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for every W , X, Y , Z ∈ X (M).

Proof. Since ∇R is C∞(M)-multilinear, it suffices to prove the identity at a point.
Let p ∈ M and let (U, φ) be a normal chart of M at p with φ = (x1, ..., xn). We
need only consider the case

W =
∂

∂xi
, X =

∂

∂xj
, Y =

∂

∂xk
, Z =

∂

∂xl
.

Since the chart is normal at p, the Christoffel symbols vanish at p and therefore

∇( ∂

∂xi
)p

∂

∂xj
= 0

for all 1 ≤ i, j ≤ n. It follows that

(∇R)( ∂
∂xi

,
∂

∂xj
,
∂

∂xk
,
∂

∂xl
)(p) = ∇( ∂

∂xi
)p
R(

∂

∂xj
,
∂

∂xk
)
∂

∂xl
.

Since

∇ ∂

∂xi
R(

∂

∂xj
,
∂

∂xk
)
∂

∂xl
+∇ ∂

∂xj
R(

∂

∂xk
,
∂

∂xi
)
∂

∂xl
+∇ ∂

∂xk
R(

∂

∂xi
,
∂

∂xj
)
∂

∂xl

= R(
∂

∂xi
,
∂

∂xj
)(∇ ∂

∂xk

∂

∂xl
) +R(

∂

∂xj
,
∂

∂xk
)(∇ ∂

∂xi

∂

∂xl
) +R(

∂

∂xk
,
∂

∂xi
)(∇ ∂

∂xj

∂

∂xl
),

we get

(∇R)(W,X, Y,Z)(p) + (∇R)(X,Y,W,Z)(p) + (∇R)(Y,W,X,Z)(p)

= R((
∂

∂xi
)p, (

∂

∂xj
)p)(∇( ∂

∂xk
)p

∂

∂xl
) +R((

∂

∂xj
)p, (

∂

∂xk
)p)(∇( ∂

∂xi
)p

∂

∂xl
)

+R((
∂

∂xk
)p, (

∂

∂xi
)p)(∇( ∂

∂xj
)p

∂

∂xl
) = 0 + 0 + 0 = 0 �

If (U, φ) is a chart of M with φ = (x1, ..., xn), setting

∇iRjklm =

(
∇ ∂

∂xi
Rm

)(
∂

∂xj
,
∂

∂xk
,
∂

∂xl
,
∂

∂xm

)

=
∂Rjklm
xi

−
n∑

s=1

ΓsijRsklm −
n∑

s=1

ΓsikRjslm −
n∑

s=1

ΓsilRjksm −
n∑

s=1

ΓsimRjkls

the second identity of Bianchi locally takes the form

∇iRjklm +∇jRkilm +∇kRijlm = 0.
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4.2 Sectional curvature

The curvature tensor of a Riemannian manifold can be encoded through an arith-
metical quantity, which is called the sectional curvature and had been originally
introduced by C.F. Gauss in his differential geometry of surfaces in the euclidean
3-space.

Let M be a Riemannian n-manifold, n ≥ 2, and let R be the curvature tensor
of (the Levi-Civita connection of) M . Let p ∈ M and u, v ∈ TpM be linearly
independent tangent vectors spanning a 2-dimensional vector subspace S of TpM .
The real number

Kp(S) =
〈R(u, v)v, u〉

‖u‖2 · ‖v‖2 − 〈u, v〉2

depends only on S and not on the choice of the particular basis {u, v}. Indeed, if
{u1, v1} is another basis of S, there are a, b, c, d ∈ R with ad− bc 6= 0 such that

u1 = au+ cv, v1 = bu+ dv.

Then,

‖u1‖2 · ‖v1‖2 − 〈u1, v1〉2 =
∣∣∣∣
a b
c d

∣∣∣∣
2

· (‖u‖2 · ‖v‖2 − 〈u, v〉2)

and form Proposition 4.1.3

〈R(u1, v1)v1, u1〉 =
∣∣∣∣
a b
c d

∣∣∣∣
2

〈R(u, v)v, u〉.

Note that the denominator ‖u‖2 · ‖v‖2 − 〈u, v〉2 is the square of the area (with re-
spect to the Riemannian inner product in TpM) of the parallelogram with sides u, v.

Definition 4.2.1. If p ∈ M and S is a 2-dimensional vector subspace of TpM , the
real number Kp(S) is called the sectional curvature of M at p with respect to S.

It is obvious that the sectional curvature is invariant under local isometries.
The complete determination of the curvature tensor by the sectional curvatures is
a purely algebraic fact.

Lemma 4.2.2. Let (V, 〈., .〉) be a real inner product vector space and let R1,
R2 : V × V × V × V → R be two multilinear forms having the properties (a)-(d)
of Proposition 4.1.3. If R1(u, v, v, u) = R2(u, v, v, u) for every pair o linearly
independent vectors u, v ∈ V , then R1 = R2.

Proof. Putting R = R1 −R2, it suffices to show that if R has the properties (a)-(d)
of Proposition 4.1.3 and R(u, v, v, u) = 0 for every u, v ∈ V , then R = 0. As a first
step we have

0 = R(v + w, u, u, v + w) = 2R(v, u, u,w).

Thus,

0 = R(v, s + w, s +w, u) = R(v, s, w, u) +R(v,w, s, u)
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for every s, v, w, u ∈ V . Finally,

0 = R(u, v, w, s) +R(v,w, u, s) +R(w, u, v, s)

= R(u, v, w, s) −R(v, u,w, s) −R(u,w, v, s) = 3R(u, v, w, s). �

Corollary 4.2.3. Let M be a Riemannian n-manifold, n ≥ 2, and p ∈M . If there
exists c ∈ R such that Kp(S) = c for every 2-dimensional vector subspace S of TpM ,
then

R(u, v)w = c(〈v,w〉u − 〈u,w〉v)
for every u, v, w ∈ TpM . �

By the definitions, the euclidean n-space Rn, n ≥ 2, has constant sectional
curvature equal to zero.

Example 4.2.4. We shall compute the sectional curvature of the hyperbolic n-space
Hn
R of radius R > 0. Recall from Example 3.3.5 that

Hn
R = {(p1, ..., pn) ∈ Rn : pn > 0}

and the Riemannian metric is

gij(p1, ..., pn) =
R2

p2n
δij , 1 ≤ 1, j ≤ n.

First we shall calculate the Christoffel symbols which for each 1 ≤ i, j ≤ n are the
solutions of the linear system

n∑

k=1

Γkijgkm =
1

2

[
∂gjm
∂xi

+
∂gmi
∂xj

− ∂gij
∂xm

]

for every 1 ≤ m ≤ n. Since

∂gij
∂xm

= −δijδmn
2R2

(xn)3

substituting we find

Γmij = − 1

xn
(δjmδin + δmiδjn − δijδmn)

for every 1 ≤ i, j,m ≤ n. Now for every 1 ≤ i, j ≤ n− 1 we have

∇ ∂

∂xi

∂

∂xj
=
δij
xn

· ∂

∂xn
, ∇ ∂

∂xn

∂

∂xj
= − 1

xn
· ∂

∂xj

and also

∇ ∂
∂xn

∂

∂xn
= − 1

xn
· ∂

∂xn
.

It follows that

∇ ∂

∂x1
∇ ∂

∂xn

∂

∂xn
= − 1

xn
∇ ∂

∂x1

∂

∂xn
= − 1

xn
∇ ∂

∂xn

∂

∂x1
=

1

(xn)2
· ∂

∂x1
,
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∇ ∂
∂xn

∇ ∂

∂x1

∂

∂xn
= − 1

xn
∇ ∂

∂xn

∂

∂x1
+

1

(xn)2
∂

∂x1
=

2

(xn)2
∂

∂x1
.

Therefore,

R(
∂

∂x1
,
∂

∂xn
)
∂

∂xn
= − 1

(xn)2
∂

∂x1

and the sectional curvature of Hn
R at any point p = (p1, ..., pn) ∈ Hn

R with re-
spect to the 2-dimensional vector subspace S of TpH

n
R which is generated by

{( ∂

∂x1
)
p
,
( ∂

∂xn
)
p

}
is

Kp(S) =
− 1
p2n
g11(p)

g11(p)gnn(p)
= − 1

R2
.

Since for every q ∈ Hn
R and every pair of orthogonal vectors u, v ∈ TqH

n
R with

‖u‖ = ‖v‖ = 1 there exists a hyperbolic isometry h : Hn
R → Hn

R such that h(en) = q
and

h∗en

(
∂

∂x1

)

en

= Ru, h∗en

(
∂

∂xn

)

en

= Rv,

it follows that Hn
R has everywhere constant sectional curvature − 1

R2
.

The following criterion which gives a condition that ensures everywhere constant
sectional curvature is due to F. Schur.

Theorem 4.2.5. Let M be a connected Riemannian n-manifold, n ≥ 3. If there
exists a function f :M → R such that Kp(S) = f(p) for every 2-dimensional vector
subspace S of TpM and every p ∈M , then f is constant.

Proof. Firstly we note that f is necessarily smooth, because if X and Y are two
smooth local vector fields with ‖X‖ = ‖Y ‖ = 1 and 〈X,Y 〉 = 0, then locally
f = 〈R(X,Y )Y,X〉. Our assumption and Corollary 4.2.3 imply that R = f · T ,
where T is the parallel C∞(M)-multilinear map of Example 4.1.4. Thus,

∇XR = f · ∇XT +Xf · T = Xf · T

for every local smooth vector field X. If now {X,Y,Z} is a local orthonormal frame
on M , that is {Xp, Yp, Zp} is an orthonormal basis of TpM for every p in an open
subset of M , from Proposition 4.1.5 (the second identity of Bianchi) we have

0 = (∇XR)(Y,Z,Z) + (∇YR)(Z,X,Z) + (∇ZR)(X,Y,Z)

= Xf · (〈Z,Z〉Y −〈Y,Z〉Z)+ Y f · (〈X,Z〉Z −〈Z,Z〉X) +Zf · (〈Y,Z〉X − 〈X,Z〉Y )

Xf · Y − Y f ·X.

Hence Xf = Y f = 0. This shows that the derivative of f vanishes everywhere on
M . Since M is connected, f must be constant. �
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4.3 Submanifolds of the euclidean space

In this section we shall compute the curvature of a k-dimensional smooth subman-
ifold M of the euclidean space Rn+1, n ≥ 2, endowed with the Riemannian metric
which is induced from the euclidean Riemannian metric on Rn+1. We can identify
the tangent space TpM at a point p ∈ M with a vector subspace of Rn+1 and a
tangent smooth vector field X of M with a smooth map X : M → Rn+1 such that
Xp ∈ TpM for p ∈ M . The value ∇XpY of the Levi-Civita connection ∇ of M for
X, Y ∈ X (M), p ∈M , is the tangent to M component of the directional derivative
DY (p)(Xp) of Y at p with respect to Xp. Let Bp(Xp, Y ) ∈ (TpM)⊥ be the orthogo-
nal toM component of DY (p)(Xp). If f ∈ C∞(M), the orthogonal toM component
of D(fY )(p)(Xp) = f(p)DY (p)(Xp)+Xp(f) ·Y (p) coincides with the orthogonal to
M component of f(p)DY (p)(Xp). This means that Bp(Xp, fY ) = f(p)Bp(Xp, Y ),
for every f ∈ C∞(M) and p ∈ M , which implies that Bp(Xp, Y ) depends only on
Yp. So there is a well-defined bilinear map

Bp : TpM × TpM → (TpM)⊥

which evidently depends smoothly on p, meaning that Bp(Xp, Yp) is a smooth func-
tion of p ∈M for every X, Y ∈ X (M). By definition

DY (p)(Xp) = ∇XpY +Bp(Xp, Yp)

for every p ∈M and X, Y ∈ X (M).

Lemma 4.3.1. The bilinear map Bp is symmetric for every p ∈M .

Proof. Let (U, φ) be a chart of M around the point p ∈ M with φ = (x1, ..., xk)
coming from a M -straightening chart of Rn+1. It suffices to show that

Bp((
∂

∂xi
)p, (

∂

∂xj
)p) = Bp((

∂

∂xj
)p, (

∂

∂xi
)p)

for every 1 ≤ i, j ≤ k. Recall that

∂

∂xi
=
∂φ−1

∂xi
◦ φ

on U , as a vector field in Rn+1 along U ⊂ M . Since φ−1 : φ(U) → U ⊂ M ⊂ Rn+1

is smooth, we have

D(
∂

∂xi
)(

∂

∂xj
) =

∂2φ−1

∂xi∂xj
◦ φ =

∂2φ−1

∂xj∂xi
◦ φ = D(

∂

∂xj
)(

∂

∂xi
),

from which the symmetry of Bp follows. �

The curvature tensor of M can now be represented completely in terms of this
bilinear form and the Riemannian metric.
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Proposition 4.3.2. The covariant Riemann curvature tensor of M is given by the
formula

〈R(X,Y )Z,W 〉 = 〈B(Y,Z), B(X,W )〉 − 〈B(X,Z), B(Y,W )〉

for X, Y , Z, W ∈ X (M).

Proof. Since both sides are C∞(M)-multilinear, it suffices to prove the formula for
the basic local vector fields

X =
∂

∂xi
, Y =

∂

∂xj
, Z =

∂

∂xl

with respect to a chart (U, x1, ..., xk) of M . Then,

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ

and DX(DY (Z)) = DY (DX(Z)), as in the proof of the preceding Lemma 4.3.1.
But

DX(DY (Z)) = DX(∇Y Z)+DX(B(Y,Z)) = ∇X∇Y Z+B(X,∇Y Z)+DX(B(Y,Z))

and similarly

DY (DX(Z)) = ∇Y∇XZ +B(Y,∇XZ) +DY (B(X,Z)).

Subtracting we obtain

R(X,Y )Z = −B(X,∇Y Z) +B(Y,∇XZ)−DX(B(Y,Z)) +DY (B(X,Z))

and therefore

〈R(X,Y )Z,W 〉 = −〈DX(B(Y,Z)),W 〉+ 〈DY (B(X,Z)),W 〉.

Also, differentiating the equation 〈B(Y,Z),W 〉 = 0 in the direction of X we get

0 = X〈B(Y,Z),W 〉 = 〈DX(B(Y,Z)),W 〉 + 〈B(Y,Z),DX(W )〉

= 〈DX(B(Y,Z)),W 〉 + 〈B(Y,Z), B(X,W )〉
and similarly

〈DY (B(X,Z)),W 〉 + 〈B(X,Z), B(Y,W )〉 = 0.

Substituting now yields the formula. �

In the particular case of a hypersurface M in Rn+1, that is k = n, if (U, φ) is a
chart of M , there exists a unique up to sign (assuming that U is connected) unit
normal vector field N along U ⊂ M . This is a smooth map N : U → Sn ⊂ Rn+1

such that (TpM)⊥ is generated by N(p) for every p ∈ U , which is called the Gauss
map on U . There is then a symmetric bilinear form IIp : TpM × TpM → R such
that

B(u, v) = IIp(u, v)N
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for every u, v ∈ TpM , which is called the second fundamental form of M at the
point p ∈ M (with respect to N). The formula of the preceding Proposition 4.3.2
becomes

〈R(u, v)w, s〉 = IIp(v,w)IIp(u, s)− IIp(u,w)IIp(v, s)

for all u, v, w, s ∈ TpM and p ∈ U .
The sectional curvature of M at the point p with respect to the 2-dimensional

vector subspace S of TpM with basis {v,w} is

Kp(S) =
IIp(v, v)IIp(w,w) − IIp(v,w)

2

‖v‖2‖w‖2 − 〈v,w〉2 .

If M is a surface in R3, this is the Gauss curvature of M at p.
Note that the covariant Riemann curvature tensor and the sectional curvature

of M do not depend on the choice of N .
Since TpM = TN(p)S

n as vector subspaces of Rn+1, if X and Y are local smooth
vector fields tangent to M on U , the derivative N∗p : TpM → TN(p)S

n = TpM at
p ∈ U of the Gauss map satisfies

0 = Xp〈Y,N〉 = 〈N∗p(Xp), Yp〉+ 〈N(p),DX(p)(Y (p))〉
= 〈N∗p(Xp), Yp〉+ IIp(Xp, Yp).

Hence the second fundamental form of M at p is given by the formula

IIp(u, v) = −〈N∗p(u), v〉, u, v ∈ TpM.

It follows from this and the symmetry of the second fundamental form that N∗p is
self-adjoint and therefore has real eigenvalues, which are the principal curvatures of
M at p. The corresponding eigenvectors define the principal directions of M at p.

Example 4.3.3. We shall apply the above in order to calculate the curvature tensor
and the sectional curvature of the sphere SnR of radius R > 0 in Rn+1. In this case
there is a globally defined Gauss map N : SnR → Sn by

N(p) =
1

R
p

for every p ∈ SnR. The second fundamental form is thus

IIp(u, v) = − 1

R
〈u, v〉

and the sectional curvature of SnR at the point p with respect to the 2-dimensional
vector subspace S of TpS

n
R with orthonormal basis {u, v} is

Kp(S) = IIp(u, u)IIp(v, v−IIp(u, v)
2 =

(
− 1

R

)(
− 1

R

)
− 0 =

1

R2
.

The covariant Riemann curvature tensor is given by the formula

〈R(X,Y )Z,W 〉 = 1

R2

(
〈Y,Z〉〈X,W 〉 − 〈X,Z〉〈Y,W 〉

)

and the curvature tensor is

R(X,Y )Z =
1

R2

(
〈Y,Z〉X − 〈X,Z〉Y

)
.
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4.4 Riemannian submersions

Let M , N be two Riemannian manifolds and let f : M → N be a submer-
sion onto N . From Corollary 1.3.5, for each q ∈ N the level set f−1(q) is a
smooth submanifold of M and Tpf

−1(q) = Kerf∗p for every p ∈ f−1(q). We
shall use the notation T vpM = Tpf

−1(q) and call this vector space the vertical

subspace of TpM (with respect to f), and T hpM for the orthogonal complement
of T vpM in TpM with respect to the Riemannian metric, which will be called the

horizontal subspace of TpM . Obviously, f∗p maps T hpM isomorphically onto Tf(p)M .

Definition 4.4.1. A submersion f : M → N onto N is called Riemannian
submersion if f∗p maps T hpM isometrically onto Tf(p)M for every p ∈M .

If f :M → N is a Riemannian submersion and X ∈ X (N), there exists a unique
X̃ ∈ X (M) such that X̃p ∈ T hpM and f∗p(X̃p) = Xf(p) for every p ∈ M , which is
called the horizontal lift of X.

Lemma 4.4.2. If f :M → N is a Riemannian submersion, then

∇X̃ Ỹ = ∇̃XY +
1

2
[X̃, Ỹ ]v

for every X, Y ∈ X (N), where [X̃, Ỹ ]vp is the vertical component of [X̃, Ỹ ]p for

p ∈M which depends only on X̃p and Ỹp.

Proof. Let X, Y , Z ∈ X (N) and let X̃, Ỹ , Z̃ ∈ X (M) be their corresponding
horizontal lifts. Let q ∈ N , p ∈ f−1(q) and Vp ∈ T vpM . There exists a (not unique)
extension of Vp to some V ∈ X (M) with Vx ∈ T vxM for every x ∈ M . Thus, V is
orthogonal to X̃ , Ỹ and Z̃. Moreover, the smooth function 〈X̃, Ỹ 〉 takes the constant
value 〈Xq, Yq〉 on the level set f−1(q), because f is a Riemannian sumbersion, and
therefore V 〈X̃, Ỹ 〉 = 0, since V is vertical. Also, X̃〈Ỹ , Z̃〉 = X〈Y,Z〉, from the
definition of the horizontal lifts and the chain rule. However,

X̃〈Ỹ , Z̃〉 = 〈∇X̃ Ỹ , Z̃〉+ 〈Ỹ ,∇Z̃X̃〉+ 〈Ỹ , [X̃, Z̃]〉

= 〈∇X̃ Ỹ , Z̃〉+ X̃〈X̃, Ỹ 〉 − 〈X̃,∇Z̃ Ỹ 〉+ 〈Y, [X,Z]〉
= 〈∇X̃ Ỹ , Z̃〉 − 〈X̃,∇Z̃ Ỹ 〉+ Z〈X,Y 〉+ 〈Y, [X,Z]〉

and similarly X〈Y,Z〉 = 〈∇XY,Z〉 − 〈X,∇ZY 〉+ Z〈X,Y 〉+ 〈Y, [X,Z]〉. Hence

〈∇X̃ Ỹ , Z̃〉 − 〈X̃,∇Z̃ Ỹ 〉 = 〈∇XY,Z〉 − 〈X,∇ZY 〉.

In the same way from the equality Ỹ 〈X̃, Z̃〉 = Y 〈X,Z〉 we get

〈∇X̃ Ỹ , Z̃〉+ 〈X̃,∇Z̃ Ỹ 〉 = 〈∇XY,Z〉+ 〈X,∇ZY 〉.

Consequently, 〈∇X̃ Ỹ , Z̃〉 = 〈∇XY,Z〉.
On the other hand,

0 = V 〈X̃, Ỹ 〉 = 〈∇X̃V, Ỹ 〉+ 〈[V, X̃ ], Ỹ 〉+ 〈∇V Ỹ , X̃〉
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= −〈∇X̃ Ỹ , V 〉+ 0 + 〈∇Ỹ V, X̃〉+ 〈[V, Ỹ ], X̃〉 = −〈∇X̃ Ỹ , V 〉 − 〈∇Ỹ X̃, V 〉+ 0

= −〈∇X̃ Ỹ , V 〉 − 〈∇X̃ Ỹ , V 〉 − 〈[Ỹ , X̃ ], V 〉

because [V, X̃ ] and [V, Ỹ ] are vertical. This shows that ∇X̃p
Ỹ − 1

2
[X̃, Ỹ ]vp ∈ T hpM

and from the above

〈∇X̃p
Ỹ − 1

2
[X̃, Ỹ ]vp, Z̃p〉 = 〈∇X̃p

Ỹ , Z̃p〉 = 〈∇XqY,Zq〉 = 〈(∇̃XY )p, Z̃p〉.

Finally, since 〈V, [X̃, Ỹ ]〉 = 〈V,∇X̃ Ỹ −∇Ỹ X̃〉 = −〈∇X̃V, Ỹ 〉 + 〈∇Ỹ V, X̃〉 it follows

that [X̃, Ỹ ]vp depends only on X̃p and Ỹp. �

Corollary 4.4.3. Let f : M → N be a Riemannian submersion, γ : I → N be a
smooth parametrized curve and γh : I → M be a horizontal lift of γ, which means
that γ̇h(t) ∈ T h

γh(t)
M and f ◦ γh = γ for every t ∈ I. Then, γ is a geodesic of N if

and only if γh is a geodesic of M .

Proof. From the preceding Lemma 4.4.2 follows immediately that

Dγ̇h

dt
=
D̃γ̇

dt
+

1

2
[γ̇h(t), γ̇h(t)]v =

D̃γ̇

dt
. �

The following formulas relating the curvature tensors and the sectional curva-
tures of the base space and the total space of a Riemannian submersion were found
by B. O’Neil and are known in the literature with his name.

Theorem 4.4.4. Let f : M → N be a Riemannian submersion, X, Y , Z, W ∈
X (N) and X̃, Ỹ , Z̃, W̃ ∈ X (M) be their horizontal lifts, respectively. Then,
(a) the covariant Riemann curvature tensor of N is given by the formula

〈R(X,Y )Z,W 〉 = 〈R(X̃, Ỹ )Z̃, W̃ 〉 − 1

4
〈[X̃, Z̃]v, [Ỹ , W̃ ]v〉+ 1

4
〈[Ỹ , Z̃]v, [X̃, W̃ ]v〉

−1

2
〈[Z̃, W̃ ]v, [X̃, Ỹ ]v〉.

(b) If u, w is an orthonormal basis of a 2-dimensional subspace S of TqN , q ∈ N ,
and S̃ is the horizontal lift of S at a point p ∈ f−1(q), then

Kq(S) = Kp(S̃) +
3

4
‖[ũ, w̃]v‖2 ≥ Kp(S̃),

where ũ, w̃ ∈ TpM are the horizontal lifts of u and w at p, respectively.

Proof. As in the proof of Lemma 4.4.2, if V ∈ X (M) is vertical we have

0 = 〈∇V Z̃, W̃ 〉+ 〈Z̃,∇V W̃ 〉 = 〈∇V Z̃, W̃ 〉+ 〈Z,∇W̃V 〉+ 〈Z̃, [V, W̃ ]〉

= 〈∇V Z̃, W̃ 〉 − 〈V,∇W̃ Z̃〉+ 0 = 〈∇V Z̃, W̃ 〉 − 〈V, ∇̃WZ〉+
1

2
〈V, [Z̃, W̃ ]v〉
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and therefore

〈∇V Z̃, W̃ 〉 = −1

2
〈V, [Z̃, W̃ ]v〉.

Again as in the proof of Lemma 4.4.2 we have X̃〈∇Ỹ Z̃, W̃ 〉 = X〈∇Y Z,W 〉. But

X̃〈∇Ỹ Z̃, W̃ 〉 = 〈∇X̃∇Ỹ Z̃, W̃ 〉+ 〈∇Ỹ Z̃,∇X̃W̃ 〉

= 〈∇X̃∇Ỹ Z̃, W̃ 〉+ 〈∇̃Y Z, ∇̃XW 〉+ 1

4
〈[Ỹ , Z̃]v, [X̃, W̃ ]v〉

= 〈∇X̃∇Ỹ Z̃, W̃ 〉+ 〈∇Y Z,∇XW 〉+ 1

4
〈[Ỹ , Z̃]v, [X̃, W̃ ]v〉

from Lemma 4.4.2. Consequently,

〈∇X̃∇Ỹ Z̃, W̃ 〉 = X〈∇Y Z,W 〉 − 〈∇Y Z,∇XW 〉 − 1

4
〈[Ỹ , Z̃]v, [X̃, W̃ ]v〉

= 〈∇X∇Y Z,W 〉 − 1

4
〈[Ỹ , Z̃]v, [X̃, W̃ ]v〉

and similarly

〈∇Ỹ∇X̃Z̃, W̃ 〉 = 〈∇Y∇XZ,W 〉 − 1

4
〈[X̃, Z̃]v, [Ỹ , W̃ ]v〉.

Moreover, applying what we have proved in the beginning to the particular case
V = [X̃, Ỹ ]v and Lemma 4.4.2 we obtain

〈∇[X̃,Ỹ ]Z̃, W̃ 〉 = 〈∇[X̃,Ỹ ]hZ̃, W̃ 〉+ 〈∇[X̃,Ỹ ]v Z̃, W̃ 〉

= 〈∇[X,Y ]Z,W 〉 − 1

2
〈[X̃, Ỹ ]v, [Z̃, W̃ ]v〉.

Substituting we get the formula of assertion (a). The assertion for the sectional
curvature is an immediate consequence of (a) taking Z = Y and W = X. �

Example 4.4.5. We shall apply the above in order to calculate the sectional cur-
vature and the covariant Riemann curvature tensor of the Fubini-Study metric on
the complex projective space CPn, n ≥ 2, which was defined in Example 3.3.6. By
the definition of the Fubini-Study metric, the Hopf map π : S2n+1 → CPn becomes
a Riemannian submersion, if on S2n+1 we consider the standard euclidean Rieman-
nian metric of constant sectional curvature 1 according to Example 4.3.3. Recall
from Example 3.3.6 that for each z ∈ S2n+1 the vertical subspace T vz S

2n+1 is gener-
ated by the vector iz. The vertical smooth vector field V ∈ X (S2n+1) with Vz = iz
obviously extends to a smooth vector field on Cn+1 \ {0} given by the same formula
and

∇X̃V = DV (X̃) = iX̃

for every horizontal X̃ ∈ X (S2n+1). Thus, if X̃ , Ỹ ∈ X (S2n+1) are horizontal, we
have

〈[X̃, Ỹ ], V 〉 = 〈∇X̃ Ỹ , V 〉 − 〈∇Ỹ X̃, V 〉 = −〈Ỹ ,∇X̃V 〉+ 〈X̃,∇Ỹ V 〉

= −〈Ỹ , iX̃〉+ 〈X̃, iỸ 〉 = 2〈X̃, iỸ 〉.
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Therefore, [X̃, Ỹ ]v = 2〈X̃, iỸ 〉V .

If now {u,w} is an orthonormal basis of a 2-dimensional vector subspace S of
Tπ(z)CP

n, according to Theorem 4.4.4 the sectional curvature at π(z) with respect
to S is

Kπ(z)(S) = 1 +
3

4
‖2〈ũ, iw̃〉V ‖ = 1 + 3|〈ũ, iw̃〉|2.

Note that if w̃ = iũ, then Kπ(z)(S) = 4 and if 〈ũ, iw̃〉 = 0, then Kπ(z)(S) = 1. By
continuity, this implies that the sectional curvatures at each point of CPn cover the
interval [1, 4].

Finally the covariant Riemann curvature tensor is given by the formula

〈R(X,Y )Z,W 〉 = 〈Ỹ , Z̃〉〈X̃, W̃ 〉 − 〈X̃, Z̃〉〈Ỹ , W̃ 〉 − 〈X̃, iZ̃〉〈X̃, iW̃ 〉

+〈Ỹ , iZ̃〉〈X̃, iW̃ 〉 − 2〈X̃, iỸ 〉〈Z̃, iW̃ 〉

using the formula of the curvature tensor of S2n+1 found in Example 4.3.3.

4.5 The Ricci tensor and Einstein manifolds

Let M be a Riemannian n-manifold and p ∈M . The bilinear form

Ricp : TpM × TpM → R

defined by Ricp(u, v) = TrR(., u)v is symmetric, because if {v1, ..., vn} is an or-
thonormal basis of TpM , then from Proposition 4.1.3 we have

Ricp(u, v) =
n∑

j=1

Rm(vj , u, v, vj) =
n∑

j=1

Rm(v, vj , vj , u)

=
n∑

j=1

Rm(vj, v, u, vj) = Ricp(v, u).

The C∞(M)-bilinear form Ric : X (M) × X (M) → C∞(M) defined in this way is
called the Ricci tensor of M . If v ∈ TpM and ‖v‖ = 1, the real number Ricp(v, v) is
called the Ricci curvature of M at p in the direction of v and it can be expressed in
terms of sectional curvatures as follows. Let {v1, ..., vn} with vn = v and let Sj be
the 2-dimensional vector subspace of TpM with basis {vj , v}, 1 ≦ j ≤ n− 1. Then,

Ricp(v, v) =

n−1∑

j=1

Rm(vj, v, v, vj) =

n−1∑

j=1

Kp(Sj).

If (U, φ) is a chart of M with φ = (x1, ..., xn), the local components of the Ricci
tensor on U with respect to φ are

Rij = Ric

(
∂

∂xi
,
∂

∂xj

)
.
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Since the matrix of R

(
.,
∂

∂xi

)
∂

∂xj
with respect to the ordered basis

[
∂

∂x1
,
∂

∂x2
, ...,

∂

∂xn

]
is (Rklij)1≤k,l≤n, it follows that

Rij =
n∑

k=1

Rkkij, 1 ≤ i, j ≤ n.

The trace Sc of the Ricci tensor is called the scalar curvature of M . More
precisely, for every p ∈ M and u ∈ TpM there exists a unique A(u) ∈ TpM such
that Ricp(u, v) = 〈A(u), v〉 for all v ∈ TpM . The so defined map Ap : TpM → TpM
is obviously linear and self-adjoint, because Ricp is symmetric, and by definition
Sc(p) = TrAp. If {v1, ..., vn} is an orthonormal basis of TpM , then

Sc(p) =

n∑

j=1

Ricp(vj , vj) =

n∑

i,j=1

Rm(vi, vj , vj , vi).

In terms of the chart (U, φ), if (aij)1≤i,j≤n is the matrix of A with respect to

the ordered basis

[
∂

∂x1
,
∂

∂x2
, ...,

∂

∂xn

]
, we have Rij =

n∑

k=1

gjkaki, 1 ≤ i, j ≤ n, and

therefore aki =

n∑

l=1

gklRil, 1 ≤ k, i ≤ n. Hence Sc =

n∑

i,j=1

gijRij , on U .

According to Schur’s Theorem 4.2.5, if n ≥ 3, the sectional curvature of M is
constant if and only if at each point p ∈M the sectional curvature Kp(S) does not
depend on the 2-dimensional vector subspace S of TpM . In analogy, suppose that
the Ricci curvature at p ∈ M in the direction of a unit tangent vector v ∈ TpM
does not depend on v but only on p. In other words, suppose that there is a
smooth function f : M → R such that Ricp(v, v) = f(p) for every v ∈ TpM with
‖v‖ = 1 and p ∈ M , which is equivalent to saying Ric = f · g, where as usual
g denotes the Riemannian metric. Then, necessarily Sc(p) = nf(p) for every p ∈M .

Definition 4.5.1. If M is a Riemannian n-manifold, n ≥ 3, the C∞(M)-bilinear
form

Ric− Sc

n
g : X (M) ×X (M) → C∞(M)

is called the traceless Ricci tensor of M .

Lemma 4.5.2. If M is a connected Riemannian n-manifold, n ≥ 3, with vanishing
traceless Ricci tensor, then the scalar curvature of M is constant.

Proof. Let p ∈ M and let (U, φ) be a normal chart of M at p with φ = (x1, ..., xn).

Then, gij(p) = δij ,
∂gij
∂xm

(p) = 0, hence also gij(p) = δij ,
∂gij

∂xm
(p) = 0 for every

1 ≤ i, j,m ≤ n, and the Christoffel symbols vanish at p. Thus, at the point p the
second identity of Bianchi becomes

∂Rjklm
∂xi

(p) +
∂Rkilm
∂xj

(p) +
∂Rijlm
∂xk

(p) = 0
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and for every 1 ≤ i ≤ n we have

∂Sc

∂xi
(p) =

(
∂

∂xi

)

p

( n∑

j,k=1

gjkRjk

)
=

n∑

j=1

∂Rjj
∂xi

(p) =

n∑

j,k=1

∂Rkjjk
∂xi

(p)

= −
n∑

j,k=1

∂Rjijk
∂xk

(p)−
n∑

j,k=1

∂Rikjk
∂xj

(p) =

n∑

j,k=1

∂Rjkij
∂xk

(p) +

n∑

j,k=1

∂Rkjik
∂xj

(p)

= 2
n∑

j,k=1

∂Rjkij
∂xk

(p) = 2
n∑

j,k=1

∂Rjjki
∂xk

(p) = 2
n∑

k=1

∂Rki
∂xk

(p).

If the traceless Ricci tensor vanishes, then Rij =
Sc

n
gij on U and differentiating at

the point p
∂Rij
∂xk

(p) =
1

n
· ∂Sc
∂xk

(p) · δij

for every 1 ≤ i, j, k ≤ n. Substituting we get

∂Sc

∂xi
(p) =

2

n
· ∂Sc
∂xi

(p)

and therefore
∂Sc

∂xi
(p) = 0 for every 1 ≤ i ≤ n. Since M is connected, this implies

that Sc is constant. �

Definition 4.5.3. A connected Riemannian n-manifold M , n ≥ 3, is called an
Einstein manifold if its traceless Ricci tensor vanishes.

Thus, the Einstein manifolds are precisely the Riemannian manifolds with
constant Ricci curvature. The following observation is due to J.A. Schouten and
D.J. Struik.

Proposition 4.5.4. A connected 3-dimensional Einstein manifold M has constant
sectional curvature.

Proof. Let p ∈ M and let S be a 2-dimensional vector subspace of TpM . Let
{v1, v2, v3} be an orthonormal basis of TpM such that {v1, v2} generates S and let
Sij denote the 2-dimensional vector subspace of TpM with basis {vi, vj}, i 6= j.
Then, S = S12 = S21 and

Ricp(v1, v1) = Kp(S12) +Kp(S13),

Ricp(v2, v2) = Kp(S21) +Kp(S23),

Ricp(v3, v3) = Kp(S31) +Kp(S32).

Therefore,

Ricp(v1, v1) +Ricp(v2, v2)−Ricp(v3, v3) = 2Kp(S).
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Since M is a 3-dimensional Einstein manifold, we have Sc(p) = 3Ricp(vj , vj), for all
j = 1, 2, 3. It follows that

Kp(S) =
1

6
Sc(p)

and by Schur’s Theorem 4.2.5 the sectional curvature of M is constant. �

Example 4.5.5. The preceding Proposition 4.5.4 does not hold in dimensions
greater then 3. We shall show that for n ≥ 2 the complex projective space CPn

equipped with the Fubini-Study metric is an Einstein manifold. As we saw in
Example 4.4.5, the sectional curvature of CPn is not constant and takes all values
in the interval [1, 4]. Let p ∈ CPn and let {v1, ..., vn, vn+1, ..., v2n} be an orthonormal
basis of TpCP

n with horizontal lift {ṽ1, ..., ṽn, ṽn+1, ..., ṽ2n} with respect to the Hopf
map π : S2n+1 → CPn so that ṽn+1 = iṽ1,..., ṽ2n = iṽn. From the formula of
the covariant Riemann curvature tensor of CPn of Example 4.4.5, for every u, w ∈
TpCP

n we have

〈R(vj , u)w, vj〉 = 〈ũ, w̃〉 − 〈ṽj , w̃〉〈ũ, ṽj〉 − 〈ṽj , iw̃〉〈ũ, iṽj〉

+〈ũ, iw̃〉〈ṽj , iṽj〉 − 2〈w̃, iṽj〉〈ṽj , iũ〉

= 〈u,w〉 − 〈ṽj , w̃〉〈ũ, ṽj〉+ 〈ũ, iṽj〉〈w̃, iṽj〉+ 2〈ũ, iṽj〉〈w̃, iṽj〉.

Hence

Ricp(u,w) =

2n∑

j=1

〈R(vj , u)w, vj〉

= 2n〈u,w〉 −
2n∑

j=1

〈ũ, ṽj〉〈w̃, ṽj〉+
2n∑

j=1

〈ũ, iṽj〉〈w̃, iṽj〉+ 2

2n∑

j=1

〈ũ, iṽj〉〈w̃, iṽj〉

= 2n〈u,w〉 + 2〈u,w〉 = (2n + 2)〈u,w〉.

The traceless Ricci tensor should not be confused with the Einstein (gravita-
tional) tensor

Ric− Sc

2
g

which is important in General Relativity, as it occurs in Einstein’s Equation

Ric− Sc

2
g + Λg = 8πT

in which Λ ∈ R is the cosmological constant and T is the energy momentum tensor
describing the distribution of matter (in units where the gravitational constant and
the velocity of light are equal to 1). The first part of the proof of Lemma 4.5.2
actually shows that the Einstein tensor is divergenceless.
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4.6 Exercises

1. Let M be a parallelizable smooth n-manifold and X1, X2,..., Xn ∈ X (M) such
that {X1(p),X2(p), ...,Xn(p)} is a basis of TpM for every p ∈ M . Prove that the
formula

∇X

( n∑

k=1

fkXk

)
=

n∑

k=1

X(fk) ·Xk

for X ∈ X (M) and f1, f2,..., fk ∈ C∞(M) defines a connection on M with
vanishing curvature tensor.

2. Let ∇ be a connection on a smooth manifold M . Let p ∈ M and let (V, φ) be
a normal chart at p. Let E(p) ∈ TpM . For every q ∈ V we consider the parallel
translation E(q) ∈ TqM of E(p) along the geodesic radius in V from p to q.
(a) Prove that E is a smooth vector field on V .
(b) If the curvature tensor of ∇ vanishes, prove that E is parallel that is ∇XE = 0
for every smooth vector field X on V .

3. Let ∇ be a connection on a connected smooth manifold M with the following
property: For every p, q ∈M the parallel translation from p to q does not depend on
choice of the smooth path from p to q. Prove that the curvature tensor of∇ vanishes.

4. Let A = (aij)1≤i,j≤n be a real symmetric matrix and

M = {(x, 1
2
〈Ax, x〉) : x ∈ Rn}.

Find the second fundamental form of M at the point 0.

5. Prove that on a compact hypersurface in Rn+1, n ≥ 2, there exists at least one
point at which the second fundamental form is positive (or negative) definite.

6. If M and N are two Riemannian manifolds, express the Riemann curvature
tensor of the Riemannian product M × N in terms of the Riemann curvature
tensors of M and N .

7. Prove that Sn × Sn, n ≥ 2, with the product Riemannian metric, is an Einstein
manifold.

8. Explain why the Ricci tensor of a 3-dimensional Riemannian manifold completely
determines its Riemann curvature tensor.

9. Let N be a n-dimensional Riemannian manifold and M ⊂ N a smooth (n − 1)-
dimensional submanifold. Let U ⊂ N be an open set with U ∩M 6= ∅ on which
there is an orthonormal frame e1,...,en−1, en such that ν = en is always orthogonal
to M and the rest are tangent to M . The bilinear form hp : TpM × TpM → R

defined by

hp(X,Y ) = 〈∇Xν, Y 〉
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is the second fundamental form of M at the point p ∈ U ∩M . The trace

H(p) =

n∑

i=1

hp(ei, ei)

of hp is called the mean curvature of M at p.
(a) Prove that hp is symmetric.
(b) Let (U, φ) be a M -straightening smooth chart of N with φ = (x1, ..., xn) and

φ(U ∩M) ⊂ Rn−1 × {0}. As usual let gij = 〈 ∂
∂xi

,
∂

∂xi
〉, 1 ≤ i, j ≤ n. Prove that

H(p) =
n−1∑

i,j=1

hp

(
∂

∂xi
,
∂

∂xj

)
gij(p),

where (gij)
−1
1≤i,j≤n−1 = (gij)1≤i,j≤n−1.



Chapter 5

Comparison Geometry

5.1 Variation of length

Let M be a Riemannian n-manifold. Let a, b ∈ R, a < b, and γ : [a, b] → M be
a piecewise smooth parametrized curve. A (piecewise smooth) variation of γ is a
continuous map Γ : (−ǫ, ǫ) × [a, b] → M , for some ǫ > 0, such that there exists a
partition {a = t0 < t1 < · · · < tm = b} of [a, b] for which Γ|(−ǫ,ǫ)×[ti−1,ti] is smooth
for every 1 ≤ i ≤ m and Γ(0, t) = γ(t) for every a ≤ t ≤ b. We say that Γ fixes
endpoints if Γ(s, a) = γ(a) and Γ(s, b) = γ(b) for all |s| < ǫ. The variation Γ is
called smooth if it is a smooth map. The formula

V (t) =
∂Γ

∂s
(0, t) = Γ∗(0,t)

(
∂

∂s

)

(0,t)

, t ∈ [a, b] \ {t0, t1, ..., tm}

defines a piecewise smooth vector field along γ, which is smooth in case the
variation Γ is smooth, that is called the the variation field of Γ.

Lemma 5.1.1. Let γ : [a, b] → M be a smooth parametrized curve. Then, every
V ∈ X (γ) is the variation field of some smooth variation of γ. The same holds
in case γ is piecewise smooth and then the variation is only piecewise smooth. If
V (a) = 0 and V (b) = 0, the variation fixes endpoints.

Proof. By the compactness of [a, b], there exists some δ > 0 such that expγ(t)(w)
is defined for all w ∈ Tγ(t)M with ‖w‖ < δ and t ∈ [a, b], form the existence of
uniformly normal neighbourhoods. If ǫ > 0 is such that max{‖ǫV (t)‖ : t ∈ [a, b]} =
δ, we define Γ : (−ǫ, ǫ)× [a, b] →M by the formula

Γ(s, t) = expγ(t)(sV (t)).

Obviously, Γ is a smooth variation of γ whose variation field is

∂Γ

∂s
(0, t) = (expγ(t))∗0(V (t)) = V (t),

as the proof of Proposition 3.2.4 shows. The rest is obvious. �

95
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Let M be a Riemannian n-manifold, p, q ∈ M and let γ : [a, b] → M , a, b ∈ R

with a < b, be a smooth parametrized by arclength curve from p to q. Let ǫ > 0
and Γ : (−ǫ, ǫ) × [a, b] → M be a smooth variation of γ. Since ‖γ̇(t)‖ = 1 for every

t ∈ [a, b], taking a smaller ǫ if necessary, we may assume that
∂Γ

∂t
(s, t) 6= 0 for every

|s| < ǫ and t ∈ [a, b]. The length of Γ(s, .) is

L(s) =

∫ b

a

∥∥∥∥
∂Γ

∂t
(s, t)

∥∥∥∥dt.

The so defined length function L : (−ǫ, ǫ) → R of Γ is smooth and

L′(s) =
∫ b

a

〈Dds(∂Γ∂t )(s, t), ∂Γ∂t (s, t)〉
‖∂Γ∂t (s, t)‖

dt =

∫ b

a

〈Ddt(∂Γ∂s )(s, t), ∂Γ∂t (s, t)〉
‖∂Γ∂t (s, t)‖

dt.

In particular,

L′(0) =
∫ b

a
〈D
dt

(
∂Γ

∂s

)
(0, t),

∂Γ

∂t
(0, t)〉dt

=

∫ b

a

[
d

dt
〈∂Γ
∂s

(0, t),
∂Γ

∂t
(0, t)〉 − 〈∂Γ

∂s
(0, t),

D

dt

(
∂Γ

∂t

)
(0, t)〉

]
dt

= 〈∂Γ
∂s

(0, b),
∂Γ

∂t
(0, b)〉 − 〈∂Γ

∂s
(0, a),

∂Γ

∂t
(0, a)〉 −

∫ b

a
〈∂Γ
∂s

(0, t),
Dγ̇

dt
(t)〉dt.

Thus, assuming that Γ fixes endpoints, we obtain the first variation formula

L′(0) = −
∫ b

a
〈∂Γ
∂s

(0, t),
Dγ̇

dt
(t)〉dt.

Proposition 5.1.2. A smooth parametrized by arclength curve γ is a geodesic if
and only if it is a critical point of the length function of every smooth variation of
γ which fixes endpoints.

Proof. We shall use the notation of the preceding discussion. If γ is a geodesic, then
from the first variation formula we have L′(0) = 0. For the converse we consider
any smooth function g : [a, b] → [0,+∞) and the smooth vector field

V = g
Dγ̇

dt

along γ. If moreover g(t) > 0 for a < t < b and g(a) = g(b) = 0, then V is the
variation field of a smooth variation Γ of γ which fixes endpoints, by Lemma 5.1.1.
The first variation formula and our assumption give

0 = −
∫ b

a
〈V (t),

Dγ̇

dt
(t)〉dt = −

∫ b

a
g(t)

∥∥∥∥
Dγ̇

dt
(t)

∥∥∥∥
2

dt.

Since this holds for any such g, this implies that

∥∥∥∥
Dγ̇

dt

∥∥∥∥
2

= 0 on [a, b], which means

that γ is a geodesic. �
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In order to derive a second variation formula, that is compute L′′(0) for the
length function L of a smooth variation of a geodesic path γ : [a, b] → M , we shall
need the following formula which is not at all unexpected if we recall the definition
of the curvature tensor.

Lemma 5.1.3. Let A ⊂ R2 be an open set and let Γ : A → M be a smooth map
into a smooth n-manifold M carrying a connection ∇ with corresponding curvature
tensor R. Let V be a smooth vector field along Γ, that is V : A→ TM is a smooth
map such that V (s, t) ∈ TΓ(s,t)M for every (s, t) ∈ A. Then,

D

ds

(
DV

dt

)
− D

dt

(
DV

ds

)
= R

(
∂Γ

∂s
,
∂Γ

∂t

)
V.

Proof. It is sufficient to prove the formula in the local coordinates of a chart
(U, x1, ..., xn) of M assuming that Γ(A) ⊂ U . There are smooth functions V1,...,
Vn : A→ R such that

V (s, t) =

n∑

i=1

Vi(s, t)

(
∂

∂xi

)

Γ(s,t)

for every (s, t) ∈ A. Then,

DV

dt
=

n∑

i=1

∂Vi
∂t

· ∂

∂xi
+

n∑

i=1

Vi ·
D

dt

(
∂

∂xi

)

and

D

ds

(
DV

dt

)
=

n∑

i=1

∂2Vi
∂s∂t

· ∂

∂xi
+

n∑

i=1

∂Vi
∂t

· D
ds

(
∂

∂xi

)
+

n∑

i=1

∂Vi
∂s

· D
dt

(
∂

∂xi

)

+

n∑

i=1

Vi
D

ds

(
D

dt

(
∂

∂xi

))
.

A similar formula gives
D

dt

(
DV

ds

)
if we interchange s and t. Subtracting,

D

ds

(
DV

dt

)
− D

dt

(
DV

ds

)
=

n∑

i=1

Vi

[
D

ds

(
D

dt

(
∂

∂xi

))
− D

dt

(
D

ds

(
∂

∂xi

))]
.

If (Γ1, ...,Γn) is the local representation of Γ with respect to the chart, we have

D

dt

(
∂

∂xi

)
= ∇ ∂Γ

∂t

∂

∂xi
=

n∑

j=1

∂Γj
∂t

· ∇ ∂

∂xj

∂

∂xi

and therefore

D

ds

(
D

dt

(
∂

∂xi

))
=

n∑

j=1

∂2Γj
∂s∂t

∇ ∂

∂xj

∂

∂xi
+

n∑

j=1

∂Γj
∂t

· ∇ ∂Γ
∂s

(
∇ ∂

∂xj

∂

∂xi
)
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=

n∑

j=1

∂2Γj
∂s∂t

∇ ∂

∂xj

∂

∂xi
+

n∑

j,k=1

∂Γj
∂t

· ∂Γk
∂s

· ∇ ∂

∂xk

(
∇ ∂

∂xj

∂

∂xi
)
.

Again
D

dt

(
D

ds

(
∂

∂xi

))
is given by a similar formula interchanging s and t. Sub-

tracting,
D

ds

(
D

dt

(
∂

∂xi

))
− D

dt

(
D

ds

(
∂

∂xi

))

=

n∑

j,k=1

∂Γj
∂t

· ∂Γk
∂s

· ∇ ∂

∂xk

(
∇ ∂

∂xj

∂

∂xi
)
−

n∑

j,k=1

∂Γj
∂s

· ∂Γk
∂t

· ∇ ∂

∂xk

(
∇ ∂

∂xj

∂

∂xi
)

=

n∑

j,k=1

∂Γj
∂t

· ∂Γk
∂s

·
(
∇ ∂

∂xk

(
∇ ∂

∂xj

∂

∂xi
)
−∇ ∂

∂xj

(
∇ ∂

∂xk

∂

∂xi
))

=

n∑

j,k=1

∂Γj
∂t

· ∂Γk
∂s

·R( ∂

∂xk
,
∂

∂xj
)
∂

∂xi
= R

(
∂Γ

∂s
,
∂Γ

∂t

)
∂

∂xi
.

This completes the proof. �

We proceed now to compute the second derivative of the length function of a
variation at the critical point 0, that is assuming that γ is a geodesic. We continue to
use the same notations of the discussion preceding Proposition 5.1.2. Differentiating
L′(s) we find

L′′(s) =
∫ b

a

d

ds

(〈Ddt(∂Γ∂s ), ∂Γ∂t 〉
‖∂Γ∂t ‖

)
dt

=

∫ b

a

〈Dds Ddt(∂Γ∂s ), ∂Γ∂t 〉
‖∂Γ∂t ‖

dt+

∫ b

a

〈Ddt(∂Γ∂s ), Dds(∂Γ∂t )〉
‖∂Γ∂t ‖

dt−
∫ b

a

〈Ddt(∂Γ∂s ), ∂Γ∂t 〉〈Ddt(∂Γ∂s ), ∂Γ∂t 〉
‖∂Γ∂t ‖3

dt.

In particular

L′′(0) =
∫ b

a
〈D
ds

D

dt
(
∂Γ

∂s
)(0, t),

∂Γ

∂t
(0, t)〉dt +

∫ b

a

∥∥∥∥
D

dt

(
∂Γ

∂s

)
(0, t)

∥∥∥∥
2

dt

−
∫ b

a
〈D
dt

(
∂Γ

∂s
)(0, t),

∂Γ

∂t
(0, t)〉2dt.

Let V ⊥ ∈ X (γ) denote the orthogonal to γ component of the variation field,
that is

V ⊥(t) =
∂Γ

∂s
(0, t)− 〈∂Γ

∂s
(0, t),

∂Γ

∂t
(0, t)〉∂Γ

∂t
(0, t)

=
∂Γ

∂s
(0, t)− 〈∂Γ

∂s
(0, t), γ̇(t)〉γ̇(t)

for every t ∈ [a, b]. Since γ is a geodesic,

〈DV
⊥

dt
, γ̇〉 = d

dt
〈V ⊥, γ̇〉 = 0.
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On the other hand
∥∥∥∥
D

dt

(
∂Γ

∂s

)
(0, t)

∥∥∥∥
2

=

∥∥∥∥
DV ⊥

dt
(t)

∥∥∥∥
2

+ 〈D
dt
(
∂Γ

∂s
)(0, t), γ̇(t)〉2

and substituting we get

L′′(0) =
∫ b

a
〈D
ds

D

dt
(
∂Γ

∂s
)(0, t), γ̇(t)〉dt+

∫ b

a

∥∥∥∥
DV ⊥

dt
(t)

∥∥∥∥
2

dt.

From Lemma 5.1.3,

D

ds

(
D

dt

(
∂Γ

∂s

))
(0, t) − D

dt

(
D

ds

(
∂Γ

∂s

))
(0, t) = R

(
∂Γ

∂s
(0, t), γ̇(t)

)(
∂Γ

∂s

)
(0, t)

and

〈R
(
∂Γ

∂s
(0, t), γ̇(t)

)(
∂Γ

∂s

)
(0, t), γ̇(t)〉 = −〈R(V ⊥(t), γ̇(t))γ̇(t), V ⊥(t)〉.

Therefore,

〈D
ds

D

dt
(
∂Γ

∂s
)(0, t), γ̇(t)〉 = 〈D

dt

D

ds
(
∂Γ

∂s
)(0, t), γ̇(t)〉+〈R

(
∂Γ

∂s
(0, t), γ̇(t)

)(
∂Γ

∂s

)
(0, t), γ̇(t)〉

d

dt
〈D
ds

∂Γ

∂s
)(0, t), γ̇(t)〉 − 〈R(V ⊥(t), γ̇(t))γ̇(t), V ⊥(t)〉.

Thus, we arrive at the formula

L′′(0) =
∫ b

a

[∥∥∥∥
DV ⊥

dt
(t)

∥∥∥∥
2

− 〈R(V ⊥(t), γ̇(t))γ̇(t), V ⊥(t)〉
]
dt

since the variation Γ fixes endpoints. The above calculation is due to J.L. Synge
and is known as Synge’s formula for the second variation of length. A second form
is the following.

Theorem 5.1.4. Let γ : [a, b] → M be a geodesic path parametrized by arclength
and let Γ be a smooth variation of γ which fixes endpoints. If V ⊥ is the orthogonal to
γ component of the variation field V of Γ and L is the corresponding length function,
then

L′′(0) = −
∫ b

a
〈V ⊥(t),

D2V ⊥

dt2
(t) +R(V ⊥(t), γ̇(t))γ̇(t)〉dt.

Proof. Since ∥∥∥∥
DV ⊥

dt
(t)

∥∥∥∥
2

=
d

dt
〈V ⊥,

DV ⊥

dt
〉 − 〈V ⊥,

D2V ⊥

dt2
〉

and V ⊥(a) = 0, V ⊥(b) = 0, substituting to Synge’s formula we arrive at the result.
�
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A consequence of Synge’s formula for the second variation of length is the
following important theorem of S.B. Myers.

Theorem 5.1.5. Let M be a connected, complete Riemannian n-manifold, n ≥ 2.
If there exists r > 0 such that

Ricp(v, v) ≥ (n− 1)
1

r2

for every p ∈M and v ∈ TpM with ‖v‖ = 1, then the following hold.
(a) diam(M) ≤ πr.
(b) M is compact.
(c) The fundamental group of M is finite.

Proof. (a) Let p, q ∈ M . By completeness, there exists a minimizing geodesic
γ : [0, ℓ] → M parametrized by arclength with γ(0) = p and γ(ℓ) = q, where
ℓ = L(γ) = d(p, q). It is sufficient to show that ℓ ≤ πr. We proceed to prove the
assertion by contradiction assuming that ℓ > πr. Let E1,..., En−1, En be a parallel
orthonormal frame along γ such that En = γ̇. For each 1 ≤ j ≤ n − 1 we consider
the smooth vector field Vj along γ given by the formula

Vj(t) = sin
(π
ℓ
t
)
·Ej(t), t ∈ [0, ℓ].

Since Vj(0) = 0 and Vj(ℓ) = 0, each Vj is the variation field of a smooth variation of
γ which fixes endpoints, by Lemma 5.1.1. Let Lj denote the corresponding length
function. From Theorem 5.1.4 the second variation of the length function Lj is

L′′
j (0) = −

∫ ℓ

0
〈Vj(t),

D2Vj
dt2

(t) +R(Vj(t), γ̇(t))γ̇(t)〉dt

=

∫ ℓ

0
sin2

(π
ℓ
t
)[π2
ℓ2

−Kγ(t)(Sj(γ(t))

]
dt,

where Sj(γ(t)) is the 2-dimensional vector subspace of Tγ(t)M with basis
{Ej(t), γ̇(t)}. Summing up

n−1∑

j=1

L′′
j (0) =

∫ ℓ

0
sin2

(π
ℓ
t
)[
(n− 1)

π2

ℓ2
−Ricγ(t)(γ̇(t), γ̇(t))

]
dt

≤ (n− 1)

∫ ℓ

0
sin2

(π
ℓ
t
)[π2
ℓ2

− 1

r2

]
dt < 0

by our assumption. This implies that there exists at least one 1 ≤ j ≤ n − 1 such
that L′′

j (0) < 0. This means that the length function Lj has a strict local maximum
at 0, which contradicts the fact that γ is minimizing.

Assertion (b) is an immediate consequence of (a) and the completeness of M ,
because M = expp(Bp(0, πr)) for any p ∈M .

Assertion (c) follows from what we have already proved and some general
considerations about covering spaces of Riemannian manifolds. If σ : M̂ → M is
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the universal covering of M , according to Example 3.3.3, the universal covering
space M̂ carries a Riemannian metric so that the universal covering map σ becomes
a local isometry. By the path lifting property of covering spaces, each geodesic of
M̂ is a lifting of a geodesic of M . This implies that if M is geodesically complete,
then so is M̂ . Thus, if M satisfies the assumptions of the theorem, then they are
satisfied also by M̂ . From (a) and (b) the diameter of M̂ is at most πr and M̂ is
compact. Since σ is a covering map of compact manifolds, its fibre is finite. But
the cardinality of the fibre is equal to the cardinality of the fundamental group,
because σ is the universal covering map. This concludes the proof. �

The estimate diam(M) ≤ πr is the best possible. For example, it is achieved
in the case of the sphere of radius r. Also, if the sectional curvature K of M is
everywhere positive but infK = 0, then the conclusion of the theorem may not
hold. A simple counterexample is the paraboloid

M = {(x, y, z) ∈ R3 : z = x2 + y2}

which is a connected, complete, non-compact, smooth surface in R3 having every-
where positive sectional curvature.

There have been several applications of Myers’ theorem to General Relativity.
For instance, T. Frankel has used Myers’ theorem to obtain a bound for the size
of a fluid mass in a stationary space-time universe and G.J. Galloway made use
of Frankel’s method to prove a closure theorem, which has as its conclusion the
”finiteness” of the ”spatial part” of a space-time obeying certain cosmological as-
sumptions. Because of its importance, there are several generalizations of Myers’
theorem, the most known being the ones by W. Ambrose and E. Calabi.

5.2 Jacobi fields

LetM be a Riemannian n-manifold, n ≥ 2, and let γ : [a, b] →M be a geodesic path
parametrized by arclength. The second variation formula derived in the previous
section motivates the introduction of the symmetric bilinear form

I(X,Y ) =

∫ b

a

[
〈DX
dt

(t),
DY

dt
(t)〉 − 〈R(X(t), γ̇(t))γ̇(t), Y (t)〉

]
dt

= −
∫ b

a
〈Y (t),

D2X

dt2
(t) +R(X(t), γ̇(t))γ̇(t)〉dt

which is called the index form and is defined on the vector space D0(γ) of continuous,
piecewise smooth vector fields along γ which vanish at a and b, and are orthogonal
to γ, because L′′(0) = I(X,X), if X ∈ X (γ) is orthogonal to γ and is the variation
field of a smooth variation of γ with length function L. The vector space D0(γ)
carries the inner product

(X,Y ) =

∫ b

a
〈X(t), Y (t)〉dt.
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Obviously, the linear operator L : X (γ) → X (γ) defined by

L(X) = −D
2X

dt2
−R(X, γ̇)γ̇

satisfies (L(X), Y ) = (X,L(Y )) = I(X,Y ) for every X, Y ∈ X (γ) ∩ D0(γ) and is
therefore self-adjoint on X (γ) ∩ D0(γ).

Definition 5.2.1. A Jacobi field along a geodesic path γ : [a, b] →M is a solution
of Jacobi’s differential equation

D2X

dt2
+R(X, γ̇)γ̇ = 0.

Thus, the Jacobi fields along γ which vanish at its endpoints are elements of
the kernel of the self-adjoint operator L. Another source of motivation for Jacobi’s
equation is the following. Let Γ : (−ǫ, ǫ)× [a, b] →M be a smooth variation of γ by
geodesics. This means that Γ(s, .) : [a, b] → M is a geodesic for all |s| < ǫ. Then,
the corresponding variation field V is a Jacobi field along γ. Indeed, in this case we
have

D

dt

(
∂Γ

∂t

)
= 0

and from Lemma 3.5.1 and Lemma 5.1.3

0 =
D

ds

(
D

dt

(
∂Γ

∂t

))
=
D

dt

(
D

ds

(
∂Γ

∂t

))
+R

(
∂Γ

∂s
,
∂Γ

∂t

)
∂Γ

∂t

=
D

dt

(
D

dt

(
∂Γ

∂s

))
+R

(
∂Γ

∂s
,
∂Γ

∂t

)
∂Γ

∂t
.

Evaluating at s = 0 we obtain

D2V

dt2
+R(V, γ̇)γ̇ = 0.

If E1,..., En is a parallel orthonormal frame along the geodesic path γ, for every
V ∈ X (γ) there are uniquely determined smooth functions, Vk : [a, b] → R, 1 ≤ k ≤

n such that V =

n∑

k=1

Vk ·Ek. Thus, V is a Jacobi field if and only if

0 =

n∑

k=1

V ′′
k Ek +

n∑

k=1

VkR(Ek, γ̇)γ̇

=
n∑

k=1

V ′′
k Ek +

n∑

k=1

Vk

n∑

j=1

〈R(Ek, γ̇)γ̇, Ej〉Ej .

Hence Jacobi’s differential equation along γ is equivalent to the system of linear
differential equations (with non-constant coefficients in general)

V ′′
k +

n∑

j=1

〈R(Ej , γ̇)γ̇, Ek〉Vj = 0, 1 ≤ k ≤ n.
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From the existence and uniqueness of solutions for linear differential equations, for
every v, w ∈ Tγ(a)M there exists a unique Jacobi field V ∈ X (γ) with initial
conditions

V (a) = v,
DV

dt
(a) = w.

Moreover, the set of all Jacobi fields along γ is a vector subspace of X (γ) of
dimension 2n.

Lemma 5.2.2. Let ℓ > 0 and γ : [0, ℓ] → M be a geodesic path parametrized by
arclength. If J ∈ X (γ) is a Jacobi field with J(0) = 0, then J is the variation field
of a variation of γ by geodesics.

Proof. Let w =
DJ

dt
(0) and v0 = γ̇(0). We think of w as an element of Tv0Tγ(0)M

and consider any smooth curve v : (−ǫ, ǫ) → Tγ(0)M with v(0) = v0, v̇(0) = w,
where ǫ > 0 is so small that the smooth variation Γ : (−ǫ, ǫ) × [0, ℓ] → M of γ by
geodesics with

Γ(s, t) = expγ(0)(tv(s))

is defined. The variation field

V (t) =
∂Γ

∂s
(0, t) = t(expγ(0))∗tv0(w)

is a Jacobi field along γ and satisfies the initial conditions V (0) = 0 and
DV

dt
(0) = (expγ(0))∗0(w) = w. By uniqueness with respect to initial conditions,

V = J . �

The velocity field γ̇ of a geodesic path γ parametrized by arclength is trivially a
Jacobi field along γ and is the variation field of the trivial variation Γ(s, t) = γ(s+t).
Non-trivial information for nearby geodesics of γ can be obtained from normal
Jacobi fields. A Jacobi field J along a geodesic path γ : [0, ℓ] →M parametrized by
arclength is called normal if 〈J(t), γ̇(t)〉 = 0 for every 0 ≤ t ≤ ℓ.

Lemma 5.2.3. Let γ : [0, ℓ] →M be a geodesic path parametrized by arclength and
J ∈ X (γ) be a Jacobi field.

(a) J is normal if and only if 〈J(0), γ̇(0)〉 = 0 and 〈DJ
dt

(0), γ̇(0)〉 = 0.

(b) If J is orthogonal to γ̇ at two different times, then it is normal.

Proof. Since γ is a geodesic and J is a Jacobi field along γ, the second derivative of
the smooth function f : [0, ℓ] → R defined by f(t) = 〈J(t), γ̇(t)〉 is

f ′′ = 〈D
2J

dt2
, γ̇〉 = −〈R(J, γ̇)γ̇, γ̇〉 = 0

from Proposition 4.1.3. This means that there are λ, µ ∈ R such that f(t) = λt+µ
for every 0 ≤ t ≤ ℓ. Since

λ = f ′(0) = 〈DJ
dt

(0), γ̇(0)〉,
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it follows immediately that 〈J(0), γ̇(0)〉 = 0 and 〈DJ
dt

(0), γ̇(0)〉 = 0 if and only if

f = 0. The second assertion is obvious since f vanishes identically if and only if it
vanishes at two different times. �.

Corollary 5.2.4. The set of normal Jacobi fields along a geodesic path γ
parametrized by arclength is a vector subspace of X (γ) of dimension 2n− 2.

5.3 Conjugate points

Let M be a Riemannian n-manifold, n ≥ 2, and p ∈ M . Let γ : [0, ℓ] → M be a
geodesic parametrized by arclength with γ(0) = p. If γ̇(0) = v, then γ(t) = expp(tv).
The point γ(t0) is said to be conjugate to p along γ if the derivative of the exponential
map

(expp)∗t0v : Tt0vTpM ∼= TpM → Tγ(t0)M

at t0v is not an isomorphism. The dimension of its kernel is called the multiplicity
of γ(t0).

The set of points of M which are the first conjugate points to p ∈ M along
geodesics emanating from p is called the conjugate locus of p. By Sard’s theorem,
the conjugate locus of p has empty interior in M . The point p is called pole if its
conjugate locus is empty.

Example 5.3.1. On the n-sphere SnR, n ≥ 2, of radius R > 0, all geodesics emanat-
ing from a point p meet at its antipodal point −p, which lies at distance πR along
any such geodesic. The exponential map expp maps Bp(0, πR) diffeomorphically
onto SnR \ {−p} and expp(∂Bp(0, πR)) = {−p}. Thus, −p is conjugate to p along
any geodesic from p and since ∂Bp(0, πR) is a smooth submanifold of TpS

n
R of

dimension n − 1, the multiplicity of −p is equal to n − 1. Of course the conjugate
locus of p is {−p}.

The conjugate points can be characterized using Jacobi fields.

Proposition 5.3.2. Let p ∈ M , ℓ > 0 and γ : [0, ℓ] → M be a geodesic path
parametrized by arclength with γ(0) = p and γ̇(0) = v. For 0 < t0 ≤ ℓ, the point
γ(t0) is conjugate to p along γ with multiplicity k if and only if the exists a non-zero
Jacobi field along γ which vanishes at 0 and t0 and the vector space of all these
Jacobi fields has dimension k.

Proof. As in the proof of Lemma 5.2.2, if w ∈ Tt0vTpM
∼= TpM , we consider any

smooth curve u : (−ǫ, ǫ) → TpM with u(0) = v, u̇(0) = w, where ǫ > 0 is so small
that the smooth variation Γ : (−ǫ, ǫ)× [0, ℓ] →M of γ by geodesics with

Γ(s, t) = expp(tu(s))

is defined. The variation field

J(t) =
∂Γ

∂s
(0, t) = t(expp)∗tv(w)
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is a Jacobi field along γ and on the interval [0, t0] satisfies the boundary conditions
J(0) = 0 and J(t0) = t0(expp)∗t0v(w). The Jacobi field J is uniquely determined
by w and so the vector space of all Jacobi fields along γ which vanish at 0 has
dimension n. For such a Jacobi field J as above we have J(t0) = 0 if and only if
(expp)∗t0v(w) = 0. �

By Lemma 5.2.3(b), a Jacobi field which vanishes at 0 and t0 is necessarily
normal to γ. The existence of conjugate points is the obstruction to the existence
of a solution to the general boundary value problem for Jacobi’s equation.

Proposition 5.3.3. Let ℓ > 0 and γ : [0, ℓ] → M be a geodesic path parametrized
by arclength. If γ(0) and γ(ℓ) are not conjugate along γ, then for every v ∈ Tγ(0)M
and w ∈ Tγ(ℓ)M there exists a unique Jacobi field J along γ satisfying the boundary
conditions J(0) = v and J(ℓ) = w.

Proof. If J1, J2 are two solutions of the boundary value problem, then J1 − J2
is a Jacobi field which vanishes at 0 and ℓ. Thus, if γ(0) and γ(ℓ) are not
conjugate along γ, then J1 − J2 = 0. In order to prove existence we consider the
n-dimensional vector space Λ of all Jacobi fields along γ which vanish at 0. The
map T : Λ → Tγ(ℓ)M with T (J) = J(ℓ) is a linear monomorphism, since γ(ℓ) is
not conjugate to γ(0) along γ. Hence T is a linear isomorphism and this means
that for every w ∈ Tγ(ℓ)M there exists a unique Jacobi field J1 along γ such that
J1(0) = 0 and J1(ℓ) = w. Similarly, for every v ∈ Tγ(0)M there exists a unique
Jacobi field J2 along γ such that J2(0) = v and J1(0) = 0. Thus, it is sufficient to
take J = J1 + J2. �

An important feature of conjugate points to p ∈M along a geodesic emanating
from p is that they occur after the first point at which the geodesic is no longer
minimizing.

Theorem 5.3.4. If ℓ > 0 and γ : [0, ℓ] → M is a minimizing geodesic path
parametrized by arclength, then no point γ(s0) is conjugate to γ(0) along γ for
0 < s0 < ℓ.

Proof. We proceed by contradiction assuming that γ(s0) is conjugate to γ(0) along γ
for some 0 < s0 < ℓ. According to Proposition 5.3.2, there exists a non-zero normal

Jacobi field J along γ|[0,s0] with J(0) = 0 and J(s0) = 0. Then 〈DJ
dt

(t), γ̇(t)〉 = 0 for

0 < t < s0 and
DJ

dt
(s0) 6= 0. Setting J(t) = 0 for s0 < t ≤ ℓ we obtain an element

of D0(γ). We perturb J as follows. Let ψ : [0, ℓ] → [0, 1] be a smooth function such
that ψ(0) = ψ(ℓ) = 0 and ψ(s0) = 1, and let Z be the parallel vector field along γ

with Z(s0) = −DJ
dt

(s0). For every ǫ > 0 we define Xǫ = J + ǫψZ. By Lemma 5.1.1,

Xǫ is the variation field of a piecewise smooth variation of γ which fixes endpoints.
If Lǫ is the corresponding length function, we have L′

ǫ(0) = 0, by Proposition 5.1.2,
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and

L′′
ǫ (0) =

∫ ℓ

0

[∥∥∥∥
DXǫ

dt
(t)

∥∥∥∥
2

− 〈R(Xǫ(t), γ̇(t))γ̇(t),Xǫ(t)〉
]
dt

by Synge’s formula. However,

∥∥∥∥
DXǫ

dt

∥∥∥∥
2

=

∥∥∥∥
DJ

dt

∥∥∥∥
2

+ (ǫψ′‖Z‖)2 + 2ǫ〈DJ
dt
,
D

dt
(ψZ)〉

=
d

dt
〈DJ
dt

, J〉 − 〈D
2J

dt2
, J〉+ 2ǫ〈DJ

dt
,
D

dt
(ψZ)〉 + (ǫψ′‖Z‖)2

and

〈R(Xǫ, γ̇)γ̇,Xǫ〉 = 〈R(J, γ̇)γ̇, J〉+ 2ǫ〈R(J, γ̇)γ̇, ψZ〉+ ǫ2〈R(ψZ, γ̇)γ̇, ψZ〉.

Substituting we find

L′′
ǫ (0) =

∫ ℓ

0

d

dt
〈DJ
dt

, J〉dt−
∫ ℓ

0
〈D

2J

dt2
+R(J, γ̇)γ̇, J〉dt

+2ǫ

∫ ℓ

0

[
〈DJ
dt

,
D

dt
(ψZ)〉 − 〈R(J, γ̇)γ̇, ψZ〉

]
dt+ λǫ2

= 2ǫ

∫ ℓ

0

[
d

dt
〈DJ
dt
, ψZ〉 − 〈D

2J

dt2
, ψZ〉 − 〈R(J, γ̇)γ̇, ψZ〉

]
dt+ λǫ2

= 2ǫ

∫ s0

0

d

dt
〈DJ
dt
, ψZ〉dt+λǫ2 = 2ǫ〈DJ

dt
(s0), ψ(s0)Z(s0)〉+λǫ2 = −2ǫ

∥∥∥∥
DJ

dt
(s0)

∥∥∥∥
2

+λǫ2

where λ ∈ R is a constant. If λ ≤ 0, then L′′
ǫ (0) < 0 for every ǫ > 0 and if λ > 0,

then again L′′
ǫ (0) < 0 for 0 < ǫ <

2

λ

∥∥∥∥
DJ

dt
(s0)

∥∥∥∥
2

. Thus, in any case there exists

ǫ0 > 0 such that L′′
ǫ (0) < 0 for 0 < ǫ < ǫ0. This implies that γ is not minimizing. �

We shall conclude this section with a result due o M. Morse and I.J. Schönberg
which gives an estimate on the distance of conjugate points along a geodesic under
a curvature condition. It can be proved as an application of Wirtinger’s analytical
inequality.

Proposition 5.3.5. Let a > 0 and f : [0, a] → R be a C1 function. If f(0) = 0 and
f(a) = 0, then

a2
∫ a

0
(f ′(t))2dt ≥ π2

∫ a

0
(f(t))2fdt.

Proof. It suffices to prove that there exists a continuous function ψ : (0, a) → R

such that the function fψ with (fψ)(t) = f(t)ψ(t) for 0 < t < a and (fψ)(0) =
(fψ)(a) = 0 is continuous and

∫ a

0

[
(f ′(t))2 −

(
π

a
f(t)

)2]
dt ≥

∫ a

0
[f ′(t)− (fψ)(t)]2dt.
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We seek such a function ψ such that the equality holds. In order the equality to
hold, it is sufficient ψ to satisfy the ordinary differential equation

ψ′ + ψ2 +
π2

a2
= 0.

Its general solution is

ψ(t) = −π
a
tan

(
π

a
t+ c

)

where c is an arbitrary constant depending on initial conditions. For c = −π
2
we get

the solution

ψ(t) = −π
a
tan

(
π

a
t− π

2

)
=
π

a
cot

(
π

a
t

)
, 0 < t < a.

Applying L’Hospital’s rule we have now

lim
t→0+

(f(t))2ψ(t) = lim
t→0+

π
a (f(t))

2 cos(πa t)

sin(πa t)

= lim
t→0+

π

a
· 2f(t)f

′(t) cos(πa t)− (f(t))2 πa sin(
π
a t)

π
a cos(

π
a )t

= 0,

since f is assumed to be C1 on [0, a]. Similarly, lim
t→a−

(f(t))2ψ(t) = 0. This choice

of ψ now satisfies

∫ a

0

[
2f(t)f ′(t)ψ(t)− ((fψ)(t))2 − π2

a2
(f(t))2

]
dt

= lim
T→0+

∫ a−T

T

[
2f(t)f ′(t)ψ(t)− ((fψ)(t))2 − π2

a2
(f(t))2

]
dt

= lim
T→0+

[
(f(a− T ))2ψ(a− T )− (f(T ))2ψ(T )

−
∫ a−T

T
(f(t))2

(
ψ′(t) + (ψ(t))2 +

π2

a2

)
dt

]
= 0. �

Let M be a Riemannian n-manifold and let γ : [0, a] → M , a > 0, be a smooth
parametrized curve. Let also X ∈ X (γ) be such that X(0) = 0 and X(a) = 0.
Then, ∫ a

0

∥∥∥∥
DX

dt
(t)

∥∥∥∥
2

dt ≥ π2

a2

∫ a

0
‖X(t)‖2dt.

Indeed, if {E1, ..., En} is a parallel orthonormal frame along γ, there are uniquely
determined smooth functions fk : [0, a] → R, 1 ≤ k ≤ n, such that

X =

n∑

k=1

fkEk
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and thus fk(0) = fk(a) = 0, 1 ≤ k ≤ n. Wirtinger’s inequality gives

∫ a

0

∥∥∥∥
DX

dt
(t)

∥∥∥∥
2

dt =

∫ a

0

n∑

k=1

(f ′k(t))
2dt ≥ π2

a2

n∑

k=1

∫ a

0
(fk(t))

2dt =
π2

a2

∫ a

0
‖X(t)‖2dt.

Theorem 5.3.6. LetM be a Riemannian n-manifold, n ≥ 2, and let γ : [0, ℓ] →M ,
ℓ > 0 be a geodesic path parametrized by arclength. We assume that there exists

r > 0 such that Kγ(t)(S) ≤
1

r2
for every 2-dimensional vector subspace S of Tγ(t)M

and every 0 ≤ t ≤ ℓ. If γ(ℓ) is conjugate to γ(0) along γ, then ℓ ≥ πr.

Proof. Since γ(ℓ) is assumed to be conjugate to γ(0) along γ, there exists a non-
zero Jacobi field J along γ which vanishes at 0 and ℓ, by Proposition 5.3.2. The
derivative of the smooth function f : [0, ℓ] → R defined by

f(t) = 〈J(t), DJ
dt

(t)〉

is

f ′(t) =

∥∥∥∥
DJ

dt
(t)

∥∥∥∥
2

+ 〈J(t), D
2J

dt2
(t)〉 =

∥∥∥∥
DJ

dt
(t)

∥∥∥∥
2

− 〈R(J(t), γ̇(t))γ̇(t), J(t)〉

≥
∥∥∥∥
DJ

dt
(t)

∥∥∥∥
2

− 1

r2
‖J(t)‖2

by our curvature condition. Integrating we find

0 =

∫ ℓ

0
f ′(t)dt ≥

∫ ℓ

0

∥∥∥∥
DJ

dt
(t)

∥∥∥∥
2

dt− 1

r2

∫ ℓ

0
‖J(t)‖2dt.

Applying Wirtinger’s inequality as in the above remark we get

1

r2

∫ ℓ

0
‖J(t)‖2dt ≥

∫ ℓ

0

∥∥∥∥
DJ

dt
(t)

∥∥∥∥
2

dt ≥ π2

ℓ2

∫ ℓ

0
‖J(t)‖2dt.

Since J is non-zero, ℓ2 ≥ π2r2. �

5.4 Manifolds without conjugate points

The Riemannian manifolds without conjugate points, that is Riemannian manifolds
in which every point is a pole, is a distinguished class which contains the very
important class of Riemannian manifolds of non-positive sectional curvature as we
shall show now.

Proposition 5.4.1. If M is a Riemannian n-manifold, n ≥ 2, with non-positive
sectional curvature, meaning that Kp(S) ≤ 0 for every p ∈ M and every 2-
dimensional vector subspace S of TpM , then there are no conjugate points on M .
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Proof. We proceed to prove the assertion by contradiction. Suppose that ℓ > 0
and γ : [0, ℓ] → M be a geodesic parametrized by arclength for which there exists
a Jacobi field J along γ with J(0) = 0 and J(ℓ) = 0. It is sufficient to show that
J = 0. We consider the smooth function f : [0, ℓ] → R defined by

f(t) = 〈J(t), DJ
dt

(t)〉

whose derivative is

f ′(t) =

∥∥∥∥
DJ

dt
(t)

∥∥∥∥
2

+ 〈D
2J

dt2
(t), J(t)〉

=

∥∥∥∥
DJ

dt
(t)

∥∥∥∥
2

− 〈R(J(t), γ̇(t))γ̇(t), J(t)〉

=

∥∥∥∥
DJ

dt
(t)

∥∥∥∥
2

−Kγ(t)(S(t))(‖J(t)‖2 · ‖γ̇(t)‖2 − 〈J(t), γ̇(t)〉2) ≥ 0

where S(t) is the 2-dimensional vector subspace of Tγ(t)M generated by {J(t), γ̇(t)}.
Since f(0) = f(ℓ) = 0, this implies f = 0. It follows that

d

dt
〈J, J〉 = 2〈DJ

dt
, J〉 = 2f = 0

and hence ‖J‖ is constant. Therefore, ‖J(t)‖ = ‖J(0)‖ = 0 for every 0 ≤ t ≤ ℓ. �

Corollary 5.4.2. In the euclidean and the hyperbolic spaces there are no conjugate
points. �

The topology of a manifold admitting a complete Riemannian metric without
conjugate points is encoded in its fundamental group, because its higher homotopy
groups are trivial. This follows from a theorem proved by S. Kobayashi according
to which the universal covering space of a connected, complete Riemannian
manifold without conjugate points is diffeomorphic to the euclidean space of the
same dimension. In the topological literature, the topological n-manifolds whose
universal covering space is homeomorphic to Rn are called aspherical. Its proof is
based on the following.

Proposition 5.4.3. Let M be a connected, complete Riemannian n-manifold, N a
Riemannian manifold and f :M → N a smooth map with the following properties:
(a) f is surjective and
(b) expanding, that is ‖f∗p(v)‖ ≥ ‖v‖ for every v ∈ TpM and p ∈M .

Then, N is also n-dimensional and f is a covering map.

Proof. Since f is assumed to be expanding, its derivative f∗p : TpM → Tf(p)N
is a linear monomorphism and so the dimension of N is at least n. On the other
hand, since f is assumed to be surjective, it follows from Sard’s theorem that the
dimension of N must be at most n. Hence N is n-dimensional.

On M we introduce a new Riemannian metric with corresponding norm on the
tangent spaces denoted by |.|, putting |v| = ‖f∗p(v)‖ for every v ∈ TpM and p ∈M .
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If d denotes the Riemannian distance on M and ρ the distance with respect to this
new Riemannian metric, then ρ ≥ d. Therefore, (M,ρ) is a complete metric space
and so is N . Replacing the Riemannian metric of M with the new one, we may
from the beginning assume that f is a local isometry.

Let q ∈ N and ǫ > 0 be such that expp : Bq(0, ǫ) → B(q, ǫ) is a diffeomorphism.
Since f is a local isometry, the level set f−1(q) is discrete, hence countable. For
each p ∈ f−1(q) the following diagram commutes.

Bp(0, ǫ) B(p, ǫ)

Bq(0, ǫ) B(q, ǫ)

expp

f∗p f

expq

Consequently, f(B(p, ǫ)) = B(q, ǫ) and expp |Bp(0,ǫ) is injective. SinceM is complete,
expp(Bp(0, ǫ)) = B(p, ǫ) and therefore expp |Bp(0,ǫ) is a diffeomorphism as well as
f |B(p,ǫ). Obviously, ⋃

p∈f−1(q)

B(p,
ǫ

2
) ⊂ f−1(B(q,

ǫ

2
)).

Conversely, let z ∈ f−1(B(q,
ǫ

2
)) and let γ : [0, s] → B(q,

ǫ

2
) be a minimizing geodesic

parametrized by arclength from f(z) to q, where 0 < s <
ǫ

2
. Let σ be the

geodesic in M which is parametrized by arclength with initial conditions σ(0) = z
and σ̇(0) = f−1

∗z (γ̇(0)). Since f is a local isometry, f ◦ σ is a geodesic and

therefore f ◦ σ = γ. Hence f(σ(s)) = q. Also, d(z, σ(s)) ≤ s <
ǫ

2
, that is

z ∈ B(σ(s),
ǫ

2
) ⊂

⋃

p∈f−1(q)

B(p,
ǫ

2
). This shows that

⋃

p∈f−1(q)

B(p,
ǫ

2
) = f−1(B(q,

ǫ

2
)).

Finally, if p1, p2 ∈ f−1(q) and B(p1,
ǫ

2
) ∩B(p2,

ǫ

2
) 6= ∅, then p1 ∈ B(p2, ǫ),

contradiction, because f |B(p2,ǫ) is injective. �

Theorem 5.4.4. If M is a connected, complete Riemannian n-manifold without
conjugate points, then the universal covering space of M is diffeomorphic to Rn.

Proof. Let p ∈ M . Since M is assumed to be complete and p is a pole, the
exponential map expp : TpM → M is a surjective local diffeomorphism. On TpM
we consider the Riemannian metric which makes expp a local isometry, according
to Example 3.3.3. The straight lines through the origin in TpM are mapped onto
geodesics of M and are therefore geodesics in TpM with this metric. Since M is
complete, it follows that the geodesics in TpM through the origin are defined on
R. By Corollary 3.5.10, TpM is complete. The assertion follows now as immediate
application of the preceding Proposition 5.4.3. �
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Corollary 5.4.5. If a connected smooth n-manifold M admits a complete Rieman-
nian metric without conjugate points, then πk(M) = {0} for every integer k ≥ 2. �

Corollary 5.4.6. If a connected smooth n-manifold M admits a complete Rieman-
nian metric of non-positive sectional curvature, then the universal covering space
of M is diffeomorphic to Rn. �

Historically, Theorem 5.4.4 was proved by S. Kobayashi as a generalization of
Corollary 5.4.6, which had been proved much earlier by J. Hadamard in the case
of surfaces with non-positive Gauss curvature and by E. Cartan in the case of Rie-
mannian manifolds of non-positive sectional curvature.

5.5 The cut locus

LetM be a Riemannian n-manifold with corresponding Riemannian distance d. For
each p ∈ M and v ∈ TpM with ‖v‖ = 1 we shall denote by γv the unique geodesic
with initial conditions γv(0) = p and γ̇v(0) = v. We call

c(v) = sup{t > 0 : γv(t) is defined and d(p, γv(t)) = t} ∈ (0,+∞]

the distance of p from the cut point along γv.

Proposition 5.5.1. If 0 < s < c(v), then γv|[0,s] is the unique minimizing geodesic
path parametrized by arclength from p to γv(s).

Proof. Let 0 < s < c(v). It is evident from the definition of c(v) that γv|[0,s] is min-
imizing. Suppose that there exists w ∈ TpM with ‖w‖ = 1 such that γw(s) = γv(s)
and d(p, γw(s)) = s = L(γw|[0,s]). Then, the concatenation (γw|[0,s]) ∗ (γv |[s,t]) has
length t for every s < t < c(v). Since (γw|[0,s]) ∗ (γv |[s,t]) is minimizing, it is a
geodesic, by Proposition 3.5.6. Necessarily now γw|[0,s] = γv|[0,s]. �

Lemma 5.5.2. If M is complete and c(v) < +∞, then one of the following holds:
(i) The point γv(c(v)) is the first conjugate point to p = γv(0) along γv or
equivalently c(v) is the distance from p of the first conjugate point to p along γv.
(ii) There exist at least two different minimizing geodesics from p = γv(0) to
γv(c(v)).

Proof. According to Theorem 5.3.4, no point γv(t) is conjugate to p along γv
for 0 < t < c(v). Thus, either γv(c(v)) is the first conjugate point to p along
γv or there exists a conjugate point γv(t) to p along γv for some t > c(v), if
any. Let (tk)k∈N be a strictly decreasing sequence converging to c(v). Since M is
assumed to be complete, from the Hopf-Rinow Theorem 3.5.8, for each k ∈ N there
exists a minimizing geodesic γvk parametrized by arclength with initial conditions
γvk(0) = p, γ̇vk(0) = vk such that γvk(dk) = γv(tk), where dk = d(p, γv(tk)). By
compactness of ∂Bp(0, 1), passing to a subsequence if necessary, we may assume
that there exists u ∈ TpM with ‖u‖ = 1 such that lim

k→+∞
vk = u. If u = v, then the
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exponential map expp is not injective on any open neighbourhood of c(v)v ∈ TpM
and therefore γv(c(v)) = expp(c(v)v) is conjugate to p along γv. In case u 6= v,
lim

k→+∞
dk = d(p, γv(c(v))) = c(v) and γu(c(v)) = γv(c(v)). In other words, γu and γv

are two different minimizing geodesics from p to γv(c(v)). �

Theorem 5.5.3. The function c : T 1M → (0,+∞] is upper semicontinuous. If M
is complete, then c is a continuous function.

Proof. Let v ∈ T 1M and let (vk)k∈N be a sequence in T 1M converging to v. For
upper semicontinuity we need to show that lim sup

k→+∞
c(vk) ≤ c(v). Let p, pk ∈ M are

such that v ∈ TpM , vk ∈ TpkM , k ∈ N. If the sequence (c(vk))k∈N is unbounded,
there exists a diverging subsequence (c(vkm))m∈N. For every t > 0 we have eventually
c(vkm) > t and by continuity of the exponential map lim

m→+∞
γvkm (t) = γv(t). Hence

d(p, γv(t)) = lim
m→+∞

d(pkm , γvkm (t)) = t.

This implies that c(v) = +∞. If the sequence (c(vk))k∈N is bounded, there exists a
subsequence (c(vkm))m∈N which converges to some c ∈ R. For every 0 < ǫ < c we
have

d(p, γv(c− ǫ)) = lim
m→+∞

d(pkm , γvkm (c(vkm)− ǫ)) = lim
m→+∞

(c(vkm)− ǫ) = c− ǫ.

Hence c(v) ≥ c. This shows the upper semicontinuity.
For the continuity assuming the completeness of M , we need to prove that

lim inf
k→+∞

c(vk) ≥ c(v). It is sufficient to assume that we have a sequence (c(vk))k∈N

converging to some c ∈ R and prove that γv|[0,t] is not minimizing for t > c(v).
Passing to a subsequence if necessary, because of Lemma 5.5.2, we consider two
cases.

Let γvk(c(vk)) be the first conjugate point to p along γvk for every k ∈ N. In this
case, the point γv(c) is conjugate to p along γv, by continuity, and hence c(v) ≤ c,
by Theorem 5.3.4.

In the second case, we may assume that for every k ∈ N there exists
wk ∈ TpM with ‖wk‖ = 1, such that vk 6= wk and γwk

|[0,c(vk)] is minimizing with
γwk

(c(vk)) = γvk(c(vk)). Passing to a subsequence if necessary, we can further
assume that the sequence (wk)k∈N converges to some w ∈ TpM with ‖w‖ = 1,
by compactness. Then, γw(c) = γv(c). If w 6= v, obviously c(v) ≤ c. If w = v,
then expp is not a diffeomorphism on any open neighbourhood of cv. Hence
γv(c) = expp(cv) is conjugate to p along γv and again c(v) ≤ c. �

The preceding Theorem 5.5.3 combined with Theorem 5.3.4 give the following
compactness result of W. Ambrose.

Corollary 5.5.4. Let M be a connected, complete Riemannian n-manifold, n ≥ 2.
If there exists a point p ∈M such that along every geodesic emanating from p there
exists a conjugate to p point, then M is compact.
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Proof. Our assumptions and Theorem 5.3.4 imply that c(v) < +∞ for every
v ∈ TpM with ‖v‖ = 1. From Theorem 5.5.3 the function c : T 1M → (0,+∞) is
continuous and thus there exists c > 0 such that 0 < c(v) ≤ c for all v ∈ TpM with

‖v‖ = 1. The Hopf-Rinow Theorem 3.5.8 now implies that M = expp(Bp(0, c)).
Hence M is compact. �

Let M be a connected, complete Riemannian n-manifold, n ≥ 2. For every
p ∈M the set

C(p) = expp({c(v)v : v ∈ TpM with ‖v‖ = 1 and c(v) < +∞})

is called the cut locus of M at p. The subset

{tv : 0 ≤ t < c(v), v ∈ TpM, ‖v‖ = 1}

of TpM is the largest star-shaped on which the exponential map expp is a diffeo-
morphism and

expp({tv : 0 ≤ t < c(v), v ∈ TpM, ‖v‖ = 1}) =M \ C(p).

Note that M \ C(p) is dense in M , by the Hopf-Rinow Theorem 3.5.8. The
positive real number injp = inf{c(v) : v ∈ TpM, ‖v‖ = 1} is called the injectivity
radius at p and the non-negative real number injM = inf{injp : p ∈ M} is called
the injectivity radius of M . If M is compact, then injM > 0, by Theorem 5.3.4.

Examples 5.5.5. (a) On the n-sphere SnR of radius R > 0 the cut locus of any point
p is the singleton {−p}. Conversely, if M is a complete Riemannian n-manifold and
there exists a point p ∈ M such that C(p) is a singleton, then M is homeomorphic
to the n-sphere. Indeed, by Theorem 5.5.3, if C(p) = {q}, then c(v) = d(p, q) for

every v ∈ TpM with ‖v‖ = 1. Let R =
d(p, q)

π
. The map

(expp |Bp(0,πR))
−1 :M \ {q} → Bp(0, πR)

is a diffeomorphism which extends to a homeomorphism

h :M → Bp(0, πR)/∂Bp(0, πR)

by putting h(q) = [∂Bp(0, πR)]. But the quotient space Bp(0, πR)/∂Bp(0, πR)

which results in from Bp(0, πR) by identifying ∂Bp(0, πR) to a point is homeomor-
phic to the n-sphere.
(b) If M is a circular cylinder in R3, for instance

M = {(x, y, z) ∈ R3 : x2 + y2 = R2}, R > 0,

then for every p ∈M , the cut locus C(p) is the straight line opposite to p.
(c) If p ∈ RPn, the cut locus C(p) is the copy of RPn−1 which is ”perpendicular”
to p. For p = [0, ..., 0, 1] this is

C(p) = {[t0, ..., tn, 0] ∈ RPn : (t0, ..., tn) ∈ Sn−1}.

In classical n-dimensional Projective Geometry this is traditionally called the (n−1)-
dimensional real projective space at infinity.
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5.6 Spaces of constant sectional curvature

The first step towards the answer to the question whether two given Riemannian
manifolds are isometric is the local study of the problem. Contrary to other geomet-
ric structures this is a highly non-trivial task. A rather primitive approach would be
the following. LetM and N be two Riemannian n-manifolds. Let p ∈M and q ∈ N .
There exists a linear isometry T : TpM → TqN . We seek for a Riemannian isometry
f from some open neighbourhood U of p onto some open neighbourhood f(U) of
q such that f(p) = q and f∗p = T . If such a local isometry f exists, shrinking U
we may assume that U and f(U) are (geodesic) open balls, necessarily of the same
radius. Then, f commutes with the exponential maps, that is f ◦ expp = expq ◦T .
The question now arises under what conditions the diffeomorphism expq ◦T ◦ exp−1

p

is an isometry from a normal neighbourhood of p onto a normal neighbourhood of
q. Such a sufficient condition has been found by E. Cartan.

Let U be a normal neighbourhood of p and W be a normal neighbourhood of q,
so that f = expq ◦T ◦exp−1

p maps U diffeomorphically ontoW . For every x ∈ U \{p}
there exists a unique geodesic path γ : [0, ℓ] → U , ℓ > 0, parametrized by arclength
from p to x. The parallel translation τx,p : TpM → TxM along γ is a linear isometry.
Since T has been chosen to be a linear isometry, so is the map

Fx = τf(x),q ◦ T ◦ τ−1
x,p : TxM → Tf(x)N.

We put Fp = T .

Theorem 5.6.1. If for every x ∈ U the equality

〈R(u, v)w, s〉 = 〈R(Fx(u), Fx(v))Fx(w), Fx(s)〉

holds for all u, v, w, s ∈ TxM , then f = expq ◦T◦exp−1
p is an isometry and f∗x = Fx.

Proof. It is sufficient to prove that ‖f∗x(w)‖ = ‖w‖ for every w ∈ TxM and x ∈ U .
Let γ : [0, ℓ] → U by the unique geodesic path parametrized by arclength from
γ(0) = p to γ(ℓ) = x, where ℓ > 0 and x 6= p. From Proposition 5.3.3, there exists a
unique Jacobi field J along γ satisfying the boundary conditions J(0) = 0, J(ℓ) = w.

Let {E1, ..., En} be a parallel orthonormal frame along γ. If J =

n∑

i=1

JiEi, then

J ′′
i (t) +

n∑

j=1

〈R(Ej(t), γ̇(t))γ̇(t), Ei(t)〉Jj(t) = 0

for every 0 ≤ t ≤ ℓ and 1 ≤ i ≤ n.
Let σ : [0, ℓ] → N be the geodesic path with initial conditions σ(0) = q and

σ̇(0) = T (σ̇(0)). Obviously, σ(ℓ) = f(x). We define V (t) = Fγ(t)(J(t)) and Zi(t) =
Fγ(t)(Ei(t)), for all 0 ≤ t ≤ ℓ and 1 ≤ i ≤ n. Then, {Z1, ..., Zn} is a parallel

orthonormal frame along σ, from the construction of Fγ(t), and V (t) =

n∑

i=1

Ji(t)Zi(t).

By our assumption,

〈R(Ej(t), γ̇(t))γ̇(t), Ei(t)〉 = 〈R(Zj(t), σ̇(t))σ̇(t), Zi(t)〉
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for every 0 ≤ t ≤ ℓ and 1 ≤ i, j ≤ n. This implies that V is a Jacobi field along
σ. Moreover, V (0) = 0 and ‖V (ℓ)‖ = ‖J(ℓ)‖ = ‖w‖. Thus, it suffices to show that
V (ℓ) = f∗x(w). Note that

DV

dt
(0) = T

(
DJ

dt
(0)

)
.

Since J and V are Jacobi fields which vanish at 0, they are given by the formulas

J(t) = (expp)∗tγ̇(0)

(
t
DJ

dt
(0)

)
, V (t) = (expq)∗tσ̇(0)

(
t
DV

dt
(0)

)
,

as the proof of Lemma 5.2.2 shows. Consequently,

V (ℓ) = (expq)∗ℓσ̇(0)

(
ℓ
DV

dt
(0)

)
= (expq)∗ℓσ̇(0)

(
ℓT

(
DJ

dt
(0)

))

= (expq)∗tσ̇(0)(T ((expp)
−1
∗ℓγ̇(0)(J(ℓ))) = (expq ◦T ◦ exp−1

p )∗x(J(ℓ))

= f∗x(J(ℓ)) = f∗x(w).

Finally, f∗x(w) = f∗x(J(ℓ)) = V (ℓ) = Fγ(ℓ)(J(ℓ)) = Fx(w). �

Corollary 5.6.2. If two Riemannian n-manifolds M and N , n ≥ 2, have the same
constant sectional curvature, then they are locally isometric.

Proof. Suppose that M and N have the same constant sectional curvature c ∈ R.
From Corollary 4.2.3, the curvature tensor of both is given by the formula

R(u, v)w = c(〈v,w〉u − 〈u,w〉v).

If p ∈ M , q ∈ N and T : TpM → TqN is any choice of linear isometry, the
hypothesis of Theorem 5.6.1 is satisfied. Hence there exists a Riemannian isom-
etry from some normal neighbourhood of p onto some normal neighbourhood of q. �

Theorem 5.6.3. Let M be a connected, complete Riemannian n-manifold, n ≥ 2.
If M has constant sectional curvature K, then the universal covering space M̂ of
M is a simply connected complete Riemannian n-manifold of constant sectional
curvature K and
• if K < 0, then M̂ is isometric to the hyperbolic space Hn

1√
−K

,

• if K = 0, then M̂ is isometric to the euclidean space Rn,
• if K > 0, then M̂ is isometric to the n-sphere Sn1√

K

.

Proof. Let π : M̂ → M be the universal covering map. Since π is a local diffeo-
morphism, there is an induced Riemannian metric on M̂ with respect to which π
becomes a local isometry, according to Example 3.3.3. Hence M̂ also has constant
sectional curvature K. Every covering transformation α : M̂ → M̂ is an isometry.
Indeed, for every x ∈ M̂ and v, w ∈ TxM̂ we have

〈α∗x(v), α∗x(w)〉 = 〈π∗α(x)(α∗x(v)), π∗α(x)(α∗x(w))〉 = 〈(π ◦ α)∗x(v), (π ◦ α)∗x(w)〉
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= 〈π∗x(v), π∗x(w)〉 = 〈v,w〉.
In the case of the universal covering, the group of covering transformations is iso-
morphic to the fundamental group π1(M) of M which acts properly discontinuously
on M̂ . The corresponding orbit space is precisely M and the quotient map is π.

SinceM is complete, M̂ is also complete, because every geodesic of M̂ is a lifting
of a geodesic of M , as we saw in the proof of Theorem 5.1.5(c). Thus, M̂ is indeed
a simply connected complete Riemannian manifold of constant sectional curvature
K.

Note that in general if g is a Riemannian metric of sectional curvature K and

c ∈ R, then the sectional curvature of the Riemannian metric cg is
1

c
K. Thus, it

suffices to proceed assuming that K = −1, 0 or 1.
If K = −1 or 0, then M̂ is diffeomorphic to Rn, by Corollary 5.4.6. We put

N = Hn or Rn, respectively. Actually, as the proof of Theorem 5.4.4. shows, if
x ∈ N and y ∈ M̂ , the corresponding exponential maps expx : TxN → N and
expy : TyM̂ → M̂ are diffeomorphisms, since N and M̂ are simply connected.

Choosing any linear isometry T : TxN → TyM̂ we get a diffeomorphism

f = expy ◦T exp−1
x : N → M̂

for which the hypothesis of Theorem 5.6.1 is satisfied. Hence f is an isometry.
Let now K = 1. In this case we put N = Sn and using the same notations as

above the exponential map expx : Bx(0, π) → N \ {−x} is a diffeomorphism. Again
the map f = expy ◦T exp−1

x : N \{−x} → M̂ is an isometric immersion onto an open

subset of M̂ . We extend f on N as follows. Let p ∈ N , p 6= x, −x and q = f(p).
The map h = expq ◦(f∗p) ◦ exp−1

p : N \ {−p} → M̂ is well defined and an isometric

immersion onto an open subset of M̂ such that h(p) = q = f(p) and h∗p = f∗p.
This implies that the coincidence set of f and h is non-empty, closed and open in
N \{−x,−p} which is homeomorphic to R\{0}, hence connected. Therefore, h = f
on N \ {−x,−p}. Thus, we get a well defined map φ : N → M̂ by

φ(z) =

{
f(z), if z 6= −x,
h(z), if z 6= −p.

which is a local isometry of N = Sn into M̂ . Since Sn is compact and M̂ is
connected, φ must necessarily be surjective. According to Proposition 5.4.3, φ is a
covering map. Since Sn is simply connected, φ must be a diffeomorphism and an
isometry. �

A connected, complete Riemannian manifold of constant sectional curvature is
usually called space form. The preceding Theorem 5.6.3 implies that the problem of
the isometric classification of space forms is essentially a group theoretical problem.
More precisely, it is translated in the classification (modulo conjugacy) of the
properly discontinuous subgroups of the isometry groups I(Hn), I(Rn) and I(Sn).
The study of hyperbolic space forms is a rich and very active field of contemporary
research. The euclidean space forms have been thoroughly studied in dimensions
≤ 4. Especially, in dimension 3 the theory of compact euclidean space forms is
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essentially the theory of crystallographic groups. The spherical space forms have
been found by J.A. Wolf. Here we shall present their description at even dimensions.

Proposition 5.6.4. The isometry group of Sn, n ≥ 2, is the orthogonal group
O(n+ 1,R).

Proof. We already know that O(n+ 1,R) is a subgroup of I(Sn). In order to prove
the reverse inclusion let f ∈ I(Sn). If d denotes the spherical Riemannian distance,
then cos d(p, q) = 〈p, q〉 for every p, q ∈ Sn, where 〈., .〉 on the right hand side denotes
the euclidean inner product in Rn+1. Thus, 〈f(p), f(q)〉 = 〈p, q〉. In particular, p

and q are orthogonal vectors in Rn+1 if and only if d(p, q) =
π

2
, and so f maps

the canonical basis {e1, ..., en+1} onto an orthonormal basis {f(e1), ..., f(en+1)}. By
linear extension, there exists a unique A ∈ O(n + 1,R) such that Aei = f(ei) for
every 1 ≤ i ≤ n+ 1. If now x ∈ Sn, we have

cos d(f(x), Ax) = 〈f(x), Ax〉 =
n∑

i=1

〈x, ei〉 · 〈f(x), f(ei)〉 =
n∑

i=1

〈x, ei〉2 = 1

and therefore f(x) = Ax. This concludes the proof. �

Theorem 5.6.5. Let M be a connected, complete Riemannian n-manifold, n ≥ 2,
of constant sectional curvature 1. If n is even, then M is isometric to Sn or to RPn.

Proof. According to what we have already proved in the present section, M is
isometric to the orbit space of a subgroup G of O(n + 1,R) which acts properly
discontinuously on Sn. Since Sn is compact, G must be a finite group. If A ∈ G,
A 6= In+1 and detA = 1, then 1 is an eigenvalue of A, since n+ 1 is odd. This con-
tradicts the proper discontinuity of G. Thus, detA = −1 and A2 = In+1 for every
A ∈ G\{In+1}. If λ ∈ C is any root of the characteristic polynomial of A 6= In+1 in
G, then λ2 is an eigenvalue of A2 and therefore λ2 = 1. It follows that the character-
istic polynomial of A has only one root in C, namely −1. Consequently, A = −In+1,
since A is orthogonal. This proves that either G = {In+1} or G = {In+1,−In+1}. In
the former caseM is isometric to Sn itself and in the latter it is isometric to RPn. �

The preceding Theorem 5.6.5 does not hold in odd dimensions. An easy class of
examples are the Lens spaces in dimension 3. Let a > 1 and b be relatively prime
integers. The cyclic group of order a generated by the isometry

A(z1, z2) = (e2πi/az1, e
2πib/az2)

acts properly discontinuously on S3 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1}. The
corresponding orbit space L(a, b) is a 3-dimensional spherical space form. If a > 2,
certainly L(a, b) is homeomorphic to neither S3 nor RP 3.

The Riemannian metric of a space form can be written down explicitly locally
around a point in geodesic spherical coordinates. Since the space forms with the
same curvature are locally isometric, it is sufficient to carry out the calculations
only in the simply connected case.
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In the euclidean space Rn, n ≥ 2, the map sending a non-zero vector x to

(x,
1

‖x‖x) is a diffeomorphism of Rn \{0} onto (0,+∞)×Sn−1. Thus, every smooth

parametrized curve γ : I → Rn \ {0}, where I ⊂ R is an open interval, has the
form γ(t) = r(t)ξ(t) for suitable smooth maps r : I → (0,+∞) and ξ : I → Sn−1.
Differentiating

γ̇(t) = r′(t)ξ(t) + r(t)ξ̇(t)

and ‖γ̇(t)‖2 = (r′(t))2 + (r(t))2‖ξ̇(t)‖2. Thus, the euclidean Riemannian metric on
Rn in local spherical coordinated around any point has the form

ds2 = dr2 + r2‖dξ‖2

in traditional notation, since Rn is homogeneous.

The simply connected n dimensional space form, n ≥ 2, of sectional curvature
1

R2
, R > 0, is (isometric to) the n-sphere SnR of radius R in Rn+1. Since SnR is

homogeneous, it is sufficient to describe the geodesic spherical coordinates around
the point Ren+1. Every point p ∈ SnR \ {±Ren+1} can be written

p =
(
R cos

ρ

R

)
en+1 +

(
R sin

ρ

R

)
ξ

for some 0 < ρ < πR and ξ ∈ Sn−1. Note that ρ is the length of the geodesic
emanating from Ren+1 to p. A smooth parametrized curve γ : I → SnR \ {±Ren+1},
can be written

γ(t) =
(
R cos

ρ(t)

R

)
en+1 +

(
R sin

ρ(t)

R

)
ξ(t)

for suitable smooth maps ρ : I → (0, πR) and ξ : I → Sn−1. Differentiating

γ̇(t) = ρ′(t)
[(
− sin

ρ(t)

R

)
en+1 +

(
cos

ρ(t)

R

)
ξ(t)

]
+
(
R sin

ρ(t)

R

)
ξ̇(t)

and therefore

‖γ̇(t)‖2 = (ρ′(t))2 +
(
R2 sin2

ρ(t)

R

)
‖ξ̇(t)‖2.

Thus, the standard Riemannian metric on SnR in local spherical coordinated around
any point has the form

ds2 = dρ2 +
(
R2 sin2

ρ

R

)
‖dξ‖2

in traditional notation.

For the n-dimensional hyperbolic space of sectional curvature − 1

R2
, R > 0, we

shall use the unit ball model DnR, n ≥ 2. The traces of the hyperbolic geodesics
through 0 ∈ DnR are the euclidean diameters. Let z ∈ DnR \ {0}. A parametrization
of the geodesic path from 0 to z is γ : [0, 1] → Dn \ {0} with γ(t) = tz. The
hyperbolic distance of z from 0 is

ρ = L(γ) =

∫ 1

0

2R‖z‖
1− ‖tz‖2 dt = R

∫ ‖z‖

0

2

1− s2
ds = R log

1 + ‖z‖
1− ‖z‖ ,
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where ‖.‖ is the euclidean norm. Thus,

‖z‖ = tanh
ρ

2R
.

Every smooth parametrized curve γ : I → Rn \ {0}, where I ⊂ R is an open
interval, has the form γ(t) = r(t)ξ(t) for suitable smooth maps r : I → (0, 1) and
ξ : I → Sn−1. So,

‖γ(t)‖ = r(t) = tanh
ρ(t)

2R

where ρ(t) = L(γ|[0, t]) and

‖γ̇(t)‖2 = (r′(t))2 + (r(t))2‖ξ̇(t)‖2 =
ρ′(t)

4R2 cosh4 ρ(t)2R

+
(
tanh2

ρ(t)

2R

)
‖ξ̇(t)‖2.

The square of the hyperbolic length of γ̇(t) is equal to

2R2‖γ̇(t)‖2
(1− ‖γ(t)‖2)2 = (ρ′(t))2 +

(
R2 sinh2

ρ(t)

R

)
‖ξ̇(t)‖2.

Thus, the hyperbolic Riemannian metric in geodesic spherical coordinates is

ds2 = dρ2 +
(
R2 sinh2

ρ

R

)
‖dξ‖2

in traditional notation.

Summarizing, locally around a point of a space form of sectional curvatureK ∈ R

the Riemannian metric is

gK = dρ2 + (SK(ρ))2gSn−1

where gSn−1 is the usual Riemannian metric of Sn−1, ρ is the length of the geodesic
radius and

SK(ρ) =





1√
K
sin(

√
Kρ), if K > 0,

ρ, if K = 0,
1√
−K sinh(

√
−Kρ), if K < 0.

5.7 Infinitesimal isometries

Let M be a connected Riemannian n-manifold and X ∈ X (M) with flow
φ : D → M . Recall that for every t ∈ R the set Dt = {p ∈ M : (t, p) ∈ D} is open
in M and φt = φ(t, .) : Dt → φt(Dt) ⊂ M is a difeomorphism onto the open set
φt(Dt). The vector field X is called an infinitesimal isometry or Killing vector field
of M if φt is an isometric embedding for every t ∈ R.

Proposition 5.7.1. If M is complete, then every Killing vector field of M is
complete.
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Proof. Since M is assumed to be connected and complete, from the Hopf-Rinow

Theorem, B(p, c) is compact for every p ∈ M and c > 0 and M =
⋃

c>0

B(p, c).

Suppose that X is a non-complete Killing vector field of M . Then, there exists a
point p ∈ M such that the integral curve of X through p is defined on an open
interval (ap, bp) and bp < +∞ (or ap > −∞). There exists some ǫ > 0 such that

B(p, ǫ) is contained in a normal neighbourhood of p. There exists T > 0 such
that φt(p) ∈ B(p, ǫ) for 0 ≤ t < T and d(p, φT (p)) = ǫ, where as usual d denotes
the Riemannian distance. Dividing, for each 0 < t < bp there exist k ∈ Z+ and
0 ≤ s < T such that t = kT + s. From the triangle inequality,

d(φt(p), p) ≤
k∑

j=1

d(φjT (p), φ(j−1)T (p)) + d(φkT (p), φt(p))

=
k∑

j=1

d(φT (p), p) + d(φs(p), p) ≤ (k + 1)ǫ <

(
bp
T

+ 1

)
ǫ.

This contradicts Lemma 2.2.4. �

In the rest of this section we shall assume that M is a connected, complete
Riemannian n-manifold, n ≥ 2. A very useful characterization of Killing vector
fields is the following.

Proposition 5.7.2. If X ∈ X (M), then X is a Killing vector field if and only if it
satisfies Killing’s equation

〈∇YX,Z〉+ 〈Y,∇ZX〉 = 0

for every Y , Z ∈ X (M).

Proof. Let (φt)t∈R be the one-parameter group of diffeomorphisms generated by X.
Then, X is a Killing vector field if and only if

〈(φt)∗p(Yp), (φt)∗p(Zp)〉 = 〈Yp, Zp〉

for every p ∈M , t ∈ R and Y , Z ∈ X (M). Equivalenty,

0 = lim
t→0

1

t

[
〈(φt)∗p(Yp), (φt)∗p(Zp)〉 − 〈Yp, Zp〉

]

lim
t→0

1

t

[
〈(φt)∗p(Yp), (φt)∗p(Zp)〉 − 〈Yφt(p), Zφt(p)〉+ 〈Yφt(p), Zφt(p)〉 − 〈Yp, Zp〉

]

= Xp〈Y,Z〉+ lim
t→0

1

t

[
〈(φt)∗p(Yp), (φt)∗p(Zp)〉 − 〈Yφt(p), Zφt(p)〉

]

= Xp〈Y,Z〉+ lim
t→0

1

t

[
〈(φt)∗p(Yp), (φt)∗p(Zp)〉 − 〈Yφt(p), (φt)∗p(Zp)
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+〈Yφt(p), (φt)∗p(Zp)− 〈Yφt(p), Zφt(p)〉
]

= Xp〈Y,Z〉 − 〈[X,Y ]p, Zp〉 − 〈Yp, [X,Z]p〉
= Xp〈Y,Z〉 − 〈∇XY −∇YX,Z〉 − 〈Y,∇XZ −∇ZX〉

= −〈∇YX,Z〉 − 〈Y,∇ZX〉. �

Proposition 5.7.3. X ∈ X (M) be a Killing vector field.
(i) If ℓ > 0 and γ : [0, ℓ] →M is a geodesic path parametrized by arclength, then X
is a Jacobi field when restricted along γ.
(ii) If there exists p ∈ M such that Xp = 0 and ∇uX = 0 for every u ∈ TpM , then
X = 0.

Proof. (i) We consider the smooth variation Γ : R× [0, ℓ] →M defined by Γ(s, t) =
φs(γ(t)), where (φt)t∈R is the one-parameter group of isometries of M generated by
X. Thus, Γ is a variation by geodesics and the corresponding variation field is a
Jacobi field along γ. However,

∂Γ

∂s
(0, t) =

∂

∂s

∣∣∣∣
s=0

φs(γ(t)) = Xγ(t)

for every 0 ≤ t ≤ ℓ.
(ii) The set A = {q ∈ M : Xq = 0 and ∇uX = 0 for every u ∈ TpM} is

non-empty by assumption and obviously closed in M . Since M is connected, it is
sufficient to prove that A is open. Let q ∈ A and U be a normal open neighbourhood
of q. For every x ∈ U \ {q} there exists a unique geodesic path parametrized by
arc length γ : [0, ℓ] → U from γ(0) = q to γ(ℓ) = x, where l = d(q, x). Since X
is a Jacobi field when restricted along γ by (i) and satisfies the initial conditions

Xγ(0) = 0 and
DX

dt
(0) = ∇γ̇(0)X = 0, it follows that Xγ(t) = 0 for every 0 ≤ t ≤ ℓ,

from uniqueness of solutions of Jacobi’s linear differential equation. In particular,
Xx = 0. This shows that X vanishes identically on U and therefore U ⊂ A. �

We shall now investigate the square of the length function h = ‖X‖2 of a Killing
vector field X of M .

Lemma 5.7.4. If X ∈ X (M) is a Killing vector field and p ∈M is a critical point
of h = ‖X‖2 such that Xp 6= 0, then the integral curve of X through p is a geodesic
of M .

Proof. From Proposition 5.7.2 we have

Y 〈X,X〉 = 2〈∇YX,X〉 = −2〈∇XX,Y 〉

for every Y ∈ X (M). Thus, if p is a critical point of h = ‖X‖2, we must have

0 = (φt)∗p(−2∇XpX) = −2∇(φt)∗p(Xp)(φt)∗X = −2∇Xφt(p)
X
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for every t ∈ R, where (φt)t∈R is the one-parameter group of isometries of M
generated by X. �

Lemma 5.7.5. Let X ∈ X (M) be a Killing vector field and let γ : R → M be a
geodesic parametrized by arclength. If

hγ(t) =
1

2
‖Xγ(t)‖2,

then
h′′γ(t) = ‖∇γ̇(t)X‖2 − 〈R(Xγ(t), γ̇(t))γ̇(t),Xγ(t)〉, t ∈ R.

Proof. Applying the chain rule, the first derivative if hγ is

h′γ(t) =
1

2
γ̇(t)〈X,X〉 = 〈∇γ̇(t)X,Xγ(t)〉

and differentiating once more

h′′γ(t) = 〈D
2

dt2
(t),Xγ(t)〉+ ‖∇γ̇(t)X‖2 = ‖∇γ̇(t)X‖2 − 〈R(Xγ(t), γ̇(t))γ̇(t),Xγ(t)〉

by Proposition 5.7.3(i). �

Lemma 5.7.6. Let X ∈ X (M) be a Killing vector field with flow φ : R×M → M
and p ∈M . We denote by γ the integral curve of X through p, that is γ(t) = φt(p),
t ∈ R. Suppose that h = ‖X‖2 has local minimum at p and Xp 6= 0. If w ∈ TpM
and Y (t) = (φt)∗p(w), then

‖∇Y (t)X‖2 ≥ 〈R(Xγ(t), Y (t))Y (t),Xγ(t)〉

for every t ∈ R. If h has local maximum at p, the reverse inequality holds.

Proof. We consider the smooth variation by geodesics Γ : R × R → M defined by
Γ(s, t) = expγ(s)(tY (s)). For each t, τ , s ∈ R we have

φτ (Γ(s, t)) = expφs+τ (p)((φs+τ )∗p(tw)) = Γ(s+ τ, t),

because φτ is an isometry. Consequently,
∂Γ

∂s
(s, t) = XΓ(s,t), and of course

∂Γ

∂t
(s, 0) = Y (s). Hence

∇X
∂Γ

∂t
−∇ ∂Γ

∂t
X = Γ∗(s,t)

([
∂

∂s
,
∂

∂t

]

(s,t)

)
= 0

and in particular ∇Y (s)X =
DY

ds
(s) for every s ∈ R. According to the preceding

Lemma 5.7.5 and using the same notations of its statement,

h′′Γ(s,.)(t) = ‖∇ ∂Γ
∂t

(s,t)X‖2 − 〈R(XΓ(s,t),
∂Γ

∂t
(s, t))

∂Γ

∂t
(s, t),XΓ(s,t)〉
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for every (s, t) ∈ R × R. Since (φs)∗p(Xp) = Xφs(p) and φs is an isometry, if h has
local minimum at p and Xp 6= 0, it has local minimum at φs(p) and therefore

0 ≤ h′′Γ(s,.)(0) = ‖∇Y (s)X‖2 − 〈R(Xγ(s), Y (s))Y (s),Xγ(s)〉. �

The preceding series of lemmas leads to the following famous vanishing theorem
of S. Bochner.

Theorem 5.7.7. Let M be a connected, complete Riemannian n-manifold, n ≥ 2,
whose Ricci curvature is everywhere negative. If X ∈ X (M) is a Killing vector field
and the function ‖X‖ takes a maximum value at some point of M , then X = 0.

Proof. Suppose that X 6= 0 and ‖X‖ takes a maximum value at a point p ∈ M .
Then, Xp 6= 0. Let w ∈ TpM with ‖w‖ = 1 be orthogonal to Xp and let S be the
2-dimensional vector subspace of TpM generated by {w,Xp}. Then Lemma 5.7.6
implies

Kp(S) =
1

‖Xp‖2
〈R(Xp, w)w,Xp〉 ≥

‖∇wX‖2
‖X‖2 ≥ 0.

It follows from this that Ricp(Xp,Xp) ≥ 0. �

Corollary 5.7.8. Let M be a compact Riemannian n-manifold, n ≥ 2. If the Ricci
curvature (or the sectional curvature) is everywhere negative on M , then every
Killing vector field vanishes identically on M . �

The isometry group I(M) of a connected complete Riemannian manifold M is
a Lie group endowed with the compact-open topology, which in this case coincides
with the topology of pointwise convergence, and acts on M smoothly as a Lie trans-
formation group. Its Lie algebra is precisely the Lie algebra of all Killing vector
fields of M . This justifies the term infinitesimal isometry. If M is compact, then
I(M) is also compact. It follows from the last Corollary 5.7.8 that the isometry
group of a compact Riemannian manifold of negative Ricci (or sectional) curvature
is finite. Thus, the compact Riemannian manifolds of negative curvature virtually
have no symmetries. This is a deeper reason which explains why their classification
is not an easy task.

5.8 Exercises

1. Let M be a Riemannian n-manifold, n ≥ 2, and γ : [0, l] →M be a geodesic path
parametrized by arclength. Let X ∈ X (M) and φ : D →M be its flow.
(a) Prove that there exists T > 0 such that [−T, T ]× γ([0, l]) ⊂ D.
(b) Let Γ : [0, T ] × [0, l] → M be the smooth variation of γ with Γ(s, t) = φs(γ(t)).
If ΓT = Γ(T, .) and L(γ), L(ΓT ) are the lengths of γ, ΓT , respectively, prove that

|L(ΓT )− L(γ)| ≤
∫ T

0

∫ l

0
‖∇ ∂Γ

∂t
X‖dsdt.

2. Let M be a Riemannian manifold with Riemannian distance function d and
p ∈M .
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(a) Prove that the real function f = d(p, .) is smooth on D(p) \ {p}, where
D(p) =M \ C(p).
(b) If q ∈ D(p) \ {p} and γ is the unit speed geodesic in D(p) from p to q, prove
that f∗q(v) = 〈v, γ̇(d(p, q))〉 for every v ∈ TpM .

3. Let M be a Riemannian n-manifold, n ≥ 2, and γ : [0, ℓ] → M be a geodesic
path parametrized by arclength, where ℓ > 0. If there exists r > 0 and a smooth
function f : [0, ℓ] → R such that

Ricγ(t)(γ̇(t), γ̇(t)) ≥ (n− 1)
( 1
r2

+ f ′(t)
)

for every 0 ≤ t ≤ ℓ, prove that

ℓ ≤ πr2
(
‖f‖+

√
‖f‖2 + 1

r2
)

where ‖f‖ = sup{|f(t)| : 0 ≤ t ≤ ℓ}.

4. Let M be a Riemannian 2-manifold and γ : [0, l] → M be a geodesic path
parametrized by arclength. Let X ∈ X (γ) with 〈X, γ̇〉 = 0 and ‖X‖ = 1 on [0, l].
(a) Prove that X is parallel along γ.
(b) Let f : [0, l] → R be a smooth function. Prove that fX is a Jacobi field along γ
if and only if f ′′(t) +K(γ(t))f(t) = 0 for every 0 ≤ t ≤ l, where K is the sectional
curvature of M .

5. On R2 \ {(0, 0)} we consider the Riemannian metric g

g(
∂

∂r
,
∂

∂r
) = 1, g(

∂

∂r
,
∂

∂φ
) = 0, g(

∂

∂φ
,
∂

∂φ
) = (f(r, φ))2

in polar coordinates, where f : R2 \ {(0, 0)} → (0,+∞) is a smooth function.
(a) Find the differential equation of geodesics and prove that γφ, for constant φ, is
a geodesic.
(b) If X(r) is a parallel vector field along γφ, which is orthogonal to γφ, prove that
Y (r) = f(r, φ)X(r) is a Jacobi field along γφ.
(a) Prove that the sectional curvature is given by the formula

K(r, φ) = − 1

f(r, φ)

∂2f

∂r2
(r, φ).

6. Let r > 0, ℓ > 0 and γ : [0, ℓ] → Snr , n ≥ 2, be a smooth curve parametrized by
arclength.
(a) If E ∈ X (γ) is parallel along γ, prove that

E′(t) = −〈E(t), γ̇(t)〉
r2

γ(t)

for every 0 ≤ t ≤ ℓ. In case γ is a geodesic, prove that

E′(t) = −〈E(0), γ̇(0)〉
r2

γ(t)
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for every 0 ≤ t ≤ ℓ and thus if E(0) is orthogonal to γ̇(0), then E is constant.
(b) Let p = (0, ..., 0, r) ∈ Snr and u, v ∈ TpS

n
r be orthogonal with ‖u‖ = ‖v‖ = 1.

Let Γ : (−π, π) × [0, πr] → Snr be the smooth variation

Γ(s, t) =
(
cos

t

r

)
p+

(
sin

t

r

)
r
(
(cos s)u+ (sin s)v

)
.

Prove that the variation field V of Γ is given by the formula

V (t) =
(
sin

t

r

)
r ·E(t), 0 ≤ t ≤ πR,

where E is the parallel vector field along Γ(0, .) with initial condition E(0) = v.

Compute then R(v, u)u =
1

r2
v and so 〈R(v, u)u, v〉 = 1

r2
.

7. Let z ∈ S2n+1, u ∈ T[z]CP
n with ‖u‖ = 1 and γu denote the geodesic in CPn

with γu(0) = [z] and γ̇u(0) = u. Let v ∈ T[z]CP
n be orthogonal to u, and let ũ, ṽ be

horizontal lifts of u, v, respectively, with respect to the Hopf map π : S2n+1 → CPn.
The variation by geodesics

Γ(s, t) = (cos t)z + (sin t)
(
(cos s)ũ+ (sin s)ṽ

)

project to a variation π ◦ Γ of γu by geodesics.
(a) Prove that if ṽ is orthogonal to iũ, the corresponding Jacobi field is
V (t) = (sin t)E(t), where E is the parallel vector field along γu with E(0) = v.
(b) If ṽ = iũ, prove that the corresponding Jacobi field is given by the formula
V (t) = (sin t · cos t) · iγ̇u(t).

8. Let M be a Riemannian manifold with curvature tensor R. Let p ∈M , v ∈ TpM
with ‖v‖ = 1 and γ be the geodesic with initial conditions γ(0) = p, γ̇(0) = v. Let
u, w ∈ TpM and Y , Z be the Jacobi fields along γ with Y (0) = Z(0) = 0 and

DY

dt
(0) = u,

DZ

dt
(0) = w.

Prove that for t sufficiently close to 0, we have

〈Y (t), Z(t)〉 = t2〈u,w〉 − 1

3
〈R(u, v)v,w〉t4 + o(t5)

where lim
t→0

o(t5)

t4
= 0.

(Hint : Apply Taylor’s formula to the function f(t) = 〈Y (t), Z(t)〉. Then f(0) =
f ′(0) = 0, f ′′(0) = 2〈u,w〉, f (3)(0) = 0 and f (4)(0) = 8〈R(u, v)v,w〉. For the latter
we need to show that

DR(Y, γ̇)γ̇

dt
(0) = R(

DY

dt
(0), γ̇(0))γ̇(0) = R(u, v)v.)

9. Let M be a Riemannian n-manifold, n ≥ 2, and K be its sectional curvature.
Let p ∈ M , u, v ∈ TpM with ‖u‖ = ‖v‖ = 1 and 〈u, v〉 = 0. if γ is the geodesic
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with initial conditions γ(0) = p, γ̇(0) = v, prove that there exists ǫ > 0 such that
for |t| < ǫ the Jacobi field Y along γ with initial conditions

Y (0) = 0,
DY

dt
(0) = u

satisfies

(a)‖Y (t)‖2 = t2 − 1

3
Kp(S)t

4 + o(t5), and

(b)‖Y (t)‖ = t− 1

6
Kp(S)t

3 + o(t4),

where S is the 2-dimensional vector subspace of TpM generated by {v, u}.

10. Let M be a complete Riemannian n-manifold, n ≥ 2, with vanishing
curvature tensor. Prove that for every p ∈ M there exists ǫ > 0 such that
expp : Bp(0, ǫ) → B(p, ǫ) is an isometry.

11. Let M be a connected, complete Riemannian n-manifold, n ≥ 2, of constant
sectional curvature c ∈ R and let γ : R → M be a geodesic parametrized by
arclength. Find explicit formulas for the normal Jacobi fields along γ in terms of
c. Deduce that if c ≤ 0 there are no conjugate points, while if c > 0, the first

conjugate point to γ(0) along γ in positive time is γ(
π√
c
).

12. Prove that the sectional curvature of the paraboloid

M = {(x, y, z) ∈ R3 : z = x2 + y2}

is given by the formula

K(x, y, z) =
4

(1 + 4x2 + 4y2)2

and therefore inf{K(x, y, z) : (x, y, z) ∈M} = 0. Prove also that (0, 0, 0) is a pole.

13. Prove that for every point p ∈ CPn, n ≥ 1, the cut point along any unit speed
geodesic emanating from p, with respect to the Fubini-Study metric, occurs at

distance
π

2
from p.

14. Let X, Y ∈ X (M) be two Killing vector fields of the Riemannian manifold M .
Prove that their Lie bracket [X,Y ] is also a Killing vector field.
(Hint: It is sufficient to prove that 〈∇wX,Y ,w〉 = 0 for every w ∈ TpM and p ∈M .

Consider the geodesic γ(t) = expp(tw) and prove that
d

dt

∣∣∣∣
t=0

〈[X,Y ]γ(t), γ̇(t)〉 = 0.)



Chapter 6

Riemannian volume

6.1 Geodesic spherical coordinates

Let M be a n-dimensional Riemannian manifold and let exp : E → M be its
exponential map. Let p ∈ M and Sp = {v ∈ TpM : ‖v‖ = 1}. To each smooth map
ξ : U → Sp defined on some open set U ⊂ Rn−1 corresponds the smooth map

ψ(t, u) = exp(tξ(u))

which is defined on {(t, u) ∈ (0,+∞)× U : tξ(u) ∈ E}. In case M is complete, ψ is
defined on (0,+∞) × U . Obviously,

∂ψ

∂t
(s, u) = ψ∗(s,u)

( ∂
∂t

)
(s,u)

= γ̇ξ(u)(s),

where γξ(u) is the unique geodesic with γξ(u)(0) = p and γ̇ξ(u)(0) = ξ(u). Also, for
every u ∈ U and 1 ≤ j ≤ n− 1 the smooth vector field

Yj(., u) =
∂ψ

∂uj
(., u)

along γξ(u) is the Jabobi field with initial conditions Yj(0, u) = 0 and

DYj
dt

(0, u) =
D

dt

∂ψ

∂uj
(0, u) =

D

∂uj
∂ψ

∂t
(0, u) =

Dγ̇ξ(u)

∂uj
(0) =

∂ξ

∂uj
(u).

Finally,

∥∥∥∥
∂ψ

∂t

∥∥∥∥ = 1 and 〈∂ψ
∂t
,
∂ψ

∂uj
〉 = 0, by the Gauss’ Lemma 3.5.2. Thus, in order

to have a description of the Riemennian metric along the geodesic γξ(u) we need to
compute 〈Yi(t, u), Yj(t, u)〉, 1 ≤ i, j ≤ n− 1.

For every ξ ∈ Sp, v ∈ TpM and t > 0 we put

R(t)v = τ−1
t R(τt(v), γ̇ξ(t))γ̇ξ(t)

where τt denotes the parallel translation along the geodesic γξ from p = γξ(0)
to γξ(t). By Proposition 4.3.1 R(t) is self-adjoint and since R(t)ξ = 0, we have
R(t) ∈ Hom(ξ⊥, ξ⊥). Let A(t, ξ) denote the unique solution of the linear ordinary
differential equation

A′′ +R(t)A = 0

127
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defined on Hom(ξ⊥, ξ⊥) satisfying the initial conditions A(0, ξ) = 0 and
A′(0, ξ) = idξ⊥ .

Proposition 6.1.1. The operators A(t, ξ)∗A′(t, ξ) and A′(t, ξ)A(t, ξ)−1 are
self-adjoint.

Proof. Indeed, if we put W (t) = A′(t, ξ)∗A(t, ξ) −A(t, ξ)∗A′(t, ξ), then

W ′(t) = A′′(t, ξ)∗A(t, ξ) +A′(t, ξ)∗A′(t, ξ)−A′(t, ξ)∗A′(t, ξ)−A(t, ξ)∗A′′(t, ξ)

= (−R(t)A(t, ξ))∗A(t, ξ) −A(t, ξ)∗(−R(t)A(t, ξ)) = 0,

because R(t) is self-adjoint. Since W (0) = 0, we must have W = 0.
Also, if U(t) = A′(t, ξ)A(t, ξ)−1, we have

U(t)∗ − U(t) = (A(t, ξ)−1)∗[A′(t, ξ)∗A(t, ξ)−A(t, ξ)∗A′(t, ξ)]A(t, ξ)−1

= (A(t, ξ)−1)∗W (t)A(t, ξ)−1 = 0. �

For every v ∈ ξ⊥ the smooth vector field Y (t) = τtA(t, ξ)v along γξ is the Jacobi

field with initial conditions Y (0) = 0 and
DY

dt
(0) = v.

The above now become

∂ψ

∂uj
(t, u) = Yj(t, u) = τtA(t, ξ(u))

∂ξ

∂uj
,

since
∂ξ

∂uj
∈ ξ(u)⊥, because ‖ξ(u)‖ = 1 for every u ∈ U . It follows that

〈Yi(t, u), Yj(t, u)〉 = 〈A(t, ξ(u)) ∂ξ
∂ui

, A(t, ξ(u))
∂ξ

∂uj
〉.

Using the traditional notation, the Riemannian metric on the image of ψ can now
be written

ds2 = dt2 + (A(t, ξ))2‖dξ‖2.
In the special case of a space form Jacobi’s differential equation along a unit speed

geodesic is particularly simple. Suppose that M has constant sectional curvature
K ∈ R and let γ be a unit speed geodesic. Let Y be a normal Jacobi field along γ.
If E1,..., En−1, En = γ̇ is a parallel orthonormal frame along γ and

Y =

n−1∑

j=1

fjEj

then
f ′′ +Kfj = 0, j = 1, ..., n − 1.

It follows that there are parallel vector fields A, B ∈ X (γ), which are combinations
of the elements of the frame, such that Y is given by the formula

Y (t) = CK(t)A(t) + SK(t)B(t),
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where

CK(t) =





cos(
√
Kt), if K > 0,

1, if K = 0,

cosh(
√
−Kt), if K < 0.

and

SK(t) =





1√
K
sinh(

√
Kt), if K > 0,

t, if K = 0,
1√
−K sinh(

√
−Kt), if K < 0.

If Y (0) = 0, then Y (t) = SK(t)B(t), which shows that

Yj(t, u) = SK(t)τt(
∂ξ

∂uj
), j = 1, ..., n − 1

with the previous notations. Moreover, A(t, ξ) = SK(t)I. Thus, we recover the
formulas for the Riemannian metric in local geodesic spherical coordinates of the
end of section 5.6.

As a final remark we note that the conjugate locus of a point p ∈M is the image
under the exponential map expp of the set of all points tξ ∈ TpM for t > 0, ξ ∈ Sp,
such that A(t, ξ) is not an isomorphism.

6.2 Riemannian measure

On a n-dimensional Riemannian manifold M there is a globally defined natural
measure. Let φ : U → Rn and ψ : W → Rn be two smooth charts of M with
φ = (x1, ..., xn) and ψ = (y1, ..., yn). As usual, we denote gφ = (gφij)1≤i,j≤n and

gψ = (gψij)1≤i,j≤n where

gφij = 〈 ∂

∂xi
,
∂

∂xj
〉 and gψij = 〈 ∂

∂yi
,
∂

∂yj
〉.

If U ∩W 6= ∅ and S = D(φ ◦ ψ−1) = (Sij)1≤i,j≤n, then

∂

∂xj
=

n∑

i=1

Sij
∂

∂yi

and gφ = ST gψS. Therefore,
√

det gφ =
√

det gψ · |detS|. From the change of
variables formula follows now that for every continuous function f : φ(U) → R the
Riemann integral ∫

φ(U)
(f ·

√
det gφ) ◦ φ−1

depends only on f and U and not on the choice of the chart φ : U → Rn. Thus,
if we choose a smooth atlas A of M and a subordinated smooth partition of unity
{f(U,φ) : (U, φ) ∈ A}, then for every continuous function with compact support
f :M → R the quantity

∫

M
fdVol =

∑

(U,φ)∈A

∫

φ(U)
(f(U,φ)f ·

√
det gφ) ◦ φ−1
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depends only on f and not on the choice of the smooth atlas A and the subordinated
smooth partition of unity. By the Riesz Representation Theorem, there is a well
defined σ-finite Borel measure dVol on M , which is called the Riemannian measure
of M . A function f : M → R is measurable with respect to dVol if and only if
f ◦ φ−1 : φ(U) → R is Lebesgue measurable for every smooth chart φ : U → Rn.

It is obvious that the above definition of the Riemannian measure is not suitable
for efficient calculations. A simple idea to overcome this difficulty is to remove
from M a set of measure zero such that on the rest of M there are some kind of
coordinates.

Let M be a complete, connected, n-dimensional Riemannian manifold and p ∈
M . If C(p) denotes the cut locus of p, as it was defined in section 5.5, then C(p)
has measure zero. Indeed, it follows from Theorem 5.5.3 that the set

Cp = {c(v)v : v ∈ TpM, ‖v‖ = 1, c(v) < +∞}

has Lebesgue measure zero in TpM . Since expp : TpM → M is smooth, C(p) =
expp(Cp) must have measure zero in M . On D(p) = M \ C(p) there are geodesic
spherical coordinates since expp maps Dp = {tv : 0 ≤ t < c(v), v ∈ TpM, ‖v‖ = 1}
diffeomorphically onto D(p). The Riemannian measure on D(p) \ {p} has the form
g(t, ξ)dtdξ, where dξ is the spherical Lebesgue measure on Sp = {ξ ∈ TpM : ‖ξ‖ =
1} induced by the Lebesgue measure on TpM . So for every integrable function
f :M → R we have

∫

M
fdVol =

∫

Sp

(∫ c(ξ)

0
f(expp(tξ))g(t, ξ)dt

)
dξ.

We shall show that g(t, ξ) = detA(t, ξ) for every ξ ∈ Sp and 0 < t < c(ξ), that is
tξ ∈ Dp \{0}. Let u = (u1, ..., un) be a smooth chart of Sp. We consider the smooth
chart φ = (x1, ..., xn) on Dp \ {p} with

φ =

(
u ◦
( (expp |Dp)

−1

‖(expp |Dp)
−1‖

)
, ‖(expp |Dp)

−1‖
)
.

Note that
∂

∂xn
is
∂ψ

∂t
and

∂

∂xi
is
∂ψ

∂ui
, i = 1, ..., n−1, in the notation of the preceding

section 6.1. If as usual gij = 〈 ∂
∂xi

,
∂

∂xj
〉, 1 ≤ i, j ≤ n, from the definition of the

Riemannian measure we have g =
√

det(gij)1≤i,j≤n. Putting hij = 〈 ∂

∂ui
,
∂

∂uj
〉, 1 ≤

i, j ≤ n − 1, we have gnn = 1, gnj = 0, j = 1, ..., n − 1, from the Gauss’ Lemma
3.5.2, and

gij = 〈A(t, ξ) ∂

∂ui
, A(t, ξ)

∂

∂uj
〉, 1 ≤ i, j ≤ n− 1,

where ξ = u−1. Therefore, det(gij)1≤i,j≤n = det(hij)1≤i,j≤n−1 · (detA(t, ξ))2. This
proves our assertion, because dξ =

√
det(hij)1≤i,j≤n−1du

1 · · · dun−1 is the local
expression of the spherical Riemannian measure on Sp.

Example 6.2.1. In case M has constant sectional curvature K ∈ R, we have
A(t, ξ) = SK(t)I and therefore

√
det(gij)1≤i,j≤n = (SK(t))n−1. In the particular
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case of the euclidean space Rn we have K = 0, S0(t) = t and thus the Riemannian
measure is tn−1dtdξ in spherical coordinates, where dξ is the Riemannian measure
of the unit sphere Sn−1. The volume

cn−1 =

∫

Sn−1

dξ

of Sn−1 can be computed as follows. We observe that

(∫ +∞

−∞
e−t

2
dt

)n
=

∫

Rn

e−‖x‖2dVol =
∫

Sn−1

(∫ +∞

0
tn−1e−t

2
dt

)
dξ

= cn−1

∫ +∞

0
tn−1e−t

2
dt = cn−1

∫ +∞

0

1

2
e−ss

n
2
−1ds = cn−1

Γ(n2 )

2
.

Since

∫ +∞

−∞
e−t

2
dt =

√
π, we conclude that

cn−1 =
2π

n
2

Γ(n2 )
.

The volume of the unit n-ball Dn = {x ∈ Rn : ‖x‖ ≤ 1} is

Vol(Dn) =

∫

Dn

tn−1dtdξ = cn−1

∫ 1

0
tn−1dt =

2π
n
2

nΓ(n2 )
=

π
n
2

Γ(n2 + 1)
.

Let M be a complete, n-dimensional Riemannian manifold and p ∈ M . For
r > 0 we put Dp(r) = {ξ ∈ Sp : rξ ∈ Dp} = {ξ ∈ Sp : 0 < r < c(ξ)} and

E(p, r) =

∫

Dp(r)
detA(r, ξ)dξ.

If 0 < r < injp, then E(p, r) is the (n − 1)-dimensional volume of ∂B(p, r), which
is a smooth (n − 1)-dimensional submanifold of M . In any case, the volume of the
ball B(p, r) = exp(Bp(0, r)) is

V (p, r) =

∫

B(p,r)
dVol =

∫

Dp∩B(p,r)
detA(t, ξ)dtdξ

=

∫ r

0

(∫

Dp(r)
detA(t, ξ)dξ

)
dt =

∫ r

0
E(p, t)dt.

Thus, the function E(p, .) is integrable, while V (p, .) is obviously continuous. Since

Dp(r + ǫ) =
1

r + ǫ
(Dp ∩Bp(0, r + ǫ)) ⊂ 1

r
(Dp ∩Bp(0, r)) = Dp(r)

for every ǫ > 0, we have

V (p, r + ǫ)− V (p, r)

ǫ
=

1

ǫ

∫ r+ǫ

r
E(p, t)dt =

1

ǫ

∫ r+ǫ

r

(∫

Dp(t)
detA(t, ξ)dξ

)
dt
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≤ 1

ǫ

∫ r+ǫ

r

(∫

Dp(r)
detA(t, ξ)dξ

)
dt =

∫

Dp(r)

(
1

ǫ

∫ r+ǫ

r
detA(t, ξ)dt

)
dξ.

Therefore,

lim sup
ǫ→0

V (p, r + ǫ)− V (p, r)

ǫ
≤
∫

Dp(r)

(
lim
ǫ→0

1

ǫ

∫ r+ǫ

r
detA(t, ξ)dt

)
dξ

=

∫

Dp(r)
detA(r, ξ)dξ = E(p, r),

by Lebesgue dominated convergence.
If M is the simply connected space form of sectional curvature K ∈ R, the

volume of a ball of radius r > 0 is

VK(r) = cn−1

∫ r

0
(SK(t))n−1dt

and of a sphere of radius r is EK(r) = cn−1(SK(r))n−1.

6.3 Volume comparison theorems

In this section we shall present results comparing the Riemannian volumes of balls
in a complete Riemannian manifold with the volumes of balls in space forms of
the same dimension under conditions concerning the sectional or the Ricci cur-
vature. We shall need the following comparison theorem which is due to H.E. Rauch.

Theorem 6.3.1. Let M be a complete, n-dimensional Riemannian manifold, K ∈
R and let γ : [0, a] → M be a geodesic path parametrized by arclength such that
Kγ(t)(S) ≤ K for every 2-dimensional vector subspace S of Tγ(t)M and for every
0 ≤ t ≤ a. Let Y be a non-zero normal Jacobi field along γ.
(i) Then for every 0 ≤ t ≤ a we have

d2

dt2
‖Y (t)‖ +K‖Y (t)‖ ≥ 0.

(ii) If ψ : [0, a] → R is the solution of the linear differential equation x′′ +Kx = 0

on [0, a] satisfying the initial conditions ψ(0) = ‖Y (0)‖, ψ′(0) =
d

dt

∣∣∣∣
t=0

(‖Y ‖) and ψ
does not vanish at any point of the open interval (0, a), then on this interval

d

dt

(‖Y ‖
ψ

)
≥ 0, ‖Y ‖ ≥ ψ.

(iii) Moreover, if 0 < t0 < a, then
d

dt

∣∣∣∣
t=t0

(‖Y ‖
ψ

)
= 0 if and only if Kγ(t)(S(t)) = K

for every 0 ≤ t ≤ t0, where S(t) is the 2-dimensional vector subspace of Tγ(t)M
generated by {γ̇(t), Y (t)}, and there exists a parallel vector field E along γ|(0,t0)
such that ‖E‖ = 1 and Y (t) = ψ(t)E(t) for every 0 < t < t0.
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Proof. In the beginning we estimate

d2

dt2
(‖Y ‖) = d

dt

(〈Y, DYdt 〉
‖Y ‖

)
=

1

‖Y ‖ · d
dt
〈Y, DY

dt
〉+ 〈Y, DY

dt
〉 · d
dt

(
1

‖Y ‖

)

=
1

‖Y ‖

(∥∥∥∥
DY

dt

∥∥∥∥
2

+〈Y, D
2Y

dt2
〉
)
−〈Y, DYdt 〉2

‖Y ‖3 =
1

‖Y ‖

(∥∥∥∥
DY

dt

∥∥∥∥
2

−〈Y,R(Y, γ̇)γ̇〉
)
−〈Y, DYdt 〉2

‖Y ‖3

≥ 1

‖Y ‖

(∥∥∥∥
DY

dt

∥∥∥∥
2

−K‖Y ‖2
)
−〈Y, DYdt 〉2

‖Y ‖3 = −K‖Y ‖+ 1

‖Y ‖3
(∥∥∥∥

DY

dt

∥∥∥∥
2

‖Y ‖2−〈Y, DY
dt

〉2
)

≥ −K‖Y ‖,

using our assumption and the Cauchy-Schwartz inequality.
Since

d

dt

(‖Y ‖
ψ

)
=

1

ψ2

(
d

dt
(‖Y ‖) · ψ − ‖Y ‖dψ

dt

)
,

we consider the function

f =
d

dt
(‖Y ‖) · ψ − ‖Y ‖dψ

dt

for which we have f(0) = 0 by our choice of ψ and

f ′ = ψ
d2

dt2
(‖Y ‖)− ‖Y ‖ψ′′ ≥ ψ(−K‖Y ‖)− (−Kψ)‖Y ‖ = 0.

Therefore, f(t) ≥ f(0) = 0 for 0 < t < a and

d

dt

(‖Y ‖
ψ

)
≥ 0

on the interval (0, a). It follows that

‖Y (t)‖
ψ(t)

≥ ‖Y (0)‖
ψ(0)

= 1

for every 0 < t < a. This proves assertion (ii). In order to prove (iii), we observe
that f(t0) = 0, and thus f(t) = 0 for all 0 ≤ t ≤ t0, by monotonicity. It follows that
‖Y ‖ = ψ and thus

d2

dt2
(‖Y ‖) +K‖Y ‖ = 0

on the interval [0, t0]. This means that the inequalities appearing in our initial
estimate are equalities. In particular,

∥∥∥∥
DY

dt

∥∥∥∥
2

‖Y ‖2 − 〈Y, DY
dt

〉2 = 0

and hence
DY

dt
, Y must be linearly dependent on [0, t0]. If now Y = ψE, where

‖E‖ = 1, then
DY

dt
= ψ′E + ψ

DE

dt
,
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and E is perpendicular to
DE

dt
. Thus, necessarily

DE

dt
= 0 on (0, t0). �

Let M be a connected, complete, n-dimensional Riemennian manifold, K ∈ R

and let a =
π√
K

, where a = +∞ in case K ≤ 0. Let γ : [0, a] → M be a geodesic

path parametrized by arclength such that Kγ(t)(S) ≤ K for every 2-dimensional
vector subspace of Tγ(t)M and every 0 ≤ t ≤ a. Let Y be a normal Jacobi field

along γ. Applying Rauch’s Theorem 6.3.1 for

∥∥∥∥
DY

dt
(0)

∥∥∥∥
−1

Y , then ψ(t) = SK(t) and

‖Y ‖ ≥
∥∥∥∥
DY

dt
(0)

∥∥∥∥SK . Moreover,

d
dt(‖Y ‖)
‖Y ‖ ≥

dSK

dt

SK

and the equality holds at some point 0 < t0 < a if and only if there exists a non-zero
parallel vector field along γ such that Y = SK ·E on (0, t0] and

K = 〈R(t)E(t), E(t)〉, 0 < t ≤ t0,

where R(t) was defined in section 6.1. Thus, if ξ = γ̇(0), that is γ = γξ, then

τtA(t, ξ)

(
DY

dt
(0)

)
= Y (t) = SK(t) ·E(t), 0 < t ≤ t0.

Since
DY

dt
(0) =

dSK
dt

(0) · E(0) = E(0), it follows that

A(t, ξ)

(
DY

dt
(0)

)
= SK(t) · τ−1

t E(t) = SK(t) ·
DY

dt
(0).

This shows that A(t, ξ) = SK(t)I for 0 < t ≤ t0 in case we have equality in the
above inequality at t0, because Y was any non-zero normal Jacobi vector field along
γ. Since A′′(t, ξ) +R(t)A(t, ξ) = 0, we also have R(t) = K · I, 0 < t ≤ t0.

The following theorem is due to P. Günter and R.L. Bishop. We shall need two
elementary facts.

Lemma 6.3.2. Let a > 0 and f , g : [0, a] → [0,+∞) be two C1 functions such that

f(0) = g(0) = 0, f(t) > 0, g(t) > 0 for 0 < t ≤ a and f ′(0) = g′(0) 6= 0. If
f ′

f
≥ g′

g
on (0, a], then f ≥ g on [0, a].

Proof. Our assumption implies that

f ′g − fg′

g2
=
f

g

(
f ′

f
− g′

g

)
≥ 0.

Therefore,
f(t)

g(t)
≥ lim

s→0+

f(s)

g(s)
=
f ′(0)
g′(0)

= 1
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for every 0 < t ≤ a. �.

If G : (−ǫ, ǫ) → Rn×n is a smooth map for some ǫ > 0 with G(0) = In, then
from Taylor’s formula we have

G(t) = In + tG′(0) +O(t2)

and therefore

detG(t) = 1 + tTrG′(0) +O(t2).

This implies that (detG)′(0) = TrG′(0). Applying this to G(t) = B(t)B(0)−1 we
obtain

(detB)′(0)
detB(0)

= Tr(B′(0)B(0)−1)

for any smooth B : (−ǫ, ǫ) → Rn×n.

Theorem 6.3.3. Let M be a connected, complete, Riemannian n-manifold, p ∈M
and ξ ∈ Sp. We assume that there exists K ∈ R such that Kγξ(t)(S) ≤ K for every
2-dimensional vector subspace S of Tγξ(t)M and every t ∈ R. Then

d
dt(detA(t, ξ))

detA(t, ξ)
≥ (n− 1)

S′
K(t)

SK(t)
, detA(t, ξ) ≥ (SK(t))

n−1

for every 0 < t ≤ π√
K

. The equality holds at some 0 < t0 <
π√
K

if and only if

A(t, ξ) = SK(t) · I and R(t) = K · I for 0 < t ≤ t0.

Proof. Putting B(t) = A(t, ξ)∗A(t, ξ) we have

d
dt(detA(t, ξ))

detA(t, ξ)
=

1

2
· (detB)′(t)

detB(t)
.

Let 0 < s <
π√
K

. Since B(s) is self-adjoint, there exists an orthonormal basis

{v1, ..., vn−1} of ξ⊥ consisting of eigenvectors of B(s). Let η1,..., ηn−1 be the so-
lutions of Jacobi’s differential equation

η′′ +R(t)η = 0

on ξ⊥ satisfying the initial conditions ηj(0) = 0, η′j(0) = vj , 1 ≤ j ≤ n − 1. As we
have seen in section 6.1, ηj(t) = A(t, ξ)vj , 1 ≤ j ≤ n−1. By Rauch’s Theorem 6.3.1
and the subsequent comments, and Proposition 6.1.1,

1

2
· (detB)′(s)

detB(s)
=

1

2
Tr(B′(s)B(s)−1) = Tr(A(s, ξ)∗A′(s, ξ)B−1(s))

=
n−1∑

j=1

〈A(s, ξ)∗A′(s, ξ)B−1(s)vj , vj〉 =
n−1∑

j=1

〈A(s, ξ)∗A′(s, ξ)

(
1

〈Bvj , vj〉
vj

)
, vj〉
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=
n−1∑

j=1

〈A(s, ξ)∗A′(s, ξ)vj , vj〉
〈A(s, ξ)∗A(s, ξ)vj , vj〉

=
n−1∑

j=1

〈A′(s, ξ)vj , A(s, ξ)vj〉
〈A(s, ξ)vj , A(s, ξ)vj〉

=
n−1∑

j=1

〈η′j(s), ηj(s)〉
〈ηj(s), ηj(s)〉

=
n−1∑

j=1

d
dt

∣∣
t=s

‖ηj‖
‖ηj(s)‖

≥ (n − 1)
S′
K(s)

SK(s)
.

The second inequality follows from the preceding elementary Lemma 6.3.2. Fi-

nally, suppose that there exists some 0 < t0 ≤
π√
K

such that

d
dt

∣∣
t=t0

(detA(t, ξ))

detA(t0, ξ)
= (n− 1)

S′
K(t0)

SK(t0)
.

Since
d
dt

∣∣
t=t0

‖ηj‖
‖ηj(s)‖

≥ S′
K(s)

SK(s)

for all 1 ≤ j ≤ n− 1, necessarily we have equality. From the above A(t, ξ) = SK(t)I
and R(t) = K · I for every 0 < t ≤ t0. �

Corollary 6.3.4. Let M be a complete, n-dimensional Riemannian manifold such
that there exists K ∈ R with Kp(S) ≤ K for every p ∈ M and every 2-dimensional
vector subspace S of TpM . Then, V (p, r) ≤ VK(r) for every p ∈ M and every

0 < r ≤ min{injp, π√
K

}. The equality holds for r = r0 if and only if the ball B(p, r0)

in M is isometric to a ball of radius r0 in the simply connected space form MK of
sectional curvature K. �

There is an analogous to the preceding Theorem 6.3.3 due to R.L. Bishop with
the assumption that the Ricci curvature has a lower bound.

Theorem 6.3.5. Let M be a complete, n-dimensional Riemannian manifold, p ∈
M , ξ ∈ Sp and let γξ be the geodesic with γξ(0) = p and γ̇ξ(0) = ξ. We denote

conjξ = inf{t > 0 : γξ(t) is conjugate to p along γξ}

= min{t > 0 : detA(t, ξ) = 0} > 0.

If there exists K ∈ R such that Ricγξ(t)(γ̇ξ(t), γ̇ξ(t)) ≥ (n − 1)K for every 0 < t ≤
conjξ, then

d
dt(detA(t, ξ))

detA(t, ξ)
≤ (n− 1)

S′
K(t)

SK(t)
, detA(t, ξ) ≤ (SK(t))

n−1

for every 0 < t ≤ conjξ. The equality holds at some 0 < t0 < conjξ if and only if
A(t, ξ) = SK(t) · I and R(t) = K · I for 0 < t ≤ t0.

Proof. Recall that Ricγξ(t)(γ̇ξ(t), γ̇ξ(t)) = TrR(t) and

d
dt(detA(t, ξ))

detA(t, ξ)
= Tr

d

dt
A(t, ξ)A(t, ξ)−1.
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For the sake of brevity we shall use the notation CtK(t) =
S′
K(t)

SK(t)
and denote by

arcCtK its inverse. If ψ = (n−1)CtK , then ψ satisfies Ricatti’s differential equation

ψ′ +
1

n− 1
ψ2 + (n− 1)K = 0.

Also ψ is strictly decreasing and in case K < 0 we have lim
t→+∞

ψ(t) = (n− 1)
√
−K.

By Proposition 6.1.1, the operator U(t) = A′(t, ξ)A(t, ξ)−1 is self-adjoint. Also it
satisfies Ricatti’s differential equation for operators

U ′ + U2 +R = 0.

This is easily verified by differentiating the equation A(t, ξ)A(t, ξ)−1 = I, which
gives (A(t, ξ)−1)′ +A(t, ξ)−1A′(t, ξ)A(t, ξ)−1 = 0, and substituting

U ′(t) + U(t)2 +R(t)

= A′′(t, ξ)A(t, ξ)−1 +A′(t, ξ)(A(t, ξ)−1)′ +A′(t, ξ)A(t, ξ)−1A′(t, ξ)A(t, ξ)−1 +R(t)

= −R(t)A(t, ξ)A(t, ξ)−1+A′(t, ξ)
(
(A(t, ξ)−1)′+A(t, ξ)−1A′(t, ξ)A(t, ξ)−1

)
+R(t) = 0.

Thus, TrU ′ +TrU2 +TrR = 0 and by the Cauchy-Schwartz inequality, since U(t) is
diagonalizable,

(TrU)2 ≤ (n − 1)TrU2.

If now

φ(t) = TrU(t) = Tr(A′(t, ξ)A(t, ξ)−1) =
d

dt
log detA(t, ξ),

then the above and our assumption imply

φ′ +
1

n− 1
φ2 + (n− 1)K = TrU ′ +

1

n− 1
(TrU)2 + (n− 1)K

≤ TrU ′ +
1

n− 1
(n− 1)TrU2 +TrR = 0.

So, we want to compare the solution ψ of the above differential equation of Ricatti
with the solution φ of the last differential inequality.

Since

ψ′(t) =





−(n−1)K

sin2(
√
Kt)

, if K > 0,

−1, if K = 0,
−(n−1)(−K)

sinh2(
√
−Kt) , if K < 0,

we have
1

n− 1
(ψ(t))2 + (n− 1)K > 0

for 0 < t <
π√
K

.

We observe that lim
t→0+

φ(t) = +∞. Indeed, for any 0 < a < b we have

∫ b

a
φ(s) = log

detA(b, ξ)

detA(a, ξ)
.
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Since A(0, ξ) = 0, it follows that

∫ b

0
φ(s)ds = +∞. From the mean value theorem of

integral calculus, there exist sm → 0 such that lim
m→+∞

φ(sm) = +∞. Let now c > 0.

There exists m0 ∈ N such that 0 < sm < 1 and φ(sm) > c + (n − 1)|K| for every
m ≥ m0. Since

φ′ + (n− 1)K ≤ − φ2

n− 1
≤ 0,

integrating for every 0 < t < sm we obtain

φ(sm)− φ(t) + (n− 1)K(sm − t) ≤ 0

and therefore

φ(t) ≥ φ(sm) + (n− 1)K(sm − t) > c+ (n− 1)[K(sm − t) + |K|] ≥ c

for every 0 < t < sm0 .

The above imply that there exists 0 < ǫ < conjξ such that

(φ(t))2

n− 1
+ (n− 1)K > 0

for 0 < t < ǫ and hence
−φ′(t)

(φ(t))2

n−1 + (n− 1)K
≥ 1

for 0 < t ≤ ǫ. Integrating,

t ≤ lim
a→0+

∫ t

a

−φ′(s)
(φ(s))2

n−1 + (n− 1)K
ds = lim

a→0+

∫ t

a
−

φ′(s)
n−1

(φ(s))2

(n−1)2
+K

ds

lim
a→0+

∫ φ(t)/n−1

φ(a)/n−1

−1

s2 +K
ds = arcCtK

(
φ(t)

n− 1

)

for every 0 < t ≤ ǫ. Consequently, ψ(t) = (n− 1)CtK(t) ≥ φ(t) or equivalently

d
dt(detA(t, ξ))

detA(t, ξ)
≤ (n− 1)

S′
K(t)

SK(t)

and detA(t, ξ) ≤ (SK(t))n−1 for every 0 < t ≤ ǫ, by Lemma 6.3.2.

Suppose now that there exists some 0 < t0 ≤ ǫ such that these inequalities are
equalities for t = t0. Then, φ(t0) = ψ(t0) and

φ′(t) +
(φ(t))2

n− 1
+ (n− 1)K = 0,

hence also (TrU(t))2 = (n − 1)Tr(U(t)2) for all 0 < t ≤ t0. By the uniqueness of
solutions of Ricatti’s differential equation, φ(t) = ψ(t) and TrR(t) = (n − 1)K for
0 < t ≤ t0. Moreover, since the Cauchy-Schwartz inequality we have used above
is an equality, U(t) must be a multiple of the identity operator I for 0 < t ≤ t0.
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It follows that R(t) must also be a multiple of the identity operator and therefore
R(t) = K · I for 0 < t ≤ t0.

Returning to U(t), since this is a multiple of I and has trace

φ(t) = ψ(t) = (n− 1)
S′
K(t)

SK(t)
,

necessarily

A′(t, ξ)A(t, ξ)−1 =
S′
K(t)

SK(t)
· I

for every 0 < t ≤ t0. Therefore,
1

SK
A(., ξ) is constant on the interval (0, t0]. Taking

the limit for t → 0+ we find that this constant must be I, because A′(0, ξ) = I. In
other words A(t, ξ) = SK(t) · I for every 0 < t ≤ t0.

It remains to show that the above hold not only on the interval (0, ǫ] but also
on (0, conjξ]. We proceed by contradiction assuming that

T = sup{ǫ ∈ (0, conjξ] : φ(t) ≤ ψ(t) for 0 < t ≤ ǫ} < conjξ.

By continuity, φ(T ) = ψ(T ) and therefore

(φ(T ))2

n− 1
+ (n− 1)K > 0.

There exists ǫ1 > 0 such that

(φ(t))2

n− 1
+ (n− 1)K > 0

and thus
−φ′(t)

(φ(t))2

n−1 + (n− 1)K
≥ 1

for T ≤ t < T + ǫ1. As before, this implies that φ(t) ≤ ψ(t) for T ≤ t < T + ǫ1,
which contradicts the choice of T .

Finally, suppose that there exists some 0 < t0 < conjξ such that φ(t0) = ψ(t0),
but this equality does not hold on the whole interval (0, t0]. Then, there exist
0 < t1 < t2 ≤ t0 such that φ(t) < ψ(t) for t1 < t < t2 and φ(t2) = ψ(t2). Hence

(φ(t2))
2

n− 1
+ (n− 1)K > 0

and by continuity there exists δ > 0 such that

(φ(t))2

n− 1
+ (n− 1)K > 0

for |t− t2| < δ. Thus,
−φ′(t)

(φ(t))2

n−1 + (n− 1)K
≥ 1
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for |t− t2| < δ. If t2 − δ < t < t2, integrating from t to t2 we find

t2 − arcCtK

(
φ(t)

n− 1

)
= arcCtK

(
φ(t2)

n− 1

)
− arcCtK

(
φ(t)

n− 1

)

=

∫ t2

t

−φ′(s)
(φ(s))2

n−1 + (n− 1)K
ds ≥ t2 − t.

Hence arcCtK

(
φ(t)

n− 1

)
≤ t. This shows that φ(t) ≥ ψ(t) for every t2 − δ < t < t2.

This concludes the proof. �

Theorem 6.3.6. Let M be a complete, connected, Riemannian n-manifold for
which there exists K ∈ R such that Ricp(v, v) ≥ (n − 1)K for every v ∈ TpM
with ‖v‖ = 1 and p ∈ M . Then, V (p, r) ≤ VK(r) for every r > 0. Moreover,
V (p, r) = VK(r) for some r > 0 if and only if B(p, r) is isometric to the open ball
of radius r in the simply connected space form of sectional curvature K.

Proof. For every r > 0 Theorem 6.3.5 implies that

V (p, r) =

∫

Sp

(∫ min{c(ξ),r}

0
detA(t, ξ)dt

)
dξ ≤

∫

Sp

(∫ min{c(ξ),r}

0
(SK(t))

n−1dt

)
dξ

≤
∫

Sp

(∫ r

0
(SK(t))

n−1dt

)
dξ = VK(r).

The case of the equality is obvious. �

Corollary 6.3.7. For every complete, connected, Riemannian n-manifold M and
p ∈M the function V (p, .) is locally uniformly Lipschitz.

Proof. Let ρ > 0 and Kρ = inf{Ricq(v, v) : v ∈ Sq, q ∈ B(p, ρ)}. For every
0 < s < r < ρ applying Bishop’s Theorem 6.3.5 we have

V (p, r)− V (p, s)

r − s
=

1

r − s

∫

Dp(s)

(∫ min{c(ξ),r}

s
detA(t, ξ)dt

)
dξ

≤ cn−1 ·max{(SKρ(t))
n−1 : 0 ≤ t ≤ ρ}. �

In the rest of this section we shall study the monotonicity of the function
V (p, .)

VK(.)
under the assumptions of Theorem 6.3.6.

Proposition 6.3.8. Let M be a complete, connected, Riemannian n-manifold for
which there exists K ∈ R such that Ricp(v, v) ≥ (n − 1)K for every v ∈ TpM with

‖v‖ = 1 and p ∈M . Then, the function
E(p, .)

EK(.)
is decreasing for all p ∈M .
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Proof. Let 0 < r < s, so that Dp(s) ⊂ Dp(r). By Bishop’s Theorem 6.3.6, for every
ξ ∈ Sp the function

detA(., ξ)

(SK(.))n−1

is decreasing. Thus,

E(p, r)

EK(r)
=

1

cn−1

∫

Dp(r)

detA(r, ξ)

(SK(r))n−1
dξ ≥ 1

cn−1

∫

Dp(s)

detA(r, ξ)

(SK(r))n−1
dξ

≥ 1

cn−1

∫

Dp(s)

detA(s, ξ)

(SK(s))n−1
dξ =

E(p, s)

EK(s)
. �

The monotonicity of the function
V (p, .)

VK(.)
will now be a direct consequence of

the following lemma of M. Gromov.

Lemma 6.3.9. Let f , g : R → (0,+∞) be two integrable functions. If the function
f

g
is decreasing, then the function

∫ t
0 f(s)ds∫ t
0 g(s)ds

is decreasing as well.

Proof. Let r < s. Since

(∫ r

0
f(t)dt

)(∫ s

0
g(t)dt

)
=

(∫ r

0
f(t)dt

)(∫ r

0
g(t)dt

)
+

(∫ r

0
f(t)dt

)(∫ s

r
g(t)dt

)

and
(∫ s

0
f(t)dt

)(∫ r

0
g(t)dt

)
=

(∫ r

0
f(t)dt

)(∫ r

0
g(t)dt

)
+

(∫ s

r
f(t)dt

)(∫ r

0
g(t)dt

)
.

Let h =
f

g
, which is assumed to be decreasing. Then,

(∫ r

0
f(t)dt

)(∫ s

r
g(t)dt

)
=

(∫ r

0
g(t)h(t)dt

)(∫ s

r
g(t)dt

)
≥ h(r)

(∫ r

0
g(t)dt

)(∫ s

r
g(t)dt

)

≥
(∫ r

0
g(t)dt

)(∫ s

r
g(t)h(t)dt

)
=

(∫ r

0
g(t)dt

)(∫ s

r
f(t)dt

)
. �

Combining now Proposition 6.3.8 and Lemma 6.3.9 we obtain the following
result of M. Gromov.

Theorem 6.3.10. Let M be a complete, connected, Riemannian n-manifold for
which there exists K ∈ R such that Ricp(v, v) ≥ (n − 1)K for every v ∈ TpM with
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‖v‖ = 1 and p ∈M . Then, the function
V (p, .)

VK(.)
is decreasing for all p ∈M . �

Recall that Myers’ Theorem 5.1.5 states that ifM is a complete, connected, Rie-

mannian n-manifold for which there exists r > 0 such that Ricp(v, v) ≥ (n− 1)
1

r2
for every v ∈ TpM with ‖v‖ = 1 and p ∈ M , then diam(M) ≤ πr, M is compact
and it has finite fundamental group. Using the above results of R.L. Bishop and M.
Gromov we can examine what happens in case diam(M) = πr. The corresponding
result is originally due to V.A. Toponogov for the case of sectional curvature and
S.Y. Cheng for the case of Ricci curvature. The proof we present here was given
later by K. Shiohama.

Theorem 6.3.11. Let M be a complete, connected, Riemannian n-manifold for

which there exists r > 0 such that Ricp(v, v) ≥ (n− 1)
1

r2
for every v ∈ TpM with

‖v‖ = 1 and p ∈ M . If diam(M) = πr, then M is isometric to the n-sphere Snr of
radius r.

Proof. By Bishop’s Theorem 6.3.6, it suffices to prove that Vol(M) = Vol(Snr ). By
Myers’ Theorem 5.1.5,M is compact and there exist p, q ∈M such that d(p, q) = πr,
where as usual d denotes the Riemannian distance. By Gromov’s Theorem 6.3.10,

V (p, πr2 )
1
2Vol(S

n
r )

≥ V (p, πr)

Vol(Snr )
=

Vol(M)

Vol(Snr )

and therefore V (p,
πr

2
) ≥ 1

2
Vol(M). Similarly, we have V (q,

πr

2
) ≥ 1

2
Vol(M), and

since B(p,
πr

2
) ∩B(q,

πr

2
) = ∅, because d(p, q) = πr, it follows that

V (p,
πr

2
) = V (q,

πr

2
) =

1

2
Vol(M).

Moreover, the function
V (p, .)

V1/r2(.)
is constant on the interval [

πr

2
, πr]. By monotonic-

ity, the function
E(p, .)

E1/r2(.)
is also constant on the interval [

πr

2
, πr] as the proof of

Gromov’s Lemma 6.3.6 shows. By the proof of Proposition 6.3.8, the function

detA(t, ξ)

(S1/r2(t))
n−1

is constant for
πr

2
≤ t ≤ πr for every ξ ∈ Sp. The conclusion follows now from

Bishop’s Theorem 6.3.5 by taking t0 = πr. �

6.4 Exercises

1. Let M be a Riemannian manifold. Explain why the property that a set A ⊂ M
is measurable does not depend on the choice of the Riemannian metric and the
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same holds for subsets of M of measure zero.

2. Prove that the Riemannian volume of the complex projective space CPn, n ≥ 1,

with respect to the Fubini-Study metric is equal to
πn

n!
.

3. Let M be a n-dimensional Riemannian manifold and p ∈ M . If 0 < t < injp,
prove that the quantity

d
dt(detA(t, ξ))

detA(t, ξ)

is the mean curvature of the geodesic sphere ∂B(p, t) at the point γξ(t), where γξ
denotes the geodesic with γξ(0) = p and γ̇ξ(0) = ξ ∈ Sp.
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