University of Crete
Department of Mathematics and Applied Mathematics

An introduction to Riemannian
Geometry

Course notes

Konstantin Athanassopoulos

Iraklion, 2022



ii
Preface

These lecture notes correspond to the introductory graduate course on Rieman-
nian Geometry that I have taught several times in the graduate program of the
Department of Mathematics of the University of Crete. The reader is required to
have a background in basic Algebra, basic Topology, Differential Calculus of func-
tions of several variables and in the basic theory of Ordinary Differential Equations.

The first two chapters give an introduction to the basics of smooth manifolds.
The next three chapters constitute the core of these notes. The third chapter is
concerned with the metric space structure of Riemannian manifolds. The fourth
chapter is devoted to the notion of curvature and its variants. The fifth chapter
presents the elementary comparison theorems of Riemannian Geometry including
the general description of spaces of constant sectional curvature. The last sixth
chapter is devoted to the Riemannian volume comparison theorems and is optional.
It can be taught according to the background and interests of the audience.

K. Athanassopoulos
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Chapter 1

Manifolds

1.1 Topological and smooth manifolds

Problems of Classical Physics lead to the need for the development of differential and
integral calculus on subsets of the phase space, like for instance level sets of constant
energy, which are not open subsets of any euclidean space. Since differentiability of
a function at a given point depends only on its local behaviour near the point, it
is reasonable to try to develop differential calculus on topological spaces which are
locally like euclidean space.

A topological space M is said to be a topological n-manifold, where n € Z7T, if
it is a Hausdorff space with a countable basis for its topology and has the following
property: there exists an open cover U of M every element of which is homeomor-
phic to some open subset of R™. Since the topology of M is assumed to have a
countable basis, there exists a countable open cover U of M every element of which
is homeomorphic to R™. If U € U, a homeomorphism ¢ : U — ¢(U), where ¢(U) is
an open subset of R™, is called a chart of M and is usually denoted by (U, ¢). The
non-negative integer n is the dimension on M.

A topological manifold is a locally compact space, hence regular, and it follows
from Uryshn’s theorem that its topology is defined by some metric.

If now f : M — R is a continuous function, it is reasonable to call f differentiable
at a point p € M, if there exists a chart ¢ : U — ¢(U) C R™ with p € U such that
fool:¢(U) — R is differentiable at ¢(p).

However, in order such a definition to be good it must be independent of the
choice of the chart ¢. If ¢ : V' — ¢(V) C R™ is another chart with p € V| we have

fog l=(fop Ho(poo ™).

1



2 CHAPTER 1. MANIFOLDS

Therefore, in order the differentiability of f o ¢! at ¢(p) to be equivalent to that
of foy~! at ¢(p) it suffices ¥ 0 ¢~ to be differentiable at ¢(p) and ¢ o p~! to be
differentiable at ¢ (p). We are thus led to the following.

Definition 1.1.1. Two charts (U, ¢y) and (V, ¢y ) of a topological n-manifold M
are called smoothly related if U NV # @& and the transition map

pvogy ou(UNV)—=dy(UNYV)

is a smooth diffeomorphism of open subsets of R".

Abstract set M
(not necessarily in R"™)

Definition 1.1.2. A smooth atlas of a topological n-manifold M is a family
A ={(U,¢y) : U € U} consisting of smoothly related charts of M such that U is
an open cover of M.

Two smooth atlases of M are called equivalent if their union is again a smooth
atlas. Evidently, this is an equivalence relation on the set of smooth atlases of M.
Every smooth atlas is contained in a unique maximal smooth atlas, which is the
union of all smooth atlases in its equivalence class.

Definition 1.1.3. A smooth structure on a topological n-manifold is a maximal
smooth atlas A of M. In this case the couple (M, A) is called a smooth n-manifold.
The smooth atlas A is usually omitted if it is clear which one is considered. The
elements of A are called the smooth charts of M.

It is clear from the above that a smooth structure on a topological manifold
can be described by a single, not necessarily maximal, smooth atlas. So, we can
describe a smooth structure by defining a smooth atlas of minimum cardinality.

Examples 1.1.4. (a) The trivial example of a smooth n-manifold is an open subset
M of R™, whose smooth structure is defined by the smooth atlas A = {(M,idys)}.



1.1. TOPOLOGICAL AND SMOOTH MANIFOLDS 3

Also, if M is a smooth manifold, then any open set X C M is a smooth manifold.
If A is the smooth structure of M, the smooth structure of X is

"4|X = {(X N Ua¢|XF‘|U) : (U’ gb) € “4}

(b) The n-sphere S% = {Z € R"™' : |Z|| = R} of radius R > 0 is a smooth
n-manifold. Its smooth structure is defined by the smooth atlas consisting of the
stereographic projections with respect to the north and the south poles. More
precisely, the stereographic projection with respect to the north pole is the homeo-
morphism 74 : S} \ {Ren+1} — R” defined by

R
R - Zn+1

and the stereographic projection with respect to the south pole is the homeomor-
phism 7_ : S} \ {—Ren41} — R™ defined by

7T+(Zl7"'7Zn7Zn+1) = : (Z17---7Zn)

__®
R + Zn+1

7'('_(21, ) Zn Zn—l—l)

Since the inverse 7711 is given by the formula

T (21, e 20) = 2821 2Rz R(-R 435 L %)
+ 15940 R2+Z PRI R2+Z 27 R2+Z )

J1J j=1%j

J=1 J
the transition map 7_ o 7' : R™\ {0} — R™\ {0} is given by
R2
(m_omi)(z) = —= - 2
i 1212

In other words, 7_ o 77;1 is the inversion with respect to Sg_l and is of course a
smooth diffecomorphism. The standard smooth structure of S% is defined by the
smooth atlas A = {(SE \ {Rens1},74), (S \ {—Rent1},m-)}. In case R =1, we
usually write S™ instead of ST'.

(¢c) If My is a smooth nji-manifold and My is a smooth mg-manifold, then their
product My x M, is a smooth (n; + ng)-manifold. Indeed, if A; is a smooth atlas
of Mj, j = 1,2, then

A:{(UXV,¢X¢)3(Ua¢)€A1, (V,T/))GAz}
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is a smooth atlas of M7 x M.
In particular, the n-dimensional torus 7" = S! x S! x .- x S! (n times) is a
smooth n-manifold.

(d) The complex projective space CP™, n € Z*, is the quotient space of the equiva-
lence relation ~ in C"*1\ {0} such that z ~ w if and only if there exists A € C\ {0}
with w = Az. In other words, the equivalence classes of ~ are the complex 1-
dimensional linear subspaces of C"*! minus 0 € C"*!. Alternatively, CP", can
be defined as the quotient space of the equivalence relation ~ on S?"*! such that
z ~ w if and only if there exists A € S! with w = Az. Thus, CP" is the or-
bit space of the continuous action of the unit circle S* on the (2n + 1)-sphere
527+l by scalar multiplication, whose orbits are great circles. The quotient map
7 §2tl  CP™ is a continuous, open, surjection and is called the Hopf map.
We usually write 7(z0, 21, ..., 2n) = [20, 21, ---, 2n] and call the complex numbers z,
21,..., zn, the homogeneous coordinates od the point [zg, 21, ..., 2,] € CP™. Obviously,
[205 215 -y 2n) = [Wo, W1, ..., wy,] if and only if

Zji Wil

R Wk

for every j, k=0,1,...,n.
If [20, 21, .., 2n] # [Wo, W1, ..., wy], there exist 0 < j,k < n such that zjwy, # zpw;.
The sets

U = {[ug,u1, ..., un] € CP" : Jupz; — ujz| < |upw; — ujwgl},

W = {[ug,u1, ..., un] € CP" : Jupz; — ujzg| > |upw; — ujwg|}

are open, disjoint and [z, 21, ..., 2] € U, [wo, w1, ..., w,] € W. This shows that CP™

is a Hausdorff space. Since the Hopf map is a continuous, open surjection, CP" is a

connected, compact space with a countable basis for its topology, hence metrizable.
For every integer 0 < k < n the set

U, = {[20,2’1,...,Zn] e CP"™: z, 7& O}

is open and the map ¢y, : Uy — C™ with

(@’ O N e S Z_n)

¢k([20,21,...,2n]) = 2k 2k 2k 2k

is a homeomorphism whose inverse is given by
Gr (ty centn) = [ty ey bty Loty ey )
Thus, CP"™ is a topological 2n-manifold, since
CP"=UpUUyU---UU,.
Moreover, if U; N Uy, # @ and j # k, then

{(tl,..tn) Gcnlt]’#O} if j <k

oe(U; N UR) = {{(tl,..tn) €CM:t;_1 #£0} ifj>k
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Thus, for j < k we have

t ti—1 tj k1 1t t
—1 1 7—1 U541 k—1 k n
i o t,eetn) = (—, . , oo T Ty ey —
and for j > k we have
_ t te—1 1 tr ti—o t; tn
G50 & Nt ty) = , , , .
(9067 ) (tj,l tion tjo1 tjo T ot tj,l)

So, A ={(Ug,¢r) : k =0,1,..n} is a smooth atlas which defines a smooth structure
and is called the canonical atlas of CP"™.

(e) The real projective space RP"™, n € Z%, is defined in the same way simply
by replacing the field C with the field R. Now RP" is the quotient space of the
equivalence relation ~ on S™ such that x ~ —z for every x € S™. Again RP" is a
connected, compact metrizable space and a smooth n-manifold.

Definition 1.1.5. Let M be a smooth m-manifold and N be a smooth n-manifold.
A continuous map f : M — N is clalled smooth if for every p € M there exist a
smooth chart (U, ¢) of M and smooth chart (V,4) of N such that p € U, f(U) CV
and Yo fop!: ¢(U) — (V) is a smooth map of open subsets of euclidean spaces.
We call 9o f o ¢! the local representation of f with respect to the smooth charts

(U, ¢) and (V,¢)).

The sbove definition is independent of the choice of the smooth charts (U, ¢) and
(V,4), because if (U, ¢1) and (V1,1)1) is another pair of smooth charts with p € Uy
and f(U;) C V1, then

Yrofodr! = (o oo fog ) o(pogr)

and thus 1 o f o ¢~ ! is smooth if and only if ¥ o f o qul

The class of smooth manifolds are the objects of a category whose morphisms
are the smooth maps between smooth manifolds. The isomorphisms in the category
are called diffeomorphisms. More precisely, a smooth map f : M — N as in
Definition 1.1.5 is called a smooth diffeomorphism if there exists a smooth map
g: N — M such that go f =idy; and fo g =idy.

Definition 1.1.6. Two smooth manifolds M and N are called (smoothly) diffeo-
morphic if there exists a smooth diffeomorphism f: M — N.

Obviously, two diffeomorphic manifolds must have the same dimension. If (U, ¢)
is a smooth chart of a smooth manifold M, then ¢ : U — ¢(U) is a smooth diffeo-
morphism.

It is not true in general that any topological manifold admits a smooth structure.
Also, a topological manifold may carry many non-diffeomorphic smooth structures
(with the same underlying topology). J. Milnor proved in 1956 that on the 7-
sphere S” there are non-diffeomorphic smooth structures. His work was the birth
of Differential Topology. In 1982 S. Donaldson showed that already on R* there
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exist uncountably many non-diffeomorphic smooth structures. On any topological
n-manifold for n = 1,2, 3 there exists a unique up to diffeomorphism smooth struc-
ture. In dimension 1 this is easy to prove. In dimension 2 this follows from the
classification of topological surfaces and the uniformization theorem. In dimension
3 it was proved by J. Munkres in 1960. In both cases of dimensions 2 and 3 an im-
portant step in the proof is the non-trivial fact that topological 2- and 3-manifolds
can be triangulated.

1.2 The tangent space

In order to define the derivative of a smooth map between manifolds, we shall
describe the derivative of a map defined on a open subset of euclidean space in a
suitable way that it can be carried over to smooth manifolds.

Let A C R™ be an open set and p = (p!,...,p") € A. We denote by C*(A, p) the
set of smooth real functions defined on some open neighbourhood of p contained in
A. Let also

S(A,p) ={y]7: (—€,¢) > A is smooth for some e >0, with ~(0)=p}.

Two curves 71, 72 € S(A,p) are tangent at p if and only if (fo~1)'(0) = (f ov2)'(0)
for every f € C°°(A,p). Tangency at p is an equivalence relation ~, on S(A,p).
The quotient set T,A = S(A,p)/ ~, is called the tangent space of A at p and carries
a vector space structure which is defined as follows. If [y1],, [y2]p € TpA and A,
A2 € R, then \i[71]p + A2[y2]p is the element of T, A represented by

Y(t) = Myi(t) + Aovya(t) — (A1 + A2 — 1)p.

The zero element of T, A is represented by the constant curve at p. The elements
of T,,A are called tangent vectors of A at p. If v;(t) = p+tej, j = 1,2,...,n, then
{Imlp, v2lps ---[¥nlp} is a basis of T, A.

We shall give an alternative ”algebraic” description of the tangent space. To
every tangent vector [7], € TpA corresponds a linear operator Dy, : C*°(A,p) — R
which is defined by

Dy, (f) = (f o 7)'(0).

This is a fancy way to consider the directional derivative with respect to the velocity
of v at p. Recall that two functions f, g € C*°(A,p) are said to define the same
germ at p if they agree on some small neighbourhood of p and this is an equivalence
relation on C*°(A,p) whose classes are called the germs of smooth functions at
p. Note that if two functions f, g € C®(A,p) define the same germ at p, then
Dipy, () = Dy, (9)-

The set G, of germs of smooth functions at p can be endowed with the structure
of a commutative, associative real algebra with a unity in the obvious way. The
unity is the germ of the constant function with value 1. It is evident now that to
every tangent vector [y], € T,A corresponds a linear operator Dy, : Gp — R, as
above, and this correspondence is injective by definition. Moreover, it satisfies the
Leibniz rule for the derivative of a product of functions. Thus, we are led to the
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following,.

Definition 1.2.1. A derivation on the algebra G, of germs of smooth functions at
p is a linear operator D : G, — R which satisfies the Leibniz rule

D(a - B) = ep(B)D(a) + ep(@) D(F)

for every o, 8 € Gp, where ¢, : G, — R denotes the evaluation at p.

A derivation of G, vanishes on the germs of constant functions, because
D1)=D(1-1)=1-D(1)+1-D(1) =2D(1).

The set T}, of all derivations of G, is obviously a linear subspace of the algebraic
dual of the vector space G, and the map F' : T,,A — T}, defined by

F([v]lp) = D}y,
is a linear monomorphism, because if D;, = F([vy;]), then
of

Dyplf) = 22 )
for j =1,2,...,n and the set {D1 ,, D2 p, ..., Dy p} is linearly independent, since
Djp(a®) = b1

where zF : R — R denotes the projection onto the k-th coordinate.
It is a non-trivial fact that F' is actually a linear isomorphism. Its proof is based
on the following lemma from advanced calculus.

Lemma 1.2.2. For every f € C*(A,p) there exist ¢1,..., gn € C(A,p) and a
convex open neighbourhood W of p such that

fl@)=f)+ > (@ —p")gi(x)
k=1

for every x = (z!, ..., 2") € W, and

9k (p) = %(p)

for every k=1,2,....n.

Proof. Let W be any convex open neighbourhood of p on which f is defined and let

1
gr(x) = /O %(m + (1 —t)p)dt

for every x = (z',...,2") € W and k = 1,2,..n. From the Fundamental Theorem
of Calculus and the chain rule we have

d

1
f@) = 1) = [ Gt (0=
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1 n 9 n
:/ [Z (xk—pk)—fk(tx—i—(l—t)p)}dt:Z(mk—pk)gk(x).

0 L=y Ox k=1
The rest is obvious. O

Proposition 1.2.3. The set {D1p,Dayp,...,Dnp} is a basis of T, and therefore F
s a linear isomorphism.

Proof. Tt suffices to prove that {D1 p, Doy, ..., Dy p} generates Tp,. Let D € T, and
ap = D(z*), k = 1,2,...,n. For every f € C*(A,p) we apply Lemma 1.2.2 and then
we have

D(f) = D(f(p))+Y_ D((a" — 2F(p))gr) = > D(a*)gr(p)+> (¥ (p) — 2*(p)) D(9)
k=1 k=1 k=1

=Y ar=—=(p) = apDyp |(f). O

Thus, henceforth we shall identify the linear space T, with T, A.
Let now f = (f1, f2,..,fm) : A — R™ be a smooth map. The linear map
Je 1 TpA — Ty, R™ defined by

f*(h]p) = [fo’V]f(p)

is just the derivative of f at p, since (fo~v)'(0) = Df(p)-+'(0) for every v € S(A4, p).
This is a convenient way to consider the derivative of a smooth function that can
be carried over to smooth manifolds.

Let M be a smooth n-manifold and p € M. We can define

S(M,p) ={y|y:(—€€) = M issmooth for some €>0, with ~(0)=p}

and consider the set C*°(M,p) of smooth real functions defined on some open
neighbourhood of p in M. As before we call 71, 72 € S(M,p) tangent at p if
(f o71)(0) = (f 072)(0) for every f € C°(M,p) and define the tangent space
T,M of M at p to be the quotient set of this equivalence relation. Let (U, ¢r)
be a smooth chart of M such that p € U. The map ;5?] s TpM = Ty (n9o(U)

defined by %(Mp) = [pu © 7V]gy(p) is a bijection whose inverse is given by
;5;71([C]¢U ) = (¢ © (], We transfer the vector space structure of Ty (pyPu(U)

to T, M so that ¢y becomes a linear isomorphism. This vector space structure does
not depend on the choice of the smooth chart (U, ¢r7), because if (V, ¢y ) is another
smooth chart of M with p € V', then <ZU ) 5‘71 = (¢vo qj‘_/l)*d)v (p) 1s a linear isomor-
phism, since it is the derivative at ¢y (p) of the transition map ¢y o ¢;,1, which is a
smooth diffeomorphism.

id
T,M : T,M
év U

(¢U0¢\71)*¢V(p>
—

Ty (pyov (V) Ty (pyPu(U)
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The elements of the tangent space T),M are called tangent vectors of M at the
point p. From the above discussion, the tangent vectors of M at p can be considered
as derivations of the algebra of germs G,(M) of real smooth functions defined on

some open neighbourhood of p in M. If (U,¢y) is a smooth chart of M, where

oy = (zt,22,...,2"), and

0 ~-1
<@>p =¢v (Djgu)

for j =1,2,...,n, then the set of tangent vectors

o) )~ )

is a basis of T, M which depends on ¢y and is called the canonical basis of T),M
with respect to the chart ¢g.

If now f: M — P is a smooth map into a smooth m-manifold P, the derivative
of f at the point p € M is defined to be the linear map f., : T, M — Ty, P with

fo(lV]p) = [f O'Y]f)p)

for every [v], € T,M. In particular, oy = (¢u)+p by definition.
Let (U, ¢) be a smooth chart of M with p € U and (W, ) be a smooth chart of
P with f(U) c W. If ¢ = (z',22%,...,2") and ¢ = (y*,y?, ...,y™), then

0 _
¢*f(p) <f*p<<%>p>> = (T/JOfO¢ 1)*¢(p)(Dj,¢(p))

for j =1,2,...,n and therefore the matrix of f,, with respect to the ordered basis

()66,
(@), 6),~)]

of Ty P is the Jacobian matrix at ¢(p) of the local representation ¢ o f o ¢~ of f.

of T,M and

fep

M Tf(p)P
Pxp Yut(p)
(W0 fo6™ ) op)
Ty (V) ———28 Ty ) (W)
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1.3 Submanifolds

Let M be a smooth m-manifold and 0 < n < m be an integer. A set N C M is said
to be a (regular or embedded) n-dimensional smooth submanifold of M if for every
p € N there exists smooth chart (U, ¢) of M such that p € N and

P(NNU)=QN(R" x{0})

for some open set @ C R™. The smooth chart (U,¢) of M is said to be N-
straightening.

Pl

il an

If we denote by m : R™ = R” x R™™" — R" the projection onto the first n
coordinates and by i : R — R™ x {0} C R™ the inclusion, then the map

(molyow) ' =0 toi i Q) = M

is smooth and is usually called local parametrization of V.
Obviously, a n-dimensional smooth submanifold N of M is a topological n-
manifold, with respect to the subspace topology which it inherits from M. Moreover,

Ay ={(NNnU,mo¢|nnv) : (U,¢) 1is a N-straightening smooth chart of M}

is a smooth atlas of N. If (U, ¢) and (V,1) are two N-straightening smooth charts
of M with NNU NV # &, the transition map of the corresponding elements of
Aly is mo (1o ¢p~1) o defined on an open subset of R”. Thus N becomes a smooth
n-manifold.

The local representation of the inclusion iy : N — M with respect to a IN-
straightening smooth chart (U, ¢) of M and the corresponding smooth chart of N
in A|n, as above, is

¢poino© (7‘(‘ o ¢|N0U)71 = ’L'|Z~—1(Q) : Zlil(Q) — R™.

Therefore, iy is smooth and its derivative at every point of IV is a linear monomor-
phism. Generalizing, we give the following.
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Definition 1.3.1. Let N be a smooth n-manifold and M be a smooth m-manifold,
with n < m. A smooth map f : N — M is called immersion if its derivative
Jeq : TyN — Ty M is a linear monomorphism for every ¢ € N. If moreover f is a
topological embedding, then f is called a smooth embedding.

Perhaps the most important examples of submanifolds are the level sets of
smooth maps. Conditions which ensure that this kind of subsets of a given
smooth manifold are smooth submanifolds are provided from the Implicit Function
Theorem or the more general Constant Rank Theorem of advanced calculus, which
we shall prove as a consequence of the Inverse Map Theorem.

Theorem 1.3.2. Let A C R" be an open set and let f: A — R™ be a smooth map.
If p € A and the Jacobian matriz Df(z) has constant rank k for every x in some
open neighbourhood of p in A, then there exist an open neighbourhood U C A of p
and a smooth diffeomorphism ¢ : U — ¢(U) onto an open set ¢p(U) C R™, and an
open neighbourhood V' of f(p) and a smooth diffeomorphism ¢ : V- — (V') onto an
open set (V') C R™ such that the smooth map

Yo fogp t:g(U) = (V) CR™
is given by the formula
(o fop Nt ..., ak 2 2™ = (2 ..., 25,0,...,0)
for every (z',..,2") € ¢(U).

Proof. Up to translations and linear isomorphisms of R™ and R™, which are of
course diffeomorphisms, we may assume that p =0, f(p) = 0 and

o
Ozl Oxk

on an open neighbourhood Ay C A of 0, where f = (f1, ..., fi, fkt1yer fm)-
We consider the smooth map F': Ag — R"™ defined by

F(z!, ... z") = (fulat, ...z, ..., fulal, . z™), " L an).

Then, F(0) =0 and

on on

o i
det DF(0) = | 7' s £,

20 - S0

Applying the Inverse Map Theorem, there exist an open neighbourhood Uy C Ag of
0 such that F'(Up) is an open subset of R and ¢ = F'|y, is a smooth diffeomorphism.
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Shrinking, we can take Uy such that ¢(Up) is an open cube in R" with center 0. Now
there exist smooth functions gx1,..., gm : ¢(Up) — R such that

(fo gb_l)(zla ---’Zn) = (Zlﬂ ""Zk’gk-‘rl(zl,"'azn)a ""gm(’zla ---,Zn))

for every (2!,...,2") € ¢(Up) and gx11(0) = --- = g;n(0) = 0. Moreover,
1 0 --- 0 0 0
01 -0 0 .0
Df(6~1(2))-D(¢~1)(2) = D(fop)(z) = |0 0 Lo L0
* et (2) gwr ()
% % .. % %(g) Z‘QTZL(Z)

for every z = (z!,...,2") € ¢(Up). Since Df(¢~!(z)) has constant rank k and
D(¢~1)(2) is invertible for every z = (2!, ...,2") € #(Up), we must have

Oa.
%9 _
ox
on ¢(Up) for every j = k+1,....,mand | = k+1,...,n. This implies that the smooth
functions gi1,..., gm do not depend on the variables 2**1 .., ™ and descent to

smooth functions (again denoted by) gx+1,.--, gm : P — R, where the open cube
P C R* is the image of ¢(Up) under the projection onto the first k coordinates.
If now ¢ : P x R™% — R™ is the smooth map defined by

Py ™) = @ VT = g (U ) ™ = g (YY),

Dw<0>=<f"“ 0 )

* Imfk:

and by the Inverse Map Theorem there exists an open neighbourhood V of 0 in
R™ such that (V') is an open neighbourhood of ¥(0) = 0 and |y is a smooth
diffeomorphism. Let U C Uy be an open neighbourhood of 0 such that f(U) C V.
Then,

(Yo fop Nzt .., 28 AL L 2" = (24 ..., 2F,0,...,0)

for every (2!,..,2") € ¢(U). O
Corollary 1.3.3. Let N be a smooth n-manifold, M be a smooth m-manifold, with
n<m, and let f : N — M be an immersion. Then, for every p € N there exist a

smooth chart (U, ¢) of N withp € U and a smooth chart (V, ) of M with f(U) CV

such that the corresponding local representation of f is

(Yo foop Y (zt,...,a") = (z!,...,2",0,..,0). O

Corollary 1.3.4. Let N be a smooth n-manifold and M be a smooth m-manifold,
withn < m. If f: N — M is a smooth embedding, then f(N) is a n-dimensional



1.4. SMOOTH PARTITIONS OF UNITY 13

smooth submanifold of M. [J

Let M be a smooth m-manifold, P be a smooth n-manifold, with n < m,
and let f : M — P be a smooth map. We call p € M a critical point of f if the
derivative fi, : TpM — T, P is not a linear epimorphism. Note that if p € M is a
non-critical point of f, then f,, has constant maximal rank n for every point ¢ in
some open neighbourhood of p in M. A point ¢ € P is called a regular value of f if
the level set f~!(c) does not contain any critical point of f.

Corollary 1.3.5. Let M be a smooth m-manifold, P be a smooth n-manifold, with
n<m, and let f : M — P be a smooth map. If c € P is a reqular value of f, then
the level set f~1(c) is a (m—n)-dimensional smooth submanifold of M , if non-empty.

Proof. By Theorem 1.3.2, for every point p € f~1(c) there exists a smooth chart
(U, ¢) of M with p € U and a smooth chart (V,9) of P with f(U) C V such that
the corresponding local representation of f is

(o fop N, .., 2™) = (..., z")
for every (z!,..,2™) € ¢(U). Now we have

¢(fHe)NU) = ¢(U) N ({t(c)} x R™™")
and therefore (U, ¢) is a f~!(c)-straightening chart of M. [J

Definition 1.3.6. Let M be a smooth m-manifold and P be a smooth n-manifold,
with n < m. A smooth map f: M — P onto P is called submersion if its derivative
Jep : TpM — T, P is a linear epimorphism for every p € M.

Thus, if f : M — P is a submersion, then f~!(c) is a (m — n)-dimensional
smooth submanifold of M for every c € P.

Example 1.3.7. The determinant is a smooth function det : R®*™ — R and the
general linear group GL(n,R) = {A € R"*" : det A # 0} is an open subset of R"*".
Let A € GL(n,R) and v(t) = (1 +¢)A. Then, v(0) = A and

(det)«a([7]4) = [det 0Y]det a-
Also, (detoy)(t) = (1 + t)det A, and so (detoy)'(0) = ndetA # 0. This

implies that (det).q is non-zero, and hence an epimorphism. This shows that
det : GL(n,R) — R is a submersion. In particular, the special linear group
SL(n,R) = {A € R : det A = 1} is a (n? — 1)-dimensional smooth submani-
fold of R™*™,

1.4 Smooth partitions of unity

Our requirement a smooth manifold to have a countable basis for its topology
implies the existence of technically very useful families of smooth functions, the
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construction of which will be the subject of this section.

Definition 1.4.1. Let M be a smooth manifold and let &/ be an open cover of
M. A smooth partition of unity subordinated to U is a family of smooth functions
fu: M —0,1], U € U, with the following properties:

(i) suppfuv ={p € M : fu(p) # 0} C U for every U € U.

(ii) The family {suppfy : U € U} of closed subsets of M is a locally finite cover of
M.

(iii) Z fu(p) =1 for every p € M.
veld

Recall that a family F of subsets of a topological space X is called locally finite
if every point z € X has an open neighbourhood V' in X such that the set

(FEF:FNV #a}

is finite. A family S of subsets of X is called a refinement of F if for every F' € F
there exists some S € § such that S C F.

In order to prove the existence of smooth partitions of unity we shall need some
preliminary lemmas. In the sequel we shall denote by B(x,r) the open ball in R™
with center z € R™ and radius r > 0.

Lemma 1.4.2. For every 0 < p < r there exists a smooth function f :R"™ — [0,1]
such that B(0,p) C f~4(1) and R™\ B(0,r) C f~1(0).

Proof. Tt suffices to consider the smooth function g : R — R with

e~i, ift>0,
0, ift<0

and take f: R™ — [0,1] defined by

g(r® — [lI*)

. O
g9(r* = |=[1?) + g(ll=[|* — p*)

fz) =

Functions like f in Lemma 1.4.2 are usually called bump functions.

Lemma 1.4.3. Let M be a smooth n-manifold and let U be an open cover of M.
There exists a countable smooth atlas A of M with the following properties:

(a) The open cover V ={V : (V,¢v) € A} is a locally finite refinement of U.

(b) ¢y (V) = B(0,3) C R", for every (V,¢y) € A.

(c) {¢y(B(0,1)) : (V,¢v) € A} is an open cover of M.

Proof. There exists a countable open cover {4y, : k € N} of M such that Ay C Ay
and A, is compact for every k € N, because M is locally compact and its topology
has a countable basis. This sort of cover can be constructed inductively, starting
with any countable open cover {Cy : k € N} such that Cj is compact for every
k € N. First we choose any open set Ay C M with compact closure such that
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C, C A; and once Aj_; has been defined we choose A, C M to be any open set
with compact closure such that A;_; U Cy C Ay.

The set A1 \ Ax is compact and contained in the open set Ay o\ Ar_1. For
every p € Agy1 \ Ay there exist U, € U and a smooth chart (Vi p, ¢y, ) of M such
that p € Vi, C Up N Agya \ Ag—1 and ¢y, (Vip) = B(0,3) with ¢y, (p) = 0. By
compactness of Ay, 1\ Ay, there exist D1se-Pmy, € Apy1\ Ay, for some my, € N, such
that

A\ Ax C oy, (BO,1)U---Udy. (B0, 1)).

It suffices now to take
o0
A= U {(Vkum ) ¢Vk,p1 )7 (R23) (Vk,pmk ) ¢Vk,pmk )} O]
k=1

Theorem 1.4.4. If M is a smooth n-manifold and U is an open cover of M, then
there exists a smooth partition of unity subordinated to U.

Proof. Let A be the smooth atlas of M provided by Lemma 1.4.3. By Lemma
1.4.2, there exists a smooth function f : R™ — [0,1] such that B(0,1) C f~(1)
and R\ B(0,2) C f~1(0). For every (V,¢y) € A we consider the smooth function
gy : M — [0,1] defined by

o) {fwv(p)), ifpeV,

0, ifpe M\ V.

According to Lemma 1.4.3, V = {V : (V,¢y) € A} is a locally finite open cover of

M. So the function Z gy : M — [0,+00) is well defined and smooth. Since V is

Vey
also a refinement of U, there exists a function o : V — U such that V' C o(V) for

every V € V. For every U € U we define now

1

fu=s—-
ZVEV agv

Z gy : M —[0,1].
o(V)=U

In case 0 1(U) = @ we put fy = 0. It follows from Lemma 1.4.3(c) that fy is a
well defined smooth function Obviously,

suppfu C U suppgy C U vV cU.
o(V)=U o(V)=U
and {suppfy : U € U} is locally finite, because V is locally finite. Finally,

d fu= > Z gv = D gv=1. O

Ueu ZVEVgV Uel o(V ZVEVW Vey

Corollary 1.4.5. Let M be a smooth manifold and FF C A C M, where F is closed
in M and A is open in M. Then, then exists a smooth function f: M — [0,1] such
that F C f~X(1) and M \ A C f~1(0).
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Proof. From Theorem 1.4.4, there exists a smooth partition of unity {fynr, fa}
subordinated to the open cover {M \ F, A} of M. It suffices to take f = f4. O

As an application of the existence of smooth partitions of unity we shall give
a partial answer to the following question. Is a smooth manifold diffeomorphic to
a smooth submanifold of some RY for sufficiently large N € N and what is the
minimum value of N for which this is possible?

Theorem 1.4.6. If M is a compact smooth n-manifold, there exist N € N and a
smooth embedding g : M — RV,

Proof. From Lemma 1.4.3 and the compactness of M, there exist some m € N,
a finite family {(U;,¢;) : 1 < i < m} of smooth charts of M and a finite family
{Vi : 1 <i < m} of open subsets of M such that V; C U; for all 1 <i < m and

M=UU---UUp =V U---UV,.

For each 1 < i < m there exists a smooth function f; : M — [0,1] such that
Vi C fl-_l(l) and suppf; C U;, from Corollary 1.4.5. The map v; : M — R™ defined
by

0, otherwise,

Y;i(p) = {fz(p)(bz(p), if p e U;,

is smooth. The map g : M — (R™)™ x R™ defined by

g) = (W1(P)s -, ¥ (D), f1 (D) o, fi (D))

is smooth and actually an immersion, because for every p € M there exists some
1 <i < m with p € V; and ¢;|v; = ¢i|y; maps V; diffeomorphically onto an open
subset of R™. To see that ¢ is injective, let p, ¢ € M be such that g(p) = g(q).
Then, ¢;(p) = ¥i(q) and f;(p) = fi(q) for every 1 < i < m. There exists however
some 1 < j < m with p € V; and so fj(q) = fj(p) = 1. Therefore, ¢ € U; and
#j(p) = ¥j(p) = ¥i(q) = ¢;(q), hence p = ¢. Finally, g is a topological embedding,
since M is compact. [

It has been proved by H. Whitney that a compact smooth n-manifold can be
smoothly embedded in R?". Also any smooth n-manifold can be embedded in R?"+1
as a closed subset. The presentation of these topics are beyond the scope of these
notes.

1.5 Exercises

1. On R we consider the smooth structure B defined by the smooth atlas {(R, )},
where ¢ : R — R is the map v (t) = t3. Let A denote the standard smooth structure
of R.

(a) Prove that A # B.

(b) Prove that id : (R, A) — (R, B) is not a smooth diffeomorphism.
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(c) Are the smooth 1-manifolds (R, A), (R, B) diffeomorphic?

2. For every t > 0 we consider the map h; : R — R with hy(z) = z, if z < 0 and
hi(z) = tz, if © > 0. Let A; be the smooth structure on R defined by the smooth
atlas {(R,hy)}, t > 0.

(a) Prove that A; # A, for t # s.

(b) Are the smooth 1-manifolds (R, .A;) and (R, As) diffeomorphic for all ¢, s > 07

3. Let U = {(z1,...,Tns1) € S" : 7 > 0}, U7 = {(x1, ..., Tpt1) € S : 7; < 0},
and let h;t : Uii — R” be the map with

4+ .
R (215 ey Tp1) = (T15 0y Tim 1, Tig 1 o0, Trg1), I<i<n+L

(a) Prove that B = {(UF,hF):1 <i <n+ 1} is a smooth atlas on S™.

A1

(b) Prove that B is equivalent to the smooth atlas

A= {(Sn \ {6n+1}a77+)’ (Sn \ {_G"Jrl}’ﬂ-*)}’

where w4 : S™ \ {e,1+1} — R™ is the stereographic projection.

4. Let (V,(,)) be a finite dimensional inner product real vector space and let

S(V)={zeV: |zl =1},
where ||z|| = (x,z)Y/2.
(a) If p € S(V), prove that for every = € S(V) \ {p} the intersection point of the

line through p and x with the orthogonal complement (p)= is

_ T — (:U,p>p

The map ¢ : S(V) \ {p} — (p)* is the stereographic projection with respect to p.
(b) Compute ¢~ : (p)= — S(V) \ {p}.

(c) If o : S(V)\ {—p} — (p)* is the stereographic projection with respect to —p,
compute 1) o ¢~ 1 1 (p)t — (p)t.
5. Consider the canonical smooth atlas {(Uy, ¢o), (U1, $1)} of CP! and observe that
CP'\ Uy = {[0,1]} and CP'\ U; = {[1,0]}. Prove that g : CP* — S? defined by

nlo z0,21], if zg#0
g[zO’Zl] _ ( + Qb())[ 0 1] . 0 f
(0,0,1), if 29 =0.

is a smooth diffeomorphism, where 7, : S%\ {(0,0,1)} — C denotes the stereo-
graphic projection with respect to the north pole.

6. Let X be a Hausdorff topological space and H(X) be the group of the home-
omorphisms of X onto itself. A subgroup G of H(X) defines on X the following
equivalence relation: x ~ y if and only if there exists some g € G with y = g(z).
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The equivalence classes are called the orbits of G. Let 7 : X — X/G denote the
quotient map. We say that G acts properly discontinuously on X if every point
x € X has some open neighbourhood U in X such that U N g(U) = @, for every
g€ G, g#id.

(a) If G acts properly discontinuously, prove that every point [z] € X/G has an
open neighbourhood V* such that

(v = e(v),

geG

where V' is a suitable open neighbourhood of z € X, so that ¢g1(V)Ng2(V) = @, for
g1 # g2 and 7|y : V — V* is a homeomorphism.
(b) Let M be a smooth n-manifold and G be a group of smooth diffeomorphisms
which acts properly discontinuously on M. If the quotient space M/G is Hausdorff,
prove that it is a smooth n-manifold.
(c) Let M be a smooth n-manifold and G be a finite group of smooth diffeomor-
phisms of M. If g(x) # = for every © € M, g € G, g # id, prove that G acts
properly discontinuously on M, the quotient space M /G is Hausdorff and therefore
a smooth n-manifold.
(d) On S™ the antipodal map a : S™ — S™ with a(z) = —z is a smooth diffeomor-
phism. If G = {id, a}, determine the smooth n-manifold S™/G.
(e) On the 2-torus T2 = S' x St let f: T? — T? be the map

f(eme, e27riy) _ (6—27ria:7 _627riy).
If G = {id, f}, Prove that K? = T?/G is a smooth 2-manifold. This manifold is
called Klein bottle.
(f) Prove that the group of translations by vectors with integer coordinates, which is
isomorphic to Z", acts properly discontinuously on R™ and R"/Z" is diffeomorphic
to the n-torus T™.

7. Prove that the 1-dimensional real projective space RP! is deffeomorphic to the
circle S*.

8. Let f: M — N be a bijective smooth map of smooth manifolds. If its derivative
Jep + TyM — Ty,)N is a linear isomorphism for every p € M, prove that f is a
smooth diffeomorphism.

9. Let f: M — @Q be a smooth map of smooth manifolds and ¢ € @ be a regular
value of f with N = f~l(q) # @. If iy : N — M is the inclusion, show that
(in)sp(TpN) = Ker f,, for every p € N.

10. Prove that 17,5 = {[+], € T,R" " : (/(0),p) = 0} for every p € S™, where (,)
is the euclidean inner product.

11. Let n > 1 and p : R® — R be a homogeneous polynomial of degree m € N.
Prove that p~!(c) is a (n—1)-dimensional smooth submanifold of R™ for every ¢ # 0.
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12. Let M be a smooth m-manifold, N be a smooth n-manifold and let f : M — N
be a smooth map. If ¢ € N is such that f~'(¢) # @ and f has constant rank
k on some open neighbourhood of f~!(q), prove that the level set f~!(q) is a
(m — k)-dimensional smooth submanifld of M.

13. Prove that the set N = {A € R?*2 : A has rank 1} is a 3-dimensional smooth
submanifold of R?*2.

14. The set S of all real n x n symmetric matrices is a vector subspace of R™*™ of
dimension n(n +1)/2. Let f: GL(n,R) — S be the map f(A4) = A - A’

(a) Prove that fia(H) = AH' + HA! for every H € TAGL(n,R), A € GL(n,R).
(b) Prove that the identity I,, € S is a regular value of f.

n(n—1)
2

(c) Prove that the orthogonal group O(n,R) is a -dimensional smooth

submanifold of GL(n,R).
(d) Prove that T;, O(n,R) = {H € R"™" : H + H' = 0}.

15. Prove that the map ¢ : T2 — R3 with
g(e¥™1® ¥0) — ((2 4 cos ) cos ¢, (2 + cos #) sin ¢, sin )

is an embedding of the 2-torus 72 into R? and its image is
9(T?) ={(z,y,2) e R*: (Va2 +y* - 2)" + 22 = 1}.
16. Prove that the map f: S? — R® with
fx,y,2) = (0%,9%, 2%, V292, V222,V 2wy)

an immersion which induces an embedding of the real projective plane RP? into
RS,

17. Prove that the map f : RP? — R?® with f([z,y,2]) = (yz,zx,2y) is an
immersion and the map g : RP?2 — R* with g([z,v, 2]) = (yz, 2z, 2y, 22 + 23> + 322)
is an embedding.

18. Let M, N be two smooth n-manifolds and let f : M — N be an immersion.
(a) Prove that f is an open map.
(b) If M is compact and N is connected, prove that f(M) = N.

19. Let J : R?" — R?" be the orthogonal transformation (complex structure of R??)
with J(x,y) = (—y, ) for every (x,y) € R?® = R" x R™.

(a) Prove that the set S = {4 € R?"*2" ; A'JA = J} is a smooth submanifold of
R2n><2n.

(b) Describe T}, S as a vector subspace of R?"*27,

(c) Find the dimension of S.

(Hint : Prove that J € R?"*2? is a regular value of the smooth map
f:GL(2n,R) — {H € R*27 . [ + H! = 0} with f(A) = A'JA))
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20. Let d € N, n > 2 and denote by V2" the set of points (z, 21, ..., 2,) € C"T1\ {0}
which are solutions of the equation

zg%—z%—l—---—i—zi:().

(a) Prove that V2" is a smooth 2n-manifold.
(b) Prove that the set W2~ ! = V2" 0 $?"*1 is a smooth (2n — 1)-manifold. W7"*
is called Brieskorn manifold.

21. The unit tangent bundle of the 2-sphere S? is the subset
T'S? = {(p,v) € R’ xR*: [|p|l = L, [[v]| = 1, {p,v) = 0}

of R, where (,) is the euclidean inner product on R3.

(a) Prove that 7152 is a 3-dimensional smooth submanifold of R®.

(b) Prove that F' : SO(3,R) — T1S? with F(A) = (Aes, Aep) is a smooth diffeo-
morphism.

(c) Let D3 = {x € R3 : ||z|| < 1} and let g : D3 — SO(3,R) be the map with
g(0) = I3 and such that if z € D3\ {0} then g(x) is the rotation with respect
to the axis generated by x by the angle ||z|| - 7. Prove that g induces a smooth
diffeomorphism from RP? onto SO(3,R).

(Hint : Observe that 7752 = f~1(0), where f : R3 x R3 — R? is the smooth map

flp.v) = (lpl* = 1, [0l = 1, {p, v)).)



Chapter 2

Vector fields

2.1 The tangent bundle and vector fields

In this section we shall define the notion of vector field on a smooth manifold, which
is a generalization and globalization of the notion o ordinary differential equation
on an open subset of euclidean space. A continuous vector field is a map which to a
point p assigns a tangent vector with point of application p and varies continuously
with p. So, first we need to consider the set of all tangent vectors.

Let M be a smooth n-manifold and consider the disjoint union of all tangent
spaces at points of M, that is the set

T™M = | J {p} x T,M.
peEM

Let 7 : TM — M denote the natural projection m(p,v) = p, for v € T,M, p € M.
We shall endow T'M with the structure of a smooth manifold, so that m becomes
smooth and a submersion.

If A is a smooth atlas of M, we define the class

"Zl = {(W_l(U)’ QEU) : (U’ ¢U) € "4}
where ¢y : 71 (U) = ¢y (U) x R™ is the bijection defined by
ou(p.v) = (Gu (), (Pv)p(v))

for every p € U, v € T,M. In other words, if ¢y = (z,...,2™), then for p € M and

- 0
k
V= v <—8xk> e T,M
k=1 p

we have ¢pr(v,v) = (' (p), ..., z"(p), v', ..., v™).
If now (U, ¢u), (V,0v) € .A are such that U NV # @, then the transition map
b o byt dv(UNV) x R™ = ¢y (UNV) x R™ is given by the formula

(dv 0 by )(w,y) = (¢ © oy ) (@), Db 0 ¢y ) ()(y))

21
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and is thus a smooth diffeomorphism. This means that A would be a smooth atlas
of TM, if we had a topology on T'M making it a topological 2n-manifold in such
a way the the sets 7~ 1(U) were open and the maps ¢y homeomorphisms. This
topology is provided by the following.

Lemma 2.1.1. Let X be a non-empty set and U be a family of subsets of X which
covers X. We assume that for every U € U there exist a topological space Xy and a
bijection Yy : U — Xy such that for U, V € U with U NV # & the set Yy (UNV)
s open in Xy and the map Yy o 1}[)"/1 Yy (UNV) — Xy is continuous.

Then there exists a unique topology on X with respect to which every element of
U becomes an open set and every map Yy becomes a homeomorphism.

Proof. Our assumptions imply that ¢y o ¢\;1 cYyy(UNV) > gp(UNV)is a
homeomorphism for every U, V € U with U NV # &. The family

T={AC X :¢Yy(UNA) isopenin Xy for every U € U}

is a topology on X which contains the family ¢/. By the definition of T, each v is
an open map. For the continuity of ¢y let W C Xy be an open set. Then,

(Yo oy ) (v (g (W) N V) =W Ny (UNV)

is open in Xy for every U, V € U with U NV # &. Since ¢y o 1/1‘71 is a homeomor-
phism, 1y (¢ (W) N V)) must be open in Xy. This shows that ;' (W) € T and
that vy is continuous. The uniqueness of the topology T is obvious. [J

Applying now Lemma 2.1.1, we obtain a unique topology on TM with re-
spect to which each set 7=1(U) is open and each map éu is a homeomorphism
for (U,¢ry) € A. Since M and R"™ are Hausdorff spaces and have countable
basis for their topologies, the same is true for TM. Thus, T'M becomes a
smooth 2n-manifold. For every (U, ¢y) € A the corresponding local representation
puomo (5[_]1 : oy (U) x R™ — ¢y (U) of 7 is the projection (¢ oo &El)(x,y) =z
Hence 7 is a submersion.

The triple (T'M,m, M) is the tangent bundle of M. The natural projection m
is the bundle map and M is the base space of the bundle. The total space of the
bundle is TM. Abusing terminology, we shall also use the term tangent bundle for
TM itself.

Definition 2.1.2. A smooth vector field on a smooth n-manifold M is a smooth
map X : M — TM which to every p € M assigns a tangent vector X (p) € T,M.
Briefly, X om = idps or in other words X is a smooth section of .

The set X(M) of all smooth vector fields of a smooth manifold M is an infi-
nite dimensional real vector space. It is also a module over the commutative ring
C>°(M) of all real valued smooth functions defined on M. Every smooth diffeo-
morphism f : M — M induces a linear isomorphism f, : X(M) — X (M) defined
by (f+X)(f(p)) = fip(X(p)) for every p € M. The smooth vector field X of M is
called f-invariant if f, X = X.



2.1. THE TANGENT BUNDLE AND VECTOR FIELDS 23

Let X be a smooth vector field on a smooth n-manifold M. If A is a smooth
atlas of M anf A is the corresponding smooth atlas of TM, then X(U) c 7 (U)
for every (U,¢y) € A. There exists a smooth map Fy : ¢y(U) — R™, which is
called the principal part of X with respect to (U, ¢y), such that the corresponding
local representation ¢y o X o ¢t @ ¢ (U) — o (U) x R™ of X is

(dv 0 X 0 dpt) (@) = (x, Fy ().

Thus, if ¢y = (z!,...,2") and Fyy = (F!,...F™), then

) =Y o) ()

for every p € U and the smoothness of X is equivalent to the smoothness of Fy;. In
particular, on U we have the basic smooth vector fields

o 0 0

oxl’ 022’77 9xn

defined by the smooth chart ¢ .
Apart for the notion of tangent vector field on a smooth manifold we need to
have a notion of tangent vector field along a smooth curve.

Definition 2.1.3. A smooth wector field along a smooth curve v : I — M on a
smooth n-manifold M, for I C R an open interval, is a smooth map X : I — TM
which to every s € I assigns a tangent vector X (s) € TyyM.

If v: I — M is a smooth curve on a smooth n-manifold M, then for every s € I

the tangent vector
) d
0= ( (7))

d
is the wvelocity of v at y(s), where T is the basic vector field on R. Thus, 4 : I — TM
is a smooth vector field along -, which is called the velocity field of ~.

d
Recall that <%> is the usual derivation at s. Using the notation of section
S

1.4, note that [v], and 4(0) denote one and the same vector in T, M for p € M and
v € S(M,p), namely the velocity of v at p = ~(0).

If v(I) C U for the smooth chart (U, ¢y) of M and ¢y oy = (v1,...,4™) is the
corresponding local representation of v, then

for every s € I.



24 CHAPTER 2. VECTOR FIELDS

2.2 Flows of smooth vector fields

Let M be a smooth n-manifold and let X be a smooth vector field on M. An integral
curve of X is a smooth curve v : I — M, defined on an open interval I C R, such
that

for every s € I.

If (U, ) is a smooth chart of M with ¢y = (z!,...,2") and Fy = (F!, ..., F")
is the principal part of X on U with respect to ¢y, the discussion in the preceding
section 2.1 shows that a smooth curve v : I — U is an integral curve of X on U if and
only if its local representation ¢y oy = (v',...,7™) is a solution of the autonomous
n-dimensional ordinary differential equation z’(s) = Fy(z(s)), which means that it
satisfies the system of ordinary differential equations

(VY (s) = FE((4Y(s), .7 (5)), sel, k=12, ..,n.

Thus, locally on M the integral curves of smooth vector fields on M are the so-
lutions of autonomous ordinary differential equations. The standard existence and
uniqueness theorems combined with continuous and differentiable dependence on
initial conditions imply that if X is a smooth vector field on M, then for every point
p € M there exist an open neighbourhood V' of p in M, some ¢ > 0 and a smooth
map ®Y : (—¢,¢) x V — M such that ®"(0,q) = ¢ for every ¢ € V and

174
02 (6.0) = X(@"(s.9))

ot

for every (s,q) € (—¢,¢€) x V. Moreover, the map ® is unique, in the sense that
if W, 6 >0and ®V : (=6,6) x W — M is another triple like V, € and ®", then
®YV = W on (—e,€) x VN (=6,8) x W. Thus, for every ¢ € V the smooth curve
®V(-,q) : (—e,€) — M is the unique integral curve of X defined on the interval
(—¢, €) and satisfying the initial condition ®"(0,q) = ¢q. The map ®" is called the
local flow of X on the open set V.

The existence of maximal integral curves globally on M can be established in
the usual way.

Proposition 2.2.1. If X is a smooth vector field on M, then for every p € M
there exist a, < 0 < b, and a mazimal integral curve ®P : (ap,by) — M of X with
®P(00 = p in the sense that if v : I — M is any other integral curve of X defined
on an open interval I C R which contains 0 such that v(0) = p then I C (ap,bp)
and v = ®P|;.

Proof. Let vj : I; — M, j = 1,2, be integral curves of X defined on open intervals
such that 0 € Iy N Iz, with 71(0) = ¥0) = p. Then, I; N I3 is a non-empty open
interval and the set I* = {s € I; N I3 : 71(s) = 72(s)} is non-empty and closed in
I N I3, by continuity. If s € I'*, there exists 6 > 0 such hat (s — d,s +0) C I; N I5.
The smooth curves 8; : (=6,0) — M defined by B;(t) = v(t +s), j = 1,2, are
integral curves of X with £1(0) = 7i(s) = 72(s) = (2(0). By uniqueness of
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solutions, there exists some 0 < 1 < ¢ such hat 8; = f2 on (—n,n). Therefore,
(s—mn,s+mn) C I*, which shows that I* is open in I; N Is. By connectedness now we
must have I* = I; N I5. This shows that the union of all open intervals I containing
0 on which there is an integral curve v : I — M of X with v(0) = p, is an open
interval (ap,b,) on which a maximal integral curve ®° : (ap,b,) — M of X with
®P(00 = p is well defined. O

Recall that the open interval on which a maximal integral curve is defined is
not necessarily the whole real line R. For instance, the maximal solution of the
autonomous ordinary differential equation 2’(s) = (x(s))? on R with initial condition
z(0) =11is & : (—o0,1) — R given by the formula

Lemma 2.2.2. Let p € M and ®P : (ap,b,) — M be a mazimal integral curve
of a smooth vector field X om M with ®P(0) = p. Ift € (ap,by) and q € PP(t),
then the mazximal integral curve ®1 with ®1(0) = q is defined on the open interval
(ap —t,b, —t) and ®(s) = OP(s +1).

Proof. Since the smooth curve v : (ap, —t,b, —t) = M with v(s) = ®P(s+ ) is an
integral curve of X with v(0) = ¢, the maximal integral curve ®?¢ with ®7(0) = ¢ is
defined at least on (a, — t,b, —t). Conversely, if the interval of definition of ®9 is
the open interval (ag,b,), then ag < a, —t, b, —t < by and 6 : (ag+t,by +t) = M
defined by 6(s) = ®9(s —t) is an integral curve with 6(0) = p. Hence a, < a4 + t,
by +1t < a, U

Using the notation of Lemma 2.2.2 for a smooth vector field X on M, we define

D= (apby) x {p}

peEM

and ® : D — M by ®(s,p) = ®P(s), which has the following properties:

(i) ®(0,p) = p for every p € M and

(ii) @(t,®(s,p)) = ®(t + s,p) for every p € M and s, t € R such that at least one
side of this equality is defined.

Theorem 2.2.3. The set D is open in R X M and ® : D — M is smooth.

Proof. For p € M we consider the set I* consisting of all a, <t < b, for which there
exist 6 > 0 and an open neighbourhood U of p in M such that (¢t —6,t+0)xU C D
and ® is smooth on (t — d,t + 6) x U. Then, 0 € I* and I* is an open set. Thus, it
suffices to prove that I* is closed in the interval (a,,b,), by connectedness. Suppose
that a, < s < b, lies in the closure of I*. There exist an open neighbourhood
V of ®(s.p) in M, some € > 0 and a local flow ®" : (—¢,¢) x V. — M, so that

€
PV = ®|(—c,e)xv- By continuity, there exists some ¢ € I* with [t —s| < 3 and

®(t,p) € V. Since t € I*, there exist 0 < § < % and an open neighbourhood U of
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p in M such that (¢t — d,t + ) x U C D and ® is smooth on (¢t — §,t 4+ 6) x U. By
continuity of ®(¢,.) : U — M and the fact that ®(¢,p) € V, shrinking U if necessary,
we may take U so that ®({t} x U) C V. So, from Lemma 2.2.2 we have

(—€,€) C (as(t,q)s ba(t,q) = (ag —t,bq — 1)

for every ¢ € U, which implies that (t — e,t +¢€) x U C D, and ® is smooth on
(t —e,t +¢€) x U, because

®(r,q) = ¥ (r —t,0(t,q))
for every (r,q) € (t —¢,t +¢€) x U. Now
(s,p) €(s—0d,s+0)xUC(t—et+e€)xUCD,

which means that s € I*. OO

The fact that D is an open subset of R x M is equivalent to saying that the
function a : M — [—00,0) is upper semicontinuous and b : M — (0, +o0] is lower
semicontinuous.

The smooth map ® : D — M is called the flow of the smooth vector field X.
The vector field X can be reconstructed from its flow by setting

X() = 5 0.0

for every p € M. The image ®((ap,bp) x {p}) of the maximal integral curve of X
through the point p € M is called the orbit of p with respect to X.

A smooth vector field X on M is called complete if every maximal integral curve
of X is defined on the whole real line R or D = R x M, using the above notation.
In this case, the flow ® : R x M — M is a smooth action of the additive group of
real numbers R on M. For every ¢t € R the map ®; = ®(¢,.) : M — M is a smooth
diffeomorphism. Moreover, 3 = idy; and ®; 0 &, = &4y for every ¢, s € R and the
family (®¢)¢cr is called the one-parameter group of diffeomorphisms defined by X.
For every t € R and p € M we have

(@0 (X(0) = @)y G 0.0)) = 2222 0,

However,

(@1 0 @F)(5) = @(L, (s, p)) = B(t + 5,p) = (s, B(t,p))

for every s € R and therefore

((I)t)*p(X(p)) = X((I)t(p))

This means that X is ®;-invariant for every ¢t € R.

In case the smooth vector field X is not complete, the smooth diffeomorphisms
®; are defined on suitable open subsets of M.

The integral curves of a smooth vector field X which are not defined on the
whole real line must necessarily explode at infinity. This is made more precise in
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the following.

Lemma 2.2.4. Let X be a smooth vector field with flow ® : D — M and p € M.
If b, < +o00, then for every compact set K C M there exists 0 < T < b, such that
O(t,p) € M\ K for every T <t < by.

Proof. For every q € K there exist §; > 0 and an open neighbourhood V, of ¢
such that (—dg4,04) X Vg C D. By compactness of K, there exist ¢i,..., ¢ € K,
for some m € N, such that K C V,; U---UV,, . If now 6 = min{dy,, ..., d,,, }, then
(=9,0) x K C D. Thus, if there exists a sequence t;, ,/* b, such that ®(tx,p) € K
for every k € N, we arrive at the contradiction 0 < d < b, —t;, for all K € N. [J

This implies the following important fact.

Corollary 2.2.5. Fvery smooth vector field on a compact smooth manifold is
complete. [

It is possible to find all integral curves of a given smooth vector field only in very
rare cases. The aim of the qualitative (or geometric) theory of dynamical systems
is to find the distribution of the time oriented orbits of vector fields studying their
asymptotic behaviour. In this point of view, we may replace X with f - X where
f: M — (0,+00) is a smooth function, because both vector fields have the same
orbits. Indeed, if & : D — M is the flow of X, for every p € M the smooth map
h: (ap,by,) — R defined by

$ 1
v = [ sy

is strictly increasing and h((ap,b,)) is an open interval. Also, (h71)'(s) =
f(@(h~1(s)),p). It follows now that the maximal integral curve of f - X through p
is just ®” o h=1 : h((ap,bp)) — M. In other words, the maximal integral curves of
f - X are reparametrizations of the maximal integral curves of X.

The following can be obtained as a consequence of the existence of smooth
partitions of unity.

Theorem 2.2.6. If X is a smooth vector field of a smooth manifold M, then there
exists a smooth function f : M — (0,1] such that the smooth vector field f - X is
complete.

Proof. Let ® : D — M be the flow of X as above. Since D is an open subset of
R x M, the function g : M — (0, 1] defined by

g(p) = min{1, —ay, by}

is lower semicontinuous. Thus, every p € M has an open neighbourhood W), such

1
that g(q) > §g(p) for every ¢ € W,. By Theorem 1.4.4, there exists a smooth
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partition of unity {f, : p € M} subordinated to the open cover {W, : p € M}. The
function f : M — (0, 1] defined by

fa) =5 3 9)fyla)

peEM

is smooth and for every q € M there exist p1,..., pr € M, for some k € N, such that
q € suppfp, N---Nsuppfp, and f,(q) =0 for p # p1, ..., pi. It follows that

k k

flg) = % > 9 fo; (@) <Y 9(a) fr,(9) = 9(q) = min{1,—ag, by}

J=1 J=1

for every q € M.
Let now ¢ : D — R be the smooth function defined by

$ 1
vis:p) :/o @™

The smooth map h : D — R x M with h(s,p) = (¢(s,p),p) is obviously injective,
since

A 1

ot ) = Fatep) ©

Moreover, ¢(s,p) > s for 0 < s < b, and 9(s,p) < s for a, < s < 0. Thus,
lim (s, p) = 400, if b, = +00. In case b, < +o0, for every 0 < s < b, we have

s—bp
s 1 | s
¢(s,p)>/ dt:/ dt:—log<1——>
0 bap) 0o bp—1t bp

and therefore again hr? Y(s,p) = +oo. Similarly, ILm P(s,p) = —oo for all p € M.
s—bp s—ap

This shows that h is surjective.

Since h is a bijection and its derivative h,(,p) is a linear isomorphism at every
point (s,p) € D, it follows from the Inverse Map Theorem that h is a smooth
diffeomorphism.

D h R x M

SN

M

The proof is now concluded by the observation that ¥ = ®oh ™' : R x M — M
is the flow of f - X, because

0®
ot

0®
ot

ov

=7 (0:p) = f(@(h71(0,p)) - - (h7H(0,p) = f(p) - 57 (0.p) = f(p) - X (p)

for every pe M. O
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2.3 The Lie bracket

Let M be a smooth n-manifold and let X be a smooth vector field on M. At every
point p € M the value X(p) € T,M of X is a derivation on the algebra of germs
Gp(M) of smooth functions defined on neighbourhoods of p and

X(p)(f) = lim f(@(t,p)) — f(p)

t—0 t

for every smooth function f which is defined on some open neighbourhood of p in
M, where ® is the flow of X.

Apart from functions, it is possible to define a special kind of derivation of
another smooth vector field Y with respect to X, by transporting Y along the
integral curves of X by the flow of X. The result can be defined in a purely algebraic
way as follows.

Let p € M. If f € C®°(M,p), then Yf(q) = Y(q)(f) is a smooth function
YfeC>®(M,p) for every Y € X(M). We define

(X, Y](p)(f) = X(p)(Y f) = Y (p)(X])
for every f € C>*°(M,p) and X, Y € X(M). We observe that
(X YI@)(f-9) =X@)(f - Yg+g-Y)=Y)If - Xf+g-X[)

= f(p)X(p)(Yg) +Y()(9)X()(f) +Y®)(f)XP)(9) + ) XP)(Y[)
—fP)Y (p)(Xg) = Y(p)(f)X(p)(9) — Y(p)(9)X(P)(f) —9(p)Y (p)(X )
= f(p) - [X,Y](p)(9) + g9(p) - [X,Y](P)(f)-

Therefore, [X,Y](p) is a derivation of the algebra of germs G, (M) and so is a tangent
vector in T, M.
Let (U, ¢) be a smooth chart of M with ¢ = (z!,...,2"). Then

9 9 |_9 (0N 90\ |,
oxt’ Oxd | Oxt \ Oxd oxi\oxt )

on U foralli, j=1,2,...n. If now X, Y € X(U) and

"0 "0
X:;XW, Y:;w@,

then for every p € U and f € C*°(M,p) we have

X, - > x0) <8sc>< ) " (5m),(¥5)

1,j=1 1,j=1

i of
B Z Bxl 31'] )+ Z XX Yj 8xi (@)OD)

5,j=1 1,7=1

)
(
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Yy SLALIAN S v g ( g;) »)

i,j=1 i,j=1

:Z(ZX%p)%’;f(p)—Y( %f,if( >)§jj< )

j=1 Ni=1

This means that

-y <ZH:XZ'8Y? —YiaX.j>i
: ; ox' ox* ) 0xJ
Jj=1 “i=1
on U.

The above show that [X,Y] € X(M) for every X, Y € X(M), and is called the
Lie derivative of Y with respect to X. The so defined function

[,.]: X(M) x X(M) — X(M)

is called the Lie bracket and has the following rather obvious properties:
(i) It is bilinear and alternating.
(ii) It satisfies the Jacobi identity, that is

[X7 [Y7 ZH + [Y7 [ZvXH + [27 [X7 Y]] =0

for every X, Y, Z € X(M).

(iii) [X, fY] = fIX, Y]+ X[ Y for every f € C®°(M) and X, Y € X(M).

(iv) If F : M — M is a smooth diffeomorphism, then [F, X, F.Y]| = F.[X,Y] for
every X, Y € X(M). More generally, let M be a smooth n-manifold, L be a smooth
k-manifold, k < n, and let g : L — M be an injective immersion. Let X, Y € X (M)
be such that X (g(z)), Y(g(x)) € gsx(T:L) for every x € L. Then, there exist unique
X(2), ¥(z) € T, L such that g.,(X (x)) = X(g(x)) and g (¥ (x)) = ¥ (g(x)) and it
follows from the local presentation of immersions provided by the Constant Rank
Theorem 1.3.2 that X, Y € X(L). Now we have

g*a&([X? Y/](.%')) = [X7 Y](g(x))

for every x € L. Indeed, let € L and let f be a smooth function defined on some
open neighbourhood of g(x). Note first that the chain rule implies that

Y(fog)=Yfoy
From the definitions now we have
g (X, Y](2)) f = [X,Y](2)(f 0 g) = X(2)(Y(f 0 9)) = YV(2)(X(f 0 g))
= X(2)(Yfog) = Y(2)(Xfog)=X(g(x)(Y )= Y(g(x))(Xf) = [X,Y](g(x)) .

The structure on a vector space E imposed by an alternating, bilinear map
[.,.] - E x E — E, which satisfies the Jacobi identity is called a Lie algebra. The
following formula reveals the true nature of the Lie bracket.
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Theorem 2.3.1. Let M be a smooth n-manifold and X,Y € X(M). If®: D - M
1s the flow of X, then

X, Y)(p) = I (@ (Y (2(1,) — Y ()

t—0

for every p € M.
For the proof we shall need the following technical lemma.

Lemma 2.3.2. Let U, V C M be two open neighbourhoods of the point p € M
for which there exists € > 0 such that ®((—e,e) x V) C U. Then, for every smooth
function f : U — R there exists a smooth function g : (—e,€) x V. — R with the
following properties:

(1) f(@(=t,q)) = f(q) —tg(t,q) for every (t,q) € (=€,€) x V.

(i) X(q)(f) = 9(0,q) for every g € V.

Proof. If h : (—€,e) x V. — R is the smooth function defined by h(s,q) =
f(@(=s,q)) — f(q), and if we define g : (—¢,€) x V' — R by

L on

t.q)=— [ ZZ(ts,q)d
g(t,q) ; as(s,q) s,

then

—tg(t.q) :/0 %(s,q)ds = h(t,q).

By continuity, we also have

. _ F(®(=t,q)) — f(q)
9(0,q) = %g% g(t,q) = %g% ¢

=X()(f). O

Proof of Theorem 2.3.1. Let f : U — R be a smooth function defined on an open
neighbourhood U of the point p € M. There exist an open neighbourhood V of p
and € > 0 such that ®((—e,e) x V) C U. Let g be the smooth function supplied by
Lemma 2.3.2 and let g; = g(t,.). Then, X f = gg and

lim 2 (@) (V (2(1,)) — V() ()

t—0 ¢

=t | () (¥ (200, 50) ~ Y ()

—tin 7 V(@) 0 0 - Y1)

t—0

~tin 1 [V @) 190~ Y ()]

t—0
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w LY (@(t,p) — Vi) — Y0)(XF)

=1
t—0 ¢

=X()(Y[)-Yp)(XSf)=[X,Y](p)(f). O

Definition 2.3.3. Two complete smooth vector fields X, Y on a smooth manifold
M commute if [X,Y] = 0.

This terminology is justified by the following.

Proposition 2.3.4. Let X and Y be two smooth vector fields on a smooth manifold
M. Let (®¢)ier be the one-parameter group of smooth diffeomorphisms of M defined
by the flow of X and (V;)ier be the one-parameter group of smooth diffeomorphisms
defined by the flow of Y. Then [X,Y] =0 if and only if ;0 Vs = WU, 0Dy for every
t, s € R.

Proof. If ®; 0 W, = W, 0 ®; for every ¢, s € R, differentiating with respect to s at
0, we get (®4).Y =Y for every t € R. It follows now from Theorem 2.3.1 that
[X,Y]=0.

Conversely, let [X,Y] =0 and let p € M and s € R. The velocity of the smooth
curve v : R = Ty, (,) M defined by v(t) = (®—t)sa,(w,(p)) (Y (P:(¥s(p)))) is

300) = Jim | -0, O (@1 (9 0)) = (), V(@10 0)

1

= (@)t (J (Pt 0,00 (V@) V(00| )

= (q)ft)*'ibt(\lls(p))([X? Y](@:(Ys(p)))) = 0.

Thus, 7 is constant, which means that (®_¢).a,w, ) (Y (2:(¥s(p)))) = Y (¥s(p))
or equivalently

Y (®4(¥s(p))) = (‘I)t)*\ps(p)(y(‘lfs(p)))

for every p € M and t, s € R. In other words, Y is ®;-invariant for every ¢t € R.
This implies that ®; o WP is an integral curve of Y and since (®; o ¥P)(0) = ®.(p),
we must necessarily have ®; o W? = W) hence ®;(V,(p)) = W,(P(p)). O

If X and Y are two commuting complete smooth vector fields on a smooth
manifold M with corresponding one-parameter groups of smooth diffeomorphisms
(®4)ter and (W4)ser, respectively, then F': R2 x M — M defined by

F(t,s,p) = (P 0 V) (p)

is a smooth action of the abelian group (R?,+) on M. More generally, a finite family
of mutually commuting complete smooth vector fields Xi,..., X} with corresponding
one-parameter groups of smooth diffeomorphisms (®})icr,..., (®F)icr, respectively,
defines a smooth action F' : R¥ x M — M of the abelian group (RF,+) by the
formula

F(tly"'atk?p) = (q)l%l S q)fk)(p)
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2.4 Exercises

1. Let M be a smooth n-manifold, A = {(U;, ¢;) : i € I} be a smooth atlas of M
and A = {(7=Y(U;), ;) : i € I} be the corresponding smooth atlas of TM, where
m:TM — M is the tangent bundle projection. Prove that

det D(¢; o ¢ Yz, v) >0
for every i, j € I with U; NU; # @ and (x,v) € ¢;(U; NUj) x R™.

2. Let M be a smooth manifold and G be a group of diffeomorphisms of M which
acts properly discontinuously on M. If X € X(M) and g.X = X for every g € G,
prove that there exists a unique X € X(M/G) such that p.,(X(p)) = X(x(p)))
for every p € M, where 7 : M — M/G is the quotient map. Construct a smooth
vector field on the real projective plane RP?, which vanishes at exactly one point
and every other maximal integral curve is periodic.

3. A smooth n-manifold M is called parallelizable if there are X1,X5,...,X,, € X (M)
such that {X;(p), X2(p),..., Xn(p)} is a basis of T,M for every p € M. Prove that
M is parellelizable if and only if its tangent bundle is trivial, which means that there
exists a smooth diffeomorphism f : TM — M x R™ such that the following diagram
commutes

y M x R"™

\ A ection

and f maps linearly T,M onto {p} x R™ for every p € M. Prove that the circle S*
and the n-torus T" are parallelizable.

4. On R?" the nowhere vanishing smooth vector field

0 0 0 0
) 1 2 2n—1
X—I’ —1—.%' W—i‘...—i‘xnaxQn_l—xn ax2n
is tangent to S?"~1. In case n = 2, complete this vector field with two other vector
fields to prove that the 3-sphere S2 are parallelizable.

5. Let M be a smooth manifold and f : M — M be a diffeomorphism. If
X € X(M) has flow ® : D — M, prove that the flow ¥ of f,X is given by the
t

formula W (¢, f(p)) = f(®(t,p)).

6. Let h: [0,1] — [0,7] be a smooth function with h=1(0) = [0,1/5] U [4/5,1] and
“L(n/2) = [2/5,3/5]. We extend h on R periodically by h(x + 1) = h(x). Prove
that the smooth vector fields

d d
X(t) = t?cos® h(t )% and Y (t) = t*sin® h(t )dt
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on R are complete, but X + Y is not complete.

7. Let M be a smooth manifold, X € X (M) with flow ¢ : D — M, where
D= | (ap.b) x {p}.
peEM
If f: M — (0,1] is a smooth function such that f(p) < min{—a,,b,} for every
p € M, prove that the smooth vector field f - X is complete.

8. On R3 we consider the smooth vector fields
0 0 0 0 0 0
X=s— -y Y=g— —2— Z=y— —g—.
Z@y Yoz Yo:  “or You x@y
Prove that the map g : R? — X (R3) with

g(a,b,c) =aX +bY + cZ

is a linear monomorphism which has the additional property g(Ax B) = [g(A), g(B)]
for every A, B € R3, where x is the usual exterior product on R3.

9. Let M be a smooth manifold and X, Y € X (M) be complete with flows ® and ¥,
respectively. If there exists a smooth function A : M — R such that [X,Y] = hX,
prove

(V10 ®s)(p) = (Pry(1,6) © Vi) (P)
for every p € M, t, s € R, where T}, : R x R — R is the smooth function

19 = [ (exp( / t h(m(%@)))dﬂ)do-



Chapter 3

Riemannian manifolds

3.1 Connections

A straight line segment in euclidean n-space R" is the unique piecewise smooth
curve of minimum length between its endpoints. Equivalently, straight lines in R"
are the smooth curves whose acceleration vanishes identically. One way to define
a notion of ”"straight line” on a smooth manifold is by defining first the notion of
acceleration. The difficulty now lies in the fact that if M is a smooth manifold,
I C R is an open interval and v : I — M is a smooth curve, the velocity vectors
4(t) and +(s) belong to different vector spaces for ¢t # s and their difference has no
meaning. This difference can become meaningful if we have a way to connect the
tangent spaces of M at the points ~y(¢), ¢t € I. This requires the endowment of M
with an extra structure. This structure can be described elegantly in an algebraic
way.

Definition 3.1.1. A (linear) connection on a smooth n-manifold M is a map
V:XM)xX(M)— X(M)

with the following properties, writing VxY instead of V(X,Y):

OVaxi+pxY = LVX,Y + foVx,Y, for every fi, fo € C*(M) and Xi, Xo,
Y € x(M).

(ii)) Vx(a1Y1 + a2Y2) = a1VxY1 + a2VxYs for every ay, ao € R and X, Y7,
Ys € X(M).

(i) Vx(fY) = fVxY + Xf-Y for every f € C*°(M) and X, Y € X(M).

The smooth vector field VxY is called the covariant derivative of Y in the
direction of X. Some immediate consequences of the above definition are given in
the following lemmas.

Lemma 3.1.2. If V is a connection on a smooth n-manifold M and p € M, then

for every X, Y € X (M) the vector (VxY)(p) € T,M depends only on the values of
X and Y in arbitrarily small open neighbourhoods of p.

35
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Proof. By bilinearity, it suffices to prove that (VxY)(p) = 0 in case there exists

an open neighbourhood V of p such that X| = 0 or Y|y = 0. By Corollary 1.4.5,

there exists a smooth function f: M — [0, 1] such that f(p) =1 and suppf C V.
If Y|y =0, then fY =0 on M and so

0=Vx(fY)p) = fp)(VxY)(p)+ (X)) -Y(p) = (VxY)(p).

If X|y =0, we have fX =0 on M, and

0= (VixY)(p) = F(P)(VxY)(p) = (VxY)(p). D

Lemma 3.1.3. If V is a connection on a smooth n-manifold M and p € M, then
for every X, Y € X(M) the vector (VxY)(p) € T,M depends only on the tangent
vector X (p) and the values of Y in arbitrarily small open neighbourhoods of p.

Proof. Tt suffices to prove that (VxY)(p) = 0if X(p) = 0. In view of the preceding
Lemma 3.1.2, we can work locally in the domain of a smooth chart (U, ¢) of M with
peU. If ¢ = (x,...,2"), there exist X!,..., X" € C*°(U) such that

k
ZX s
If X(p) =0, we have X*(p) =0 for 1 <k < n and
(VxY)(p ZX’“ Voo Y)(p)=0. O
According to the above Lemma 3.1.3, it is legitimate to write henceforth V x,) Y
instead of (VxY')(p). The same argument of the proof shows that if
S:XM)x - xX(M)—= X(M)

is a C°°(M)-m-multilinear map, then for every Xj,..., X;;, € X(M) and p € M the
value S(X1, ..., X;n)(p) depends only on the values Xi(p),..., X;n(p) and so we can
write S(X1(p), ..., X;m(p)) instead.

Lemma 3.1.4. IfV is a connection on a smooth n-manifold M and p € M, then
for every X, Y € X(M) the vector (VxY)(p) € T,M depends only on the tangent
vector X (p) and the values Y (v(t)) for any smooth curve v : (—€,e) — M, € > 0,
such that v(0) = p and (0) = X(p).

Proof. According to the preceding Lemmas 3.1.2 and 3.1.3, we may assume that
7((—e€,€)) C U for some smooth chart (U, ¢) of M with p € U. Let ¢ = (x!,...,2").
There exist Y!,..., Y™ € C*°(U) such that

Ve = ZYk@xk
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and
= 0 = 0
VxmY =) Y 0)Vxmarg +2 ¥ en) 0575 -
Oz Ox
k=1 k=1 p
If Y(y(t)) = 0 for all [t| < ¢, then obviously VY =0. O

We can now find a local formula for a given connection V in the domain of a
smooth chart (U, ¢) of M with ¢ = (x!,...,2™). There exist unique I’k e C>(U),
1 <4,j,k <n, such that

Z b

for every 1 < 4,5 < n. The smooth functions I’fj are called the Christoffel symbols
of V with respect to the smooth chart (U, ¢). If now

n

" ) )
X=S xt d vy=Y YvF
kzzl oxk an ; oxk’

a routine computation shows that on U we have

vxyzi< XY +ZrkXYJ> 9
k=1

5,j=1

Conversely, given smooth functions I’fj U —- R, 1 < 14,5,k < n, the above
formula defines a connection on U, because for every f € C*°(U) we have

VX(fY):Zn:< (fY*) + Zr XfYJ) ik

k=1 1,j=1

n
(Xf YE+ fX(YR) + f Z r’fXYJ>% =X[-Y+ fVxY.
k= i,j=1 r
The connection on R™ with Christoffel symbols identically equal to zero is called
the euclidean connection and is given by the formula

0
k
VY = Z X(Y*)==.
In other words, the covariant derivative of Y in the direction of X with respect to
the euclidean connection is the directional derivative of Y in the direction of X.

Example 3.1.5. A (n — 1)-dimensional smooth submanifold M of R" is usually
called hypersurface. We identify the tangent space T, M at a point p € M with
its image under the derivative of the inclusion and consider it a vector subspace of
T,R"™. The euclidean connection V on R™ induces a connection on any hypersurface
M in R™. We observe first that if p € M and (U, ¢) is a M-straightening chart of

" with ¢(U N M) C R"! x {0} and p € UN M, then for every X € X(M) there
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exists an extension X € X (U), that is X|ynas = X|pnn. For every X, Y € X(M)
we put now

VipY =mp(VxpY)
where m, : T,R"™ — T}, M is the projection with respect to the orthogonal splitting
T,R" = T,M & (TpM)l.N By Lemma 3.1.4, this definition does not depend on the
choice of the extension Y. Obviously, V is a connection on M and is called the
euclidean connection of the hypersurface M.

Proposition 3.1.6. On every smooth manifold M there are connections.

Proof. From the above, there are connections locally on M. Let A be a smooth atlas
of M. For every (U, ¢r7) € A there is a connection VY on U. Let {fy : (U, ¢p) € A}
be a smooth partition of unity subordinated to the open cover {U : (U, ¢y) € A} of
M. Then, the formula

VY= > fuVkY
(U7¢U)€-A

for X, Y € X (M), defines a connection on M because if f € C°°(M), we have

Vx(fY)= > fuVRUY)= > fu(Xf Y +[VRY)

(Uyd)U)e'A (Uyd)U)E'A

:< > fU>Xf-Y+f > fVRY =Xf-Y 4+ fVxY. O

(U7¢U)6A (U7¢U)EA

In view of Lemma 3.1.4, given a connection it is possible to define a covariant
differentiation of smooth vector fields along a smooth curve. Let I C R be an open
interval and v : I — M be a smooth curve. The set X' () of smooth vector fields
along v is a vector space.

Proposition 3.1.7. Let V be a connection on a smooth n-manifold M. For every
smooth curve v : I — M there exists a unique linear operator

D
—: X X
o X)) = X()
with the following properties:
D DX
(i) E(fX) =X+ fﬁ for every X € X(v) and smooth function f: I — R.

(i) If X € X(7) has a smooth extension X € X(V) on an open set V which contains
v(I), then

DX ~
The vector field e along v is called the covariant derivative of X along .

Proof. We shall prove uniqueness first. As in the proof of Lemma 3.1.2 we see

DX
that for every to € I the value W(to) depends only on the values of X on an
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arbitrarily small open interval with center tg. Let (U, ¢) be a smooth chart of M
with ¢ = (2!, ...,2™) and ¥(tg) € U. There exist € > 0 such that y((tg—e¢, to+e€)) C U
and smooth functions X!,..., X" : (tg — €, + €) — R such that

X(t) = Zn:Xk(t)<%>w(t)

k=1

for |t — to| < e. By linearity and properties (i), (ii) we compute

DX = , a
W(t) => (x%) (ﬂ(@)w +2Xk Ok

k=1

:§<(Xk +Zr ()Xﬂ())(ai )W)

i,7=1

where (¢o7)(t) = (v1(t), ...,7™(t)) for every |t —to| < e. This proves the uniqueness.
The existence follows covering ~(I) by the domains of smooth charts of M

D
and defining p7 locally by the above formula. By uniqueness, the local definitions

coincide on overlapping intervals. [

In the rest of the section we shall see that the algebraic definition of a connection
indeed gives a mechanism of ”connecting” tangent spaces at various points of a
smooth manifold. Let V be a connection on a smooth n-manifold M.

Definition 3.1.8. If v : I — M is a smooth curve defined on an open interval

DX
I C R, a smooth vector field X € X(vy) is said to be parallel along ~, if = 0 on

I. A smooth vector field X € X (M) is called parallel if Vy X = 0 on M for every
Y e X(M).

Example 3.1.9. The parallel vector fields on R™ with respect to the euclidean
connection are the constant ones, that is the vector fields

Za (%k
for a',..., a™ € R.

Let (U, ¢) be a smooth chart of M with ¢ = (2!,...,2") and let v : I — U be
a smooth curve with local representation ¢ oy = (y!,...,4™). From the formula of
the covariant differentiation along « derived in the proof of Proposition 3.1.7 follows
that a smooth vector field
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along v is parallel if and only if the smooth functions X',..., X" satisfy the system
of linear ordinary differential equations

n
(XH(#) == > THOMOGY OXI(@), tel, 1<k<n.
ij=1
From the existence and uniqueness of solutions for linear ordinary differential
equations we have that for every tp € I and every v € T’ (;,)M there exists a unique
parallel vector field X along ~ satisfying the initial condition X (¢y) = v.

Proposition 3.1.10. Let I C R be an open interval and v : I — M be a smooth
curve. For every to € I and every v € T, ;)M there exists a unique parallel vector
field X along ~ such that X (tg) = v.

Proof. From the above there exists b > ty such that there exists a unique parallel
vector field along 7|, 5 With X (tg) = v. It suffices to prove that the supremum T
of all such b does not belong to I. Suppose that it does. Choosing a smooth chart
(V,4) of M with v(T") € V, there exists 6 > 0 such that v((I'—6,7+9)) C V. From

the above, there exists a unique parallel vector field X along 7|(7_s 145 satisfying
0

- J
the initial condition X (T — 5) = X(T - 5) From the uniqueness of solutions we

get X = X on (T — 6,T) and so X has a smooth extension on [tg, T 4 §). This
contradicts the definition of T". [

Let I C R be an open interval and v : I — M be a smooth curve. The preceding
Proposition 5.1.9 implies that for every a, b € I with a < b there is a well defined
map 7o : TyayM — T,y M where 7 4(u) is the value X (b) of the unique parallel
vector field X along v with X(a) = w. Since the parallel vector fields along
are the solutions of a system of linear ordinary differential equations, 7,, is a
linear isomorphism and it is called the parallel translation along ~y form ~(a) to v(b).

Theorem 3.1.11. If I C R be an open interval and v : I — M is a smooth curve,
then for every X € X () and s € I we have

DR (5) = Jim 2 [rasan(X(s 4 h) — X(9)]

Proof. It suffices to prove the assertion in case there exists a smooth chart (U, ¢)
and (I) C U. Since the parallel vector fields along « are the solutions of a system
of linear ordinary differential equations, there are parallel vector fields FEi,..., E,
along 7 such that {E1(t),..., E,(t)} is a basis of T.,4;)M for every t € I. Now there
are unique smooth functions fi,..., f, : I — R such that

n
X(t)=> fut)Be(t), tel.
k=1

Therefore,

DX
v Zfl; - B
k=1
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On the other hand, 7ss1p(Ek(s + h)) = Ei(s), because Ej is parallel along ~,
1 <k <mn, and hence

Ts,s+h(X (s +h)) — ka s+ h)Tss1h(Er(s + h)) ka )Er(s
=1

3

(fr(s+h) = fr(s)) Ex(s).

k=1
It follows that

fk S—|—h

1
lim - ] = li
fim = [7s 54 (X (s+)) =X oy

3.2 Geodesics and exponential map

Let M be a smooth n-manifold and V a connection on M. The acceleration of a
smooth curve v : I — M, where I C R is an open interval, is the smooth vector

D
field d—: along ~.

Definition 3.2.1. A smooth curve v : I — M, where I C R is an open interval, is
DA
called geodesic of the connection V if d_z?l = 0.

Note that the differential equation of geodesics is independent of local coordi-
nates of M. Its expression in the local coordinates of a smooth chart (U, ¢) of M

with ¢ = (x!,...,2"), where p oy = (y!,...,7™), is

n
")+ Y THOE)O) G () =0, 1<k<n
ij=1
In the particular case of the euclidean connection on R", where the Christoffel
symbols vanish, it follows that the geodesics are the euclidean straight lines.
The geodesics in U are the projections under the tangent bundle projection
m:TM — M of the integral curves of the smooth vector field

3k —+Z( 3 r’g])%

k=1 1,j7=1

on m~Y(U), where ¢ = (z',...,2",v',...,v") is the smooth chart of TM corre-
sponding to (U, ¢). Since the differential equation of geodesics does not depend
on smooth charts, we conclude that this is the local representation in the smooth
chart (7= 1(U), ¢) of a smooth vector field G which is globally defined on TM and
is called the geodesic vector field of the connection V. Its flow is called the geodesic
flow of V.

The homogeneity of the differential equation of geodesics implies the following
property.
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Lemma 3.2.2. Ifv: 1 — M is the geodesic of the connection V defined on the
open interval I and satisfying the initial conditions v(0) = p and ¥(0) = v, then for
every A € R\ {0} the maximal geodesic vy satisfying the initial conditions vx(0) = p

1
and ¥, (0) = Av is defined on the open interval XI and is given by yx(t) = v(At).

Dy _ oD%
dt dt

Proof. Indeed #\ = A% and therefore . Hence ~, is a geodesic if and

only if v is. O

In the rest of the section we fix a connection V on a smooth n-manifold M.
Let B C T'M denote the set of all points (p,v) € TM such that the geodesic ()
from p with initial velocity v is defined on the unit interval [0,1]. Let exp : E — M
be the smooth map exp(p,v) = 7 (1). From Lemma 3.2.2, for every p € M
the set £, = E NT,M is an open neighbourhood of 0 € T,M and the map
exp,(v) = exp(p,v) is smooth.

Lemma 3.2.3. For every p € M the set Ey, is star-shaped with respect to 0 € T, M
and the geodesic 7y, . from p with initial velocity v is given by the formula

Y(p,v) (t) = epr(tv)

for all t € R for which at least one of the two sides is defined.

Proof. From Lemma 3.2.2. we have 7(,,)(t) = Ypw)(t 1) = exp,(tv) for every
t € R such that at least one of the two sides is defined. Moreover, if v € E,, then
Y(p,v) 18 defined at least on [0, 1] and hence tv € E, for all 0 < ¢ < 1. This means
that E), is star-shaped with respect to 0 € T, M. [J

Proposition 3.2.4. For every point p € M there exist an open neighbourhood V
of 0 € T,M and an open neighbourhood U of p in M such that exp,(V) = U and
exp, : V. — U is a smooth diffeomorphism.

Proof. According to the Inverse Map Theorem it suffices to prove that the derivative
(expy)s0 : To(TyM) = T,M — T,M is a linear isomorphism. If v € T,M and
o : R — T,M is the straight line o(t) = tv, and Y(p,v) 18 the geodesic from p with
initial velocity v, we have

d

= % epr(U(t)) = ;Y(p,v) (0) =v.
t=0

(expp)+0(v)

Hence (exp,)«0 = idr,p- O

Choosing a basis of T}, M, that is a linear isomorphism h : T,M — R", the pair
(U, h o (exp,|y)™!) is a smooth chart of M and is called a normal chart of M at p
(with respect to the connection V). The neighbourhood U of p in Proposition 5.2.4 is
called normal. Observe that the local representations of geodesics emanating from p
with respect to a normal chart at p are straight lines through 0. Thus, if (v',...,y")
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is the local representation of any geodesic v emanating from p with respect to a
normal chart at p, then

Y TEEGY (0¥)(0) =0, 1<k<n.
ij=1

This means that the polynomial

n . .
> T

ij=1
vanishes identically on some open neighbourhood of 0 € R™. Therefore,
L (p) +T5i(p) = 0

for every 1 <i,5,k <n.
Given a connection V on a smooth n-manifold M, we define its torsion to be
the C°°(M)-bilinear map T': X(M) x X(M) — X (M) with

T(X,Y)=VxY —VyX — [X,Y].

Thus the value of T'(X,Y) at a point p € M depends only on the values X (p) and
Y(p).

The connection V is said to be symmetric if its torsion vanishes. This terminol-
ogy is justified as follows. Let (U, ¢) be a smooth chart of M with ¢ = (x!,...,2").
If X, Y e X(M)and

n

- 0 0
X\ = E Xk Y, = E }fk?
lv Oxk and Yy oxk’
k=1 k=1

we have
_ k k 7
T(X,Y)|y = gl <Z 321 (I — T X YJ) Dk

Hence V is symmetric if and only if the Christoffel symbols with respect to any
smooth chart are symmetric with respect to the lower indices, that is I’fj = I’;?i for
every 1 <1i,7,k <n.

It follows from the above that if V is a symmetric connection and p € M,
then the Christoffel symbols with respect to a normal chart at p vanish at the point p.

Proposition 3.3.5. For every connection V on a smooth n-manifold M there
exists a unique symmetric connection V on M which has the same geodesics as V.

Proof. If T is the torsion of V, we define the connection V by

_ 1
VxY = VxV - 3T(X,Y).
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Since T(X, X) = 0 for every X € X(M), it follows that V and V have the same
geodesics. The uniqueness is the fact that two symmetric connections with the same
geodesics coincide. Indeed, if V! and V? are two symmetric connections, then

S=V-V2:X(M)x X(M)— X(M)

is a symmetric C°°(M)-bilinear map. If V! and V? have the same geodesics,
S(X,X) =0 for every X € X(M) and therefore

25(X,Y) = S(X+Y,X +Y) =0

for every X, Y € X(M). O

3.3 Riemannian metrics

A Riemannian metric on a smooth n-manifold M is a family g = (gp)pem of inner
products
gp : TyM x T,M — T,M

which depend smoothly on p in the sense that if U C M is an open set and X,
Y € X(U), then the function f : U — R with f(p) = g,(X(p),Y (p)) is smooth. A
Riemannian manifold is a smooth manifold endowed with a Riemannian metric.

Let (M, g) and (N, h) be two Riemannian manifolds. A smooth map f: M — N
is called (Riemannian) isometry if it is a smooth diffeomorphism and its derivative
at each point preserves the Riemannian metrics, that is

i) (fap(V), Fip(w)) = gp(v, w)

for every v, w € T,M and p € M. The isometries are the isomorphisms of the cate-
gory with objects the Riemannian manifolds and the aim of Riemannian Geometry
is the classification of Riemannian manifolds up to isometry.

In the sequel we shall use in any case the symbol (.,.) to denote the Riemannian
metric and the symbol ||.|| for its corresponding norm on tangent spaces, if there is
no danger of confusion.

If M is a Riemannian manifold, the set I(M) of all isometries of M onto itself is
a subgroup of its group of diffeomorphisms and is called the isometry group of M.
If the action of I(M) on M by evaluation is transitive, M is called homogeneous.
Recall that the isotropy group (or stabilizer) at a point p is the subgroup

I,(M) = {f|f € (M) and f(p) =p}

of I(M). The derivative of an element f € I,(M) is an orthogonal transformation,
that is linear isometry, f.p : T,M — T,M. It follows from the chain rule, that
the assignment of f,, to f € I,(M) is a homomorphism of I,(M) into the group
of the orthogonal transformations of T, M which is usually called the isotropic
representation at p. The point p is called isotropic if the action of I,(M) on the
unit sphere in 7, M via the isotropic representation at p is transitive. Thus p € M
is isotropic if for every v, w € T, M with ||v|| = |Jw|| = 1 there exists f € I,(M)
such that f.,(v) = w. A Riamannian manifold M is called isotropic if every point
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of M is isotropic.

Example 3.3.1. On every open set M C R™, n > 1 the euclidean inner product
of R™ defines a Riemannian metric in the obvious way which is called the euclidean
Riamannian metric. Evidently, the euclidean n-space R™ is a homogeneous and
isotropic Riemannian manifold.

Proposition 3.3.2. On every smooth n-manifold there are Riemannian metrics.

Proof. Let M be a smooth n-manifold and let A be a smooth atlas of M. For every
(U, ¢r) € A there is a Riemannian metric gV on U defined by

gg(UJU) = <(¢U)*p(v)7 (¢U)*P(w)>

for v, w € TyM, p € U, where (.,.) is the euclidean inner product in R". Let
{fu : (U,¢v) € A} be a smooth partition of unity subordinated to the open cover
U={U: (U, ¢v) € A} of M. For every p € M and v, w € T,M we define

gpw,w)= > fulp)gl (v,w).

(U,py)eA

Since g is locally a convex combination of Riemannan metrics, it is a Riemannian
metric itself. [

In the rest of the section we shall give in some detail several examples of
Riemannian manifolds.

Example 3.3.3. Let (M, g) be a Riemannian manifold and let i : N — M be an
immersion of the smooth manifold N into M. There is an induced by ¢ Riemannian
metric ¢!V on N defined by

gév(va w) = Gi(p) (i*p(v)’ i*p(w))

for every v, w € T,N and p € N. In particular, every smooth submanifold of M
inherits a Riemannian metric.

The n-sphere S% = {p € R"*! : ||p|| = R} of radius R > 0 inherits a Riamannian
metric from the euclidean Riemannian metric (.,.) of R"*!. Obviously, the orthog-
onal group O(n+ 1,R) is contained in the isometry group of I(S%). Actually, it can
be proved that O(n 4 1,R) coincides with I(S}%), but we will not need this for the
time being. We shall show that S is homogeneous and isotropic with one strike.
Let p € S} and let {F1, ..., E,} be an orthonormal basis of 7,,Sp. Then,

1
{Ela ceey Ena Ep}

is an orthonormal basis of T,R""! = R"*1 and there exists f € O(n + 1,R) such
that

flex) =Ep, 1<k<n, f(Rens1)=p.
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This implies that S7 is homogeneous and isotropic, since every point p is the image
of the north pole Re,11 and Ig., ., (S%) acts transitively on the set of orthonormal
basis of Tge,, ,,5p-

Example 3.3.4. The hyperbolic metric on the upper half plane
H? = {7 € C: Tmz > 0}

is defined by
1

g:(v,w) = m(vﬂ@ = mRe(v@)

for v, w € T,H?, z € H?, where (v, w) = Re(vw) is the euclidean inner product in
complex notation.
The reflection with respect to the imaginary semi-axis ¢ = {it : t > 0} is the
map 7 : H? — H? with 7(2) = —% and is an orientation reversing isometry of HZ.
Ifa, b, ¢, d € R and ad — bc = 1, for the Mobius transformation 7 : C — C with

az—+b
T =
(2) cz+d
we have I
mz
Im(T =
m(T'(2)) lcz 4+ d|?
and
T'(z)= 4
~ (ez+d)?

Therefore, T(H?) = H? and

gT(z)(T*z(U)7T*Z(w)) = gT(z)(TI(Z)UaT/(Z)w) = mRe(\T/(z)\Qvﬁ)
1 _
= mRe(vw) = g.(v,w)

for every v, w € T,H? and z € H?. Therefore the group of M&bius transformations
with real coefficients, which is isomorphic to PSL(2,R), is a subgroup of the isom-
etry group I(H?). It can be proved that this is the group of orientation preserving
isometries of H? and it has index 2 in I(H?), but we will not need this now.

The action of PSL(2,R) on H? by Mébius transformations is transitive because
if zo =a+1ib, a € R, b >0, then zy = T(i), where T is the Mdbius transformation

Thus, H? is homogeneous. It is isotropic as well. Indeed, if v € T;H? and g;(v,v) = 1,
there exists 0 < 6 < 27 such that v = e~ 29, If
cosf-z—sinf

T(y) = 27 = >0V
(2) sinf -z + cosf’
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then T'(i) = i and T'(i) = 2. Hence v = T};(1).
The Riemannian manifold H? is the Poincaré upper half-plane model of the
hyperbolic plane.

Example 3.3.5. We shall describe three models of the higher dimensional version
of the hyperbolic plane. The first one resembles the case of the sphere. Let n > 2,
R > 0 and

1 2 2 2 2
Hy = {(z1,,5, - Tn, Tny1) € R™* cxy A, —wp = R g1 > 0}

be the upper connected component of the two-sheeted hyperboloid in R"*1. On H'%
we consider the Riemannian metric which on each tangent space is the restriction
of the Minkowski non-degenerate symmetric bilinear form

n
(,y) = —Tni1yns1 + Z TkYk
k=1

where z = (21,....,%n11), ¥ = (Y1, .-y Yn+1). Although the Minkowski form is not
positive definite, its restriction on each tangent space T,H%, p € H', is. To see this,
suppose that p = (p1, ..., Pnt1). If v = (v1,...,0p41) € T,HY, then

P1v1 + -+ TpUp — Ppg1Vng1 =0

and ) ) )
n n n
1 —R
(U7U>:Zvi—2—< pk”k) 2<1—pn%>zvi20
k=1 pn+1 k=1 pn+1 k=1
from the Cauchy-Schwartz inequality, and (v,v) = 0 if and only if v; = -+- = v, =0

and therefore v, 11 = 0 as well, since p,+1 > 0.
The Riemannian manifold H is called the hyperbolic n-space of radius R > 0.
An alternative model is the upper half n-space, which we denote temporarily by

n

% =1{1,..,pn) € R" : p, > 0}, endowed with the Riemannian metric
R

gp(v,w) = — > vpwy
Pn 2

where p = (p1,...,pn) € Ug and v = (vy, ..., v,), w = (w1, ..., w,) € T,U%. A tedious
calculation shows that the map F': H’ — U% defined by

r1(R+opt1)  Tn1(R+ Tny1) R? )

F('Tla "',xnaxTH*l) = ( PR ’
Tn+1 — Tn Tn+1 — Tn Tn+1 — Tn

is an isometry. So we use henceforth the notation H% for both models.

The group O, (n,1) of linear automorphisms of R"*! which preserve the
Minkowski form and send HY, onto itself is contained in the isometry group I(H}).
In this case too, it can be proved that this is the entire isometry group, but we
will not need this fact now. In a similar way as in the case of the n-sphere Sp
we can prove that HY is homogeneous and isotropic. Let p = (p1,...,pn) € Hp,
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so (p,p) = —R%, ppt1 > 0. and let {E}, ..., E,,} be an orthonormal basis of T),H'.
Then, (Ex,p) =0, 1 <k <n and so

1
{Ela ceey Ena }_%p}

is a basis of R"*L. If now A € Oy (n,1) is the matrix with columns Ej,..., E,,

%p, then A(Ren41) = p, which shows that Oy (n,1) acts transitively on H', and
Ae, = Ej, 1 < k < n, which shows that H} is isotropic, since {eq,...,e,} is an
orthonormal basis of Tge,, ., , H%.

There is a third convenient model of the hyperbolic n-space of radius R > 0.
The affine diffeomorphism f : R™ — R" given by the formula

flx)=a+ (% —22")en,

for + = (x',..,2") maps the upper-half space H% onto the open half-space

1
E={@"...y") eR":y" < 5} The hyperbolic Riemannian metric is mapped by

f to the Riemannian metric

for uw € TyE, y = (y',...,y") € E, where (.,.) on the right hand side denotes the
euclidean inner product. The diffecomorphism g : R\ {e,,} — R™\ {e,,} defined by

1
=ep+ 5y —e¢

is the inversion with respect to the sphere of radius 1 with center e,, and maps E onto
the open unit n-ball D" = {z € R" : ||z|| < 1}. Note that g = g~!. Differentiating,

1 2(y — en,u)

= u J—
ly — enll? ly —en*

(y - en)

Gy (1)

for every u € T,R", y € R™\ {e,}. The hyperbolic Riemannian metric on HY is
now mapped by go f to the Riemannian metric on D" given by the formula

_ _ AR?
(u, w), = (9*z1 (U),g*zl (w)>g—1(z) = W@,W

for z € R™ with ||z|| < 1 and u, w € T,D"™. The open unit n-ball endowed with this
Riemannian metric is thus an alternative model of the hyperbolic n-space of radius
R > 0 and will be denoted by D7.

Example 3.3.6. Let n > 1 and 7 : C"*1\ {0} — CP" be the quotient map. Recall
that in the canonical atlas {(V},¢;) : 0 < j < n} of CP™ we have

‘/j = {[Zo,...,zn] e CP": Zj #* O}
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and Z z z z
0 i—1 Zj+1
QS]’[Z(], ey Zn] = (_? sty J—a J—a ey _n)
j Zj j Zj
The quotient map 7 is a submersion. To see this note first that its local represen-
tation ¢ o : 7 1(Vp) — C™ with respect to the smooth chart (Vp, ¢g) is given by

the formula . .
S e
(@0 Oﬂ-)(ZOa "',Zn) - ZO"", 2 .
Let z = (20,...,2n) € 7 (Vo) and v = (v, ...,v,) € T,C"" = C"*! be non-zero.

Then v = 4(0), where (t) = z + tv, and

(%Oﬂow)(t):(zl—i-tvl zn—i-tvn)

20+ tvg’ 7 20+ tug
so that
/ U1 21 Un  2Znv0
omo O)=(———,...,— — .
(@nomon)(0) = (2 - 2. 2 - )
This implies that v € Ker m,, if and only if [vy,...,v,] = [20, ..., 2n]. In other words

Ker ., = {Az : A € C}. Obviously, for every ({o,...,(,) € C™ there exists v =
(v0, -y vn) € C™*L such that

C‘ _ U_] _ Zjvo
J 20 Zg

Since the same holds for any other chart (V}, ¢;) instead of (Vp, ¢o), this shows that
7 is a submersion.

The inclusion §27"+! — C"*1\ {0} is an embedding and so its derivative at every
point of $?"*1 is a linear monomorphism. For every z € S?"*1 we have

Ker (7| g2nt1)s. = Kerm,, NT,8*" ™ = {\z: X € C and Re) = 0}

which is a real line. On the other hand, 7~!(7(2))N.5?"*1 is the trace of the smooth
curve o : R — S?"*! with o(t) = €'z for which ¢(0) = z and ¢(0) = iz. Therefore
Ker(m|g2n+1)«z is generated by &(0).

Let h be the usual hermitian product on C**1. If

W, = {n € T.C"* : h(n,z) = 0},

then .. |w, : W, — T1,JCP" is a linear isomorphism for every z € C"*1\{0}. Indeed,
for every v € T,C"*! there are unique A € C and n € W, such that v = Az + 7.
Obviously,

h h

M) b

h(z, 2) h(z, 2)
The restricted hermitian product on W, can be transfered isomorphically by ., on
11, CP". If now

91210, w) = Re h((mzlw.) ™' (v), (moz|w.) ™ ()

for v, w € Tj,;CP™, then g is Riemannian metric on CP" called the Fubini-Study
metric. If z € $?" then W, = {v € T,S*"*! : (v,5(0)) = 0}.
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Each element A € U(n + 1) induces a diffecomorphism A : CP" — CP". More-
over, A(W) = Wy, for every z € C"™\ {0} and therefore A is an isometry of
the Fubini-Study metric. In this way, U(n + 1) acts on CP™ by isometries. The
action is transitive and so CP" is a homogeneous Riemannian manifold with re-
spect to the Fubibi-Study metric. Indeed, U(n + 1) acts transitively on S?*F1
because if z € $2"+1, there exist Ey,...E, € C""! such that {E,... E,, z} is an
h-orthonormal basis of C"*!. The matrix U with columns F,..., E,, z is an ele-
ment of U(n + 1) such that U(e;) = Ej for 1 < j < n and U(ep41) = 2. This last
equality shows that U(n + 1) acts transitively on CP".

The isotropy group of [en+1] = [0,...,0, 1] consists of all A € U(n+ 1) such that
AA(eny1) = enyq for some A € St. This means that

B 0
M= < - 1)
for some B € U(n). Since A= X;l, this implies that the isotropy group of [e,1]
is U(n), considered as a subgroup of U(n + 1) as above, and therefore CP" is

diffeomorphic to the homogeneous space U(n + 1)/U(n).
If A€ U(n+1), then det A € S and taking a € S* such that a” = det A we

have a 1A € SU(n + 1) and A = a=1A. Hence SU(n + 1) acts also transitively on
CP™ and CP" is diffeomorphic to SU(n + 1)/U(n), if we identify U(n) with the
subgroup of SU(n + 1) consisting of matrices of the form

<B : >
1
0 det B

for Be U(n). If A€ SU(n+ 1) belongs to the isotropy group of [e,+1] and AA has

1
the above form, then det B = A"*! and putting B = XB’ we have now

!
=0 Y
0 x
where det B’ = . Therefore A € U(n), as a subgroup of SU(n + 1).

Example 3.3.7. If (M, g) and (IV, h) are two Riemannian manifolds, on the product
manifold M x N there is a Riemannian metric (.,.) defined by

(v, W)y = gp, (V1,W1) + hp, (V2, W2)

for v = (v1,v2), w = (w1, w2) € TH(M x N) =T, M ® T, N, p= (p1,p2) € M x N,
which is called the product Riemannian metric.

Example 3.3.8. Let M be a Riemannian manifold and let G be a subgroup of
its isometry group I(M) which acts properly discontinuously on M, that is every
point p € M has an open neighbourhood U in M such that g(U) N U = & for all
g € G, g # idys. If the orbit space M/G is Hausdorff, it is a smooth manifold and
the quotient map = : M — M/G is a smooth covering map, in particular a local
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diffeomorphism as it maps each open neighbourhood like U above diffeomorphically
onto 7(U).

Let p e M, g € G and g = g(p). Since mo g = 7, from the chain rule we have
Twq © Gxp = Txp, and since g is an isometry, it follows that

(Mg (V)72 (W))g = {92 (125 (v)), 9oy (i (W) = (i (v), 75, (w))

for every v, w € Tyr()(M/G). This means that there is a unique well defined
Riemannian metric § on M /G with respect to which 7 becomes a local isometry, as
it maps each open neighbourhood U as above isometrically onto 7(U).

In the special case M = S™ and G = {idgn,a} = Zy, where a(z) = —z is the
antipodal map, we obtain a Riemannian metric on the real projective n-space RP"
which is locally isometric to the euclidean Riemannian metric on S™. Similarly,
the group of translations of R™ by a vector in Z" is isomorphic to Z"™ and acts
properly discontinuously on R™. The orbit space R™/Z" is diffeomotphic to the n-
torus 7" = St x --- x S!, n-times. Since translations are euclidean isometries, we
obtain a Riemannian metric on T™ such that the quotient map 7 : R® — T™ which
is given by

Tty o ty) = (€1, ..., €)
becomes a local isometry. The n-torus T" equipped with this Riemannian metric is
usually called flat n-torus.

3.4 The Levi-Civita connection

In this section we shall prove that on a Riemannian manifold there exists a unique
symmetric connection which is compatible with the Riemannian metric in the sense
that parallel translation along smooth curves with respect to this connection is a
linear isometry of inner product vector spaces. This result is sometimes called the
Fundamental Theorem of Riemannian Geometry. Connections on a Riamannian
manifold which are compatible with the Riemannian metric are characterized as
follows.

Proposition 3.4.1. Let M be a Riemannian smooth n-manifold. For a connection
V on M the following statements are equivalent.

(1)) XY, Z) = (VxY,Z)+ (Y,VxZ) for every X, Y, Z € X(M).

(ii) If I C R is an open interval and v : I — M is a smooth curve, then

d DV DW

Lvwy = 2wy v, 2,

for every V., W € X(v).

(i) If a, b € R, a < b, and vy : [a,b] — M is a smooth curve, then the parallel
translation 7y q : Ty M — T, M from ~y(a) to y(b) along v with respect to V is a

linear isometry of inner product vector spaces.

Proof. The equivalence of (i) and (ii) is an immediate consequence of Lemma 5.1.4
and Proposition 3.1.7. If (ii) holds and V', W are parallel along ~ then

d
—(V,W) =0
dt(’ >
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and so (V, W) is constant on [a,b]. This implies (iii). Conversely, there are parallel
Ex,..., By € X(v) such that {F1(to), ..., En(to)} is n orthonormal basis of T,y M
for some to € I. If (iii) holds, {£1(t),..., E,(t)} is an orthonormal basis of T’ )M
for every t € I. If V., W € X (7), there are unique smooth functions fx, gx : I — R,
1 < k < n, such that

V= Z frE); and ngEk.
k=1 k=1

Then, (V,W) = fig1 + - + fngn and

d - - DV DW
VW)= > frge+ Y fugh = (W) +V,—~). O
k=1 k=1

Corollary 3.4.2. Let M be a Riemannian smooth n-manifold and V be a
connection on M. If V is compatible with the Riemannian metric, then the velocity
field of each geodesic of V has constant length.

Proof. Indeed, if y is a geodesic of V and the latter is compatible with the Rieman-
nian metric, we have

d ..o Dy . . Dy
i ={(— N +{y,—)=0. O

For every ¢ > 0 the set
T°M = {(p,v) € TM :pe M,v e T,M, |jv|| = c}

is a (2n — 1)-dimensional smooth submanifold of 7'M, by Corollary 1.3.5, because
1 1
T°M = f71(§c2) and 562 is a regular value of the kinetic energy f : TM — R
defined by
1
F(p.0) = 5ol

Indeed, if (U, ¢) is a smooth chart of M and (7—*(U), ¢) is the corresponding chart
of T'M, then the local representation of f is

(foop Dzt ...,z v, . 0") = % Z gij (¢ (zt, o 2™))vie

i,j=1

and differentiating

D
<.
—~

n
at L a ot o) = Z gii (¢ (2t . )
j=1

because the matrix (gi;)i<i j<n of the Riemannian metric is symmetric. Since it is
invertible at every point as well,
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for all 1 <i <nifand onlyif v =--- =" =0.

The tangent space T, T°M is the Kerf, . for every (p,v) € T°M. Now
v is a geodesic of a connection V on M if and only if (v,7) is an integral curve
of the geodesic vector field G of V. If V is compatible with the Riemannian
metric, Corollary 3.4.2 says that ||| takes on a constant value c¢. If v is not
constant, ¢ > 0 and (v,%) lies entirely on the constant kinetic energy level set
T°M. Thus, the geodesic vector field is tangent to constant kinetic energy level
sets. In particular, T'M is called the unit tangent bundle of M and from Lemma
3.2.2 every geodesic is a reparametrization of a geodesic whose velocities lie in T M.

Theorem 3.4.3. On every Riemannian smooth n-manifold M there ezists a
unique symmetric connection which is compatible with the Riemannian metric.

Proof. We shall prove first the uniqueness by finding an explicit formula for such a
connection V. For every X, Y, Z € X(M) we have

since V is symmetric and compatible with the Riemannian metric. From these we
get

This equality uniquely determines V because the Riemannian metric on each tangent
space is a non-degenerate symmetric bilinear form.

The existence of V will be proved locally by providing the Christoffel symbols
from which it is determined. Due to uniqueness the local definitions will coincide on
the overlapping domains. Let (U, ¢) be a smooth chart of M with ¢ = (z!,...,2")

and let
/9 9N o
gl]_ 8.%'2’8.%'-] ) — 7]- N

By the above formula, a symmetric connection V which is compatible with the
Riemannian metric must satisfy

fojgkm:<Va >:—[ Ij + g. _ 994
k=1

9.7 Oz’ O™ 2| Oxt ozl Ox™

on U, for every 1 < i,j,m < n. The Christoffel symbols are uniquely determined
from the above linear systems, because the Riemannian metric on each tangent
space is a non-degenerate symmetric bilinear form and therefore the symmetric
matrix (gij)1<i j<n is invertible at each point of U. If we denote by ¢g*/ the entries of
the inverse matrix of the Riemannian metric (gij)fﬁli, j<n- the the Christoffel symbols
are

2 oxt = Oz  Ox!

1 — dgi1  Ogu  Ogij
Pg:_zgkl<ﬂ+ gui _ g“) 1<i,jk<n.
=1
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It remains to show that the connection on V on U whose Christoffel symbols
are the solutions of the above linear systems is symmetric and compatible with Rie-
mannian metric. The first is obvious, because the matrix (g;j)1<i j<n i sSymmetric
and so the (7, ) linear system is the same as the (j,4) one. To prove compatibility,

we let

- 0 0 - 0
X:;Xk@, Zyka o Z:;Zk@a

and then we have
<VXy, Z> + <Y, V)(Z>

n
_ Z [gkl(ZlX( M+ Yrx(Zh) Z X'YTE gz + Z X? ZJI’]glek}
k,l=1 1,7=1 5,j=1

Since the matrix (gj)1<i,j<n is symmetric, substituting we compute

n
> (YIZ'Tg + ZY T gu) = Z Y7 2T} gt + Z Y*ZIT g

n

n
=3 (2T 4 Yz <Z rggkl>
k=1

jl=1
1 9951, Ogii _ 0gij 19951 O9i _ 09is
— = L % i _ 29
2 Z: <8xl dzi Ol Z 0z T 923 0al

n
091
_ AV It
= El 1ZY Dt
.77:

Therefore,

n n
0
(VxY,Z) +(Y,VxZ) = E g (Z'X(YF)+YEX(ZY) + E Xizlyi ag]il
T
k,l=1 i,5,1=1

n
_ X(Z glekZl> =X(Y,Z). O
k=1
The unique connection of a Riemannian manifold M which is symmetric and
compatible with the Riemannian metric is called the Levi-Civita connection of M.
The geodesics of the Levi-Civita sonnection of M will be simply called geodesics of
M. Tt easy to see that if V is a connection on M and f : M — M is a smooth
diffeomorphism, then the formula

VxY = [N (Vex fY)

for X, Y € X(M) defines a new connection on M. If V is symmetric, so is V. If
V is compatible with the Riemannian metric of M and f is an isometry, then V is
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also compatible with the Riemannian metric. By uniqueness, if V is the Levi-Civita
connection of M, it is preserved by isometries, that is

[(VXY) =V x .Y

for every X, Y € X(M) and f € I(M). In particular, every isometry sends
geodesics to geodesics. This observation is crucial for the determination of the
geodesics of a Riemennian manifold with sufficiently large isometry group.

Example 3.4.4. The Levi-Civita connection of the euclidean n-space R" is
the euclidean connection with vanishing Christoffel symbols. If M C R" is a
hypersurface, the induced euclidean connection on M defined in Example 3.1.5 is
the Levi-Civita connection of M for the restricted euclidean Riemannian metric, as
it is easily seen.

Example 3.4.5. We shall describe the geodesics on a n-sphere S% of radius R > 0.
Let v : I — S} be the geodesic satisfying the initial conditions v(0) = Rey,4+1 and
4(0) = ej, defined on some open interval I C R containing zero. Suppose that
v(t) = (YH(t), ...,y T1(t)) for t € I. For 2 < j < n, the reflection a; : R*™! — R*1
with

aj(xl, U I (S A L)

is an isometry of S% such that a;(Ren41) = Repq1 and

(@))+Rens1 (Y(0)) = aj(er) = ex = (0).

From the invariance of geodesics under isometries and uniqueness follows now that
ajovy = and hence v/ (y) = —17(t), that is 47 (t) = 0 for every t € [ and 2 < j < n.
This means that (/) is an arc on the great circle which is the intersection of S%
with the plane generated by {e1,en4+1}. Since S% is homogeneous and isotropic,
again the existence and uniqueness of geodesics implies that all geodesics are great
circles. In particular, the geodesic vector field on T'S% is complete.

As an illustration we shall write down the system of differential equations of
geodesics on S? with respect to the spherical coordinates (6, ¢), where the point
(z,y,2) € S? is written

r=cos¢-sinf), y=sin¢g-sinf, z = cosb.
The basic vector fields are

cos ¢ cos 8 —sin ¢ sin 6

— = | sin¢cos@ |, — = | cos¢psind
90 —sinf o9 0
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and so the matrix of the Riemannian metric is

1 0
(9ij)1<ij<2 = 0 sin20/"
It follows that almost all Christoffel symbols vanish except
1 L. 2
P22 = —5 Sin 26, FlZ = cot 0.

Therefore, the system of differential equations of geodesics in spherical coordinates
is

wﬂ—%smzam¢52:o,
¢ +2cotf-¢'0 = 0.

The meridians are obvious solutions of this system.

Example 3.4.6. The matrix of the hyperbolic Riemannian metric on the upper

half plane H? is
L0
22
(9ijh<ij<2 = <yo L)
2

and so the Christoffel symbols are
1 1 1
Pp=-—, Th=-, Th=--,
Y Y Y

and the rest are zero, at the point z = x + iy € H2. So the system of differential
equations of geodesics is

2 _x/y/ =0,
Y

Y+ [~ ) =0,
Y

An obvious solution is £(t) = ief, t € R, whose image is the imaginary semi-axis.
Since H? is homogeneous and isotropic with respect to the subgroup PSL(2,R) of its
isometry group which acts by Mobius transformations, the geodesics are euclidean
semi-circles with center on OH? (the boundary taken in the Riemann sphere C),
because the Mébius transformations send circles onto circles on C and preserve
angles.
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The geodesics of the hyperbolic n-space HY of radius R > 0, n > 3, have a
similar description. First we observe that for 1 < j < n each euclidean reflection
a; : R" — R"™ with

aj(zt, .., 2") = (2!, .., —27, ..., 2")
is a hyperbolic isometry which fixes e,. As in Example 3.4.5, this implies that the
trace of a hyperbolic geodesic emanating from e, with initial velocity in the plane
generated by {e1, e, } is contained in the part of this plane in HY,. Since the latter is
clearly isometric to HQR, it follows from the above that the trace of such a geodesic
is either the positive semi-axis generated by e, or a euclidean semi-circle passing
through e, with center on 0H%. Moreover, every orthogonal transformation of R"
that fixes e, is a hyperbolic isometry. This implies that the trace of any geodesic
emanating from e, is either the positive semi-axis generated by e, or a euclidean
semi-circle passing through e, with center on 0H';. Since H' is homogeneous and
isotropic in a strong sense, we conclude that the trace of any geodesic of H', is either
a euclidean half-line orthogonal to JH% or a euclidean semi-circle with center on

1
OH%. If f and g are the diffeomorphisms of Example 3.3.5, then (g o f)(§en) =0

and it is easily seen that the geodesics through 0 in the open unit disc model D%
are the euclidean diameters. The geodesics through the other points of D', are arcs
of euclidean circles which intersect orthogonally the boundary sphere OD%.

Let M be a Riemannian smooth n-manifold. On M we shall always consider
the Levi-Civita connection and all the related notions associated with it such as
parallel translation, geodesics and exponential map. Let p € M and U be a normal
neighbourhood of p, that is there exists an open neighbourhood V' of 0 € T,M in
T,M such that exp : V' — U is a smooth diffeomorphism. We denote by B),(0,€)
the open ball in T, M of radius € > 0 and center 0 € 7T,,M. There exists ¢y > 0 such
that B,(0,e9) C V. The set exp,(B,(0,¢)) will be called the closed geodesic ball of
radius 0 < € < ¢y and center p and its interior exp(B,(0,€)) open geodesic ball. Its
boundary exp,,(9B,(0, €)) will be called geodesic sphere. Fixing an orthonormal basis
{E1, ..., By} of T,M we have a linear isometry of inner product spaces o : R" — T, M
with o(ex) = Eg, 1 < k < n, and a normal chart (U, ¢) where ¢ = o' o (exp,, [y) '
Let ¢ = (z,...,2") and

Ox*” Ox)

Then g¢;;(p) = dij, 1 < 4,5 < n, Since the Levi-Civita connection is symmetric, the
Christoffel symbols with respect to this normal chart vanish at p. From the formula
in the proof of Theorem 3.4.3 giving the Christoffel symbols we compute

- k S k dyg;
k=1 k=1

Oa
and in particular %(p) =0 for every 1 < 4,5,1 < n.
X,

In order a normal neighbourhood of p, in particular a geodesic ball, to be useful
for local calculations near p, it is desirable to be a normal neighbourhood of nearby
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points also. An open set W C M will be called uniformly normal if it is a normal
neighbourhood of all its points. More precisely, W is uniformly normal if there ex-
ists some 0 > 0 such that W C exp,(B,(0,6)) and exp, : B,(0,5) — exp,(By(0,6))
is a smooth diffeomorphism onto the open set exp,(B,(0,6)) C M for every p € W.
In order to prove the existence of uniformly normal neighbourhoods we shall need
the following technical remark which is a parametrized version of the equivalence
of norms in finite dimensional real vector spaces.

Lemma 3.4.7. If M is a Riemannian smooth n-manifold and p € M, for every
open neighbourhood A C TM of (p,0) there exists an open neighbourhood U of p in
M and some § > 0 such that

Us ={(q,v) € TM : q € U,v € By4(0,0)} C A.

Proof. Let (W,4) be a smooth chart of M with p € W and ¥(p) = 0. Let
¢ = (21, ...,2™). We denote by r the euclidean norm on R™. If (71 (W), ) is the
corresponding smooth chart of TM, where w : TM — M is the tangent bundle
projection, we have ¢(p,0) = 0 and we may assume that A C 7 '(W). Since
Y(A) € R™ x R™ is open, there exists € > 0 such that B(0,2€) x B(0,2¢) C 9(A).
The set

K = H%Zw(%) Jen (W) ir(W(@) S e k=€

k=1

is compact and so there exist 0 < § < ¢ such that

n
0<d*< Z i (q)viv; < &
ij=1

for (¢, ) i <%> ) € K. If now r(¢(q)) < ¢, then
q

(g, € .nvi
(k=1 v?) 1/2k1kak

S@WS COIE z(i@m

k=1 k=1
for every vy,..., v, € R. If we take U = ¢~ 1(B(0,¢€)), we have

Us C 9~ H(B(0,€) x B(O,e)) cCA O

and thus

o

Proposition 3.4.8. If M is a Riemannian smooth n-manifold and p € M, then
every open neighbourhood of p contains a uniformly normal open neighbourhood of p.

Proof. Let E C TM be the domain of definition of the exponential map and let
F:E— M x M be the smooth map

F(p,v) = (p,exp,(v)).
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For every p € M, the derivative F,(, ) is a linear isomorphism and from the Inverse
Map Theorem there exists an open neighbourhood A C E C T'M of (p,0) such that
F(A) € M x M is open and F|4 : A — F(A) is a smooth diffecomorphism. From
the preceding Lemma 3.4.7 there exists an open neighbourhood U of p and some
d > 0 such that Us C A. Since F(p,0) = (p.p), there exists an open neighbourhood
W C U of p such that W x W C F(Us). We shall show that W uniformly normal.
We observe first that exp, is defined on B,(0,9) C T; M for all ¢ € W. Moreover,
(expy |B,(0,6) " = (FlioyxB,(0,6)) " is smooth for ¢ € W. Finally, if (¢,y) € W x W,
there exists v € By(0,6) such that (¢,y) = F(q,v), that is y = exp,(v). This shows
that W C exp,(B,(0,6)) for every ¢ € W. O

Note that if U is a (closed or open) geodesic ball with center p € M, for every
q € U there exists a unique geodesic path in U from p to ¢, but if p, g are two points
in a uniformly normal open set W, there exists a geodesic path from p to ¢, which
however may not lie entirely in W.

3.5 The Riemannian distance

On a Riemannian manifold M it is possible to define the length of curves as follows.
Let a, b € R, a < b, and 7 : [a,b] — M be a piecewise smooth parametrized curve.
The non-negative real number

b
L(y) = / o

is defined to be the length of v with respect to the Riemennian metric. By the
change of variables formula, it is invariant by piecewise smooth reparametrizations.

If v: I — M is a smooth parametrized curve defined on an open interval I C R
such that 4(t) # 0 for every ¢ € I, then taking any ¢y € I and putting

t
h(t) = | 17(s)llds
to
the smooth function A : I — R is strictly increasing and maps I diffeomorphically
onto an open interval A(I) C R. The smooth parametrized curve

o=yoh™l:h(I) - M

is a reparametriztion of v such that ||&| = 1.

A smooth parametrized curve v with ||%| = 1 is said to be parametrized
by arclength or unit speed. By Corollary 3.4.2, every non-constant geodesic is
parametrized proportionally to arclength and from Lemma 3.2.2 every such geodesic
can be reparametrized to a unit speed geodesic.

If M is connected, for every p, ¢ € M the non-negative real number

d(p,q) = inf{L(7)|y : [a,b] = M is a piecewise smooth parametrized curve

with v(a) = p and ~(b) = ¢ for some a, b € R, a < b}
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is called the (Riemannian) distance of p and g. The function d : M x M — R has
the following obvious properties:

(i) d(p,q) > 0 and d(p,p) = 0,

(i) d(p,q) = d(q,p) and

(i) d(p,q) < d(p,z) + d(2,q)

for every p, q, z € M. In other words, d is a pseudo-distance on M. It can be
proved directly that the topology defined by d coincides with the topology of M and
hence d is actually a distance. However, we shall derive this from considerations
showing the strong connection of d with geodesics, at least locally. We shall need a
couple of lemmas, which are of independent interest.

Lemma 3.5.1. let M be a smooth n-manifold endowed with a symmetric connection
V and let A C R? be an open set. If o : A — M is a smooth map then

D (05\ _ D (00

dt\9ds ) ds\ot)
Proof. Tt suffices to prove the formula in case there is a smooth chart U, ¢) of M
such that o(A) C U. If ¢ = (z,...,2") and po o = (071, ...,0,), we have

bo oo 0
ds 0s Oxk
k=1

D@J_ndaak p Oo; doj| O
dt<65>_ {dt(%)fzrwat 68}8:{3’?

k= 3,7=1

" 80k " kaO'i 80] 0
( > Z[ds( ) Zrijas. at]axk'

k=1 i,j=1

and

iy

and similarly

Since V is symmetric, Ff = I’?Z, 1 < 4,5,k < n, and the result follows from
Schwartz’s theorem. [J.

The next lemma is due to C.F. Gauss.

Lemma 3.5.2. Let M be a Riemannian smooth n-manifold, p € M and let
V' = exp,(By(0,¢)) be an open geodesic ball of radius € > 0 with center p. Then
every geodesic emanating from p intersects orthogonally the geodesic spheres

exp,, (0B,(0,0)), 0 < d < e.
pp( p(a))7

Proof. Let I C R be an open interval and let u : I — T,,M be a smooth curve with
|lu(t)|| =1 for every t € I. If 0 : I x (—e€,€) — M is the smooth map

o(t, 5) = exp, (su(t)),

0o Oo
it suffi t that =0
it suffices to prove tha < 5 Ds >
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We compute

0 /00 00\ _ /D (00 00\ /35 D (00\\ _/D(00\ a0\
As\ ot  ds/ \ds\ ot ) 9s ot ds \ Os ~ \dt\9s ) Os

by Lemma 3.5.1 and since o(¢,.) : (—€,e) — M is a geodesic for every ¢t € I. For

the same reason,
2

Oo _1q

s
by Corollary 3.4.2, and differentiating

D (0oc\ Ooc
2<%<%)’%>—°

9 /o0 00\
Os\ ot 0s/
Oo 0o\ . .
and 5 95 ) B independent of s. However o(t,0) = p for all ¢ € I and so
?‘«)_(tj("o) = 0. Therefore,

<g—j(t, 5), ‘;—Z(t, s)> = <g—j(t, 0), ‘;—Z(t, 0)> —0. O

As in the situation of the preceding Lemma 3.5.2, let M be a Riemannian smooth
n-manifold, p € M and V' = exp,(B,(0,¢)) be an open geodesic ball of radius ¢ > 0
with center p. A piecewise smooth parametrized curve 7 : [a,b] — V' \ {p}, where q,
beR, a<b,is a the form

Thus,

v(t) = exp, (r(t)u(t))

where r : [a,b] — (0, €) is a unique piecewise smooth function and v : [a, b] — T, M is
a unique piecewise smooth parametrised curve with ||u(t)|| = 1 for ¢ € [a,b]. Using
the notation of the proof of Lemma 3.5.2 we have (t) = o(t,r(t)) and

. oo N
From Lemma 3.5.2 we have
do ||? do ||?
. 2 _ ||99 222 > (7 (4))2
o= 5|+ cor|5] = o

and the equality holds if and only if u is constant. This implies that

b b
uwz/wwwz/w@ﬂzwmﬂwn

and the equality holds if and only if u is constant and r is monotone.
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Proposition 3.5.3. Let M be a Riemannian smooth n-manifold, p € M and let
V' = exp,(By(0,¢€)) be an open geodesic ball of radius ¢ > 0 with center p. Let
v :[0,¢] = V be a geodesic from y(0) = p to a point ¢ = ~y(¢) € V. Ifa, b € R,
a<b, and o : [a,b] = M is any piecewise smooth curve from o(a) =p to o(b) = q,

then L(v) < L(o). Moreover, if L(y) = L(o), then o([a,b]) = ([0, 4]).

Proof. We may assume that ~ is parametrized by arclength, so that ¢ = L(v) and
7 is given by () = exp,(tv), where v = §(0) and |[v|| = 1. Obviously, £ < e. We
shall prove first that L(o) > ¢. Let 0 < § < ¢. By continuity and connectedness,
there exist a < ¢ < d < b such that o(c) € exp,(9B,(0,9)), o(d) € exp,(9B,(0,£))

and o((c,d)) C exp,(B,(0,£€)) \ exp,(Bp(0,)). Then,
L(o) > L(o|eq) = £ —0

from the above considerations and letting § go to zero this implies that L(o) > ¢.
This proves the first part.

Suppose now that L(o) = ¢. Applying what we have already proved to o], we
have L(c|(4,) > ¢ and therefore

L(olje,q) < L(olie,q) + L(olgp) = £ — L(olq,q) <€ 6.

Hence L(o|jq) = ¢ — 0 and from the above the trace o([c,d]) is the same as the
trace of a geodesic path exp,(tv), 0 < t < /, for some v € T,M with [jv] = 1.
Letting again ¢ go to zero we get a geodesic exp,(tv), 0 < ¢t < £ whose trace is the
same as o (|[q,q- Thus, necessarily L(c|(qp)) = 0 and y(I) = g = exp,(lv). It follows
that v(t) = exp,(tv) for all 0 <t < ¢. O

Corollary 3.5.4. Let M be a Riemannian smooth n-manifold with Riemannian
distance d. For every p € M there exists € > 0 such hat

exp,(Bp(0,0)) = {g € M : d(p,q) < J}

for every 0 < § < e.

Proof. By Proposition 3.2.4, there exists € > 0 such that exp, maps B,(0,¢) C T, M
diffeomorphocally onto the open neighbourhood exp,(B,(0, €)) of p. Obviously then

exp,(B,(0,9)) C {qg € M : d(p,q) < 6}

for every 0 < 0 < ¢, since each geodesic path in the open geodesic ball exp,(B,(0,6))
emanating from p has length < 4.

Conversely, if ¢ ¢ exp,(B,(0,0)), then every piecewise smooth parametrized
curve o from p to g intersects the geodesic sphere exp,(0B,(0, p)) for all 0 < p <,
and so L(o) > p, by Proposition 3.5.3. Consequently, L(o) > 4. This shows that
d(p.q) > 9. O

Corollary 3.5.5. On a Riemannian smooth manifold M the Riamannian distance
d induces the original manifold topology and the pair (M,d) is a metric space. [
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In the sequel we shall denote by B(p,d) the open d-ball in M with radius § and
center p.. According to Proposition 3.5.3, for every p € M there exists some € > 0
such that B(p,d) is the geodesic open ball of radius ¢ and center p and for each
q € B(p,0) the distance d(p, q) is the length of the unique geodesic path in B(p,¢)
from p to ¢ for all 0 < § < e. It follows from this that geodesics locally minimize
length.

Proposition 3.5.6. Let M be a Riamannian smooth manifold and 7 : [a,b] — M,
where a, b € R, a < b, be a piecewise smooth parametrized curve from ~y(a) = p to
v(b) = q. If L() = d(p,q), then v([a,b]) is the trace of a geodesic path. In partic-
ular, if v is parametrized by arclength, it is a geodesic path and in particular smooth.

Proof. Since being a geodesic is a local property, it suffices to show that the trace
of v is locally the same as that of a geodesic. Let a < tg < b. By Proposition
3.4.8, there exists a uniformly normal neighbourhood W of ~(¢y). So there exists
€ > 0 such that W C exp,(By(0,¢€)) and exp, |p, (0, is a diffeomorphism for every
y € W. There exists n > 0 such that y([[to — n,t0 + 1)) C exP.y)(By (1) (0 €)).
Our assumption implies that L(v|f,—p.t0+n) = d(7(to —1),7(to + 7)) and thus, by
Proposition 3.5.3, v([to — n, to + 1)) is the trace of a geodesic path. O

Definition 3.5.7. A geodesic path v : [a,b] - M, a, b € R, a < b, on a
Riemennian smooth manifold M with Riemannian distance d is called minimizing

if L(y) = d(y(a),(b)).

Note that if v is a minimizing geodesic path as in the above definition, then
L(Y|t,s) = d(v(t),7(s)), that is 7|y is minimizing, for every a < t < s < b.
According to Proposition 3.5.3, every geodesic of a Riemannian manifold is locally
minimizing. However, the example of the sphere shows that on a Riemennian
manifold there may exist non-minimizing geodesic paths. The question now arises
whether any two points on a connected Riemennian manifold can be joined by a
minimizing geodesic path. This is answered by the following theorem which is due
to H. Hopf and his student W. Rinow. The proof we present here is due G. de Rham.

Theorem 3.5.8. Let M be a connected Riemannian smooth n-manifold. If the
geodesic vector field of M is complete, then any two given points of M can be joined
by a minimizing geodesic path.

Proof. Let p, ¢ € M and r = d(p,q) > 0. According to Corollary 3.5.4, there exists
0 < e < r such that exp,(B,(0,6)) = B(p,d) is a normal neighbourhood of p for
every 0 < 0 < e. Fixing such a §, by compactness, there exists py € exp,(0B,(0,6))
such that

d(po,q) = inf{d(z, q) : z € exp,(9B5,(0,4))}.
Then, pg = exp,,(dv) for some v € T, M with |[v|| = 1 and the unit speed geodesic
(1) = expy(tv)

is defined on the entire real line R, because we assume the the geodesic vector field
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is complete. It suffices to prove now that d(vy(t),q) = r — ¢ for every 6 < t < r,
because then for ¢t = r we will get (1) = ¢ and v|(p,,) will be minimizing.
Firstly, we have

r=d(p,q) < d(p,v(t)) +d(v(t),q) <t+d(v(t),q)

and hence d(y(t),q) > r —t for every 0 <t <.
On the other hand we have

r > inf{d(p,z) +d(z,q) : z € exp,(9B,(0,9))} = 0 + d(po, q)
and so d(pg,q) < r — 9. Hence d(v(9),q) = d(po,q) =1 — 9. Let

T =sup{t € [§,r] : d(y(t),q) =7 —t}.

By continuity, d(v(T),q) = r — T. Moreover, d(y(t),q) =r —t for all § <t < T,
because

r—t<d(y(t),q) <d(y(@),y(T)) +d(y(T),q) T —t+r—t=r—t

It remains to prove that T" = r. Suppose that T' < r. We apply what we have already
proved for p to v(7'). Thus, there are some 7 > 0 and pj € exp.1)(9B1)(0,7))
with

d(py,q) = inf{d(z,q) : 2z € exp, () (0By(1y(0,7))}
and d(py,q) = d(v(T'),q) —n =r — T —n. Therefore,

d(p,py) > d(p,q) —d(py,q) =r— (r =T —n) =T +1.

However the piecewise smooth parametrized curve, which is the concatenation
of v]o,;) and the unique geodesic in exp. ) (By7)(0,7)) from v(T) to p; has
length T+ n, and from Proposition 5.5.6 its trace must be the trace of a geodesic
path. Since part of this path coincides with [ 7], it follows from uniqueness
of geodesics that this geodesic path is 7|joriy. Hence py = (T + n) and
d(y(T 4+ n),q) =r— (T +n). This contradicts the definition of 7. [J

A topological characterization of the completeness of the geodesic vector field
is given by the following theorem also due to H. Hopf and W. Rinow.

Theorem 3.5.9. For a connected Riemannian smooth manifold M with Rieman-
nian distance d the following statements are equivalent:

(i) The geodesic vector field of M is complete.

(ii) The metric space (M,d) is complete.

Proof. Suppose that the geodesic vector field of M is complete. In order to prove
that (M,d) is a complete metric space, it suffices to show that every d-bounded
set C C M is contained in a compact set. Let p € M. Since C is bounded, there
exists ¢ > 0 such that d(p,q) < ¢ for every ¢ € C. From Theorem 3.5.8, there
exists some v € T, M such that ¢ = exp,(v) and |jv|]| = d(p,q). This shows that

C C exp,(By(0,c)), and exp,(By(0,c)) is compact, because exp,, is continuous.



3.6. GEODESIC CONVEXITY 65

Conversely, suppose that there exists a geodesic parametrized by arclength
whose maximal interval of definition is an open interval (a,b) for some a < b < +o0.
Then, d(y(t),v(s)) < |t — s| for every t, s € (a,b). If (M,d) is complete, then
p:tlirlr)l ~v(t) exists in M. From Proposition 3.4.8 there exists a uniformly

o

normal open neighbourhood W of p, for which there exists some § > 0 such that
W C exp,(By(0,6)) for every ¢ € W. There exists b—6 < T' < bsuch that v(T') € W
and then the geodesic form ~(7") with initial velocity 4(7") is defined at least on
the interval [0,0). By uniqueness of geodesics, this implies that + is defined at
least on (a, T+¢) and since T'+6 > b this contradicts our assumption the b < +o00. [

If any of the two equivalent conditions of the preceding theorem is satisfied, we
shall call the Riemannian manifold M complete. As the proof shows, the following
also holds.

Corollary 3.5.10. A connected Riemannian smooth manifold M is complete if
and only if there exists a point p € M such that exp, is defined on the entire
tangent space T, M. []

Corollary 3.5.11. The geodesic vector field of a compact Riemannian smooth
manifold is complete. [J

The fact that homogeneous Riemannian manifolds are complete is a consequence
of the following.

Proposition 3.5.12. Let (M,d) be a locally compact metric space. If it is
homogeneous in the sense that for every x, y € M there exists a d-isometry
f: M — M such that f(x) =y, then it is complete.

Proof. Let p € M. Since M is assumed to be locally compact, there exists some
r > 0 such that B(p,r) is compact. The homogeneity implies now that B(z,r)
is compact for every x € M. If (xk)ren is a Cauchy sequence in M, there exists
some ko € N such that d(zg,,xr) < r for every k > ko. Hence the sequence
has a convergent subsequence, by compactness of B(zg,,7), which implies that it

converges in M. [J

Corollary 3.5.13. A homogeneous connected Riemannian smooth manifold is
complete. [J

The euclidean space, the spheres and the hyperbolic spaces are all complete
Riemannian manifolds.

3.6 Geodesic convexity

Let M be a Riemannian smooth n-manifold and p € M. By Proposition 3.4.8 and
Proposition 3.5.3, there exists a uniformly normal open neighbourhood W of p for
which there exists some d > 0 such that W C exp,(B,(0,0)), for every ¢ € W, and
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for every q1, g2 € W there exists a unique minimizing geodesic path from ¢; to ¢o
of length < §. However this geodesic path may not lie entirely in W.

Definition 3.6.1. A subset C of a Riemannian smooth manifold is said to be
strongly (geodesically) convex if for every z, y € C there exists a unique and
minimizing geodesic path 7 : [a,b] — C, for some a, b € R, a < b, from x = y(a) to
y = 7(b) such that y(t) € C for a <t <b.

In this section we shall prove that sufficiently small geodesic balls with center
any given point on a Riemennian smooth manifold are strongly convex (and of
course uniformly normal). This result on the existence of strongly convex open
neighbourhoods is due to J.H.C. Whitehead and is based on the following.

Lemma 3.6.2. Let M be a Riemannian smooth n-manifold. For every p € M
there exists some eg > 0 such that for 0 < § < €y of I C R is an open interval and
v : I — M is a geodesic which is tangent to the geodesic sphere exp,(0B,(0,6)) at
the point y(to), for some tg € I, then there exists some n > 0 such that

Y((to —n,t0 + 1) \ {to}) C M \ exp,(By(0,0)).

Proof. There exists some ¢ > 0 such that exp, maps B,(0, €) diffeomorphically onto
U = exp,(By(0,0)). Let 0 < 0 < e. We choose an orthonormal basis {F1, ..., B, } of
T,M and consider the normal chart (U, ¢) at p, where ¢ = h o (exp,, | Bp(o,e))fl and
h:T,M — R" is the linear isommetry with h(E;) =e€;, 1 <i<n. Lety: I = U
be a geodesic which is tangent to the geodesic sphere exp,(0B,(0,0)) at the point
v(to). Suppose that ¢ = (z!,...,2") and oy = (y',...,4™). We consider the smooth
function f: I — R with

k=1

Since 7 is tangent to exp, (9B,(0,8)) at v(tg), we have
f'(to) = 2iwk(to)ﬁk)/(to) =0.
Since 7 is a geodesic, 7
(¥)'(t) = — Zn: L5 () (V) (O () (£)

ij=1

and substituting
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for every t € I. Since Ffj(p) =0, 1<1,j,k <n, there exists some 0 < ¢y < € such
that the quadratic form

n

> <5ij - éfﬁ(qu(q)>vw

ij=1

is positive definite for every ¢ € exp,(B,(0, €0)). Thus, if 0 < § < €, then f"(tg) >0
and f has has a strict local minimum at ¢y, which means that there exists n > 0
such that f(t) > 62 for t € (tg —n,to +n) \ {to}. This proves the assertion. (]

We shall also use the following remark. If p € M, for every open neighbourhood
U of p there exists an open neighbourhood V' of (p, 0) in TM such that exp,(tv) € U
for every 0 < ¢t < 1 and (q,v) € V. To see this, it suffices to consider the smooth
map g : [0,1] x B — M with g(t,q,v) = exp,(tv), where E C T'M is the domain of
definition of the exponential map and note that g(¢,p,0) = p for all 0 <t < 1. By
continuity, for every ¢ € [0,1] there exists an open neighbourhood V; C E of (p,0)
and 0; > 0 such that g((t —d;,t+9;) x V4) C U. By compactness of [0, 1], there exist
t1yeey tm € [0,1], for some m € N, such that

0,1] = | (& — 8¢, t + 61,)-
k=1

It suffices now to take V.=V, Nn---NV;,,.

Theorem 3.6.3. If M is a Riemannian smooth n-manifold, then for every p € M
there exists some € > 0 such that for every 0 < § < e the geodesic ball exp,,(B,(0,9))
is strongly convex.

Proof. Let ¢g > 0 be as in the preceding Lemma 3.6.2 and let F' : E — M x M be
the smooth map F'(q,v) = (¢,exp,(v)), where £ C T'M is the domain of definition
of the exponential map. As in the proof of Proposition 3.4.8, there exists an open
neighbourhood V- C TM of (p,0) and some 0 < € < ¢ such that F maps V
diffeomorphically onto exp,,(B;(0, €)) xexp, (B, (0, €)) and exp,(tv) € exp, (B, (0, €))
for every (¢,v) € V and 0 <t < 1, form the above remark. Moreover, there exists
some 7 > 0 such that exp,(B,(0,¢€)) C exp,(B4(0,7)) for every q € exp,(B,(0,€)).

We shall prove that exp,(B,(0,6)) is strongly convex for every 0 < J < e.
Let g1, g2 € exp,(By(0,9)) = exp,(B,(0,9)), Since (q1,q2) € F (V) there exists
v € Ty, M such that q1 = exp,, (v) and y(t) = exp,, (tv) € exp,(B,(0,€p)) for every
0 <t < 1. By Proposition 3.5.3, vy is the unique and minimizing geodesic path from
q1 to g2 in exp,, (B, (0,7m)), hence in exp,(By(0,€p)), and it suffices to show that
v(t) € exp,(By(0,0)) for 0 <t < 1. Let (7!, ...,4™) be its local representation with
respect to the normal chart on exp,(B,(0,¢p)) and let again f : [0,1] — R be the
smooth function
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as in the beginning of the proof of Lemma 3.6.2. If v((0,1)) has points outside
exp,(B,(0,0)), then f takes its maximal value on [0, 1] at some 0 < ¢y < 1 and

5% < flto) < €§

or equivalently ([0, 1]) € exp,(B,(0,+/f(to))). On the other hand, we must have

0= f'(to) =2 (+")(t0) (") (to)
k=1

which means that the geodesic path «((0,1)) is tangent to the geodesic sphere
exp,(0By(0,/ f(to))). This contradicts Lemma 3.6.2. [J

Corollary 3.6.4. If M is a Riemennian smooth manifold with Riemannian
distance d, then for every p € M there exists some € > 0 such that for every
0 < 6 < e the open d-ball B(p,9) is the geodesic ball with center p and radius § and
is uniformly normal and strongly convex. [

The existence of strongly convex geodesic balls can be applied to facilitate alge-
braic calculations on smooth manifolds involving de Rham and Cech cohomology.

3.7 Isometries

Let M be a Riemannian manifold with Riemannian distance d. Every Riemennian
isometry f : M — M is a metric isometry of the metric space (M,d), that is f is
surjective and d(f(p), f(q)) = d(p,q) for every p, ¢ € M. The aim of this section
is to prove that actually the converse also holds. This is a famous theorem first
proved by S.B. Myers and N. Steenrod. The proof we present is due to R. Palais.
As expected, the non-trivial part of the proof consists of the argument showing the
differentiability of f. We shall need a preliminary fact.

Let (M,d) be a metric space. A continuous parametrized curve 7 : [a,b] — M,
a, b € R with a < b, is called segment if

d(y(t1),v(t2)) + d(v(t2),v(ts)) = d(v(t1),v(t3))

for all @ < t; <ty <tz <b. Obviously, every unit speed minimizing geodesic in a
Riemannian manifold is a segment.

Lemma 3.7.1. Let M be a Riemannian manifold with Riemannian distance d.
The image of every segment of the metric space (M,d) coincides with the image of
a geodesic of M.

Proof. Let ~ : [a,b] — M be a segment and p = v(a). According to Corollary
3.6.4, there exists € > 0 such that for every 0 < § < € the open d-ball B(p,J) is
the geodesic ball with center p and radius ¢ and is uniformly normal and strongly
convex. There exists T > 0 such that v([a,a + T]) C B(p,€). Let vy be the unique
and minimizing geodesic path in B(p,¢€) from p = y(a) to y(a + T'). Suppose that
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there exists some a < ty < a + T such that v(¢y9) does not belong to the image of
~o. There is a unique and minimizing geodesic 1 in B(p, €) from p = vy(a) to y(to)
and a unique and minimizing geodesic v, in B(p,€) from 7(tg) to v(a + T). Since
the image of vy does not coincide with the image of the concatenation 7y * o of 1
and 79, we have

d(y(a),y(a +T)) = L(y0) < L(y1 *72) = L(m1) + L(72)

= d(v(a),~(to)) + d(7(to),v(a +T)).

This contradicts our assumption that v is a segment and shows that the image of
v([a,a + T) coincides with the image of 7g. If now

s =sup{a <t <b:7([a,t]) coincides with the image of a geodesic path }

the same argument taking s in place of a shows that necessarily s = b. [

Theorem 3.7.2. Let M and M’ be Riemannian n-manifolds with corresponding
Riemannian distances d and d'. If f : (M,d) — (M, d') is a metric isometry, which
means that f is surjective and d'(f(p), f(q)) = d(p,q) for every p, q € M, then f is
a Riemannian isometry.

Proof. Let p € M, p’ = f(p) and let € > 0 be such that the open d’-ball B(p',¢)
is the geodesic ball in M’ with center p’ and radius € and is uniformly normal and
strongly convex. We can choose € > 0 such that f(B(p,€)) = B(p/,¢) and B(p,¢)
is the geodesic ball in M with center p and radius € and is uniformly normal and
strongly convex. Let v € T, M be such that ||v|| =1 and v : [0, %] — B(p, ) be the
unique minimizing geodesic path with v(0) = p and 4(0) = v. Then ~ is a segment
and so f o+ is a segment in B(p/,€), since f is a metric isometry. By the preceding
Lemma 3.7.1, the image of f oy coincides with the image of a geodesic path in
B(p',€) with initial point p/, which is parametrized by arclength. Actually, f o~y
itself is a unit speed geodesic path, because

d'(f(v(1), f(7(s))) = d(y(£),v(s)) = |t = s

for every t, s € [0, %] If w € Ty M’ is the initial velocity of f o+, we put F(v) = w.

This defines a map F' from the unit sphere in 7T,M to the unit sphere in Ty M’,
which we extend to a map F : T,M — T,,M' putting F(0) = 0 and

Fw) = ol - (o)

[[w]]
for every non-zero w € T,M. Since f~! is also a metric isometry, in a similar way
follows that F' is injective and surjective. Moreover, from the definition of F' we
have || F(w)| = [|w| for every w € T,M and f oexp, = exp, o F'. Since B(p, ¢) and
B(p', €) are uniformly normal neighbourhoods, it suffices to show that F' is linear and

preserves the inner products. It is obvious that F(tw) = tF(w) for every w € T,M
and t > 0. If F preserves the inner products, then its linearity can be proved as
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follows. Let {v1,...,v,} be an orthonormal basis of T,,M. Then, {F(vi), ..., F(v,)}
is an orthonormal basis of Ty M’. For v, w € T,M we have

(F(v+w), F(E))) = (v+w, Ej) = (v, Ej) + (w, Ej)

= (F(v), F(Ej)) + (F(w), F(Ej)) = (F(v) + F(w), F(Ej))
v+

for every 1 < j < n. This implies that F'(v+w) — F(v) — F(w) = 0 and hence F is
linear.

Since F'(tv) = tF(v), for t > 0 and v € T, M, in order to prove that F' preserves
the inner products, it is sufficient to show that (F'(v), F(w)) = (v, w) for v, w € T,M
with ||v]| = ||lw]| = 1. Then also ||F(v)|| = ||F(w)|| = 1. We put cosf = (v,w) and
cos ¢ = (F(v), F(w)). Let v be the geodesic of M with v(0) = p, ¥(0) = v, and o
be the geodesic with o(0) = p, 6(0) = w. Then, f o~y and f oo are the geodesics in
M’ with initial point p’ and initial velocities F'(v) and F(w), respectively. It suffices
now to prove that

sin g =l 52 d((2), (1)
sin § = lim - ' (/(2(2)) /(1)

because then

(v,w) =1 —QSinzg = 1—2sin2§ = (F(v), F(w)),

since f is a metric isometry. We shall prove the first equality, the proof of the second
being similar. On B(p, €) we consider the euclidean Riemannian metric which makes
the diffeomorphism exp,, : B,(0,¢) — B(p,¢) Riemannian isometry. Let p denote
the corresponding Riemannian distance on B(p,€). We proceed by contradiction.
Suppose that

1
limsup —d(y(t),o(t)) > sin Q
t—0 2t 2

We choose some ¢ > 1 such that
0

1
limsup —d(vy(t),o(t)) > csin —.
t—0 2t 2

As in the proof of Lemma 3.4.7, there exists 0 < § < € such that

n n

1 1/2 1/2
- <Z wi) < lwl| < c(Z wi)

k=1 k=1

for every w € T,M, q € B(p,9), where (w1, ...,wy,) are the normal coordinates of w
(with respect to p). From the definition of d and p we have now

1
EP(Q17Q2) < d(q1,q2) < cp(qi,q2)

for every q1, g2 € B(p,d). By continuity, there exists n > 0 such that

c

£ P(1(1).0(0) > d(1(1),0(1)) > esin s
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But since p is the euclidean distance

1 0
2_tp(7(t)’ o(t)) = sin 9
This contradiction shows that
. 1 .0
limsup —d(y(t),o(t)) < sin —.
t—0 2t 2
In a similar way we can prove that
liminf = d(y(t), o()) > sin -
iminf o (1), o( )_81112.

This concludes the proof. [

3.8 Exercises

1. Prove that the euclidean connection on R" is the unique connection for which
VxY =0 for every X € X(R") and every constant Y € X'(R").

2. Let V be a connection on a smooth n-manifold M. A smooth diffeomorphism
f+ M — M is called affine, if it preserves V, that is fi.(VxY) = Vi xf.Y,
for every X, Y € X(M). The set of all affine diffeomorphisms of V is a group.
Prove that in case M = R" and V is the euclidean connection, for every affine
diffeomorphism f there exist A € GL(n,R) and b € R™ such that f(z) = Az + b for
every x € R".

3. A smooth n-manifold M is said to be affinely flat, if there exists a smooth atlas
A ={(U;, ¢;) : i € I} of M such that for every ¢, j € I with U; NU; # & there exist
A;j € GL(n,R) and b;; € R™ such that

i 0 ¢; () = Ay + by

for every x € ¢;(U; NUj). Prove that then there exists a natural connection V on
M such that every ¢; : U; — ¢;(U;) transfers V|y to the euclidean connection on
(JSZ(UZ) C R™.

4. Let A € R™*" be a positive definite symmetric matrix and
M={zeR": (A z,z) =1}

be the (n — 1)-dimensional ellipsoid with semi-axis the eigenvalues of A. Prove that
a smooth parametrized curve v : R — M is a geodesic of M (with respect to the
euclidean connection) if and only if

(A1)

A2 V00 -1y =,
[ A=1y2

’7” +
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5. On R? we consider the connection whose Christoffel symbols are I't; = x,
I'l, =1, I'4, = 2y and the rest vanish.

(a) Write down the system of differential equations of its geodesics.

(b) Let v : [0,1] — R2 be the smooth parametrized curve v(t) = (¢,0). Find the

0
parallel translation of the vector <8_> along v on (1,0) with respect to this
Y/ (0,0)

connection.

6. Let M be a smooth manifold endowed with a connection V and let p : M — R
be a smooth function. For every X, Y € X(M) we put

VEY =VxY =Y (p)X — X(p)Y.

(a) Prove that V?” is a connection on M.
(b) Let € > 0 and v : (—¢,6) — M be a geodesic of VP. If h : (—e,e) — R is the

smooth function with .
h(t) = / e2(1(9)) g,
0

prove that v o h™! is a geodesic of V. Thus, the two connections V and V” have
the same non-parametrized geodesics.

7. On R3 we define V : X(R3) x X(R3) — X(R3) by
1
VxY = DxY + X xY,

where DxY is the directional derivetive of Y with respect to X and X x Y is the
usual exterior product on R3.

(a) Prove that V is a connection.

(b) Is V symmetric?

(c) Is V compatible with the euclidean Riemannian metric?

8. Let M, N be two connected Riemannian manifolds and let f : M — N be a
smooth diffeomorphism. Assume that there exists some point p € M such that
Jep : TpM — T4,y N is a linear isometry. Prove that f is an isometry if and only if
it preserves the corresponding Levi-Civita connections.

9. Let M be a Riemannian smooth n-manifold and let f : M — R be a smooth
function. The gradient of f is the unique smooth vector field grad f such that

fip(v) = (grad f(p),v)

for every v € T,M,p € M.
(a) Prove that in the local coordinates (z!,...,2™) of a smooth chart of M the
gradient of f is given by the formula

1
gradf = (9ij)1<i j<n
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(b) If ||gradf|] = 1 everywhere on M, prove that the integral curves of gradf are
geodesics.

10. On D? = {z € C: |z| < 1} we consider the Riemannian metric

4 _
(v,w) = m . RG(U’U)), V,W € TZ]D2, RS DQ.
(a) Prove that the map C : D? — H? defined by

z4+1
zZ—1

C(z)=—1

is an isometry. C is called the Cayley transformation.
(b) Prove that if a, b € C and |a|? — |b|? = 1, then

az+b
=) = bz +a

is an isometry of D?.
(c) Describe the geodesics of D?.

11. Let « : R — H? be the smooth parametrized curve y(t) = (¢,1). Find the paral-

lel vector field X along v with X (0) = (2 and draw X on the interval [—E, .
%/ ~0) 2

12. Let M and N be two connected Riemannian manifolds.

(a) Let pe M, g€ N and T : T,M — T,N be a linear isometry. If there exists an

isometry h : M — N such that h(p) = ¢ and h,, = T, prove that there exist normal

open neighbourhoods V' of p and W of ¢ such that A(V) = W and

h|V = exp,oT o exp;1 .

(b) Prove that if g, h : M — N are two isometries for which there exists some
p € M such that g(p) = h(p) and g.p = hsyp, then g = h.

13. Let M ne a Riemannian smooth n-manifold and let G be a non-empty set of
isometries of M. If FF = {p € M : g(p) = p for every g € G}, prove that F is a
smooth submanifold of M.

(Hint: Consider for every p € F' the vector subspace

V ={veT,M: gy(v) =v for every g € G}

of T, M and show that exp,(UNV') = FNexp,(U) for a suitable open neighbourhood
Uof0eT,M.)

14. Let M be a Riemannian smooth manifold with group of isometries I(M). For
a properly discontinuous subgroup G of I(M), the orbit space M/G inherits a
Riemannian metric, if it is a Hausdorff space, and the quotient map p : M — M /G
is a local isometry. If M is complete, prove that M /G is complete as well. Describe
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the geodesics of the flat 2-torus 72 and the geodesics of RP? with respect to the
induced Riemannian metric from S2.

15.  Prove that a connected isotropic and complete Riemannian manifold is
homogeneous.

16. Let M be a connected, non-compact, complete Riemannian manifold with
Riemannian distance d. Prove that for every p € M there exists a geodesic
v : [0, 400) — M with v(0) = p and d(p,~(t)) =t for every t > 0.

17. Let M and N be two Riemannian smooth manifolds and let h : M — N be a
smooth diffeomorphism for which there exists ¢ > 0 such hat ¢||h.,(v)]| < [Jv]| for
every v € T,M and p € M. If N is complete, prove that M is also complete.

18. Let M be a Riemannian smooth manifold with Riemannian distance d. For
every piecewise smooth parametrized curve 7 : [a,b] — M, where a, b € R, a < b,
the non-negative real number

b
10 =3 [ Il

is called the energy of v and is not invariant under reparametrizations.
(a) Prove that (L(v))? < 2(b — a)J(v) and the equality holds if and only if ||¥| is
constant.

For every p, ¢ € M we define

e(p,q) = inf{2J(y)|y : [0,1] = M piecewise smooth with ~(0) =p,~(1) = q}.

(b) Prove that (d(p,q))? = e(p, q) for every p, ¢ € M.

(¢) If p, ¢ € M and 7 is a piecewise smooth parametrized curve from p to ¢, prove
that v minimizes the energy, that is 2J(y) = e(p, q), if and only if +y is a minimizing
geodesic.



Chapter 4

Curvature

4.1 The Riemann curvature tensor

A first important step towards the classification of Riemannian manifolds is the an-
swer to the following question: Are all Riemannian manifolds locally isometric? We
shall see in this chapter that the answer is negative, by constructing local isometric
invariants. All of them originate from the curvature tensor, which was introduced
by B. Riemann in a purely geometric manner and generalizes the Gauss curvature
of a surface in R3. Is should be noted that the local investigation of the Riemanian
manifolds is a highly non-trivial task contrary to other geometric structures such as
for instance the symplectic and contact structures which by Darboux’s theorem are
all locally isomorphic and thus have no local invariants.

Let V be a connection on a smooth n-manifold M. The curvature of V is
an algebraic tool which describes how much V locally deviates from the euclidean
connection. For every X € X (M) the linear map Vx : X(M) — X (M) is a
derivation and one can ask whether VxVyZ = VyVxZ holds for every X, Y,
Z € X(M). This does not hold even for the euclidean connection on R™. More
precisely, in this case we have

VxVyZ —VyVxZ = VixyZ.

Thus, if V is the Levi-Civita connection of a Riemannian metric on M and M is
locally isometric to the euclidean n-space, we must necessarily have

VxVyZ —VyVxZ —Vixy)Z =0

for every X, Y, Z € X(M). This leads to the following.

Definition 4.1.1. The curvature tensor of a connection V on a smooth n-manifold
M is the C°°(M)-multilinear map R : X(M) x X (M) x X(M) — X (M) defined by

R(X,Y)Z =VxVyZ - VyVxZ — VixyZ.

An easy calculation shows that R is indeed C°°(M)-multilinear and therefore
the value of R(X,Y)Z at a point p € M depends only on the values X,,, ¥, and

75
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Z,. We can therefore write R(X,,Y,)Z,. According to the definition, the curvature
tensor of the euclidean connection is zero.

If M and M are two smooth manifolds carrying connections V and V, respec-
tively, and f : M — M is a smooth diffeomorphism such that f(VxY) = \Y nxfsY
for every X, Y € X(M) (such a diffecomorphism is called conformal), then from
the definition and the behaviour of the Lie bracket under diffeomorphisms we have
+(R(X,Y)Z) = R(f X, [.Y)fZ for every X, Y, Z € X(M). In particular this
holds in case V and V are the Levi-Civita connections of Riemennian metrics on
M and M, respectively, and f : M — M is an isometry.

Proposition 4.1.2. The curvature tensor R of a symmetric connection V on a
smooth n-manifold M satisfies the following identities.

(o) R(X,Y)Z =—-R(Y,X)Z, and

(b) RX,Y)Z + R(Y,Z)X + R(Z,X)Y =0 for every X, Y, Z € X(M). This
second identity is called the first (algebraic) identity of Bianchi.

Proof. The first identity is obvious from the definition of the curvature tensor. Since

0
R is C°°(M)-multilinear, it suffices to check that (b) holds only in case X = B

z
Y = — and Z = — are basic vector fields in some open set U C M with respect

Ol o
to a chart ¢ = (z1,...,2") : U — R™. Now we have [X,Y] = [V, Z] = [Z, X] = 0 and

R(X,Y)Z+ R(Y,Z)X + R(Z,X)Y

= V)((VyZ — V2Y) +Vy(VZX — V)(Z) +V2(VXY — VyX)

since V is assumed to be symmetric. [

From now on we shall restrict ourselves in the case where V is the Levi-Civita
connection of a Riemannian manifold M with Riemannian metric g = (.,.). Since
g is a non-degenerate, symmetric bilinear form on each tangent space T,M, p € M,
the value of the curvature tensor R(u,v)w for given u, v, w € T,M is completely
determined by the values of (R(u,v)w,z) for z € T,M. The C°°(M)-multilinear
form defined by

Rm(X,Y,Z, W) =(R(X,Y)Z,W)

is called the covariant Riemann curvature tensor.

Proposition 4.1.3. The covariant Riemann curvature tensor has the following
properties.

(a) Rm(W,X,Y,Z) = —Rm(X,W,Y, Z),

(b) Rm(W, X, Y, Z) = ~Rm(W, X, Z,Y ),

(¢c) Rm(W, XY, Z) = Rm(Y, Z,W, X),

(d) Rm(W,X,Y,Z)+ Rm(X,Y,W,Z)+ Rm(Y,W, X, Z) =0

for every W, X, Y, Z € X(M).
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Proof. Properties (a) and (d) are merely a restatement of Proposition 4.1.2. For (b)
we prove first that Rm(W, X,Y,Y) =0 for every W, X, Y € X(M). Since V is the
Levi-Civita connection, we have

W(X([[Y]*) = W(2(VxY,Y)) =2(VwVxY,Y) + 2(VxY, ViyY),
XW(Y[*)) = X2{VwY,Y)) =2(Vx VYY) + 2(ViY, VxY)
and [W, X](||Y||?) = 2(Viw,x1Y,Y). It follows that
2Rm(W, X, YY) =2(VywVxY,Y) - 2(VxVyY,Y) — 2<V[W7X}Y, Y)
=WX(IYI?) - XW(YI*) - W, X](IY]*) =0
From this now we conclude that
RmW,X,Y,Z)+ Rm(W,X,Z,Y)=Rm(W,X,Y + Z,Y + Z) = 0.

Property (c) follows from the rest noting first that from the first identity of

Bianchi
Rm(W,X,Y,Z)+ BRm(X,Y,W,Z) + Rm(Y,W, X, Z) =0,

Rm(X,Y,Z,W) + Rm(Y, Z, X, W) + Rm(Z,X,Y, Z) = 0,
Rm(Z,W, X, Y)+ Rm(W,X,Z,Y)+ Rm(X,Z,W,Y) =0
Summing up and using (a) and (b) we get

2Rm(Y, W, X,Z) — 2Rm(X,Z,Y,W)=0. O

If (U, ¢) is a chart of M and ¢ = (2!, 22, ...,2™), there are uniquely determined
smooth functions Rl]k U—-R, 1<14,5,k1<n, Such that

9 0.0 ., 0
R(505 527 3k = 2= Rkt

which are called the local components of the curvature tensor with respect to the
given chart. A straightforward calculation gives the following expression of the local
components of the curvature tensor in terms of the Christoffel symbols

Fl BN
ik
le‘ Z Lk Z Tk axz Ol
due to C.F.Gauss.

The local components of the covariant Riemann curvature tensor are defined
analogously by

8 8

Thus, the local expressions of the properties (a)-(d) of Proposition 4.1.3 are now
(a) Rijiy = —Rjikl, (b) Rijr = —Rijik, (¢) Rijii = Riuij, (d) Rijra+Rjka+Ryiji = 0.
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The variation of the covariant Riemann curvature tensor has a property called
the second (infinitesimal) identity of Bianchi. If

T:X(M) x - x X(M) = C®(M)

is a C*°(M) — r—multilinear form on a Riemannian manifold M with Levi-Civita
connection V, the covariant derivative of T' in the direction of the smooth vector
field X € X(M) is by definition the C°°(M) — r—multilinear form given by the
formula

(VxT)(Y1,...,Yy) = X(T(Y1, ... ZT (Y1, Yie1, VXY, Yig, o, Yy)

for every Y1,....Y, € X(M).

T :X(M)x- - xX(M) - X(M) is a C®°(M) — r—multilinear map, its
covariant derivative in the direction of X € X (M) is the C*°(M) — r—multilinear
map defined by

(VxT)(11, .., Y;) = Vx(T(Y1, ... Y, ZT Y1, Yio1, VXY, Yign, ., V7)

for every Y1,....Y, € X(M).
In both cases, T is called parallel if VxT = 0 for every X € X(M). For example,
in the case of the Riemannian metric g, which is C°°(M)-bilinear, we have

(Vxg)(Y1,Y2) = X(Y1,Ys) — (VxY7,Y2) — (Y1,VxYs) =0

for every X, Y1, Yo € X(M).

Example 4.1.4. If M is a Riemannian n-manifold, n > 2, the map
T:X(M)xX(M)xX(M)— X(M)
defined by
T(X,Y,Z2)=(Y,Z)X — (X, Z2)Y

is C°°(M )-multilinear and parallel (with respect to the Levi-Civita connection),
because

HVwX, 2)Y = (VwY, )X + (X, Z)VwY — Y, VwZ2)X + (X, VwZ)Y =0.
Putting (VT)(X,Y1,....Y,) = (VxT)(Y1,...,Y;) the second identity of Bianchi

can be stated as follows.

Proposition 4.1.5. The curvature tensor R of a Riemannian n-manifold M sat-
isfies
(VR)(W, X,Y,Z) + (VR)(X,Y, W, Z) + (VR)(Y,W,X, Z) = 0
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for everyW, X, Y, Z € X(M).

Proof. Since VR is C°°(M )-multilinear, it suffices to prove the identity at a point.
Let p € M and let (U, ¢) be a normal chart of M at p with ¢ = (x!,...,2"). We
need only consider the case

19) 0 0 19)
W=om X~ Y=o %~ ga

Since the chart is normal at p, the Christoffel symbols vanish at p and therefore

0
Vizwags ~ 0
for all 1 <4,5 <n. It follows that
0 0 19, 19) 0 19) 0
VR 55 507 o 3P = V2o, ™G g ot
Since
0 19, 0 19, o .0 19, 0 .0
Vo lRg s oo PV alilom ai)an T Vi om 7)o
0 0 0 0 19) 0 19) 0 0
(g0 3V sz ) T Bl g0V 2 ) T Blgum 50 (Vo 5
we get

(VR)(W,X,Y, Z)(p) + (VR)(X,Y, W, Z)(p) + (VR)(Y, W, X, Z)(p)

= R G (T, ) + RIS o)) ) )

9t

) ) )
HR((5 7 (500 (V) 57) =0+0+0=0 O

If (U, ¢) is a chart of M with ¢ = (z!,...,2"), setting
o o0 0 0
Viltjkim = <VRm> <a_ 2% Bl —axm>

— Z T3 Ratim — O Ui Risim — O TiiRjksm — Y Ui Rjkis
s=1 s=1 s=1

the second identity of Bianchi locally takes the form

ViRjgim + VjRiitm + Vi Rijim = 0.
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4.2 Sectional curvature

The curvature tensor of a Riemannian manifold can be encoded through an arith-
metical quantity, which is called the sectional curvature and had been originally
introduced by C.F. Gauss in his differential geometry of surfaces in the euclidean
3-space.

Let M be a Riemannian n-manifold, n > 2, and let R be the curvature tensor
of (the Levi-Civita connection of) M. Let p € M and u, v € T,M be linearly
independent tangent vectors spanning a 2-dimensional vector subspace S of T),M.
The real number

B (R(u,v)v,u)
5olS) = Tl ol = w2

depends only on S and not on the choice of the particular basis {u,v}. Indeed, if
{u1,v1} is another basis of S, there are a, b, ¢, d € R with ad — be # 0 such that

u; = au+ cv, v = bu+ dv.

Then,
2

O ull? - ol = (u,0)?)

Jur||* - [Jor || = (ug,v1)? = d

and form Proposition 4.1.3

2

a b (R(u,v)v,u).

(R(uy,v1)v1,u1) = e d

Note that the denominator |lu? - ||v]|?> — (u,v)? is the square of the area (with re-
spect to the Riemannian inner product in 7, M) of the parallelogram with sides u, v.

Definition 4.2.1. If p € M and S is a 2-dimensional vector subspace of T),M, the
real number K,(95) is called the sectional curvature of M at p with respect to S.

It is obvious that the sectional curvature is invariant under local isometries.
The complete determination of the curvature tensor by the sectional curvatures is
a purely algebraic fact.

Lemma 4.2.2. Let (V,(.,.)) be a real inner product vector space and let Ry,
Ry : VXV xV xV — R be two multilinear forms having the properties (a)-(d)
of Proposition 4.1.3. If Ri(u,v,v,u) = Ra(u,v,v,u) for every pair o linearly
independent vectors u, v € V, then Ry = Rs.

Proof. Putting R = Ry — Ra, it suffices to show that if R has the properties (a)-(d)
of Proposition 4.1.3 and R(u,v,v,u) = 0 for every u, v € V, then R =0. As a first
step we have

0=R(v+w,u,u,v+w) =2R(v,u,u,w).

Thus,
0=R(v,s +w,s+w,u) =R(v,s,w,u) + R(v,w, s, u)
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for every s, v, w, u € V. Finally,
0 = R(u,v,w,s) + R(v,w,u,s) + R(w,u,v,s)

= R(u,v,w,s) — R(v,u,w,s) — R(u,w,v,s) = 3R(u,v,w,s). O

Corollary 4.2.3. Let M be a Riemannian n-manifold, n > 2, and p € M. If there
exists ¢ € R such that K,(S) = c for every 2-dimensional vector subspace S of T,M,
then

R(u,v)w = c((v, w)u — (u, w)v)

for every u, v, w € T,M. [

By the definitions, the euclidean n-space R™, n > 2, has constant sectional
curvature equal to zero.

Example 4.2.4. We shall compute the sectional curvature of the hyperbolic n-space
H’% of radius R > 0. Recall from Example 3.3.5 that

H% = {(p1,-.-,pn) € R" : p, > 0}

and the Riemannian metric is
9ij (D1, Pn) = p—25z‘j, I1<1l,7<n.

First we shall calculate the Christoffel symbols which for each 1 < ¢,j < n are the
solutions of the linear system

n

1[8g; Ogmi  OGii
erjgkng[ oy
k=1

ozt oxi  Ox™
for every 1 < m < n. Since

agij 2R2
ox™

substituting we find
1
FZL = _ﬁ(éjm(sm + 5ml5jn - 5@]6mn)

for every 1 <1,7,m < n. Now for every 1 <i,5 <n— 1 we have

o by 0 0 1 9
Voogd o Vokaw -z 9w
and also 5 ) 9
Vol gan T o o
It follows that
0 1 0 1 0 1 0
V oV s =——V s =—V s — =
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0 1 0 1 0 2 0
V.oV =——V o — — = —.
e 5u1 a am " 5w O + (zm)? 9zt (2™)? Ozt
Therefore,
g 0,0 1 0

Rt 50 e = "oz ot

and the sectional curvature of HY at any point p = (p1,...,p,) € HpE with re-

spect to the 2-dimensional vector subspace S of T,HY which is generated by
0 0 .
(2, (2, i

—égn(]?) 1

K = D) ~ R

»(5)

Since for every ¢ € H% and every pair of orthogonal vectors u, v € T,;HY with
|lul| = ||v|| = 1 there exists a hyperbolic isometry h : H — H', such that h(e,) = ¢

and
0 0
(), = (), =

1
it follows that H, has everywhere constant sectional curvature 2k
The following criterion which gives a condition that ensures everywhere constant
sectional curvature is due to F. Schur.

Theorem 4.2.5. Let M be a connected Riemannian n-manifold, n > 3. If there
exists a function f : M — R such that K,(S) = f(p) for every 2-dimensional vector
subspace S of T,M and every p € M, then f is constant.

Proof. Firstly we note that f is necessarily smooth, because if X and Y are two
smooth local vector fields with || X| = [|[Y] = 1 and (X,Y) = 0, then locally
f = (R(X,Y)Y,X). Our assumption and Corollary 4.2.3 imply that R = f - T,
where T is the parallel C°°(M)-multilinear map of Example 4.1.4. Thus,

VxR=f-VxT+Xf-T=Xf-T

for every local smooth vector field X. If now {X,Y, Z} is a local orthonormal frame

on M, that is {X,,Y},, Z,} is an orthonormal basis of T,M for every p in an open

subset of M, from Proposition 4.1.5 (the second identity of Bianchi) we have
0=(VxR)(Y,Z,2Z) + (VyR)(Z, X, Z) + (VzR)(X,Y, Z)
=Xf-(2,2)Y =Y, 2)2)+Y - (X, 2)Z = (2, 2)X)+ Zf - (Y, Z)X = (X, 2)Y)

Xf-Y-Yf-X.

Hence X f = Y f = 0. This shows that the derivative of f vanishes everywhere on
M. Since M is connected, f must be constant. [J
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4.3 Submanifolds of the euclidean space

In this section we shall compute the curvature of a k-dimensional smooth subman-
ifold M of the euclidean space R™*1, n > 2, endowed with the Riemannian metric
which is induced from the euclidean Riemannian metric on R"*!. We can identify
the tangent space T,M at a point p € M with a vector subspace of R"*! and a
tangent smooth vector field X of M with a smooth map X : M — R"*! such that
Xy € T,M for p € M. The value Vx,Y of the Levi-Civita connection V of M for
X, Y e X(M), pe M, is the tangent to M component of the directional derivative
DY (p)(X,) of Y at p with respect to X,. Let B,(X,,Y) € (T,M)* be the orthogo-
nal to M component of DY (p)(X,). If f € C>°(M), the orthogonal to M component
of D(fY)(p)(Xp) = f(p)DY (p)(X,) + Xp(f) - Y(p) coincides with the orthogonal to
M component of f(p)DY (p)(X,). This means that B,(X,, fY) = f(p)Bp(Xp,Y),
for every f € C>°(M) and p € M, which implies that B,(X,,Y") depends only on
Y,. So there is a well-defined bilinear map

B, : T,M x T,M — (T,M)*

which evidently depends smoothly on p, meaning that B,(X,,Y}) is a smooth func-
tion of p € M for every X, Y € X(M). By definition

DY (p)(Xp) = Vx,Y + Bp(Xp, p)
for every p € M and X, Y € X(M).
Lemma 4.3.1. The bilinear map B, is symmetric for every p € M.

Proof. Let (U,¢) be a chart of M around the point p € M with ¢ = (z!,...,z%)
coming from a M-straightening chart of R**1. It suffices to show that

Byl (o)) = Byl )y (o))

for every 1 <1i,j < k. Recall that

0 _ 90"
ort Ot

¢

on U, as a vector field in R"*! along U € M. Since ¢! : ¢(U) - U C M C R**!
is smooth, we have

0., 0., ¢!

0?¢1 0 0
(Bxi )(@)  Qxidxd

= Oaidai 0= Digg

0 ¢

507 ()

from which the symmetry of B, follows. [

The curvature tensor of M can now be represented completely in terms of this
bilinear form and the Riemannian metric.
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Proposition 4.3.2. The covariant Riemann curvature tensor of M is given by the
formula

for X, Y, Z, WeX(M).

Proof. Since both sides are C'°° (M )-multilinear, it suffices to prove the formula for
the basic local vector fields

0 0 0
ozt Oxi’ ox!

with respect to a chart (U, z!,...,2*) of M. Then,
R(X,Y)Z =VxVyZ —-VyVxZ

and DX (DY (Z)) = DY (DX(Z)), as in the proof of the preceding Lemma 4.3.1.
But

DX (DY (Z))=DX(VyZ)+DX(B(Y,Z)) =VxVyZ+B(X,VyZ)+DX(B(Y,Z))
and similarly
DY (DX(Z))=VyVxZ+ B(Y,VxZ)+ DY (B(X, Z)).
Subtracting we obtain
R(X,Y)Z =-B(X,VyZ)+ B(Y,VxZ)—-DX(B(Y,Z))+ DY (B(X, Z))
and therefore
(R(X,Y)Z,W)=—(DX(B(Y,2)),W)+ (DY (B(X,Z)),W).
Also, differentiating the equation (B(Y,Z), W) = 0 in the direction of X we get
0=X(B(Y,2),W)=(DX(B(Y,2)),W)+(B(Y,Z),DX(W))

= (DX(B(Y,2)),W) + (B(Y, Z), B(X,W))

and similarly
(DY (B(X,Z2)),W)+(B(X,Z),B(Y,W)) =0.

Substituting now yields the formula. [J

In the particular case of a hypersurface M in R™*!, that is k = n, if (U, ¢) is a
chart of M, there exists a unique up to sign (assuming that U is connected) unit
normal vector field N along U C M. This is a smooth map N : U — S c R*H!
such that (T, M)t is generated by N(p) for every p € U, which is called the Gauss
map on U. There is then a symmetric bilinear form 11, : T,M x T,M — R such
that

B(u,v) = I11,(u,v)N
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for every u, v € T,M, which is called the second fundamental form of M at the
point p € M (with respect to N). The formula of the preceding Proposition 4.3.2
becomes
(R(u,v)w, s) = I1,(v,w)I,(u,s) — II,(u, w)II,(v,s)
for all u, v, w, s € T,M and p € U.
The sectional curvature of M at the point p with respect to the 2-dimensional
vector subspace S of T,M with basis {v, w} is

(9) = I, (v, ) Iy (w,w) — I1,(v,w)?
me [0 [Jw]* = (v, w)?
If M is a surface in R?, this is the Gauss curvature of M at p.

Note that the covariant Riemann curvature tensor and the sectional curvature
of M do not depend on the choice of V.

Since T, M = T,y S™ as vector subspaces of R™*! if X and Y are local smooth
vector fields tangent to M on U, the derivative Ny, : T,M — Ty, S™ = T, M at
p € U of the Gauss map satisfies

0=Xp(Y,N) = (Np(X,), Yp) + (N(p), DX (p)(Y (p)))
= <N*p(Xp)7Y}2> + IIp(Xpa Yp)-

Hence the second fundamental form of M at p is given by the formula

IT,(u,v) = —(Nip(u),v), u,veT,M.

It follows from this and the symmetry of the second fundamental form that N, is
self-adjoint and therefore has real eigenvalues, which are the principal curvatures of
M at p. The corresponding eigenvectors define the principal directions of M at p.

Example 4.3.3. We shall apply the above in order to calculate the curvature tensor
and the sectional curvature of the sphere S% of radius R > 0 in R™*1. In this case
there is a globally defined Gauss map IV : S — S™ by

for every p € S. The second fundamental form is thus

IT,(u,v) = —%(u, v)

and the sectional curvature of S at the point p with respect to the 2-dimensional
vector subspace S of T),S% with orthonormal basis {u,v} is

K, (S) = IT,(u, u)I L, (v, v_II,(u,v)* = (_%) (_%) o= %_

The covariant Riemann curvature tensor is given by the formula
1

and the curvature tensor is

R(X,Y)Z = %((Y, 2)X — (X, 2)Y).
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4.4 Riemannian submersions

Let M, N be two Riemannian manifolds and let f : M — N be a submer-
sion onto N. From Corollary 1.3.5, for each ¢ € N the level set f~!(q) is a
smooth submanifold of M and T,f !(q) = Kerf,, for every p € f~1(q). We
shall use the notation T/M = T, f~1(¢q) and call this vector space the vertical
subspace of T,M (with respect to f), and TZ?M for the orthogonal complement
of Ty M in T, M with respect to the Riemannian metric, which will be called the
horizontal subspace of T,, M. Obviously, f., maps TZ?M isomorphically onto T'y(,) M

Definition 4.4.1. A submersion f : M — N onto N is called Riemannian
submersion if f,, maps TI?M isometrically onto ',y M for every p € M.

_ If f: M — N is a Riemannian submersion and X € X'(IV), there exists a unique
X € X(M) such that X, € TI'M and f.,(X,) = Xy, for every p € M, which is
called the horizontal lift of X.

Lemma 4.4.2. If f: M — N is a Riemannian submersion, then

- 1 ~ -
ViV = ViV + o [X, Y]

for every X, Y € X(N), where [X,f/]; is the wertical component of [X,Y], for
p € M which depends only on )E'p and ffp.

Proof. Let X, Y, Z € X(N) and let X, Y, Z € X(M) be their corresponding
horizontal lifts. Let ¢ € N, p € f~1(q) and V,, € Ty M. There exists a (not unique)
extension of V), to some V' € X(M) with V; € TYM for every x € M. Thus, V is
orthogonal to X Y and Z. Moreover, the smooth function (X,Y) takes the constant
value (Xg,Yq) on the level set f~ 1(q), because f is a Riemannian sumbersion, and
therefore V(X,Y) = 0, since V is vertical. Also, X(Y,Z) = X(Y,Z), from the
definition of the horizontal lifts and the chain rule. However,

- <v)~(ff 2)+ X(X.¥) — (X, V,7) + (V[X, 2]
=(VY,Z) —(X,V;Y)+ Z(X,Y) + (Y,[X, Z])

(
and similarly X(Y,Z) = (VxY,Z) — (X, V2zY) + Z(X,Y) + (Y, [X, Z]). Hence
(VY,Z) - (X,V;Y) = (VxY,Z) — (X,VzY).
In the same way from the equality Y (X, Z) = Y(X, Z) we get
(VY. Z)+(X,V;Y) = (VxY,Z) + (X,V;Y).

Consequently, (V3Y,Z) = (VxY, Z).
On the other hand,

0=V(X,Y)=(ViV,Y)+(V,X],Y) + (VyY,X)
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= (VY V) + 0+ (Vi V, X) +([V,Y],X) = —(ViY,V) = (V3 X, V) + 0

because [V, X] and [V, Y] are vertical. This shows that V pr/ -

and from the above

1 ~ ~
S Y e M

S T - .

(vf(py - §[X’Y]p’ Zp) = <VXPY’ Zp) = (Vx,Y, Zg) = (VXY )p, Zp).
Finally, since (V, [X,Y]) = (V, VXY/ - Vf/f() = —<V)~(V,}~/> +(VyV, X) it follows
that [X, }7];’, depends only on Xp and f/p. O

Corollary 4.4.3. Let f : M — N be a Riemannian submersion, v : I — N be a
smooth parametrized curve and 4" : I — M be a horizontal lift of v, which means
that 4" (t) € Tf:h(t)M and f o~y =~ for every t € I. Then, v is a geodesic of N if

and only if ¥ is a geodesic of M.

Proof. From the preceding Lemma 4.4.2 follows immediately that

Di" Dy Loy o Dy
— =L M)A ==L O

The following formulas relating the curvature tensors and the sectional curva-
tures of the base space and the total space of a Riemannian submersion were found
by B. O’Neil and are known in the literature with his name.

Theorem 4.4.4. ~Leth : M — N be a Riemannian submersion, X, Y, Z, W €
X(N) and X, Y, Z, W € X(M) be their horizontal lifts, respectively. Then,
(a) the covariant Riemann curvature tensor of N is given by the formula

(R(X,Y)Z,W) = (R(X,Y)Z,W) —

(b) If u, w is an orthonormal basis of a 2-dimensional subspace S of TyN, q € N,
and S is the horizontal lift of S at a point p € f~1(q), then

- 3 -
Ky(8) = Kp(3) + [ a]"> > K, (3),
where u, w € T,M are the horizontal lifts of u and w at p, respectively.
Proof. As in the proof of Lemma 4.4.2, if V € X (M) is vertical we have

0=(VvZ,W)+(Z,VvW)=(VvZ, W)+ (Z,V3V)+(Z,[V,W])

= (W2, W) = (V, V5. 2) +0 = (W2, W) = (V,TwZ) + 5V, 12,7]")
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and therefore 1
(Vv Z,17) = =3 (V.[Z,W]").

Again as in the proof of Lemma 4.4.2 we have X (Vo Z, W) = X(Vy Z,W). But

from Lemma 4.4.2. Consequently,

(VVeZ, W) = X(VyZ,W) — (VyZ,VxW) — %([?,Z]v, (X, W]°)

= (VxVyZ,W) — i<[?, 2%, X, W1")

and similarly

VoV Z, W) = (VyVaZ,W) - i([f(, 2, [V, W),

Moreover, applying what we have proved in the beginning to the particular case
V =[X,Y]" and Lemma 4.4.2 we obtain

Vg 712 W) = Vg yp 2, W) + (Viz 30 Z, W)

= (Vi) 2, W) — 5{[X, FT, 12, W],

Substituting we get the formula of assertion (a). The assertion for the sectional
curvature is an immediate consequence of (a) taking Z =Y and W = X. O

Example 4.4.5. We shall apply the above in order to calculate the sectional cur-
vature and the covariant Riemann curvature tensor of the Fubini-Study metric on
the complex projective space CP™, n > 2, which was defined in Example 3.3.6. By
the definition of the Fubini-Study metric, the Hopf map 7 : §?**! — CP" becomes
a Riemannian submersion, if on S?"*! we consider the standard euclidean Rieman-
nian metric of constant sectional curvature 1 according to Example 4.3.3. Recall
from Example 3.3.6 that for each z € S?"*! the vertical subspace TV S?"*! is gener-
ated by the vector iz. The vertical smooth vector field V € X (S?"*!) with V, =iz
obviously extends to a smooth vector field on C"*1\ {0} given by the same formula
and
ViV =DV(X)=iX

for every horizontal X € X(S§%"*+1). Thus, if X, Y € X(S?**1) are horizontal, we

have

X
((X,Y],V) = (VY V) — (Ve X, V) = (Y, ViV) + (X, Vs V)
= —(V,iX) 4+ (X,iY) = 2(X,iY).
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Therefore, [X, Y] = 2(X,iY)V.

If now {u,w} is an orthonormal basis of a 2-dimensional vector subspace S of
T () CP", according to Theorem 4.4.4 the sectional curvature at 7(z) with respect
to S is

3
Kﬂ@@):1+ZW@J®VH:1+m@JmW.

Note that if @ = i@, then K (,)(S) = 4 and if (a,iw) = 0, then K;(,)(S) = 1. By
continuity, this implies that the sectional curvatures at each point of CP™ cover the
interval [1,4].

Finally the covariant Riemann curvature tensor is given by the formula

(R(X,Y)Z,W) = (Y, Z) (X, W) — (X, Z/(Y, W) — (X, iZ)(X,iW)
Y iZWX W) — 24X, iYW Z,iW)

using the formula of the curvature tensor of S?"*! found in Example 4.3.3.

4.5 The Ricci tensor and Einstein manifolds
Let M be a Riemannian n-manifold and p € M. The bilinear form
Ric, : T,M x T,M — R

defined by Ricy(u,v) = TrR(.,u)v is symmetric, because if {v1,...,v,} is an or-
thonormal basis of T,,M, then from Proposition 4.1.3 we have

Ricy(u,v) = ZRm(vj,u,v,vj) = ZRm(v,vj,vj,u)
j=1 j=1

n
= Z Rm(vj,v,u,v;) = Ricy(v,u).

j=1
The C°°(M)-bilinear form Ric : X(M) x X(M) — C°°(M) defined in this way is
called the Ricci tensor of M. If v € T,M and ||v|| = 1, the real number Ricy(v,v) is
called the Ricci curvature of M at p in the direction of v and it can be expressed in
terms of sectional curvatures as follows. Let {vi,...,v,} with v, = v and let S; be
the 2-dimensional vector subspace of T, M with basis {v;,v}, 1 < j <n — 1. Then,

n—1 n—1

Ricy(v,v) = ZRm(vj,v,v,vj) = ZKP(Sj).

J=1 J=1

If (U, ) is a chart of M with ¢ = (!, ...,2™), the local components of the Ricci
tensor on U with respect to ¢ are

(0 0
RU = ]%’LC(@7 %> .



90 CHAPTER 4. CURVATURE

0 0
Since the matrix of R<"W>— with respect to the ordered basis
z

oxJ
%, %, e a;zn] is (Rﬁ-j)lgk,lgn, it follows that

n
Ry => R, 1<ij<n.
k=1
The trace Sc of the Ricci tensor is called the scalar curvature of M. More
precisely, for every p € M and u € T,M there exists a unique A(u) € T, M such
that Ricy(u,v) = (A(u),v) for all v € T,M. The so defined map A, : T,M — T,M
is obviously linear and self-adjoint, because Ric, is symmetric, and by definition
Sc(p) = TrAp. If {vq,...,v,} is an orthonormal basis of T,,M, then

Sc(p) = ZRicp(vj,vj) = Z Rm(v,vj,v5,v;).
j=1 ij=1

In terms of the chart (U, ¢), if (a;j)1<ij<n is the matrix of A with respect to

o 0 0

the ordered basis [@’ 922 D

n
}, we have R;; = Zgjkaki, 1<4,7 <n,and

k=1
n n
therefore ay; = nglRu, 1<k,i<n. Hence Sc= Z g7 R;j, on U.
=1 i,j=1

According to Schur’s Theorem 4.2.5, if n > 3, the sectional curvature of M is
constant if and only if at each point p € M the sectional curvature K,(S) does not
depend on the 2-dimensional vector subspace S of T, M. In analogy, suppose that
the Ricci curvature at p € M in the direction of a unit tangent vector v € T, M
does not depend on v but only on p. In other words, suppose that there is a
smooth function f : M — R such that Ric,(v,v) = f(p) for every v € T,M with
|lv|| = 1 and p € M, which is equivalent to saying Ric = f - g, where as usual
g denotes the Riemannian metric. Then, necessarily Sc(p) = nf(p) for every p € M.

Definition 4.5.1. If M is a Riemannian n-manifold, n > 3, the C°°(M)-bilinear
form

Ric — %Q:X(M) x X(M) — C(M)

is called the traceless Ricci tensor of M.

Lemma 4.5.2. If M is a connected Riemannian n-manifold, n > 3, with vanishing
traceless Ricci tensor, then the scalar curvature of M is constant.

Proof. Let p € M and let (U, ¢) be a normal chart of M at p with ¢ = (z!, ..., 2z").

09ij i dg"
Then, g;;(p) = dij, a—m(p) =0, hence also ¢g”(p) = 9d;j, (%:—m(p) =0 for every

1 <4,j5,m < n, and the Christoffel symbols vanish at p. Thus, at the point p the
second identity of Bianchi becomes

OR jkim aRkllm aRz jilm
Ao (P) + 5 (p) + — = (p) = 0
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and for every 1 <1i < n we have

BSC "9 OR
ik _ 39 _ T Ckjk
7,k=1 j=1 7,k=1
3Rmk "\ ORik "\ OR;ki ORpjik
B S T L T 41 (p) ~(p)
Pyt Ox Pyt oxd Pyt Ox Pyt oxJ
6RJ;W - aR?m " ORy
=2 Z =2 Z Tk P) =22 5 (P)-
Jk=1 Jk=1 k=1

. : Sc : .
If the traceless Ricci tensor vanishes, then R;; = —g;; on U and differentiating at
n

the point p
3RZ“ 1 0Sc
8:::’?] (p) = . @(P) - 045

for every 1 < 4,7,k < n. Substituting we get

0Sc 2 0Sc

dSc : : . o
and therefore ﬁ(p) =0 for every 1 < i < n. Since M is connected, this implies
x
that Sc is constant. [J

Definition 4.5.3. A connected Riemannian n-manifold M, n > 3, is called an
Einstein manifold if its traceless Ricci tensor vanishes.

Thus, the Einstein manifolds are precisely the Riemannian manifolds with
constant Ricci curvature. The following observation is due to J.A. Schouten and
D.J. Struik.

Proposition 4.5.4. A connected 3-dimensional Finstein manifold M has constant
sectional curvature.

Proof. Let p € M and let S be a 2-dimensional vector subspace of T,M. Let
{v1,v2,v3} be an orthonormal basis of T,M such that {vi,vs} generates S and let

S;; denote the 2-dimensional vector subspace of T,M with basis {v;,v;}, i # j.
Then, S = 512 == 521 and

Ricy(vi,v1) = Kp(S12) + Kp(S13),
Ricp(vg,vg) = Kp(Szl) + Kp(Szg),

Ricy(vs, v3) = Kp(S31) + Kp(S32).

Therefore,
Ricy(v1,v1) + Ricy(va, v2) — Ricy(vs, v3) = 2K,(5).
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Since M is a 3-dimensional Einstein manifold, we have Sc(p) = 3Ricy(vj, v;), for all
7 =1,2,3. It follows that

1
Ky(S) = £5e(p)
and by Schur’s Theorem 4.2.5 the sectional curvature of M is constant. []

Example 4.5.5. The preceding Proposition 4.5.4 does not hold in dimensions
greater then 3. We shall show that for n > 2 the complex projective space CP"
equipped with the Fubini-Study metric is an Einstein manifold. As we saw in
Example 4.4.5, the sectional curvature of CP" is not constant and takes all values
in the interval [1,4]. Let p € CP™ and let {vy, ..., Uy, Unt1, ..., V25, } be an orthonormal
basis of T,CP" with horizontal lift {91, ..., 0y, Op41, ..., U2, } With respect to the Hopf
map 7 : St — CP" so that ©,,1 = i0y,..., V2, = iUp. From the formula of
the covariant Riemann curvature tensor of CP™ of Example 4.4.5, for every u, w €
T,CP™ we have

(R(vj, w)w,vj) = (@, w) — (05, w)(a, v;) — (0, iw)(w, iv;)

+(@, i) (0, i05) — 2(w, i0;) (05, 1)

= (u, w) — (05, W) (4, 0j) + (@, i0;) (W, i0;) + 2(u, i0;) (W, i0;).

Hence
2n
Ricy(u,w) = Z (R(vj,u)w,vj)
j=1
2n 2n 2n
= 2n(u, w) — Z (a, ®j><u~)a ij> + Z (a, i6j><@a i®j> +2 Z (a, i6j><@’ Z.ij>
j=1 j=1 j=1

= 2n(u,w) + 2{u,w) = (2n + 2)(u, w).

The traceless Ricci tensor should not be confused with the Einstein (gravita-
tional) tensor

, Sc
Ric — -9

which is important in General Relativity, as it occurs in Einstein’s Equation
Sc
Ric — 79—|—Ag =8rT

in which A € R is the cosmological constant and 7" is the energy momentum tensor
describing the distribution of matter (in units where the gravitational constant and
the velocity of light are equal to 1). The first part of the proof of Lemma 4.5.2
actually shows that the Einstein tensor is divergenceless.
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4.6 Exercises

1. Let M be a parallelizable smooth n-manifold and X, Xo,..., X,, € X(M) such
that {X1(p), X2(p), ..., Xn(p)} is a basis of T,M for every p € M. Prove that the
formula

Vx <g:1 kak> = éX(fk) - Xk

for X € X(M) and f1, fa,..., fr € C°°(M) defines a connection on M with
vanishing curvature tensor.

2. Let V be a connection on a smooth manifold M. Let p € M and let (V,¢) be
a normal chart at p. Let E(p) € T,M. For every ¢ € V we consider the parallel
translation E(q) € T,M of E(p) along the geodesic radius in V' from p to q.

(a) Prove that E is a smooth vector field on V.

(b) If the curvature tensor of V vanishes, prove that F is parallel that is VxE = 0
for every smooth vector field X on V.

3. Let V be a connection on a connected smooth manifold M with the following
property: For every p, ¢ € M the parallel translation from p to ¢ does not depend on
choice of the smooth path from p to ¢. Prove that the curvature tensor of V vanishes.

4. Let A = (aij)i<i j<n be a real symmetric matrix and

M ={(z,=(Az,z)) : x € R"}.

1
2
Find the second fundamental form of M at the point 0.

5. Prove that on a compact hypersurface in R**!, n > 2, there exists at least one
point at which the second fundamental form is positive (or negative) definite.

6. If M and N are two Riemannian manifolds, express the Riemann curvature
tensor of the Riemannian product M x N in terms of the Riemann curvature
tensors of M and N.

7. Prove that S™ x §", n > 2, with the product Riemannian metric, is an Einstein
manifold.

8. Explain why the Ricci tensor of a 3-dimensional Riemannian manifold completely
determines its Riemann curvature tensor.

9. Let N be a n-dimensional Riemannian manifold and M C N a smooth (n — 1)-
dimensional submanifold. Let U C N be an open set with U N M # @ on which
there is an orthonormal frame eq,...,e,_1, e, such that v = e, is always orthogonal
to M and the rest are tangent to M. The bilinear form h, : T,M x T,M — R
defined by

hp(X,Y) = (Vxv,Y)
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is the second fundamental form of M at the point p € U N M. The trace
n
H(p) = Z hy(ei, i)
i=1

of hy is called the mean curvature of M at p.
(a) Prove that h, is symmetric.
(b) Let (U, $) be a M-straightening smooth chart of N with ¢ = (z!,...,2") and

0
n—1 . e
p(UNM)CR" " x {0}. As usual let g;; = <(9:Ui’ 8£Ci>

, 1 <14,7 <n. Prove that
n—1 9 9 N
1) = X o5 505 )80

ij=1

where (ij)1<; jen1 = (97 1< j<n—1-



Chapter 5

Comparison Geometry

5.1 Variation of length

Let M be a Riemannian n-manifold. Let a, b € R, a < b, and v : [a,b] — M be
a piecewise smooth parametrized curve. A (piecewise smooth) variation of v is a
continuous map I' : (—e¢,€) X [a,b] — M, for some € > 0, such that there exists a
partition {a = tg < t; < -+ < t,, = b} of [a,b] for which ['|(_ ¢)x[t,_, ;) is smooth
for every 1 < i < m and I'(0,t) = ~(t) for every a < t < b. We say that I' fixes
endpoints if I'(s,a) = v(a) and I'(s,b) = «(b) for all |s| < e. The variation I' is
called smooth if it is a smooth map. The formula

or 0
V(t) = —(O,t) =T, 0, (—) , te€ [a, b] \ {to,tl, ...,tm}
Js OO\ 95 0,0)

defines a piecewise smooth vector field along ~, which is smooth in case the
variation I' is smooth, that is called the the variation field of T'.

Lemma 5.1.1. Let v : [a,b] — M be a smooth parametrized curve. Then, every
V € X(v) is the variation field of some smooth variation of v. The same holds
in case 7y is piecewise smooth and then the variation is only piecewise smooth. If
V(a) =0 and V(b) = 0, the variation fizes endpoints.

Proof. By the compactness of [a,b], there exists some § > 0 such that exp, (w)
is defined for all w € T, )M with |lw|]| < ¢ and ¢ € [a,b], form the existence of
uniformly normal neighbourhoods. If € > 0 is such that max{||eV (¢)|| : ¢ € [a,b]} =
9, we define I' : (—¢,€) x [a,b] — M by the formula

[(s,t) = expy) (sV (1))
Obviously, I' is a smooth variation of v whose variation field is

or

55 (0:1) = (exDy() )0 (V (1)) = V(1)

as the proof of Proposition 3.2.4 shows. The rest is obvious. [

95
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Let M be a Riemannian n-manifold, p, ¢ € M and let v: [a,b] = M, a, b€ R
with a < b, be a smooth parametrized by arclength curve from p to q. Let € > 0

and I' : (—¢,€) X [a,b] = M be a smooth variation of . Since ||§(¢)|| = 1 for every
t € [a,b], taking a smaller € if necessary, we may assume that (s,t) # 0 for every

|s| < e and t € [a,b]. The length of I'(s,.) is

at

or

—(s,t)||dt.

o)

The so defined length function L : (—¢,¢) — R of I is smooth and

U@:/uﬁ%W@gwmﬁ:/uﬁﬁwmg@mﬁ

15 (s, )1 FACKH|

In particular,

vo = [ &%) 0.0. 5 00

:/a [C;lt<gr (0,1), (2]; (0,1)) — <(8‘9£(O’t)’ %(%) (O’t)ﬁ dt
b .
- <g_1;(0’b) 8@5(0 o) = <§§<O7a>,2—5<o,a>>—/ <g—£(0,t),%(t)>dt.

Thus, assuming that I' fixes endpoints, we obtain the first variation formula

b .
) = - [ (G0, 2 0)

Proposition 5.1.2. A smooth parametrized by arclength curve v is a geodesic if
and only if it is a critical point of the length function of every smooth variation of
~ which fizes endpoints.

Proof. We shall use the notation of the preceding discussion. If 7 is a geodesic, then
from the first variation formula we have L'(0) = 0. For the converse we consider
any smooth function ¢ : [a,b] — [0,+00) and the smooth vector field

Dy
Tar
along 7. If moreover g(t) > 0 for a < t < b and g(a) = g(b) = 0, then V is the

variation field of a smooth variation I' of v which fixes endpoints, by Lemma 5.1.1.
The first variation formula and our assumption give

o=—Lme%&» H

V_

Since this holds for any such g, this implies that =0 on [a, b], which means

d

21

that v is a geodesic. [
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In order to derive a second variation formula, that is compute L”(0) for the
length function L of a smooth variation of a geodesic path v : [a,b] — M, we shall
need the following formula which is not at all unexpected if we recall the definition
of the curvature tensor.

Lemma 5.1.3. Let A C R? be an open set and let T' : A — M be a smooth map
into a smooth n-manifold M carrying a connection V with corresponding curvature
tensor R. Let V' be a smooth vector field along I, that is V : A — TM is a smooth
map such that V(s,t) € Trs )M for every (s,t) € A. Then,

D(DVY_D(DVY_(0r oy,
ds \ dt dt\ ds | ds’ ot )
Proof. 1t is sufficient to prove the formula in the local coordinates of a chart

(U,z',...,2™) of M assuming that I'(A) C U. There are smooth functions Vi,...,
V, : A — R such that

n P
=3 Vi(s.0) ( )
,Zl Ox; [(s,t)

for every (s,t) € A. Then,

DV av a -
W— 2V dt<6m2>

and

D(DVY Vi 9 N~V DO\ Vi DO
ds \ dt _i:1 9s0t Ox*  — Ot ds\Oa’ —~ O0s dt\0x'

2 (i(as))

DV
(—) if we interchange s and t. Subtracting,

A similar formula gives —

dt \ ds

2(2)-5(2)-£4(2 (%) - 5G]

If (T'y,...,I'),) is the local representation of I" with respect to the chart, we have

dt \ Ozt Vo

D(ON _ g 0 N0 oD
- %axi_jzl ot 34 02t

and therefore

D(D/( 0 " 97T 0 =0l )
£<%<59€2>> _j:1 088tvﬁaxi+ ot 'V%(v%ami)

j=1
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" 9T ) or; ory )
_;a 8tv%3xi+jk_l 5 05 Vi (Vi ag):

D(D/{ 0
Again —( — A is given by a similar formula interchanging s and t. Sub-
dt \ ds \ Ox*

tracting,
D(D/ 0 D(D/( 0
#(alor)-7(2(5))

B ar; ory ) SN I N )
2 oo Ve Vi)~ 2 o Ve (Vi ag)
Ji:k=1 jk=1

= Ory ory, 9 0
_jk: ot 0s <vaik (V%Bm’) V%(Vafk 8xl)>

This completes the proof. [

We proceed now to compute the second derivative of the length function of a
variation at the critical point 0, that is assuming that ~ is a geodesic. We continue to
use the same notations of the discussion preceding Proposition 5.1.2. Differentiating

L'(s) we find
bd (B )
L _ el dt\9s /> Ot dt
o= &( 12
:/b <£d2<%>,%£>dt+/b <£<2§x£<%§>>dt_/b (i (50 ) (5 (50 )
A a 151 a 155113

In particular

ro = [(E2 0.0, L0 [

[0 S0

2
dt

2 ()

Let V1t € X(v) denote the orthogonal to v component of the variation field
that is

or or or or
V) = 9o0,0) — (50,0, T 0.0 20,1
= 92(0.0) (200,051 ()

for every t € [a,b]. Since v is a geodesic,

<DvL ) = d
a T

(V+t,5) =o0.
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On the other hand

(%)

and substituting we get

2
000,40

2 Dvl()
O dt

Dv+t
o (t)

b b
10 = [ (G550 0+ [

From Lemma 5.1.3,

258 o0 B(E(E) oo~ (o) Fos

and

<R<gr (0, ),w)) @F) (0,1),4(1)) = —(R(VE(1), 4(£)3 (1), V(1))
Therefore,
(G GR0.0.5(0) = (2 200,450 +r( G 0.0.50) (5 ) 0:0.50)

@200, 3(1) — (RO, 5 ()3 (1), V(1)

Thus, we arrive at the formula

L'(0) = /ab [

since the variation I' fixes endpoints. The above calculation is due to J.L. Synge
and is known as Synge’s formula for the second variation of length. A second form
is the following.

2

DV+
S

(R4 (0). v%»] i

Theorem 5.1.4. Let 7y : [a,b] — M be a geodesic path parametrized by arclength
and let T' be a smooth variation of v which fizes endpoints. If V- is the orthogonal to
~v component of the variation field V of I' and L is the corresponding length function,

then
b PAYAR
£/0) = = [ V-0, 2o )+ RVEO A0 0)r

Proof. Since
2 4q DVt . Dyt

— 2L _ _

2w

and V+(a) = 0, V+(b) = 0, substituting to Synge’s formula we arrive at the result.
(]
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A consequence of Synge’s formula for the second variation of length is the
following important theorem of S.B. Myers.

Theorem 5.1.5. Let M be a connected, complete Riemannian n-manifold, n > 2.
If there exists r > 0 such that

. 1
Ricy(v,v) > (n — 1)ﬁ
for every p e M and v € T,M with ||v|| = 1, then the following hold.
(a) diam(M) < 7r.
(b) M is compact.
(¢) The fundamental group of M is finite.

Proof. (a) Let p, ¢ € M. By completeness, there exists a minimizing geodesic
v : [0,¢] — M parametrized by arclength with v(0) = p and ~(¢) = ¢, where
¢ = L(v) = d(p,q). It is sufficient to show that ¢ < 7r. We proceed to prove the
assertion by contradiction assuming that ¢ > 7r. Let E1,..., Ey_1, E, be a parallel
orthonormal frame along - such that E,, =%. For each 1 < j < n — 1 we consider
the smooth vector field V; along v given by the formula

Vi(t) = sin(%t) CEj(t), telo4].

Since V;(0) = 0 and V;(¢) = 0, each Vj is the variation field of a smooth variation of
v which fixes endpoints, by Lemma 5.1.1. Let L; denote the corresponding length
function. From Theorem 5.1.4 the second variation of the length function L; is

¢ 21/,
50) = = [ 050, 2540 + R, 05030

2

_ /Oﬁ Sinz(%t) D_? - Ky(t)(Sj(v(t))} dt,

where S;(y(t)) is the 2-dimensional vector subspace of T, M with basis
{E;(t),¥(t)}. Summing up

n—1 Y - ﬂ.2
S0 = [ snt (G)[in = 1 ~ ey )50
j=1

y4 2
. 9T ™ 1

by our assumption. This implies that there exists at least one 1 < j < n — 1 such
that L7(0) < 0. This means that the length function L; has a strict local maximum
at 0, which contradicts the fact that v is minimizing.

Assertion (b) is an immediate consequence of (a) and the completeness of M,
because M = exp,,(B,(0,7r)) for any p € M.

Assertion (c) follows from what we have already proved and some general
considerations about covering spaces of Riemannian manifolds. If o : M — M is
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the universal covering of M, according to Example 3.3.3, the universal covering
space M carries a Riemannian metric so that the universal covering map o becomes
a local isometry. By the path lifting property of covering spaces, each geodesic of
M is a lifting of a geodesic of M. This implies that if M is geodesically complete,
then so is M. Thus, if M satisfies the assumptions of the theorem, then they are
satisfied also by M. From (a) and (b) the diameter of M is at most 7 and M is
compact. Since o is a covering map of compact manifolds, its fibre is finite. But
the cardinality of the fibre is equal to the cardinality of the fundamental group,
because o is the universal covering map. This concludes the proof. [

The estimate diam(M) < zr is the best possible. For example, it is achieved
in the case of the sphere of radius r. Also, if the sectional curvature K of M is
everywhere positive but inf K = 0, then the conclusion of the theorem may not
hold. A simple counterexample is the paraboloid

M = {(z,y,2) €ER?: 2z = 2 +¢?}

which is a connected, complete, non-compact, smooth surface in R3 having every-
where positive sectional curvature.

There have been several applications of Myers’ theorem to General Relativity.
For instance, T. Frankel has used Myers’ theorem to obtain a bound for the size
of a fluid mass in a stationary space-time universe and G.J. Galloway made use
of Frankel’s method to prove a closure theorem, which has as its conclusion the
”finiteness” of the ”spatial part” of a space-time obeying certain cosmological as-
sumptions. Because of its importance, there are several generalizations of Myers’
theorem, the most known being the ones by W. Ambrose and E. Calabi.

5.2 Jacobi fields

Let M be a Riemannian n-manifold, n > 2, and let 7 : [a,b] — M be a geodesic path
parametrized by arclength. The second variation formula derived in the previous
section motivates the introduction of the symmetric bilinear form

b
1) = [0, ) - R0y, ) d

b DX
— - [ v, T 0+ B0 o)
a
which is called the index form and is defined on the vector space Dy(7y) of continuous,
piecewise smooth vector fields along v which vanish at a and b, and are orthogonal
to 7, because L"(0) = I(X, X), if X € X(v) is orthogonal to v and is the variation
field of a smooth variation of v with length function L. The vector space Dy(7y)
carries the inner product

b
(X,Y) = / (X (1), Y (1))dt.
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Obviously, the linear operator £ : X () — X(7) defined by

D?*X
— — R(X,%)A
I R(X, %)%

satisfies (L£(X),Y) = (X, L(Y)) = I[(X,Y) for every X, Y € X(v) N Dy(7) and is
therefore self-adjoint on X () N Dy(y).

L(X) =

Definition 5.2.1. A Jacobi field along a geodesic path « : [a,b] — M is a solution

of Jacobi’s differential equation
D*X
dt?

Thus, the Jacobi fields along ~ which vanish at its endpoints are elements of
the kernel of the self-adjoint operator £. Another source of motivation for Jacobi’s
equation is the following. Let I' : (—¢, €) X [a,b] — M be a smooth variation of v by
geodesics. This means that I'(s,.) : [a,b] — M is a geodesic for all |s| < e. Then,
the corresponding variation field V' is a Jacobi field along . Indeed, in this case we

have
D (oY
dat\ ot )]

and from Lemma 3.5.1 and Lemma 5.1.3

o_ D (D(OT\Y_D(D(O0\) (o oryor
~ ds \ dt \ Ot ~dt \ds \ Ot ds’ ot ) ot

_D(D (0P, p(OF ar\or
~dt \ dt \ Os ds’ ot ) ot

Evaluating at s = 0 we obtain

+ R(X,4)y =0.

D?*V
—z TRV 1)y =0.

If Ey,..., By, is a parallel orthonormal frame along the geodesic path -, for every
V € X(v) there are uniquely determined smooth functions, Vi : [a,b] = R, 1 <k <

n
n such that V = Z Vi - Eg. Thus, V is a Jacobi field if and only if
k=1

0= V/Ei+ > ViR(Ep )
k=1 k=1

n n n
=> WEx+> Vi Y _(R(Ew4), Ej)E;.
k=1 k=1 j=1
Hence Jacobi’s differential equation along ~ is equivalent to the system of linear
differential equations (with non-constant coefficients in general)

Vi + S TUR(E; )7, BR)V; =0, 1<k<n.
j=1
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From the existence and uniqueness of solutions for linear differential equations, for
every v, w € Ty, M there exists a unique Jacobi field V' € X(y) with initial
conditions

DV
dt
Moreover, the set of all Jacobi fields along v is a vector subspace of X'(y) of
dimension 2n.

V(a) = v, (a) = w.

Lemma 5.2.2. Let £ > 0 and ~y : [0,{] — M be a geodesic path parametrized by
arclength. If J € X(v) is a Jacobi field with J(0) = 0, then J is the variation field
of a variation of v by geodesics.

DJ
Proof. Let w = E(O) and vg = §(0). We think of w as an element of Ty, T o) M

Vo y
and consider any smooth curve v : (—¢,€) — Ty )M with v(0) = vg, v(0) = w,
where € > 0 is so small that the smooth variation I" : (—e,€) x [0,¢] — M of v by
geodesics with
D(5,1) = exp, o) (t0(5))

is defined. The variation field

or
V(t) = E(Ovt) = t(expy(o))*tvo (w)
is a Jacobi field along v and satisfies the initial conditions V(0) = 0 and
DV

W(O) = (expy(0))+0(w) = w. By uniqueness with respect to initial conditions,
V=J 0

The velocity field 4 of a geodesic path « parametrized by arclength is trivially a
Jacobi field along 7 and is the variation field of the trivial variation I'(s, t) = v(s+1t).
Non-trivial information for nearby geodesics of v can be obtained from normal
Jacobi fields. A Jacobi field J along a geodesic path « : [0, ¢] — M parametrized by
arclength is called normal if (J(t),4(t)) = 0 for every 0 < ¢ < /.

Lemma 5.2.3. Let v: [0,¢] — M be a geodesic path parametrized by arclength and
J € X(v) be a Jacobi field.

DJ
(a) J is normal if and only if (J(0),7(0)) =0 and <E(O),7(0)> =0.
(b) If J is orthogonal to + at two different times, then it is normal.

Proof. Since 7 is a geodesic and J is a Jacobi field along -, the second derivative of
the smooth function f : [0,¢] — R defined by f(t) = (J(t),5(¢t)) is

2
5" = (2 4) = ~(RUA)3,) = 0

from Proposition 4.1.3. This means that there are A\, 1 € R such that f(t) = X\ + p
for every 0 <t < /. Since

A= 10) = (220,40,
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DJ
it follows immediately that (J(0),54(0)) = 0 and (E(O),’}/(O» =0 if and only if
f = 0. The second assertion is obvious since f vanishes identically if and only if it
vanishes at two different times. [.

Corollary 5.2.4. The set of normal Jacobi fields along a geodesic path -y
parametrized by arclength is a vector subspace of X(7y) of dimension 2n — 2.

5.3 Conjugate points

Let M be a Riemannian n-manifold, n > 2, and p € M. Let « : [0,¢] — M be a
geodesic parametrized by arclength with v(0) = p. If 4(0) = v, then ¥(t) = exp,(tv).
The point 7(tg) is said to be conjugate to p along ~ if the derivative of the exponential
map

(expy)stov : Tt TpyM = TyM — T4y M

at tov is not an isomorphism. The dimension of its kernel is called the multiplicity
of ~(to).

The set of points of M which are the first conjugate points to p € M along
geodesics emanating from p is called the conjugate locus of p. By Sard’s theorem,
the conjugate locus of p has empty interior in M. The point p is called pole if its
conjugate locus is empty.

Example 5.3.1. On the n-sphere S%, n > 2, of radius R > 0, all geodesics emanat-
ing from a point p meet at its antipodal point —p, which lies at distance wR along
any such geodesic. The exponential map exp, maps B,(0,7R) diffeomorphically
onto S% \ {—p} and exp,(0B,(0,7R)) = {—p}. Thus, —p is conjugate to p along
any geodesic from p and since 0B,(0,7R) is a smooth submanifold of 7,5} of
dimension n — 1, the multiplicity of —p is equal to n — 1. Of course the conjugate
locus of p is {—p}.

The conjugate points can be characterized using Jacobi fields.

Proposition 5.3.2. Letp € M, ¢ > 0 and v : [0,{] — M be a geodesic path
parametrized by arclength with v(0) = p and ¥(0) = v. For 0 < ty < ¢, the point
v(to) is conjugate to p along v with multiplicity k if and only if the exists a non-zero
Jacobi field along v which vanishes at 0 and ty and the vector space of all these
Jacobi fields has dimension k.

Proof. As in the proof of Lemma 5.2.2, if w € T}, T,M = T,M, we consider any
smooth curve u : (—e,€) = T, M with u(0) = v, 4(0) = w, where € > 0 is so small
that the smooth variation I' : (—¢,€) x [0,¢] — M of v by geodesics with

P(s, ) = exp, (tu(s))
is defined. The variation field
or

J(t) = E(O,t) = t(expy,)wto (W)
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is a Jacobi field along v and on the interval [0, o] satisfies the boundary conditions
J(0) = 0 and J(to) = to(exp,)«tyv(w). The Jacobi field J is uniquely determined
by w and so the vector space of all Jacobi fields along ~ which vanish at 0 has
dimension n. For such a Jacobi field J as above we have J(tg) = 0 if and only if

(expp)sten(w) = 0. O

By Lemma 5.2.3(b), a Jacobi field which vanishes at 0 and ty is necessarily
normal to . The existence of conjugate points is the obstruction to the existence
of a solution to the general boundary value problem for Jacobi’s equation.

Proposition 5.3.3. Let £ > 0 and v : [0,{] — M be a geodesic path parametrized
by arclength. If v(0) and v(¢) are not conjugate along vy, then for every v € TyoyM
and w € Ty M there exists a unique Jacobi field J along v satisfying the boundary
conditions J(0) = v and J({) = w.

Proof. 1f Jy, Jo are two solutions of the boundary value problem, then J; — Jo
is a Jacobi field which vanishes at 0 and ¢. Thus, if y(0) and (¢) are not
conjugate along v, then J; — Jo = 0. In order to prove existence we consider the
n-dimensional vector space A of all Jacobi fields along v which vanish at 0. The
map T : A — T,y M with T'(J) = J(£) is a linear monomorphism, since y(¢) is
not conjugate to y(0) along v. Hence T is a linear isomorphism and this means
that for every w € T, ,)M there exists a unique Jacobi field J; along v such that
J1(0) = 0 and J1(¢) = w. Similarly, for every v € T, M there exists a unique
Jacobi field Jy along v such that J2(0) = v and J;(0) = 0. Thus, it is sufficient to
take J = J; + Jo. O

An important feature of conjugate points to p € M along a geodesic emanating
from p is that they occur after the first point at which the geodesic is no longer
minimizing.

Theorem 5.3.4. If ¢ > 0 and v : [0,4] — M is a minimizing geodesic path
parametrized by arclength, then no point v(sg) is conjugate to v(0) along ~ for
0<sg<Ht.

Proof. We proceed by contradiction assuming that y(sg) is conjugate to v(0) along
for some 0 < sg < £. According to Proposition 5.3.2, there exists a non-zero normal

D
Jacobi field J along v|( 5,) With J(0) = 0 and J(sg) = 0. Then (d—;](t), A(t)) = 0 for

DJ
0<t<sgand %(so) # 0. Setting J(t) = 0 for sy < t < ¢ we obtain an element
of Dy(y). We perturb J as follows. Let v : [0,¢] — [0, 1] be a smooth function such
that ¥(0) = ¢¥(¢) = 0 and ¥(sg) = 1, and let Z be the parallel vector field along -y
with Z(sg) = —%(so). For every € > 0 we define X, = J+ ey Z. By Lemma 5.1.1,

X, is the variation field of a piecewise smooth variation of v which fixes endpoints.
If L. is the corresponding length function, we have L.(0) = 0, by Proposition 5.1.2,
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L,,_{

by Synge’s formula. However,

and

— (R(Xc(8),7(1))7(t), Xe(2)) | dt

225" = [22] + otz + 2622 Doy
d DJ D%J DJ D ,
=B - By 22 Dy v @)z

and

(R(Xe, %), Xo) = (R(J,4)%, J) + 26(R(J, )3, Z) + E(R(WZ, %), b Z).

Substituting we find

“d DJ ¢ D%J N
£/ = [ GG = [+ RO D

v2 [ [B2 Doy - (raapivm]

2
:26/0 [jt@;]’w ) - <D zjﬂ/’Z> (R (7"Y)"Y7¢Z>}dt+)\62

2
+2e?

0. d DJ DJ DJ
=26 [ SR )G = 26 (s0) U0 Z(s0) A = 26 2 (s

where A € R is a constant. If A < 0, then L”(0) < 0 for every € > 0 and if A > 0,

2||DJ, |
then again L”(0) < 0 for 0 <e < XHE(SO)

€0 > 0 such that L”(0) < 0 for 0 < € < ¢y. This implies that + is not minimizing. [J

Thus, in any case there exists

We shall conclude this section with a result due o M. Morse and 1.J. Schonberg
which gives an estimate on the distance of conjugate points along a geodesic under
a curvature condition. It can be proved as an application of Wirtinger’s analytical
inequality.

Proposition 5.3.5. Let a > 0 and f : [0,a] — R be a C function. If f(0) =0 and
f(a) =0, then

2 “ !/ 2 2 * 2
o /0 (1)t > /0 ()2 fdt.

Proof. Tt suffices to prove that there exists a continuous function ¢ : (0,a) — R
such that the function fi¢ with (f¢)(t) = f(t)¥(¢) for 0 < t < a and (f¢)(0) =
(f1)(a) = 0 is continuous and

[ ey (Zr0) Jaz [0 - gowra
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We seek such a function v such that the equality holds. In order the equality to
hold, it is sufficient 1 to satisfy the ordinary differential equation

/ 2 772_
W+ + — =0.
a

Its general solution is

b(t) = -2 tan(zt + c>

a a
where ¢ is an arbitrary constant depending on initial conditions. For ¢ = —g we get
the solution

P(t) = —Etan<zt - z) = ECO'E<E7§>, 0<t<a.
a a 2 a a
Applying L’Hospital’s rule we have now
2(f(1))? cos(5t)
lim ))%Y(t) = lim 2 a
10+ (f( )) w( ) 50+ Sln(%t)
om 2f(t)f'(t) cos(5t) — (f(t))*Z sin(Zt)
= lim — — — 4 4 - =0,
t—0t a 2 cos(Z)t

since f is assumed to be C' on [0,a]. Similarly, lim (f(¢))*y(t) = 0. This choice
t—a~
of 1 now satisfies

= i [2f(t)f'(t)¢(t) () - —(f(t))?] i

T—0t J1

Let M be a Riemannian n-manifold and let v : [0,a] — M, a > 0, be a smooth
parametrized curve. Let also X € X(v) be such that X(0) = 0 and X(a) = 0.

Then,
a 2 2 [e
/ ﬁzﬁ/umw%.
0 a” Jo

Indeed, if {Ey, ..., E,} is a parallel orthonormal frame along 7, there are uniquely
determined smooth functions fi : [0,a] — R, 1 < k < n, such that

DX
v (t)

n
X =" fiEy
k=1
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and thus fi(0) = fr(a) =0, 1 < k < n. Wirtinger’s inequality gives

a 2 a N 2 N ra 2  ra
_ o> ™ 2y T :
A ﬁ_ﬂgxmmazﬁgM“mma ﬁAHMMﬁ.

Theorem 5.3.6. Let M be a Riemannian n-manifold, n > 2, and let v : [0,¢] — M,
£ > 0 be a geodesic path parametrized by arclength. We assume that there exists

1
r > 0 such that K ) (S) < 2 for every 2-dimensional vector subspace S of Ty M
and every 0 <t < . If y(¢) is conjugate to v(0) along v, then £ > xr.

Proof. Since «(¢) is assumed to be conjugate to v(0) along ~y, there exists a non-
zero Jacobi field J along v which vanishes at 0 and ¢, by Proposition 5.3.2. The
derivative of the smooth function f : [0,¢] — R defined by

76 = (0, 22 0)

is

Wi, 2

=[]

0=

DJ

t 1 J()|?
ﬁ() —p\l @l

by our curvature condition. Integrating we find

4 , 4 2 1 0 )
O_AfmﬁzA ﬁ—ﬁAWMWM

Applying Wirtinger’s inequality as in the above remark we get

I 5
5 | P>

ince J is non-zero > were.
S J L2 > a2 0

dt

D

ﬁ>—/W!Mt

5.4 Manifolds without conjugate points

The Riemannian manifolds without conjugate points, that is Riemannian manifolds
in which every point is a pole, is a distinguished class which contains the very
important class of Riemannian manifolds of non-positive sectional curvature as we
shall show now.

Proposition 5.4.1. If M is a Riemannian n-manifold, n > 2, with non-positive
sectional curvature, meaning that K,(S) < 0 for every p € M and every 2-
dimensional vector subspace S of T,M, then there are no conjugate points on M.
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Proof. We proceed to prove the assertion by contradiction. Suppose that ¢ > 0
and v : [0,/] — M be a geodesic parametrized by arclength for which there exists
a Jacobi field J along v with J(0) = 0 and J(¢) = 0. It is sufficient to show that
J = 0. We consider the smooth function f : [0,¢] — R defined by

76 = (0, 22 0)

whose derivative is )
D?J

rio = | 50| + .

2
_ H%@ — (R(J (&), 4(6)7 (1), T (1)

DJ 2 2 . 2 . 2
—r O = By (SO)ATON - 1Y@ = {J(2),5(t))7) = 0

where S(t) is the 2-dimensional vector subspace of T, ;) M generated by {.J(t),7(t)}.
Since f(0) = f(¢) = 0, this implies f = 0. It follows that

d DJ
—(J,J) = 2(—

and hence ||J|| is constant. Therefore, ||J(¢)|| = ||J(0)|| = 0 for every 0 < ¢ < ¢. O

JJ)=2f =0

Corollary 5.4.2. In the euclidean and the hyperbolic spaces there are no conjugate
points. [

The topology of a manifold admitting a complete Riemannian metric without
conjugate points is encoded in its fundamental group, because its higher homotopy
groups are trivial. This follows from a theorem proved by S. Kobayashi according
to which the universal covering space of a connected, complete Riemannian
manifold without conjugate points is diffeomorphic to the euclidean space of the
same dimension. In the topological literature, the topological n-manifolds whose
universal covering space is homeomorphic to R™ are called aspherical. Its proof is
based on the following.

Proposition 5.4.3. Let M be a connected, complete Riemannian n-manifold, N a
Riemannian manifold and f: M — N a smooth map with the following properties:
(a) f is surjective and
(b) expanding, that is || fup(v)|| > ||v|| for every v € T,M andp € M.

Then, N is also n-dimensional and f is a covering map.

Proof. Since f is assumed to be expanding, its derivative fi., : T,M — Ty, N
is a linear monomorphism and so the dimension of N is at least n. On the other
hand, since f is assumed to be surjective, it follows from Sard’s theorem that the
dimension of N must be at most n. Hence N is n-dimensional.

On M we introduce a new Riemannian metric with corresponding norm on the
tangent spaces denoted by |.|, putting |v| = || f«xp(v)]| for every v € T,M and p € M.
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If d denotes the Riemannian distance on M and p the distance with respect to this
new Riemannian metric, then p > d. Therefore, (M, p) is a complete metric space
and so is N. Replacing the Riemannian metric of M with the new one, we may
from the beginning assume that f is a local isometry.

Let ¢ € N and € > 0 be such that exp,, : B4(0,¢) — B(q,¢€) is a diffeomorphism.
Since f is a local isometry, the level set f~!(q) is discrete, hence countable. For
each p € f~!(q) the following diagram commutes.

exp,,

By(0,) ——— B(p,¢)

| |

exp,

B,(0,e) —— B(q,¢)

Consequently, f(B(p,€)) = B(q, €) and exp,, |, (0,¢) is injective. Since M is complete,
exp,(By(0,€)) = B(p,¢€) and therefore exp, g, (0, is a diffeomorphism as well as

f1B(p,e)- Obviously,
€

€ _
pEf1(a)
Conversely, let z € f~1(B(q, %)) and let v : [0, s] — B(q, %) be a minimizing geodesic
parametrized by arclength from f(z) to ¢, where 0 < s < € Let o be the

geodesic in M which is parametrized by arclength with initial conditions o(0) = z
and ¢(0) = f '(%(0)). Since f is a local isometry, f o o is a geodesic and

therefore f oo = ~. Hence f(o(s)) = q. Also, d(z,0(s)) <s< %, that is

z € B(o(s), %) C U B(p, %) This shows that
pef~(a)

U B3 =F"Ba5)
pef~(q)

€

. ) _ €
Finally, if p1, p2 € f~'(¢) and B(pl,i)ﬂB(pg,i)aé@, then p; € B(pa,e),

contradiction, because f|p,,.¢) is injective. [J
Theorem 5.4.4. If M is a connected, complete Riemannian n-manifold without

conjugate points, then the universal covering space of M is diffeomorphic to R™.

Proof. Let p € M. Since M is assumed to be complete and p is a pole, the
exponential map exp, : T,M — M is a surjective local diffeomorphism. On T, M
we consider the Riemannian metric which makes exp, a local isometry, according
to Example 3.3.3. The straight lines through the origin in 7,,M are mapped onto
geodesics of M and are therefore geodesics in 7,M with this metric. Since M is
complete, it follows that the geodesics in T, M through the origin are defined on
R. By Corollary 3.5.10, T,,M is complete. The assertion follows now as immediate
application of the preceding Proposition 5.4.3. [J
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Corollary 5.4.5. If a connected smooth n-manifold M admits a complete Rieman-
nian metric without conjugate points, then (M) = {0} for every integer k > 2. O

Corollary 5.4.6. If a connected smooth n-manifold M admits a complete Rieman-
nian metric of non-positive sectional curvature, then the universal covering space
of M is diffeomorphic to R™. O

Historically, Theorem 5.4.4 was proved by S. Kobayashi as a generalization of
Corollary 5.4.6, which had been proved much earlier by J. Hadamard in the case
of surfaces with non-positive Gauss curvature and by E. Cartan in the case of Rie-
mannian manifolds of non-positive sectional curvature.

5.5 The cut locus

Let M be a Riemannian n-manifold with corresponding Riemannian distance d. For
each p € M and v € T, M with |jv|]| = 1 we shall denote by =, the unique geodesic
with initial conditions 7,(0) = p and 4,(0) = v. We call

c(v) = sup{t > 0 : v, (t) is defined and d(p,,(t)) =t} € (0, +0o0]
the distance of p from the cut point along ~,.

Proposition 5.5.1. If 0 < s < ¢(v), then ’yv\[()’s} s the unique minimizing geodesic
path parametrized by arclength from p to ~,(s).

Proof. Let 0 < s < c(v). It is evident from the definition of ¢(v) that 7,|[ ¢ is min-
imizing. Suppose that there exists w € T, M with [Jw|| = 1 such that 7, (s) = v,(s)
and d(p, w(s)) = s = L(Ywljo,s]). Then, the concatenation (vu|[o,s)) * (Vol[s,q) has
length ¢ for every s < t < c(v). Since (Yulps) * (Vls,q) 18 minimizing, it is a
geodesic, by Proposition 3.5.6. Necessarily now 7w|[078} = %|[0’S]. U

Lemma 5.5.2. If M is complete and c(v) < +o0, then one of the following holds:
(i) The point ~,(c(v)) is the first conjugate point to p = ~,(0) along v, or
equivalently c(v) is the distance from p of the first conjugate point to p along .

(i) There exist at least two different minimizing geodesics from p = ~,(0) to

T (c(v))-

Proof.  According to Theorem 5.3.4, no point v,(t) is conjugate to p along -,
for 0 < ¢ < ¢(v). Thus, either v,(c(v)) is the first conjugate point to p along
v» or there exists a conjugate point v,(t) to p along =, for some ¢t > c(v), if
any. Let (tx)ren be a strictly decreasing sequence converging to c¢(v). Since M is
assumed to be complete, from the Hopf-Rinow Theorem 3.5.8, for each k € N there
exists a minimizing geodesic v, parametrized by arclength with initial conditions
Yo (0) = P, 0, (0) = vy such that v, (dx) = Yo (tk), where di = d(p,yv(tx)). By
compactness of 0B,(0,1), passing to a subsequence if necessary, we may assume
that there exists u € T, M with ||u|| =1 such that klim vk = u. If u = v, then the

——+o00
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exponential map exp,, is not injective on any open neighbourhood of ¢(v)v € T,M
and therefore ,(c(v)) = exp,(c(v)v) is conjugate to p along v,. In case u # v,
klim dr, = d(p,vv(c(v))) = ¢(v) and v, (c(v)) = Y, (c(v)). In other words, =, and 7,
—+00

are two different minimizing geodesics from p to 7,(c(v)). O

Theorem 5.5.3. The function ¢ : T*M — (0, +0o0] is upper semicontinuous. If M
is complete, then c is a continuous function.

Proof. Let v € T'M and let (vg)ren be a sequence in T'M converging to v. For

upper semicontinuity we need to show that limsup c(vg) < ¢(v). Let p, pp € M are
k—+o00

such that v € T,M, v, € T,,, M, k € N. If the sequence (c¢(vy))ken is unbounded,

there exists a diverging subsequence (c¢(v,, ) )men. For every ¢t > 0 we have eventually

c(vg,,) >t and by continuity of the exponential map liril Yo, (t) = Y (t). Hence
m—4-00 m

d(p, v (1)) = lm  d(py,, v, (1)) =1.

This implies that ¢(v) = 4o00. If the sequence (¢(v))ren is bounded, there exists a
subsequence (c(vg,,))men which converges to some ¢ € R. For every 0 < € < ¢ we
have

d(p,vo(c—€)) = Um d(pr,, Yo, ((0k,) =€) = lUm (c(op,)—€)=c—e
Hence c(v) > ¢. This shows the upper semicontinuity.

For the continuity assuming the completeness of M, we need to prove that
lkim inf c(vg) > c(v). It is sufficient to assume that we have a sequence (c(vg))ken
—+00

converging to some ¢ € R and prove that v,/ is not minimizing for ¢ > c(v).
Passing to a subsequence if necessary, because of Lemma 5.5.2, we consider two
cases.

Let 7y, (c(vg)) be the first conjugate point to p along v, for every k € N. In this
case, the point 7,(c) is conjugate to p along +,, by continuity, and hence c¢(v) < ¢,
by Theorem 5.3.4.

In the second case, we may assume that for every k& € N there exists
wy, € TyM with [|[wg|| = 1, such that vy # wi and Vi, |[0,c(v,) s Minimizing with
Yuy, (€(Vk)) = Y, (c(vg)). Passing to a subsequence if necessary, we can further
assume that the sequence (wg)ren converges to some w € T,M with ||w|| = 1,
by compactness. Then, v, (c) = v (c). If w # v, obviously ¢(v) < c. If w = v,
then exp, is not a diffeomorphism on any open neighbourhood of cv. Hence
Yw(c) = exp,(cv) is conjugate to p along v, and again c(v) <c. [J

The preceding Theorem 5.5.3 combined with Theorem 5.3.4 give the following
compactness result of W. Ambrose.

Corollary 5.5.4. Let M be a connected, complete Riemannian n-manifold, n > 2.
If there exists a point p € M such that along every geodesic emanating from p there
exists a conjugate to p point, then M is compact.
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Proof. Our assumptions and Theorem 5.3.4 imply that c(v) < 4oo for every
v € T,M with |jv|| = 1. From Theorem 5.5.3 the function ¢ : T*M — (0,+0c0) is
continuous and thus there exists ¢ > 0 such that 0 < ¢(v) < ¢ for all v € T,M with
vl = 1. The Hopf-Rinow Theorem 3.5.8 now implies that M = exp,(B,(0,c)).
Hence M is compact. [J

Let M be a connected, complete Riemannian n-manifold, n > 2. For every
p € M the set
C(p) = expp({c(v)v :v € TyM with [jv]] =1 and ¢(v) < 4o00})
is called the cut locus of M at p. The subset
{tv: 0 <t <c(v),veT,M,l|v|]=1}

of T), M is the largest star-shaped on which the exponential map exp, is a diffeo-
morphism and

exp,({tv : 0 <t < c(v),v € T,M, ||v|| = 1}) = M \ C(p).

Note that M \ C(p) is dense in M, by the Hopf-Rinow Theorem 3.5.8. The
positive real number injp = inf{c(v) : v € T, M, ||v|| = 1} is called the injectivity
radius at p and the non-negative real number injM = inf{injp : p € M} is called
the injectivity radius of M. If M is compact, then injM > 0, by Theorem 5.3.4.

Examples 5.5.5. (a) On the n-sphere S} of radius R > 0 the cut locus of any point
p is the singleton {—p}. Conversely, if M is a complete Riemannian n-manifold and
there exists a point p € M such that C(p) is a singleton, then M is homeomorphic
to the n-sphere. Indeed, by Theorem 5.5.3, if C'(p) = {q}, then c(v) = d(p,q) for

d
every v € T,M with [jv]| = 1. Let R = M The map
™

(exp, |Bp(0,7rR))_1 : M\ {q} = By(0,7R)
is a diffeomorphism which extends to a homeomorphism
h: M — By(0,7R)/0B,(0,7R)

by putting h(q) = [0B,(0,7R)]. But the quotient space B,(0,7R)/0B,(0,7R)
which results in from B, (0, 7R) by identifying 0B, (0,7R) to a point is homeomor-
phic to the n-sphere.

(b) If M is a circular cylinder in R3, for instance

M ={(z,y,2z) eR®: 2> + y* = R*}, R >0,

then for every p € M, the cut locus C(p) is the straight line opposite to p.
(c) If p € RP™, the cut locus C(p) is the copy of RP"~! which is ”perpendicular”
to p. For p =10,...,0,1] this is

C(p) = {[to, ..., tn,0] € RP™ : (tg, ..., t,) € S" '}

In classical n-dimensional Projective Geometry this is traditionally called the (n—1)-
dimensional real projective space at infinity.
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5.6 Spaces of constant sectional curvature

The first step towards the answer to the question whether two given Riemannian
manifolds are isometric is the local study of the problem. Contrary to other geomet-
ric structures this is a highly non-trivial task. A rather primitive approach would be
the following. Let M and N be two Riemannian n-manifolds. Let p € M and ¢ € N.
There exists a linear isometry 1" : T, M — T, N. We seek for a Riemannian isometry
f from some open neighbourhood U of p onto some open neighbourhood f(U) of
q such that f(p) = ¢ and f,, = T. If such a local isometry f exists, shrinking U
we may assume that U and f(U) are (geodesic) open balls, necessarily of the same
radius. Then, f commutes with the exponential maps, that is f o exp, = exp,oT".
The question now arises under what conditions the diffeomorphism exp, o7 o exp, 1
is an isometry from a normal neighbourhood of p onto a normal neighbourhood of
q. Such a sufficient condition has been found by E. Cartan.

Let U be a normal neighbourhood of p and W be a normal neighbourhood of ¢,
so that f = exp, oT oexp, ! maps U diffeomorphically onto W. For every x € U\ {p}
there exists a unique geodesic path «y : [0,¢] — U, ¢ > 0, parametrized by arclength
from p to x. The parallel translation 7, : T, M — T, M along 7 is a linear isometry.
Since T" has been chosen to be a linear isometry, so is the map

Fy=Tpw g0 T oTyy: TuM — TN,

We put F, =T

Theorem 5.6.1. If for every x € U the equality
<R(u7 U)w7 S> = <R(Fx(u)7 Fy (U))Fx (w)7 F$(8)>

holds for allu, v, w, s € T, M, then f = exp, OTOGXpEl 1s an isometry and fi, = F.

Proof. Tt is sufficient to prove that || f..(w)| = ||w]|| for every w € T, M and z € U.
Let v : [0,¢] — U by the unique geodesic path parametrized by arclength from
~v(0) = p to v(¢) = z, where £ > 0 and x # p. From Proposition 5.3.3, there exists a
unique Jacobi field J along ~ satisfying the boundary conditions J(0) = 0, J(¢) = w.

n

Let {E1, ..., E,} be a parallel orthonormal frame along ~. If J = Z J; E;, then
i=1

T () + Y (RE; (1), 7(£)3(1), Ei(£))J;(t) = 0
j=1

forevery 0 <t </fand 1<i<n.

Let o : [0,/] — N be the geodesic path with initial conditions o(0) = ¢ and
5(0) = T'(6(0)). Obviously, o(£) = f(z). We define V(t) = F,;)(J(t)) and Z;(t) =
Fyy(Ei(t)), for all 0 < ¢t < £ and 1 < 4 < n. Then, {Z1,...,Z,} is a parallel

orthonormal frame along o, from the construction of F.,(;y, and V() = Z Ji(t)Zi(t).
1=1

By our assumption,
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for every 0 < t < £ and 1 < 4,5 < n. This implies that V is a Jacobi field along
o. Moreover, V(0) = 0 and ||V (0)|| = ||J(£)]| = ||w||. Thus, it suffices to show that

V(0) = fex(w). Note that
DV DJ
5 (0) = T<—dt (0)>

Since J and V are Jacobi fields which vanish at 0, they are given by the formulas

10 = (@0, (1 O). V(O = (030, 157-0)).

as the proof of Lemma 5.2.2 shows. Consequently,

V) = (0,0 (o ©) = )00 (7 57100 )

= (exDg) 150 (T((€xD,) 3.0y (7 (0))) = (expg oT 0 expy, s (I (£))
= fia(J(0)) = fra(w).
Finally, fu:(w) = fix(J(£)) =V () = Fﬂ/(f)(‘](g)) = Fp(w). O

Corollary 5.6.2. If two Riemannian n-manifolds M and N, n > 2, have the same
constant sectional curvature, then they are locally isometric.

Proof. Suppose that M and N have the same constant sectional curvature ¢ € R.
From Corollary 4.2.3, the curvature tensor of both is given by the formula

R(u,v)w = c((v,w)u — (u, w)v).

Ifpe M,qe Nand T : T,M — TN is any choice of linear isometry, the
hypothesis of Theorem 5.6.1 is satisfied. Hence there exists a Riemannian isom-
etry from some normal neighbourhood of p onto some normal neighbourhood of ¢. [J

Theorem 5.6.3. Let M be a connected, complete Riemannian n-manifold, n > 2.
If M has constant sectional curvature K, then the universal covering space M of
M is a simply connected complete Riemannian n-manifold of constant sectional
curvature K and

e if K <0, then M is isometric to the hyperbolic space H" ; ,

VK

o if K =0, then M s isometric to the euclidean space R™,
e if K >0, then M is isometric to the n-sphere S™ .

VK
Proof. Let w : M — M be the universal covering map. Since 7 is a local diffeo-
morphism, there is an induced Riemannian metric on M with respect to which
becomes a local isometry, according to Example 3.3.3. Hence M also has constant
sectional curvature K. Every covering transformation « : M — M is an isometry.
Indeed, for every z € M and v, w € T, M we have

(e (0); Qe (W)) = (Traa) (o (V) Tra(@) (nz () = (T 0 A)uz (V) (T © Q) (w))



116 CHAPTER 5. COMPARISON GEOMETRY

= (T (), T (w)) = (v, w).

In the case of the universal covering, the group of covering transformations is iso-
morphic to the fundamental group 71 (M) of M which acts properly discontinuously
on M. The corresponding orbit space is precisely M and the quotient map is .
Since M is complete, M is also complete, because every geodesic of M isa lifting
of a geodesic of M, as we saw in the proof of Theorem 5.1.5(c). Thus, M is indeed
a simply connected complete Riemannian manifold of constant sectional curvature

K.

Note that in general if g is a Riemannian metric of sectional curvature K and

1
¢ € R, then the sectional curvature of the Riemannian metric cg is —K. Thus, it
c

suffices to proceed assuming that K = —1, 0 or 1.

If K = —1 or 0, then M is diffeomorphic to R", by Corollary 5.4.6. We put
N = H" or R", respectively Actually, as the proof of Theorem 5.4.4. shows, if
r € N and y € M, the corresponding exponential maps exp, : Iy N — N and
exp, : Ty M — M are diffeomorphisms, since N and M are simply connected.

Choosing any linear isometry 7' : T,N — TyM we get a diffeomorphism
| =exp, oTexp,!: N — M

for which the hypothesis of Theorem 5.6.1 is satisfied. Hence f is an isometry.

Let now K = 1. In this case we put N = S" and using the same notations as
above the exponential map exp, : Bz (0,7) — N\ {—z} is a diffecomorphism. Again
the map f = exp, ol exp, ' : N\{—z} — M is an isometric immersion onto an open

subset of M. We extend f on N as follows. Let p € N, p # z, —z and ¢ = f(p).
The map h = exp, o(fup) o exp,* : N\ {—p} — M is well defined and an isometric
immersion onto an open subset of M such that h(p) = ¢ = f(p) and hyy = fip.
This implies that the coincidence set of f and A is non-empty, closed and open in
N\ {—=z, —p} which is homeomorphic to R\ {0}, hence connected. Therefore, h = f
on N\ {—z,—p}. Thus, we get a well defined map ¢ : N — M by

5) = f(Z), ifz;é—x,
?(z) {h(z), if z # —p.

which is a local isometry of N = S™ into M. Since S" is compact and M is
connected, ¢ must necessarily be surjective. According to Proposition 5.4.3, ¢ is a
covering map. Since S™ is simply connected, ¢ must be a diffeomorphism and an
isometry. [

A connected, complete Riemannian manifold of constant sectional curvature is
usually called space form. The preceding Theorem 5.6.3 implies that the problem of
the isometric classification of space forms is essentially a group theoretical problem.
More precisely, it is translated in the classification (modulo conjugacy) of the
properly discontinuous subgroups of the isometry groups I(H"), I(R") and I(S™).
The study of hyperbolic space forms is a rich and very active field of contemporary
research. The euclidean space forms have been thoroughly studied in dimensions
< 4. Especially, in dimension 3 the theory of compact euclidean space forms is
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essentially the theory of crystallographic groups. The spherical space forms have
been found by J.A. Wolf. Here we shall present their description at even dimensions.

Proposition 5.6.4. The isometry group of S™, n > 2, is the orthogonal group
O(n+ 1,R).

Proof. We already know that O(n + 1,R) is a subgroup of I(S™). In order to prove
the reverse inclusion let f € I(S™). If d denotes the spherical Riemannian distance,
then cos d(p, q) = (p, q) for every p, ¢ € S™, where (., .) on the right hand side denotes
the euclidean inner product in R**1. Thus, (f(p), f(q)) = (p,q). In particular, p

and ¢ are orthogonal vectors in R™*! if and only if d(p,q) = g, and so f maps

the canonical basis {eq, ..., €,+1} onto an orthonormal basis {f(e1), ..., f(en+1)}. By
linear extension, there exists a unique A € O(n + 1,R) such that Ae; = f(e;) for
every 1 <i¢<n+1. If now xz € S, we have

n n

cosd(f(x), Az) = (f(x), Az) = Y (w,e;) - (f(x), fle)) = D> (m,e)? =1

i=1 i=1

and therefore f(x) = Az. This concludes the proof. [J

Theorem 5.6.5. Let M be a connected, complete Riemannian n-manifold, n > 2,
of constant sectional curvature 1. If n is even, then M is isometric to S™ or to RP™.

Proof. According to what we have already proved in the present section, M is
isometric to the orbit space of a subgroup G of O(n + 1,R) which acts properly
discontinuously on S™. Since S™ is compact, G must be a finite group. If A € G,
A # I,,1 and det A =1, then 1 is an eigenvalue of A, since n 4 1 is odd. This con-
tradicts the proper discontinuity of G. Thus, det A = —1 and A% = I,,,; for every
A€ G\{I4+1}. If X € C is any root of the characteristic polynomial of A # I,,;1 in
G, then \? is an eigenvalue of A% and therefore \? = 1. It follows that the character-
istic polynomial of A has only one root in C, namely —1. Consequently, A = —1I,,41,
since A is orthogonal. This proves that either G = {I,,41} or G = {I,41, —I41}. In
the former case M is isometric to S™ itself and in the latter it is isometric to RP"™. [J

The preceding Theorem 5.6.5 does not hold in odd dimensions. An easy class of
examples are the Lens spaces in dimension 3. Let ¢ > 1 and b be relatively prime
integers. The cyclic group of order a generated by the isometry

A(Z1,Zz) _ (627ri/a217627rib/a22)

acts properly discontinuously on S% = {(z1,22) € C% : |51]®> + |22|®> = 1}. The
corresponding orbit space L(a,b) is a 3-dimensional spherical space form. If a > 2,
certainly L(a,b) is homeomorphic to neither S% nor RP3.

The Riemannian metric of a space form can be written down explicitly locally
around a point in geodesic spherical coordinates. Since the space forms with the
same curvature are locally isometric, it is sufficient to carry out the calculations
only in the simply connected case.
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In the euclidean space R"™, n > 2, the map sending a non-zero vector = to
1

(x, Wm) is a diffeomorphism of R™\ {0} onto (0, +00) x S"~L. Thus, every smooth
x
parametrized curve v : I — R™\ {0}, where I C R is an open interval, has the
form ~(t) = r(t)&(t) for suitable smooth maps 7 : I — (0,4+00) and & : [ — S™L.
Differentiating
F(t) = () + r()E()

and [|[5(1)]|2 = (' (1)) + (r(t))?[|£(t)||>. Thus, the euclidean Riemannian metric on
R™ in local spherical coordinated around any point has the form

ds® = dr® + 7|\ d¢|)?

in traditional notation, since R"™ is homogeneous.
The simply connected n dimensional space form, n > 2, of sectional curvature

2 R > 0, is (isometric to) the n-sphere S of radius R in R™"!. Since S% is
homogeneous, it is sufficient to describe the geodesic spherical coordinates around
the point Re, 1. Every point p € S} \ {£Re, 41} can be written

p= (Rcos %)enH + (Rsin%)f

for some 0 < p < 7R and ¢ € S"~!. Note that p is the length of the geodesic
emanating from Re, 41 to p. A smooth parametrized curve v : I — S% \ {£Ren11},
can be written

t t
v(t) = (Rcos &)emrl + (Rsin &)5@)
R R
for suitable smooth maps p: I — (0,7R) and ¢ : I — S™~!. Differentiating

3(t) = o ()] (~ sin %)enﬂ T (cos %)g@)} + (Rsin %)5(7&)

and therefore .
517 = (¢ (t)? + (R?sin? %) €)1

Thus, the standard Riemannian metric on S% in local spherical coordinated around
any point has the form

ds® = dp? + (R?sin® %) | dg||?

in traditional notation. 1
For the n-dimensional hyperbolic space of sectional curvature ——, R > 0, we

shall use the unit ball model D%, n > 2. The traces of the hyperbolic geodesics
through 0 € D% are the euclidean diameters. Let z € D} \ {0}. A parametrization
of the geodesic path from 0 to z is v : [0,1] — D™ \ {0} with (¢) = tz. The
hyperbolic distance of z from 0 is

'R N L4 o]
=L = —— —dt=R ———ds = Rlog ———
p=L10) /ol—HtZH2 /o T 2de = Rloe T
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where ||.|| is the euclidean norm. Thus,
p
= tanh —.
¢l = tanh 2
Every smooth parametrized curve v : I — R™\ {0}, where I C R is an open

interval, has the form ~(¢) = r(¢)&(t) for suitable smooth maps r : I — (0,1) and
£:1— S So,

) — p(t)
ly@)If = (t) = tanh T
where p(t) = L(7/0,t]) and
FOIP = 602 + (ORI = 2O+ (e S P
2R
The square of the hyperbolic length of 4(¢) is equal to
2014 (42 _
P s = (0 + (s 2 o)

Thus, the hyperbolic Riemannian metric in geodesic spherical coordinates is
ds® = dp* + (R*sinh? %) | dg||?

in traditional notation.
Summarizing, locally around a point of a space form of sectional curvature K € R
the Riemannian metric is

gk = dp® + (Sk(p))*gsn—1

where ggn-1 is the usual Riemannian metric of S"~!, p is the length of the geodesic
radius and

\/LF sin(vKp), it K >0,
Sk(p) =4 p, if K =0,
\/i_K sinh(v—Kp), if K <0.

5.7 Infinitesimal isometries

Let M be a connected Riemannian n-manifold and X € X (M) with flow
¢ : D — M. Recall that for every ¢t € R the set D, = {p € M : (t,p) € D} is open
in M and ¢y = ¢(t,.) : Dy — ¢¢(Dy) C M is a difeomorphism onto the open set
¢¢(Dy). The vector field X is called an infinitesimal isometry or Killing vector field
of M if ¢, is an isometric embedding for every ¢t € R.

Proposition 5.7.1. If M is complete, then every Killing vector field of M is
complete.
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Proof. Since M is assumed to be connected and complete, from the Hopf-Rinow

Theorem, B(p,c) is compact for every p € M and ¢ > 0 and M = U B(p,c)

c>0
Suppose that X is a non-complete Killing vector field of M. Then, there exists a

point p € M such that the integral curve of X through p is defined on an open
interval (ap,bp) and b, < 400 (or a, > —o0). There exists some € > 0 such that
B(p,€) is contained in a normal neighbourhood of p. There exists T > 0 such
that ¢(p) € B(p,e) for 0 < t < T and d(p, p7(p)) = €, where as usual d denotes
the Riemannian distance. Dividing, for each 0 < ¢ < b, there exist k € Z" and
0 < s < T such that t = kT + s. From the triangle inequality,

k
Z (7 (P), dj—1yr(P)) + d(PrT (D), P (D))

M;r

d(ér(p), p) + d(ds(p), p) < (k+1)e<<b%’+1>e.

7j=1
This contradicts Lemma 2.2.4. [

In the rest of this section we shall assume that M is a connected, complete
Riemannian n-manifold, n > 2. A very useful characterization of Killing vector
fields is the following.

Proposition 5.7.2. If X € X(M), then X is a Killing vector field if and only if it
satisfies Killing’s equation

(VyX,Z) + (Y, VzX) =0
for everyY, Z € X(M).

Proof. Let (¢t)tcr be the one-parameter group of diffeomorphisms generated by X.
Then, X is a Killing vector field if and only if

<(¢t)*p(Yp)a (¢t)*p(Zp)> = <Yp7Zp>

forevery pe M,t € Rand Y, Z € X(M). Equivalenty,

t—0 ¢

0=1lim—- [<(¢t)*p( Yp)s (@0)sp(Zp)) — (Yp7Zp>]

%g%t ((@0)sp(Yp): (D0)s0(Z0)) = (Yo, (00 Zou () + (Yortw)s Zouto)) — <Yp72p>]

= X,(Y.2) + lim | [<<¢t>*p< Yy, (60 Z)) — (You(a Z@(p)ﬂ

— X,(v.2) + lim © [<<¢t>*p< Yy, (60)(Z0)) — (Youts (60)29(Z0)
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+<Y¢>t(p)7 (¢t)*p(Zp) - <Y¢>t(p)’ Z¢t(P)>
= X, (Y, Z) = ([X,Y]p, Zp) — (Yp, [X, Z]p)
=X,\Y,Z) - (VxY - VyX,Z) - (Y,VxZ - VzX)
— (Vv X, Z) = (Y,VzX). O

Proposition 5.7.3. X € X(M) be a Killing vector field.

(i) If £ > 0 and v : [0,¢] — M is a geodesic path parametrized by arclength, then X
is a Jacobi field when restricted along ~.

(i1) If there exists p € M such that X, =0 and VX =0 for every u € T,M, then
X =0.

Proof. (i) We consider the smooth variation I" : R x [0,¢] — M defined by I'(s,t) =
@s(v(t)), where (¢t)ter is the one-parameter group of isometries of M generated by
X. Thus, I is a variation by geodesics and the corresponding variation field is a
Jacobi field along . However,

or 0
E(O’t) = _S S:OQSS('Y(t)) = X'y(t)
for every 0 <t < /.

(ii) The set A = {q¢ € M : X,=0and V,X =0 for every u € T,M} is
non-empty by assumption and obviously closed in M. Since M is connected, it is
sufficient to prove that A is open. Let ¢ € A and U be a normal open neighbourhood
of q. For every z € U \ {q} there exists a unique geodesic path parametrized by
arc length v : [0,¢] — U from 7(0) = ¢ to v(¢{) = =z, where | = d(g,x). Since X
is a Jacobi field when restricted along v by (i) and satisfies the initial conditions
X0y =0 and %(0) = VX =0, it follows that X ;) = 0 for every 0 <t <,
from uniqueness of solutions of Jacobi’s linear differential equation. In particular,
X, = 0. This shows that X vanishes identically on U and therefore U C A. [J

We shall now investigate the square of the length function h = || X ||? of a Killing
vector field X of M.

Lemma 5.7.4. If X € X(M) is a Killing vector field and p € M is a critical point
of h = || X||? such that X, # 0, then the integral curve of X through p is a geodesic
of M.

Proof. From Proposition 5.7.2 we have
Y(X,X) = 2(VyX,X) = —2(VyX,Y)
for every Y € X(M). Thus, if p is a critical point of h = || X||?, we must have

0= (qbt)*p(_QVXPX) = _2v(¢t)*p(Xp) (gbt)*X = _2VX¢>t(P)X
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for every t € R, where (¢;)icr is the one-parameter group of isometries of M
generated by X. O

Lemma 5.7.5. Let X € X (M) be a Killing vector field and let v : R — M be a
geodesic parametrized by arclength. If

1
ha(t) = 51X I

then
Rt = |V XII° = (R(X,), ¥(0))7 (1), Xp0)), tER.

Proof. Applying the chain rule, the first derivative if h., is

h.(t) = %f'y(t)<X,X ) = (Vs X X500

and differentiating once more

D? s
B() = (2 (8 Xa ) + 1V X I = V30 X117 = (R(X 0, 7)1, Xy)

by Proposition 5.7.3(i). O

Lemma 5.7.6. Let X € X(M) be a Killing vector field with flow ¢ : R x M — M
and p € M. We denote by «y the integral curve of X through p, that is v(t) = ¢¢(p),
t € R. Suppose that h = || X||? has local minimum at p and X, # 0. If w € T,M
and Y (t) = (¢¢)sp(w), then

IVy i X|I* > (R(X,0), Y ()Y (1), X))
for every t € R. If h has local mazimum at p, the reverse inequality holds.

Proof. We consider the smooth variation by geodesics I' : R x R — M defined by
['(s,t) = expy(s)(tY(s)). For each t, 7, s € R we have

o (L'(s, t)) = eXp¢S+T(p)((¢S+T)*p(tw)) =I(s+7,1),

0
because ¢, is an isometry.  Consequently, g(s,t) = Xr(s,1), and of course
r
?97(8’0) =Y (s). Hence
or 0 0
Vagr Ve *(st) ( [as’ 8t} (S,t)>

DY
and in particular Vy )X = d—(s) for every s € R. According to the preceding
S

Lemma 5.7.5 and using the same notations of its statement,

or or

ii(s,.) (t) - Hv%—lz(g,t)XHz - <R(XF(s,t)7 5(87 t))a(‘s? t)7 XF(s7t)>
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for every (s,t) € R x R. Since (¢s)sp(Xp) = Xg,(p) and ¢5 is an isometry, if h has
local minimum at p and X, # 0, it has local minimum at ¢(p) and therefore

0 < A, (0) = [[Vy (o) X1 = (R(Xy(5), Y (5)Y (), X)) O

The preceding series of lemmas leads to the following famous vanishing theorem
of S. Bochner.

Theorem 5.7.7. Let M be a connected, complete Riemannian n-manifold, n > 2,
whose Ricci curvature is everywhere negative. If X € X(M) is a Killing vector field
and the function || X|| takes a mazimum value at some point of M, then X = 0.

Proof. Suppose that X # 0 and || X|| takes a maximum value at a point p € M.
Then, X, # 0. Let w € T,M with ||w|| = 1 be orthogonal to X, and let S be the
2-dimensional vector subspace of T,M generated by {w, X,}. Then Lemma 5.7.6
implies

1 |V X[
Kp(S) = W<R(Xp,w)waXp> 2 e

It follows from this that Ric,(X,, X,) > 0. O

Corollary 5.7.8. Let M be a compact Riemannian n-manifold, n > 2. If the Ricci
curvature (or the sectional curvature) is everywhere negative on M, then every
Killing vector field vanishes identically on M. O]

The isometry group I(M) of a connected complete Riemannian manifold M is
a Lie group endowed with the compact-open topology, which in this case coincides
with the topology of pointwise convergence, and acts on M smoothly as a Lie trans-
formation group. Its Lie algebra is precisely the Lie algebra of all Killing vector
fields of M. This justifies the term infinitesimal isometry. If M is compact, then
I(M) is also compact. It follows from the last Corollary 5.7.8 that the isometry
group of a compact Riemannian manifold of negative Ricci (or sectional) curvature
is finite. Thus, the compact Riemannian manifolds of negative curvature virtually
have no symmetries. This is a deeper reason which explains why their classification
is not an easy task.

5.8 Exercises

1. Let M be a Riemannian n-manifold, n > 2, and v : [0,!] — M be a geodesic path
parametrized by arclength. Let X € X (M) and ¢ : D — M be its flow.

(a) Prove that there exists 7' > 0 such that [-7,T] x ¥([0,1]) C D.

(b) Let I" : [0,T] x [0,]] = M be the smooth variation of v with I'(s,t) = ¢5(y(t)).
If I'r =I(T,.) and L(v), L(I'7) are the lengths of v, I'r, respectively, prove that

T l
L) -2 < [ [ 19 Xdsdt
0 0 ot

2. Let M be a Riemannian manifold with Riemannian distance function d and
peE M.
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(a) Prove that the real function f = d(p,.) is smooth on D(p) \ {p}, where
D(p) = M\ C(p).

(b) If ¢ € D(p) \ {p} and ~ is the unit speed geodesic in D(p) from p to g, prove
that fiq(v) = (v,3(d(p, q))) for every v € T, M.

3. Let M be a Riemannian n-manifold, n > 2, and v : [0,¢] — M be a geodesic
path parametrized by arclength, where ¢ > 0. If there exists » > 0 and a smooth
function f : [0,¢] — R such that

Rieyn((0),4(0) 2 (.~ 1) (5 + /)

for every 0 <t < /¢, prove that

1
(< 7TT’2(||f|| +A/IFII2+ ﬁ)

where [|f|| = sup{[f ()] : 0 < < £}.

4. Let M be a Riemannian 2-manifold and ~ : [0,]] — M be a geodesic path
parametrized by arclength. Let X € X () with (X,4) =0 and || X]|| =1 on [0,].
(a) Prove that X is parallel along ~.

(b) Let f :[0,]] — R be a smooth function. Prove that fX is a Jacobi field along ~y
if and only if f”(t) + K(y(t))f(t) = 0 for every 0 < ¢t <, where K is the sectional
curvature of M.

5. On R?\ {(0,0)} we consider the Riemannian metric g

0 0 o 0 o 0
_— — :1 ) — ) = _— —
ar?ar) Y g(ar’a¢) O’ g(a¢?a¢

in polar coordinates, where f : R?\ {(0,0)} — (0,+00) is a smooth function.
(a) Find the differential equation of geodesics and prove that 7, for constant ¢, is

9( )= (£(r,9))

a geodesic.

(b) If X(r) is a parallel vector field along 4, which is orthogonal to 74, prove that
Y(r) = f(r,¢)X(r) is a Jacobi field along 4.

(a) Prove that the sectional curvature is given by the formula

82
oy o2 "0

—_
~

K(ra(m - -

6. Let r >0, ¢ >0 and v : [0,/] — S, n > 2, be a smooth curve parametrized by
arclength.
(a) If £ € X(v) is parallel along 7, prove that

B - PO50)
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for every 0 < ¢ < ¢ and thus if F(0) is orthogonal to 4(0), then FE is constant.
(b) Let p = (0,...,0,r) € S’ and u, v € T),S]* be orthogonal with [ju| = ||v] = 1.
Let I': (—m,m) x [0,77] — S be the smooth variation

t t
(s, t) = <cos >p + (sin ;)r((cos s)u+ (sins)v).
Prove that the variation field V' of I' is given by the formula
t
V(t) = <sin ;)r <E(t), 0<t<n7R,

where E is the parallel vector field along I'(0,.) with initial condition E(0) = wv.

1 1
Compute then R(v,u)u = —wv and so (R(v,u)u,v) = —.
r T
7. Let z € Sty € Ti,)CP™ with |lu|| = 1 and ~, denote the geodesic in CP"
with 7,(0) = [2] and 4,,(0) = u. Let v € T;,)CP" be orthogonal to u, and let @, © be
horizontal lifts of u, v, respectively, with respect to the Hopf map 7 : $2"+1 — CP".
The variation by geodesics

['(s,t) = (cost)z + (sint)((cos s)a + (sin s)7)

project to a variation 7o I" of 7, by geodesics.

(a) Prove that if ¥ is orthogonal to iu, the corresponding Jacobi field is
V(t) = (sint)E(t), where E is the parallel vector field along =, with E(0) =

(b) If © = iu, prove that the corresponding Jacobi field is given by the formula

V(t) = (sint - cost) - i, (t).

8. Let M be a Riemannian manifold with curvature tensor R. Let p € M, v € T,M
with ||v]| = 1 and v be the geodesic with initial conditions v(0) = p, 4(0) = v. Let
u, w € T,M and Y, Z be the Jacobi fields along v with Y (0) = Z(0) = 0 and

DY DZ
- 0O =1y — (0) =w.

Prove that for ¢ sufficiently close to 0, we have

1
- g(R(u, v)v, w)t* + o(t®)
5
where lim M =
t—0 t4

(Hint : Apply Taylor’s formula to the function f(t) = (Y (t), Z(t)). Then f(0) =
f1(0) =0, f7(0) = 2(u,w), f®(0) =0 and f*(0) = 8(R(u,v)v,w). For the latter
we need to show that

w@) - R(%(O)W(O)W(O) = R(u,v)v.)

9. Let M be a Riemannian n-manifold, n > 2, and K be its sectional curvature.
Let p € M, u, v € T,M with ||u|| = |[v]| =1 and (u,v) = 0. if v is the geodesic



126 CHAPTER 5. COMPARISON GEOMETRY

with initial conditions v(0) = p, 4(0) = v, prove that there exists ¢ > 0 such that
for |t| < € the Jacobi field Y along ~ with initial conditions

DY

Y (0) = =
=0, =

0)=u

satisfies )
@Y (1)|]* = - ng(S)t4 +o(t), and

OIY (O =t = ZF(S)E + olt"),

where S is the 2-dimensional vector subspace of T, M generated by {v,u}.

10. Let M be a complete Riemannian n-manifold, n > 2, with vanishing
curvature tensor. Prove that for every p € M there exists € > 0 such that
exp, : Bp(0,€) — B(p,¢) is an isometry.

11. Let M be a connected, complete Riemannian n-manifold, n > 2, of constant
sectional curvature ¢ € R and let v : R — M be a geodesic parametrized by
arclength. Find explicit formulas for the normal Jacobi fields along v in terms of
c¢. Deduce that if ¢ < 0 there are no conjugate points, while if ¢ > 0, the first
conjugate point to (0) along 7 in positive time is 7(1)

NG

12. Prove that the sectional curvature of the paraboloid
M ={(z,y,2) e R®: z = 2? + %}

is given by the formula

4

and therefore inf{ K (z,y, z) : (z,y,z) € M} = 0. Prove also that (0,0,0) is a pole.

13. Prove that for every point p € CP™, n > 1, the cut point along any unit speed
geodesic emanating from p, with respect to the Fubini-Study metric, occurs at

T
distance 5 from p.

14. Let X, Y € X (M) be two Killing vector fields of the Riemannian manifold M.
Prove that their Lie bracket [X, Y] is also a Killing vector field.
(Hint: It is sufficient to prove that (V,X,Y,w) = 0 for every w € T,M and p € M.

d
Consider the geodesic v(t) = exp,(tw) and prove that 7 ([X, Y] 1), 7(t)) =0.)
t=0



Chapter 6

Riemannian volume

6.1 Geodesic spherical coordinates

Let M be a n-dimensional Riemannian manifold and let exp : £ — M be its
exponential map. Let p € M and S, = {v € T, M : |jv|]| = 1}. To each smooth map
§:U — S, defined on some open set U C R™ ! corresponds the smooth map

P(t,u) = exp(t§(u))

which is defined on {(t,u) € (0,400) x U : t{(u) € E}. In case M is complete, 1) is
defined on (0, +00) x U. Obviously,

o 0 _
5 (51 = Yutean (5) (s = T (9);

where v¢(,) is the unique geodesic with y¢(,)(0) = p and F¢(,)(0) = &(u). Also, for
every u € U and 1 < j < n — 1 the smooth vector field

}/rj(?u) = %(71‘)

along "¢(y) is the Jabobi field with initial conditions Y;(0,u) = 0 and

DY; Doy D = Dewy 06
i 00 = 5550w = 555 00 = 5 0= g (-
Finally, %—Q’f =1 and (%—Q’f, %> = 0, by the Gauss’ Lemma 3.5.2. Thus, in order

to have a description of the Riemennian metric along the geodesic () we need to
compute (Y;(t,u),Y;(t,u)), 1 <i,j <n-—1.
For every £ € Sp, v € T,M and t > 0 we put

R(t)v = 77 R(7:(v), % () ¥ (1)

where 7, denotes the parallel translation along the geodesic v from p = 7¢(0)
to 7¢(t). By Proposition 4.3.1 R(t) is self-adjoint and since R(t){ = 0, we have
R(t) € Hom(&+,&1). Let A(t,€) denote the unique solution of the linear ordinary
differential equation

A"+ R)A=0

127
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defined on Hom(&4,¢1) satisfying the initial conditions A(0,£) = 0 and
A/(O,g) — Zd&L

Proposition 6.1.1.  The operators A(t,&)*A'(t, &) and A'(t,&)A(t, €)' are
self-adjoint.

Proof. Indeed, if we put W (t) = A'(t,£)*A(t,&) — A(t,§)*A'(t,€), then
W'(t) = A"(t,§)" At §) + A'(t, )" A'(t,€) — A'(t,§)" A'(t,€) — A(t, )" A" (t,€)

= (R(OA(, ) A, §) — A(t, §)"(=R(HA(t,€)) = 0,

because R(t) is self-adjoint. Since W (0) = 0, we must have W = 0.
Also, if U(t) = A'(t, &) A(t, &)L, we have

Ut)" = U(t) = (A(t, )71 [A'(t,€)" A(t,§) — A(t, )" A'(t, I A(t, &)
= (AL WMHAELE ™ =0. O
)

For every v € &+ the smooth vector field Y (t) = 7 A(t, £)v along Ve is the Jacobi

DY
field with initial conditions Y (0) = 0 and W(O) = .
The above now become
o 23
w(u u) - }/}(tv u) - TtA(tv f(u))%7
0
since a—ui € £(u)t, because ||€(u)|| = 1 for every u € U. It follows that
¢ 98

<Y; (tv u)? }/}(tv u)> = <A(t7 f(u)) out’ A(ta f(u)) ou >

Using the traditional notation, the Riemannian metric on the image of 1) can now
be written

ds® = dt* + (A(t,€))?| dg|)?.

In the special case of a space form Jacobi’s differential equation along a unit speed
geodesic is particularly simple. Suppose that M has constant sectional curvature
K € R and let v be a unit speed geodesic. Let Y be a normal Jacobi field along ~.
If Fy,..., E,_1, E,, =+ is a parallel orthonormal frame along v and

n—1
Y =) [
j=1
then
frHEKf;=0, j=1,.,n—L

It follows that there are parallel vector fields A, B € X(vy), which are combinations
of the elements of the frame, such that Y is given by the formula

Y(t) = Cr(t)A(t) + Sk (t)B(1),
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where
cos(VKt), it K >0,
Cre(t) =4 1, if K =0,
cosh(v/—Kt), if K <0.
and
%ﬁ sinh(vVKt), if K >0,
Sk(t) =<t if K =0,
\/E_K sinh(v/-Kt), if K <O0.
If Y(0) =0, then Y (t) = Sk (t)B(t), which shows that
23

Yi(tw) = Sk(B)m(5s),
with the previous notations. Moreover, A(t,£) = Sk(t)I. Thus, we recover the
formulas for the Riemannian metric in local geodesic spherical coordinates of the
end of section 5.6.

As a final remark we note that the conjugate locus of a point p € M is the image
under the exponential map exp,, of the set of all points t§ € T,M for t > 0, § € S,
such that A(t,§) is not an isomorphism.

6.2 Riemannian measure

On a n-dimensional Riemannian manifold M there is a globally defined natural
measure. Let ¢ : U — R” and ¢ : W — R” be two smooth charts of M with
¢ = (x',...,2") and ¢ = (y',...,y"). As usual, we denote g = (g?})lgmgn and

gw = (g?j)lgi,jgn Where
g 0 o 0
0 = (— —— Y = ).
gij - <8.%'Z ’ 8.%'j > and gz] <8yl7 8yJ >
HUNW#@and S = D(gb o TIZ)_l) = (Sij)lgi,jgn, then
0 - 0
57 = 2255y

=1

and ¢g® = STg¥S. Therefore, \/det g? = /detg¥ - |det S|. From the change of
variables formula follows now that for every continuous function f : ¢(U) — R the

Riemann integral
/ (f - Vdetg?) oo™
o(U)

depends only on f and U and not on the choice of the chart ¢ : U — R”. Thus,
if we choose a smooth atlas A of M and a subordinated smooth partition of unity
{ Twe) : (U,¢) € A}, then for every continuous function with compact support
f: M — R the quantity

dVol = -1/d ) o L
/Mf 0 (Z /W)U(U@)f Vet g%) 0 ¢

Ug)eA
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depends only on f and not on the choice of the smooth atlas A and the subordinated
smooth partition of unity. By the Riesz Representation Theorem, there is a well
defined o-finite Borel measure dVol on M, which is called the Riemannian measure
of M. A function f : M — R is measurable with respect to dVol if and only if
fogl:¢(U)— R is Lebesgue measurable for every smooth chart ¢ : U — R™.

It is obvious that the above definition of the Riemannian measure is not suitable
for efficient calculations. A simple idea to overcome this difficulty is to remove
from M a set of measure zero such that on the rest of M there are some kind of
coordinates.

Let M be a complete, connected, n-dimensional Riemannian manifold and p €
M. If C(p) denotes the cut locus of p, as it was defined in section 5.5, then C(p)
has measure zero. Indeed, it follows from Theorem 5.5.3 that the set

Cp ={c(v)v:veT,M,|v|| =1,c(v) < +oo}

has Lebesgue measure zero in T,M. Since exp, : T,M — M is smooth, C(p) =
exp,,(Cp) must have measure zero in M. On D(p) = M \ C(p) there are geodesic
spherical coordinates since exp, maps D), = {tv : 0 <t < c(v),v € T, M, ||v|| = 1}
diffeomorphically onto D(p). The Riemannian measure on D(p) \ {p} has the form
g(t,&)dtd€, where d§ is the spherical Lebesgue measure on S, = {§ € T,M : ||{]| =
1} induced by the Lebesgue measure on T,M. So for every integrable function
f: M — R we have

/M favol = /S ,, ( Oc@ F(exp, (£))g . §>dt> dé.

We shall show that g(¢,&) = det A(t,€) for every £ € S, and 0 < t < ¢(§), that is
t& € D,\ {0}. Let u = (ul,...,u™) be a smooth chart of S,. We consider the smooth
chart ¢ = (x!,...,2") on D, \ {p} with

(o emlp)
¢—(u (T 2. (exy ) H>-

(exp, [p,)

g . o o . o
Note that T and By is T

1 =1,...,n—1, in the notation of the preceding

o 0
section 6.1. If as usual g;; = (7=, 5—), 1 < i,j < n, from the definition of the
oxt’ OxJ 5
Riemannian measure we have g = \/det(g;;)1<i j<n. Putting hy; = (5, ﬁ% 1<
== U

i,7 <n—1, we have g, = 1, goj = 0, j = 1,...,n — 1, from the Gauss’ Lemma
3.5.2, and

0 0 ..
9ij = <A(t,£)%,z4(t,£)w>, 1<4,5<n—1,
where £ = u™ L. Therefore, det(gij)lgidgn = det(hij)1§i7j§n_1 . (det A(t,g))Q. This
proves our assertion, because df§ = \/det(hij)lgi,jgn,ldul---dun_l is the local

expression of the spherical Riemannian measure on .Sj,.

Example 6.2.1. In case M has constant sectional curvature K € R, we have

A(t, &) = Sk(t)I and therefore /det(g;;)1<ij<n = (Sk(t))"1. In the particular
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case of the euclidean space R™ we have K = 0, Syp(t) = ¢ and thus the Riemannian
measure is " 'dtd¢ in spherical coordinates, where d¢ is the Riemannian measure
of the unit sphere S"~!. The volume

ot = / ¢
Sn—l

of S~ ! can be computed as follows. We observe that

+oo 2 " 2 oo 2
( / et dt> = / e 1717 gvol = / ( / "let dt)dg
—00 n Sn—l 0
Foo oo n re
:cnl/ t"letht:cnl/ —e%s2ds = ¢, (2)
0 o 2

“+oo
Since / e dt = /7, we conclude that

—0o0

The volume of the unit n-ball D™ = {x € R™ : ||z|| < 1} is

1
Vol(D"):/ t”ldtdgzcnl/ t"tdt =
0

Let M be a complete, n-dimensional Riemannian manifold and p € M. For
r>0weput Dy(r)={£€S,:ré €Dy} ={{€5,:0<r<c()} and
E(p,r) = / det A(r, §)dE.
Dy (r)

If 0 < r < injp, then E(p,r) is the (n — 1)-dimensional volume of 0B(p, ), which
is a smooth (n — 1)-dimensional submanifold of M. In any case, the volume of the
ball B(p,r) = exp(B,(0,r)) is

V(p,r) :/ dVol :/ det A(t, §)dtde
B(p,r) D,NB(p,r)

_ /0 (/Dp(r) detA(t,§)d§>dt: /OTE(p,t)dt.

Thus, the function E(p,.) is integrable, while V' (p,.) is obviously continuous. Since

Dy(r+6) = ——(Dy N By(0,7 +)) C +(D, N By(0,7)) = Dy(r)

r+e€

for every € > 0, we have

v v r4e r+e
(p,r+e)—Vipr) _ %/r E(p,t)dt = %/T (/Dp(t) detA(t,S)d§>dt

€
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1 r+e 1 r+e
< - / (/ det A(t,{)d{) dt = / (— / det A(t,§)dt> dg.
€Jr Dyp(r) Dp(r) €Jr
Therefore,
_ 1 r+e
limsup L2 )= V) / <lim - / det A(t, §)dt> de
e—0 € Dp(r) \¢20 € J,

_ / det A(r,£)d¢ = E(p,r),
Dp(r)

by Lebesgue dominated convergence.
If M is the simply connected space form of sectional curvature K € R, the
volume of a ball of radius r > 0 is

Vi(r) = cn—1 /07’ (Sk ()" tat

and of a sphere of radius r is Ex(r) = c¢,_1(Sk(r))" L.

6.3 Volume comparison theorems

In this section we shall present results comparing the Riemannian volumes of balls
in a complete Riemannian manifold with the volumes of balls in space forms of
the same dimension under conditions concerning the sectional or the Ricci cur-
vature. We shall need the following comparison theorem which is due to H.E. Rauch.

Theorem 6.3.1. Let M be a complete, n-dimensional Riemannian manifold, K €
R and let v : [0,a] — M be a geodesic path parametrized by arclength such that
K, (S) < K for every 2-dimensional vector subspace S of Ty M and for every
0<t<a. LetY be a non-zero normal Jacobi field along ~.

(i) Then for every 0 <t < a we have

d2
e IY Ol + K[Y )] = 0.

(it) If ¢ : [0,a] — R is the solution of the linear differential equation x” + Kx = 0
d
on [0,a] satisfying the initial conditions 1 (0) = ||Y (0)]|, ¥'(0) = E‘ (IY']]) and ¢
t=0

does not vanish at any point of the open interval (0,a), then on this interval

a (v
(5D 20wz,

dt (0
for every 0 <t < to, where S(t) is the 2-dimensional vector subspace of Ty M
generated by {¥(t),Y (t)}, and there exists a parallel vector field E along 7|
such that |E|| =1 and Y (t) = ¢(t)E(t) for every 0 <t < tg.

d Y
(7ii) Moreover, if 0 < ty < a, then — <u> = 0if and only if K,;)(S(t)) = K
t=to
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Proof. In the beginning we estimate

e d(Y.oON_ 1 4, DY by, 41
2y = & ) dt — Y= Y. ey
prolRgl) dt( Yl > TR AR dt(HYH>

2 2 DY 2 DY \2
L (P[P, DY B 1 DY (B
[ ae " Tar? NaEEREINE Y AN
1 DY || (v, Y2 DY
= o (5 | 1) - = s ([ e ) 2 s

using our assumption and the Cauchy-Schwartz inequality.

Since v ) J
() - L (G- v-m1%).

we consider the function
d
=—([|Y]]) - YI|—
Ly -v— v

for which we have f(0) = 0 by our choice of 1) and

f= wdtQ(HYH) — Yle" = (=K [Y]) = (=K)[Y] = 0.
Therefore, f(t) > f(0) =0 for 0 <t < a and
a(Ivly -,
ac\ ¢ )~
on the interval (0,a). It follows that
Yl o IOl _
(@) — $(0)
for every 0 < ¢t < a. This proves assertion (ii). In order to prove (iii), we observe

that f(tp) = 0, and thus f(¢) = 0 for all 0 < ¢ < ¢y, by monotonicity. It follows that
Y]] = ¢ and thus
d2
dt?
on the interval [0,¢g]. This means that the inequalities appearing in our initial
estimate are equalities. In particular,

Hi

DY
and hence — Y must be linearly dependent on [0,¢y]. If now Y = ¢E, where
|IE|| =1, then

(Y +K[Y] =0

DY
2=y, Wﬁ =0

DY
LA B
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DFE DE
and F is perpendicular to T Thus, necessarily o= 0 on (0,tp). O
Let M be a connected, complete, n-dimensional Riemennian manifold, K € R

and let a = \/%, where a = 400 in case K < 0. Let v : [0,a] — M be a geodesic
path parametrized by arclength such that K, (S) < K for every 2-dimensional
vector subspace of T M and every 0 < ¢ < a. Let Y be a normal Jacobi field

py , |
along . Applying Rauch’s Theorem 6.3.1 for W(O)‘ Y, then ¢(t) = Sk(t) and

DY
Y] > HW(O)HSK Moreover,

ds
d(y|) _ “x

Yl = Sk

and the equality holds at some point 0 < tg < « if and only if there exists a non-zero
parallel vector field along v such that Y = Sk - E on (0, tg] and

K = (R(E(t),E(t)), 0<t<ty,

where R(t) was defined in section 6.1. Thus, if £ = 4(0), that is v = 7¢, then

R A(t, €) (%(@) —Y(t) = Sk(t) E(t), 0<t<t.

DY, dSk .
Since W(O) = 7(0) - E(0) = E(0), it follows that
A (570) = Sk(0) -7 B0 = k() 2 0)

This shows that A(t,€) = Sk(t)I for 0 < ¢t < tp in case we have equality in the
above inequality at ty, because Y was any non-zero normal Jacobi vector field along
7. Since A”(t,€) + R(t)A(t,§) = 0, we also have R(t) = K - I, 0 < t < tg.

The following theorem is due to P. Giinter and R.L. Bishop. We shall need two
elementary facts.

Lemma 6.3.2. Let a >0 and f, g: [0,a] — [0, +00) be two C* functions such that

f(0)=g(0) =0, f(t) >0, g(t) >0 for 0 <t <a and f'(0) = ¢'(0) #0. Iff7 > g

n (0,a], then f > g on [0,a].

Proof. Our assumption implies that

Therefore,
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for every 0 < t < a. 0.

If G: (—¢,€) = R™™ is a smooth map for some € > 0 with G(0) = I,,, then
from Taylor’s formula we have

G(t) = I, + tG'(0) + O(t?)
and therefore
det G(t) = 1+ tTrG'(0) + O(t?).

This implies that (det G)'(0) = TrG’(0). Applying this to G(t) = B(t)B(0)~* we
obtain
(det B)'(0)

B~ TB OB

for any smooth B : (—e¢,€) — R™ ",
Theorem 6.3.3. Let M be a connected, complete, Riemannian n-manifold, p € M

and § € S,. We assume that there exists K € R such that Kyg(t)(S) < K for every
2-dimensional vector subspace S of Ty M and every t € R. Then

4 (det A(t,€))

> - 12D e @) > (S

det A(L,€) Sic(0)
T T

or every 0 <t < —=. The equality holds at some 0 < tg < — if and only 1
f Y STk quality 0<% f y if
A(t, &) = Sk(t)- I and R(t) = K - I for 0 <t <tp.
Proof. Putting B(t) = A(t,£)* A(t,§) we have

4 (det A(t,€)) 1 (det B)'(t)

det A(t, €) 2 detB(t)

Let 0 < s < ——. Since B (s) is self-adjoint, there exists an orthonormal basis

VK

{01, ..., un_1} of &L consisting of eigenvectors of B(s). Let 11,..., 7,1 be the so-
lutions of Jacobi’s differential equation

0 +R(t)n=0

on &1 satisfying the initial conditions 7;(0) = 0, 75(0) =vj, 1 <j<n-—1 Aswe
have seen in section 6.1, n;(t) = A(t,§)v;, 1 < j <n—1. By Rauch’s Theorem 6.3.1
and the subsequent comments, and Proposition 6.1.1,

(det B)'(s) 1

1 / — 1 -
5 . TB(S) = §TI‘(B (S)B(S) 1) = TI“(A(S,&) A (875)3 1(8))

n—1 n—1
=D (A5, A'(5,9)B (s)vj,05) = ) {A(s,6)" A'(5,€) <%vj>,vj>

1 = ij,vj

<
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[y

N A A (5, 9v5,05) o (A5, Als, vy)
2 (A € A, Oy 1y) 2 (Al )y, Als, )
_S OO0 S ni (S0
=Y T o) = 2 Tl 2" Vser

The second inequality follows from the preceding elementary Lemma 6.3.2. Fi-
i
nally, suppose that there exists some 0 < ty3 < —— such that
VK

drlimy, (et A(£,6)) n— 1)5;(@50)
det A(to, €) Sk (to)
Since
e il s1(s)
[ni ()l — Sk(s)

for all 1 < j <mn—1, necessarily we have equality. From the above A(t,§) = Sk ()
and R(t) = K - I for every 0 <t < ty. O

Corollary 6.3.4. Let M be a complete, n-dimensional Riemannian manifold such
that there exists K € R with K,(S) < K for every p € M and every 2-dimensional
vector subspace S of T,M. Then, V(p,r) < Vi(r) for every p € M and every

0 < r < min{injp, LK} The equality holds for r = 1o if and only if the ball B(p,ro)

i M is isometric to a ball of radius ro in the simply connected space form Mg of
sectional curvature K. O

There is an analogous to the preceding Theorem 6.3.3 due to R.L. Bishop with
the assumption that the Ricci curvature has a lower bound.

Theorem 6.3.5. Let M be a complete, n-dimensional Riemannian manifold, p €
M, £ €Sy and let ¢ be the geodesic with v¢(0) = p and Y¢(0) = £. We denote

conjé = inf{t > 0 : y¢(t) is conjugate to p along ¢}
= min{t > 0: det A(¢,£) =0} > 0.
If there exists K € R such that Ric,, ) (Y¢(t),¥¢(t)) = (n — 1)K for every 0 < ¢ <
conj&, then
i (det A(t, €))
det A(t, )

< (- D550, derd(n9 < (s

for every 0 < t < conjé. The equality holds at some 0 < tg < conj€ if and only if
A(t, &) = Sk(t)- I and R(t) = K - I for 0 <t <tp.
Proof. Recall that Ric,,(1)(Y¢(t), Je(t)) = TrR(t) and

S(det A(t,€)) - d _
ddetA(t,g) T A O A ™
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For the sake of brevity we shall use the notation Ctg(t) = and denote by

Sk(t)
arcCty its inverse. If ¢p = (n—1)Ctg, then v satisfies Ricatti’s differential equation

/ 1 2 —
(0 +—n_11,Z) +(n—-1)K =0.

Also 1 is strictly decreasing and in case K < 0 we have . liin P(t)=(mn-1)vV-K.
—+o0
By Proposition 6.1.1, the operator U(t) = A'(t,£)A(t,&)~! is self-adjoint. Also it
satisfies Ricatti’s differential equation for operators
U'+U*+R=0.

This is easily verified by differentiating the equation A(t,€)A(t,€)~ = I, which
gives (A(t, €)™Y + A(t, &) LA (¢, &) A(t,£)~! = 0, and substituting

U'(t) +U(t)* + R(t)

= A"(t, ) A(t, )" + A (L (ALY + A (LA A (LA E) ™ + R(2)
= —R()A( A )T +A' (4, (AT +AL ) T A (4, At €)1 +R(t) = 0.

Thus, TrU’ + TrU? + TrR = 0 and by the Cauchy-Schwartz inequality, since U (t) is
diagonalizable,
(TrU)? < (n — 1)TrU?.

If now

B(1) = TR (1) = Tr(A'(1, ) A E)) = log det A(1,€).

then the above and our assumption imply

1 1
¢/+m¢2+(n_1)K:TI«U’+m(TrU)2+(n—1)K

< TrU’ +

1
(n - 1)TrU? + TrR = 0.

So, we want to compare the solution 1 of the above differential equation of Ricatti
with the solution ¢ of the last differential inequality.
Since

% if K >0,
P(t) =< —1, if K =0,
% if K <0,
we have 1
— 1(zp(t))2 +(n—1)K >0

for 0 < t < ——.
K
We observe that lim+ ¢(t) = +o0. Indeed, for any 0 < a < b we have
t—0

b . det A(b,¢)
[, 40 = 8 G ey
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b
Since A(0,&) = 0, it follows that / ¢(s)ds = +o0. From the mean value theorem of

integral calculus, there exist s,, — 0 such that lir4r_1 ¢(sm) = +00. Let now ¢ > 0.
m—-+00

There exists mo € N such that 0 < s, < 1 and ¢(sy,) > ¢+ (n — 1)|K]| for every
m > mg. Since
¢2

n —

integrating for every 0 < t < s, we obtain
¢(sm) — ¢(t) + (n = DK (sm — 1) <0
and therefore
¢(t) = d(sm) + (n = DE (s —1) > e+ (n = D)[K(sm — 1) +[K[] > ¢

for every 0 <t < spy-
The above imply that there exists 0 < € < conj¢ such that

)2
(3(_))1 +(n—1)K >0
for 0 < t < € and hence .
R
2 il
LOE + (n-1)K
for 0 < t < e. Integrating,
t A t ¢'(s)
t< lim —9(s) ds= lim [ ——2L g5
0o EEE G+ (=K a0t e (s 4 K
ot)/n=1  _q ¢
lim 27ds = arcCtK< o(t) )
a=0% Jp(a)/n—1 5°+ K n—1

for every 0 < t < e. Consequently, (t) = (n — 1)Ctg(t) > ¢(t) or equivalently

4 (det A(,€)) S (t)
“eacs S Vs m

and det A(t, &) < (Sk(t))" ! for every 0 < t < ¢, by Lemma 6.3.2.
Suppose now that there exists some 0 < tg < € such that these inequalities are
equalities for ¢t = ty. Then, ¢(tg) = ¥ (ty) and

2
o)+ YOk =0,
n—1
hence also (TrU(t))? = (n — 1)Tr(U(t)?) for all 0 < t < to. By the uniqueness of
solutions of Ricatti’s differential equation, ¢(t) = ¥ (t) and TrR(t) = (n — 1)K for
0 <t < tg. Moreover, since the Cauchy-Schwartz inequality we have used above
is an equality, U(¢) must be a multiple of the identity operator I for 0 < t < .
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It follows that R(t) must also be a multiple of the identity operator and therefore
R(t)=K -1 for 0 <t <t.
Returning to U(t), since this is a multiple of I and has trace

o) = ¢(t) = (n—1)

necessarily

/ 1 Sk(®)
A (tag)A(t7§) b= Sﬁ(t) I

1
S—A(., €) is constant on the interval (0, tp]. Taking
K

the limit for ¢ — 0" we find that this constant must be I, because A’(0,£) = I. In
other words A(t,£) = Sk(t) - I for every 0 < t < ty.

It remains to show that the above hold not only on the interval (0, €] but also
on (0, conj¢]. We proceed by contradiction assuming that

for every 0 < t < tg. Therefore,

T = sup{e € (0,conjé] : p(t) < (t) for 0<t<e} < conj.

By continuity, ¢(7') = ¥(7T) and therefore

T 2
((i(_)) +(n—-1)K > 0.
There exists €; > 0 such that
2
(f(i))l +(n—1)K >0
and thus .
0
2 -
LOF 4 (n—1)K

for T <t < T+ €. As before, this implies that ¢(t) < ¢(t) for T <t < T + €y,
which contradicts the choice of T'.

Finally, suppose that there exists some 0 < tg < conj¢ such that ¢(ty) = ¥(to),
but this equality does not hold on the whole interval (0,%p]. Then, there exist
0 < t; < to < tgsuch that ¢(t) < ¢(t) for t; < t <t and ¢(t2) = ¥(t2). Hence

(o(t2))?

n—1

+(n—1)K >0

and by continuity there exists § > 0 such that

(6(t))

n—1

+(n—1)K >0

for |t —ta| < 6. Thus,
M
_ow
W2 4 (1)K
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for [t —ta] <. If toa — & < t < to, integrating from ¢ to to we find

ty —arcCtg <%) = arcCtg (%) — arcCtx <M)

n—1

— /t2 —¢'(s) ds >ty —t.
. (8(5)? +(n-1)K =

n—1

9t

n fe—
This concludes the proof. [

Hence arcCty < t. This shows that ¢(t) > 1(t) for every to — 9 < t < ta.

Theorem 6.3.6. Let M be a complete, connected, Riemannian n-manifold for
which there exists K € R such that Ric,(v,v) > (n — 1)K for every v € T,M
with ||v]| = 1 and p € M. Then, V(p,r) < Vk(r) for every r > 0. Moreover,
V(p,r) = Vi (r) for some r > 0 if and only if B(p,r) is isometric to the open ball
of radius T in the simply connected space form of sectional curvature K.

Proof. For every r > 0 Theorem 6.3.5 implies that

Vip,r) = /5 p ( /0 e detA(t,§)dt>d§§ /5 p ( /0 me©n) (SK(t))"ldt>d§
< /5,, (/0 (SK(t))”ldt> dé = Vi (r).

The case of the equality is obvious. [J

Corollary 6.3.7. For every complete, connected, Riemannian n-manifold M and
p € M the function V(p,.) is locally uniformly Lipschitz.

Proof. Let p > 0 and K, = inf{Ricy(v,v) : v € Sg,q € B(p,p)}. For every
0 < s < r < p applying Bishop’s Theorem 6.3.5 we have

_ min{c(§),r}
Vip,r) =Vip,s) 1 / ( / det A(t, 5)dt> d¢
Dy(s) s

r—S r—s

< cp1 -max{(Sk, ()" :0<t<p} O

V(p,.)
Vic()

In the rest of this section we shall study the monotonicity of the function

under the assumptions of Theorem 6.3.6.

Proposition 6.3.8. Let M be a complete, connected, Riemannian n-manifold for
which there exists K € R such that Ricy(v,v) > (n— 1)K for every v € T,M with
Ep,.)

Ex(.)

lv|| =1 and p € M. Then, the function is decreasing for allp € M.
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Proof. Let 0 < r < s, so that Dy(s) C D,(r). By Bishop’s Theorem 6.3.6, for every
¢ € S, the function

det A(.,€)
(Sk ()1

is decreasing. Thus,

E(p,r) 1 / det A(r, &) 5> 1 / det A(r, &) i
Er(r)  en-1Jp,ey (S(r)" 1> 7 cn1 Jp,s) (Sk(r))"?
> 1 / detA(S’é:)ldf: E(p,s). 0
Cn—1 JDy(s) (SK(S))n EK(S)
The monotonicity of the function “//(p(, )) will now be a direct consequence of
K\.

the following lemma of M. Gromov.

Lemma 6.3.9. Let f, g: R — (0,+00) be two integrable functions. If the function

= s decreasing, then the function
g

fg f(s)ds

fg g(s)ds

1s decreasing as well.
Proof. Let r < s. Since

() () o) = ([ o) ([ o) « ([ sto) (st

and

() () atoe) = ([ sto) (a0« ( [ some) (L atoe).

Let h = i, which is assumed to be decreasing. Then,
g

([ ) ([ atar) = ([ stomewae) ([ atwar) = ( [ atwar) ([ atoar)
> < /0 Tg(t)dt) < / Sg(t)h(t)dt) _ < /0 Tg(t)dt) < / ) f(t)dt). 0

Combining now Proposition 6.3.8 and Lemma 6.3.9 we obtain the following
result of M. Gromov.

Theorem 6.3.10. Let M be a complete, connected, Riemannian n-manifold for
which there exists K € R such that Ricy(v,v) > (n— 1)K for every v € T,M with
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V(p,.)
V()

Recall that Myers’ Theorem 5.1.5 states that if M is a complete, connected, Rie-

lv|| =1 and p € M. Then, the function is decreasing for allp € M. O

1
mannian n-manifold for which there exists r > 0 such that Ric,(v,v) > (n —1)—
r

for every v € T,M with ||v|| = 1 and p € M, then diam(M) < nr, M is compact
and it has finite fundamental group. Using the above results of R.L. Bishop and M.
Gromov we can examine what happens in case diam(M) = 7r. The corresponding
result is originally due to V.A. Toponogov for the case of sectional curvature and
S.Y. Cheng for the case of Ricci curvature. The proof we present here was given
later by K. Shiohama.

Theorem 6.3.11. Let M be a complete, connected, Riemannian n-manifold for
1

which there exists v > 0 such that Ricy(v,v) > (n —1)— for every v € T,M with
r

lv|| =1 and p € M. If diam(M) = nr, then M is isometric to the n-sphere S} of
radius r.

Proof. By Bishop’s Theorem 6.3.6, it suffices to prove that Vol(M) = Vol(S}). By
Myers’ Theorem 5.1.5, M is compact and there exist p, ¢ € M such that d(p, q) = 7r,
where as usual d denotes the Riemannian distance. By Gromov’s Theorem 6.3.10,

1 1
and therefore V (p, %T) > §V01(M). Similarly, we have V(q, %T) > §V01(M), and
since B(p, %) N B(q, %) = @, because d(p,q) = 7r, it follows that
r r 1
—) = —) = =Vol(M).
Vo, T = Vi, T = SVol(M)
. D,.) . . T .
Moreover, the function is constant on the interval [—,7r]. By monotonic-
Vl/T‘Q () 2
E(p,.
ity, the function EL’()) is also constant on the interval [%T,TFT’] as the proof of
1/7.2 .
Gromov’s Lemma 6.3.6 shows. By the proof of Proposition 6.3.8, the function

det A(t,€)
(S1/r2(8))

r
is constant for — <t < mr for every { € S,. The conclusion follows now from

Bishop’s Theorem 6.3.5 by taking tg = 7r. [

6.4 Exercises

1. Let M be a Riemannian manifold. Explain why the property that a set A C M
is measurable does not depend on the choice of the Riemannian metric and the
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same holds for subsets of M of measure zero.

2. Prove that the Riemannian volume of the complex projective space CP™, n > 1,
n

T
with respect to the Fubini-Study metric is equal to —-
n!

3. Let M be a n-dimensional Riemannian manifold and p € M. If 0 < ¢t < injp,
prove that the quantity

4 (det A(t,€))
det A(t,€)

is the mean curvature of the geodesic sphere B (p,t) at the point v¢(t), where ¢
denotes the geodesic with v¢(0) = p and 4¢(0) = £ € S,,.
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