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Chapter 1

Sub-Riemannian manifolds

1.1 The isoperimetric problem in the plane

Queen Dido of Tyre had to flee across the Mediterranean in order to escape from her
brother Pygmalion, also King of Tyre, who had murdered her husband Acerbas, an
allegedly wealthy priest of Hercules and second in power to Pygmalion. Eventually,
Dido and her company arrived at the north african cost where Dido asked the
Berber King Burdas for a piece of land, only as much as could be encompassed
by an oxhide. Dido cut the oxhide into a long fine strip so that she could encircle
a nearby hill. In doing this Dido faced the following problem. Given a string of
fixed length and a fixed line, the coast, place the ends of the string on the line and
determine the shape of the curve enclosing the maximum area. This is the form of
the mathematical problem which nowdays is called the isoperimetric problem. Dido
found that the solution to her problem is the semicircle and the city she founded in
the semicircular region was Carthage.

We shall see a mathematical formulation of Dido’s problem. Consider the dif-
ferential 1-form

a =
1

2
(−ydx+ xdy)

which satisfies da = dx ∧ dy. If L : R → R
2 is any line through the origin, say

L(t) = (tv1, tv2) for some (v1, v2) ∈ R
2 \ {(0, 0)}, then

(L∗a)t(s) = a(tv1,tv2)(sv1, sv2) =
1

2
(−tv2sv1 + tv1sv2) = 0

for every t ∈ R and s ∈ R. So L∗a = 0.
According to Stokes’ formula, the area enclosed by a piecewise smooth simple

closed curve γ in R
2 is

A(γ) =

∫

γ
a.

If γ is not closed and has initial point at the origin, then the integral A(γ) represents
the area enclosed by γ and the line segment from the origin to the endpoint of γ,
because of the preceding property of a.

The isoperimetric problem is the following constrained variational problem:
Maximize the area enclosed by a rectifiable simple closed curve subject to the con-
straint that the lenght of the curve is a fixed constant. Dually, minimize the length
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4 CHAPTER 1. SUB-RIEMANNIAN MANIFOLDS

of a rectifiable simple closed curve subject to the constraint that the area enclosed
by the curve is a fixed constant.

The dual isoperimetric problem can be restated as a 3-dimensional geometric
problem. Let γ : [0, T ] → R

2 be a piecewise smooth curve and let δc : [0, T ] → R
3,

c ∈ R, be the family of curves defined by

δc(t) = (x(t), y(t),

∫

γ|0,t]

a+ c)

where γ(t) = (x(t), y(t)). We define the length of δc to be the length of γ. Each
curve δc is called a horizontal lift of γ and

δ̇c(t) = (x′(t), y′(t), aγ(t)(γ̇(t))).

Also, δc(T ) = (x(T ), y(T ), A(γ)). Let now

ω = dz − 1

2
(−ydx+ xdy)

and H = Kerω. Then H is a vector subbundle of the tangent bundle of R3 with
fibre

H(x,y,z) =

{





v1
v2
v3



 ∈ T(x,y,z)R
3 : v3 −

1

2
(−yv1 + xv2) = 0

}

over (x, y, z) ∈ R
3. The differential 1-form ω is the standard contact 1-form of R3

and H is its standard contact structure. Note that H is generated by the smooth
vector fields

X =
∂

∂x
− 1

2
y
∂

∂z
, Y =

∂

∂y
+

1

2
x
∂

∂z

which together with Z =
∂

∂z
form a basis of the corresponding tangent space of R3

at each point. More precisely, if u = (u1, u2, u3) ∈ T(x,y,z)R
3, then

u = u1X + u2Y + (
1

2
yu1 −

1

2
xu2 + u3)Z.

Thus, if for u = (u1, u2, u3), v = (v1, v2, v3) ∈ H(x,y,z) we set

〈u, v〉 = u1v1 + u2v2

then 〈·, ·〉 is a Riemannian metric on H with respect to which {X,Y } becomes
an orthonormal frame of H. Now the isoperimetric problem can be formulated as
follows: Find the horizontal lift of γ of minimum length that joins two fixed points
of R3.

In the terminology of contact geometry a curve δ is called Legendrian, with
respect to the contact structure H, if δ̇(t) ∈ Hδ(t) for all t. The length L(δ) of a
Legendrian curve δ with respect to the Riemannian metric 〈·, ·〉 on H is the same
with that considered before, that is the euclidean length of the projection of δ onto
its first two coordinates. For p, q ∈ R

3 the formula

d(p, q) = inf{L(δ) : δ is Legendrian from p to q}
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defines a new distance on R
3, the contact distance, because there exist Legendrian

curves from p to q. Indeed, if p = (0, 0, 0) and q = (q1, q2, q3), let γ(t) = (x(t), y(t)),

0 ≤ t ≤ T , be a curve in R
2 from (0, 0) to (q1, q2) such that q3 =

∫

γ
a, as in Dido’s

problem. The lifted curve

δ(t) = (x(t), y(t),

∫

γ|[0,t]

a), 0 ≤ t ≤ T

is then a Legendrian curve from p to q. Also, since the Riemannian length of δ is
equal to the euclidean length of γ, there is a correspondence between the geodesics
of d and the solutions of the dual isoperimetric problem.

The metric space (R3, d) is isometrically homogeneous. This can be seen by
introducing a group structure on R

3, different from the usual one, such that the left
translations are d-isometries. The group law defined by

(x, y, z) · (x′, y′, z′) = (x+ x′, y + y′, z + z′ +
1

2
(xy′ − x′y))

makes (R3, ·) a non-abelian Lie group. The left translation by (x, y, z) has Jacobian
matrix at each point

A =





1 0 0
0 1 0

−1
2y

1
2x 1





and AX(0,0,0) = X(x,y,z), AY(0,0,0) = Y(x,y,z) and AZ(0,0,0) = Z(x,y,z). Hence H is in-
variant under left translations and since each left translation leaves the orthonormal
frame {X,Y } invariant, it is a d-isometry. The group (R3, ·) is called the Heisenberg
group and has also a matrix model as a subgroup of GL(3,R).

Let

G =

{





1 a c
0 1 b
0 0 1



 : a, b, c ∈ R

}

.

This is a closed subgroup of GL(3,R) with Lie algebra

g =

{





0 a c
0 0 b
0 0 0



 : a, b, c ∈ R

}

which has basis consisting of

X̃ =





0 1 0
0 0 0
0 0 0



 , Ỹ =





0 0 0
0 0 1
0 0 0



 , Z̃ =





0 0 1
0 0 0
0 0 0



 .

It is easy to see that the map φ : R3 → G defined by

φ(x, y, z) =





1 x z + 1
2xy

0 1 y
0 0 1
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is a Lie group isomorphism from (R3, ·) onto G. Moreover, φ∗(0,0,0)(
∂

∂x
) = X̃ ,

φ∗(0,0,0)(
∂

∂y
) = Ỹ and φ∗(0,0,0)(

∂

∂z
) = Z̃. Note that [X̃, Ỹ ] = X̃Ỹ − Ỹ X̃ = Z̃−0 = Z̃

and [X̃, Z̃] = [Ỹ , Z̃] = 0. This implies that the Heisenberg group is nilpotent of step
2.

1.2 Sub-Riemannian structures

The most general definition of a Sub-Riemannian structure on a smooth manifold
M is the following.

Definition 1.2.1. A Sub-Riemannian structure on M is a triple consisting of

(i) a smooth real vector bundle p : E →M over M ,

(ii) a Riemannian metric g on this vector bundle fiberwise and

(iii) a smooth vector bundle morphism f : E → TM into the tangent bundle
TM of M .

E TM

M

f

p

A Sub-Riemannian manifold is a smooth manifold endowed with a Sub-
Riemannian structure. Its horizontal distribution is the family of linear spaces
Dx = f(Ex), x ∈ M , where Ex = p−1(x) is the fibre over the point x. The non-
negative integer k(x) = dimDx is called the rank of the Sub-Riemannian structure
at x ∈ M . If k is constant, the Sub-Riemannian structure is said to be of constant
rank. The Sub-Riemannian structure is a classical Riemannian structure on M in
case the vector bundle map f is surjective.

A smooth local vector field X defined on an open set U ⊂M is called horizontal
if X(x) ∈ Dx for every x ∈ M . The set of all horizontal vector fields on U has the
structure of a finitely generated C∞(U)-module.

If fx : Ex → TxM denotes the restriction of f to the fibre Ex, the chain of
obvious isomorphisms (Kerfx)

⊥ ∼= Ex/Kerfx ∼= Dx permits us to define an inner
product on Dx which varies smoothly with respect to x. The corresponding norm
of a vector v ∈ Dx is given by the formula

‖v‖ = min{g(u, u)1/2 : u ∈ Ex and fx(u) = v}.

Two Sub-Riemannian structures on the same smooth manifold M consisting of
smooth real vector bundles pi : Ei → M with Riemannian metrics gi and smooth
vector bundle morphisms fi : Ei → TM , i = 1, 2, are called equivalent if there exist
a smooth real vector bundle p : E → M endowed with a Riemannian metric g and
surjective smooth vector bundle morphisms qi : E → Ei, which are compatible with
the Riemannian metrics on Ei, i = 1, 2, such that f1 ◦ q1 = f2 ◦ q2, that is the
following diagram commutes.
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E1

E TM

E2

f1q1

q2 f2

The compatibility condition of the Riemannian metrics implies that

gi(vi, vi)
1/2 = min{g(u, u)1/2 : u ∈ E and qi(u) = vi}

for every vi ∈ Ei, i = 1, 2. An immediate consequence is that the corresponding dis-
tributions coincide as well as the corresponding induced norms. It is rather obvious
that equivalence of Sub-Riemannian structures on a given smooth manifold M is
an equivalence relation. For the transitivity, it suffices from the above commutative
diagram and a similar commutative diagram

E2

E′ TM

E3

f2q′2

q′3 f3

to consider the obvious commutative diagram

E1

E ⊕ E′ TM

E3

f1

f3

and take the product Riemannian metric on E ⊕ E′.

Examples 1.2.2. (a) Classically, a constant rank Sub-Riemannian structure on a
smooth manifold M is defined by a smooth vector subbundle of the tangent bundle
of M endowed with a Riemannian metric. This case is included in Definition 1.2.1
by taking the vector bundle morphism f to be the inclusion.

(b) If the vector bundle morphism f in Definition 1.2.1 is surjective, we have a
classical Riemannian structure on M . In this case the commutative diagram

E

E ⊕ TM TM

TM

fprojection

f⊕0 id
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says that the Sub-Riemannian structure is equivalent to a Riemannian structure
in the classical sense. On E ⊕ TM we consider the product Riemannian metric,
where on TM we take the Riemannian metric induced by f .

(c) Let G be a Lie group and let V be a m-dimensional linear subspace of its
Lie algebra g. Then V endowed with any inner product defines a Sub-Riemannian
structure on G. In this case, the vector bundle p : E → G is the trivial vector bundle
over G with total space E = G×R

m. If {X1, ...,Xm} is an orthonormal basis of V ,
the vector bundle morphism f : G× R

m → TG is defined by

f(g, u1, ..., um) =

m
∑

k=1

ukXk(g).

The action of G onto itself by left translations is isometric.
As a special case let G be a graded nilpotent Lie group. This means that

g = V1 ⊕ V2 ⊕ · · · ⊕ Vr

where [Vi, Vj ] = Vi+j and Vi = 0 for i > r. Hence G is nilpotent of step r. Taking
V = V1, we get a Sub-Riemannian structure as above. Such a Lie group G is called
a Carnot group.

The Heisenberg group H we defined in section 1.1 is the simplest non-euclidean
example of a Carnot group. It has step 2. Indeed, there are only two 3-dimensional,
simply connected, nilpotent Lie groups, namely the euclidean space R

3 and the
Heisenberg group H. To see this, let g be the Lie algebra of such a Lie group
G. Since G is nilpotent, g has non-trivial center. Let Z 6= 0 be an element
of the center of g. We complete Z to a basis {X,Y,Z} of g. If [X,Y ] = 0,
then g is abelian and G ∼= R

3. If [X,Y ] 6= 0, there are a, b, c ∈ R, not
all three zero, such that [X,Y ] = aX + bY + cZ. Now [[X,Y ], Y ] = a[X,Y ]
and therefore a = 0 since G is nilpotent. Similarly b = 0. Thus, necessarily
c 6= 0 and replacing Z with cZ we get a basis of g consisting of elements X,
Y , Z such that [X,Y ] = Z and [X,Z] = [Y,Z] = 0. Recalling that a fixed Lie
algebra integrates to a unique simply connected Lie group, we conclude that G ∼= H.

(d) A higher dimensional analogue of the Heisenberg group can be defined as
follows. Let (V, ω) be a 2n-dimensional real symplectic vector space and let g =
V ⊕ R, On g we define a Lie bracket by

[(v, t), (u, s)] = (0, ω(v, u)].

This makes g a 2-step nilpotent graded Lie algebra. Let {X1, Y1, ...,Xn, Yn} be a
symplectic basis of V . If Z = (0, 1), then {X1, Y1, ...,Xn, Yn, Z} is a basis of g with
[Xi, Yj] = Z, i 6= j, as the only non-trivial brackets. Now g integrates to a unique
simply connected Lie group of dimension 2n + 1, This is the (2n + 1)-dimensional
Heisenberg group.

(e) Let M be a smooth manifold and ξ be a smooth vector subbundle of its
tangent bundle TM of codimension 1. Then, locally ξ is the kernel of a differential
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1-form a. Indeed, if we choose any Riemannian metric g on M , then TM ∼= ξ ⊕ ξ⊥.
Locally, the line bundle ξ⊥ is trivial and generated by a non-zero vector field X. If
a = g(.,X), then ξ = Kera. If TM/ξ ∼= ξ⊥ is orientable, then X is globally defined,
because ξ⊥ is globally trivial and ξ = Kera throughout M .

A contact structure on a (2n+ 1)-dimensional smooth manifold M is a smooth
vector subbundle ξ of TM of rank 2n which is the kernel of a maximally non-
integrable differential 1-form a on M , meaning that a∧ (da)n 6= 0 all over M . If we
put a Riemannian metric on ξ, we get a Sub-Riemannian structure, which is said
to be of contact type. A contact manifold is an odd dimensional smooth manifold
endowed with a contact structure. A concrete example is the Heisenberg group.
Another important class of examples of contact manifolds are the pre-quantizations
of symplectic manifolds. In such a case the contact manifold is the total space of a
circle bundle over the given symplectic manifold.

(f) Let M , N be Riemannian manifolds and let p : M → N be a Riemannian
submersion. This means that the tangent bundle of M splits as a Whitney direct
sum TM = Kerp∗ ⊕ H, where H = (Kerp∗)

⊥ and p∗x|Hx : Hx → Tp(x)N is a
linear isometry of inner product vector spaces for every x ∈M . The smooth vector
subbundle H of TM defines a Sub-Riemannian structure of constant rank on M
in the obvious way. This is usually called a Sub-Riemannian structure of bundle
type. The most well known example of Riemannian submersion is the Hopf map
p : S2n+1 → CPn, if on CPn we consider the Fubini-Study metric. Actually, this is
a convenient way to define the Fubini-Study metric.

As a special case, let G be a Lie group and p : Q→ N be a smooth principal G-
bundle. Then p is a Riemannian submersion if and only if G acts on Q by isometries
of a Riemannian metric, in which case we have an induced Riemannian metric on N
making p Riemannian submersion. The corresponding horizontal distribution H is
that of a connection on the bundle. This is the case in the example of the Hopf map.

A Sub-Riemannian structure on a smooth manifold M as defined in Definition
1.2.1 is called free if the vector bundle p : E → M is trivial, that is E = M × R

m

for some m ∈ N and p is the projection, and the Riemannian metric on E is the
usual euclidean metric on R

m. In this case, if we define Xk = f(., ek), 1 ≤ k ≤ m,
then the horizontal distribution D = {Dx : x ∈ M} is globally generated by the
set of smooth vector fields {X1,X2, ...,Xm} of M . This means that for every vector
u ∈ Dx there exist u1, u2,..., um ∈ R such that

u =

m
∑

k=1

ukXk(x).

This expansion of u may not be unique because the vectors X1(x), X2(x),..., Xk(x)
may be linearly dependent. The Sub-Riemannian structure described in Example
1.2.2(c) is free.

Proposition 1.2.3. Every Sub-Riemannian structure on a smooth manifold M is
equivalent to a free one.
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Proof. Suppose that we are given a Sub-Riemannian structure onM as in Definition
1.2.1. There exists a smooth vector bundle p̃ : Ẽ → M whose Whitney direct sum
with p : E → M is a trivial vector bundle over M . So there exists some m ∈ N

such that E ⊕ Ẽ = M × R
m. On Ẽ we choose any fiberwise Riemannian metric

and on E ⊕ Ẽ we consider the product metric, so that E and Ẽ become orthogonal
vector bundles. Let p1 : E ⊕ Ẽ → E denote the projection. On M we have
now a free Sub-Riemannian structure consisting of the trivial smooth vector bundle
E ⊕ Ẽ = M × R

m → M endowed with the above product metric and the smooth
vector bundle morphism f ◦ p1 : E ⊕ Ẽ → TM . The commutative diagram

E ⊕ Ẽ

E ⊕ Ẽ TM

E

f◦p1id

p1 f

says that the initial Sub-Riemannian structure is equivalent to the constructed
free Sub-Riemannian structure, because the involved surjective vector bundle
morphisms id : E ⊕ Ẽ → E ⊕ Ẽ and p1 : E ⊕ Ẽ → E are trivially compatible with
the Riemannian metrics. �

It follows from Proposition 1.2.3 that for every Sub-Riemannian structure on
a smooth manifold M there exists a sufficiently large number of globally defined
smooth vector fields onM which generate the corresponding horizontal distribution.

1.3 Horizontal curves

Let M be a Sub-Riemannian manifold whose Sub-Riemannian structure consists of
the smooth real vector bundle p : E → M endowed with the Riemannian metric g
and the smooth vector bundle morphism f : E → TM with corresponding horizontal
distribution D = {Dx : x ∈ M}. An absolutely continuous curve γ : I →M , where
I ⊂ R is an interval, is called horizontal (or admissible) if there exists a measurable
map u : I → E such that u(t) ∈ Eγ(t) and γ̇(t) = f(γ(t), u(t)) ∈ Dγ(t) a.e. on I.
Such a measurable map u is called a control function for γ and may not be unique.
By Proposition 1.2.3, the Sub-Riemannian structure is equivalent to a free one and
there exist globally defined horizontal smooth vector fields X1, X2,..., Xm, for some
large enough m ∈ N, which generate D. As the proof of Proposition 1.2.3 shows,
the control function u for γ lifts to a measurable function (u1, u2, ..., um) : I → R

m

whose pointwise norm is equal to |u| = (g(u, u))1/2 and such that

γ̇(t) =

m
∑

k=1

uk(t)Xk(γ(t))

for almost all t ∈ I.
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Example 1.3.1. On R
2 we consider the free Sub-Riemannian structure defined by

the vector bundle morphism f : R2 × R
2 → TR2 ∼= R

2 × R
2 with

f((x, y), (v1, v2)) = ((x, y), (v1, x
2v2)).

The rank of this Sub-Riemannian structure is 2 on R
2 \{(0, y) : y ∈ R} and 1 at the

points on the line {(0, y) : y ∈ R}. Its horizontal distribution is generated by the
smooth vector fields

X =
∂

∂x
and Y = x2

∂

∂y
.

Let γ : [−1, 1] → R
2 be the smooth curve γ(t) = (t, t2) whose velocity is

γ̇(t) = X(γ(t)) +
2

t
Y (γ(t))

for t 6= 0 and γ̇(0) = X(γ(0)). So, we have a control function u = (u1, u2) where
u1(t) = 1 for every −1 ≤ t ≤ 1 and u2 : [−1, 1] → R is defined by

u2(t) =







2

t
, for t ∈ [−1, 1] \ {0},

0, for t 6= 0.

Note that although u2 is measurable, it is not continuous, not even L1. On the
trivial vector bundle R

2 × R
2 we consider the euclidean metric. Then, for the

induced norm on the horizontal distribution we have ‖γ̇(t)‖2 = (u1(t))
2 + (u2(t))

2.
This leads to the notion of minimal control.

If γ : I → M is a horizontal curve on the Sub-Riemannian manifold M , then
for almost every t ∈ I there exists a unique element u∗(t) ∈ (Kerfγ(t))

⊥ ≤ Eγ(t)

such that ‖γ̇(t)‖ = (g(u∗(t), u∗(t)))1/2 = |u∗(t)|. This almost everywhere defined
control function u∗ is called the minimal control associated to γ and may not be
continuous even in case γ is smooth, as the previous Example 1.3.1 shows. The fact
that u∗ is indeed measurable is not so obvious and follows from the following.

Lemma 1.3.2. Let I ⊂ R be an interval and let K ⊂ R
m be a compact set. Let

h : I ×K → R
m and u : I → R

m be two functions with the following properties:
(P1) h(., x) : I → R

m is measurable for every x ∈ K and h(t, .) : K → R
m is

continuous for every t ∈ I.
(P2) u is measurable.
(P3) For every t ∈ I there exists a unique u∗(t) ∈ R

m such that

‖u∗(t)‖ = min{‖x‖ : h(t, x) = u(t), x ∈ K}.

Then u∗ : I → R
m is measurable.

Proof. As a first step we show that the function φ = ‖u∗‖ : I → R is measurable.
For this it suffices to prove that the set φ−1([0, c]) is measurable for every c > 0.
The definition of u∗ implies that

φ−1([0, c]) = {t ∈ I : h(t, x) = u(t) and ‖x‖ ≤ c for some x ∈ K}.
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If A is a countable dense subset of K and

Ca,l = {t ∈ I : ‖h(t, a) − u(t)‖ < 1

l
}, a ∈ A, l ∈ N,

it suffices to prove that φ−1([0, c]) =
∞
⋂

l=1

⋃

a∈A∩B(0,c)

Ca,l.

Indeed, if t ∈ φ−1([0, c]), there exists some x ∈ K such that h(t, x) = u(t) and
‖x‖ ≤ c. Since h(t, .) is continuous, for every l ∈ N there exists a ∈ A such that

‖a‖ ≤ c and ‖h(t, a) − u(t)‖ < 1

l
.

Conversely, let t ∈
∞
⋂

l=1

⋃

a∈A∩B(0,c)

Ca,l, that is for every l ∈ N there exists al ∈ A

such that ‖al‖ ≤ c and ‖h(t, al)− u(t)‖ < 1

l
. Since K ∩ B(0, c) is compact, the

sequence (al)l∈N has some limit point x ∈ K ∩ B(0, c). The continuity of h(t, .)
implies that ‖h(t, x)− u(t)‖ = 0.

We proceed now to show that u∗ is measurable. Let F ⊂ K be a closed set.
Arguing as above, we consider the sets

Ga,l = {t ∈ I : ‖h(t, a) − u(t)‖ < 1

l
and ‖a‖ < ‖u∗(t)‖+ 1

l
}, a ∈ A, l ∈ N.

Since ‖u∗‖ is measurable, each Ga,l is measurable and so it suffices to prove that

(u∗)−1(F ) =

∞
⋂

l=1

⋃

a∈A

Ga,l.

Indeed, if u∗(t) ∈ F , then the definition of u∗ and the continuity of h(t, .) imply

that for every l ∈ N there exists some a ∈ A such that 0 ≤ ‖a‖ − ‖u∗(t)‖ < 1

l
and

‖h(t, a) − u(t)‖ < 1

l
.

Conversely, if t ∈
∞
⋂

l=1

⋃

a∈A

Ga,l, then for every l ∈ N there exists al ∈ A such

that ‖al‖ < ‖u∗(t)‖+ 1

l
and ‖h(t, al)− u(t)‖ < 1

l
. By compactness, the sequence

(al)l∈N has some limit point x ∈ F and then ‖x‖ ≤ ‖u∗(t)‖ and ‖h(t, x)−u(t)‖ = 0.
By the definition of u∗(t) we must necessarily have u∗(t) = x ∈ F . This concludes
the proof. �

If now u∗ is the minimal control of a horizontal curve γ : I → M we apply
Lemma 1.3.2 setting h(t, x) = f(γ(t), x). The assumptions of the lemma are
obviously satisfied and thus u∗ is measurable. If in addition there exists a control
u for γ such that |u| ∈ L1, then also |u∗| ∈ L1.

Definition 1.3.3. Let a, b ∈ R, with a < b and let γ : [a, b] → M be a horizontal
curve with L1 controls. The Sub-Riemannian length of γ is

L(γ) =

∫ b

a
‖γ̇(t)‖dt =

∫ b

a
|u∗(t)|dt
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where u∗ is the minimal control associated to γ.

The Sub-Riemannian length of horizontal curves with L1 controls remains in-
variant under strictly monotone absolutely continuous reparametrizations. Let c,
d ∈ R with c < d and let φ : [c, d] → [a, b] be increasing, absolutely continuous and
surjective. We assume further that γ ◦ φ is absolutely continuous, which is true in
case φ is strictly increasing. If u∗ is the minimal control associated with γ, from the
chain rule follows that the minimal control associated to the horizontal curve γ ◦ φ
is φ′(u∗ ◦ φ). Since |u∗| ∈ L1, from the change of variables formula (for Lebesgue
integrals) we have φ′|u∗ ◦ φ| ∈ L1 and

L(γ ◦ φ) =
∫ d

c
|u∗(φ(t))|φ′(t)dt =

∫ b

a
|u∗(t)|dt = L(γ).

A horizontal curve γ : [0, T ] → M , T > 0, is said to be parametrized by
arclength if ‖γ̇(t)‖ = 1 for almost all t ∈ [0, T ]. A horizontal curve γ parametrized
by arclength has automatically L∞ controls and L(γ) = T .

Proposition 1.3.4. Every horizontal curve γ : [0, T ] →M , T > 0, with L1 controls
and with positive length is an absolutely continuous, monotone reparametrization of
a horizontal curve which is parametrized by arc length.

Proof. Let u∗ be the minimal control associated with γ and let φ : [0, T ] → [0, L(γ)]
be the length function of γ defined by

φ(t) =

∫ t

0
|u∗(s)|ds

which is increasing and absolutely continuous, because |u∗| ∈ L1. If φ(t1) = φ(t2)
and t1 < t2, then γ̇ = 0 a.e. on [t1, t2] and so γ is constant on [t1, t2]. Thus, there
exists a well defined map δ : [0, L(γ)] →M such that γ = δ ◦ φ.

[0, T ] M

[0, L(γ)]

γ

φ
δ

In order to show that δ is absolutely continuous, let U be the domain of a chart
on M contained in a lager compact set over which p : E → M is trivial. Then, by
equivalence of norms in finite dimensional vector spaces and continuity, there exists
a constant c > 0 such that

‖γ(t2)− γ(t1)‖ ≤ c

∫ t2

t1

|u∗(s)|ds

for 0 ≤ t1 < t2 ≤ T with γ([t1, t2]) ⊂ U . In the left hand side of the above inequality
by abuse of notation we have denoted again with γ the local presentation of the curve
with respect to the chart on U and by ‖.‖ the euclidean norm. From this we get

‖δ(φ(t2))− δ(φ(t1))‖ ≤ c|φ(t2)− φ(t1)|.
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This shows that δ is Lipschitz and hence absolutely continuous.

Finally, in order to prove that δ is horizontal and parametrized by arclength, we
need to find a control for δ of norm equal to 1 pointwise. For this it suffices to define

v(s) =
1

|u∗(t)|u
∗(t), for s = φ(t).

This is well defined a.e. as the following Lemma 1.3.5 shows. From the chain rule
we have

f(γ(t), u∗(t)) = γ̇(t) = φ′(t)δ̇(s)

and from fiberwise linearity f(δ(s), v(s)) = δ̇(s), since φ′ = |u∗| a.e. �

In the proof of Proposition 1.3.4 we have used the following measure theoretic
fact which is a consequence of Vitali’s covering theorem.

Lemma 1.3.5. Let φ : [0, 1] → R be an increasing absolutely continuous function.
If A = {t ∈ [0, 1] : φ′(t) exists and φ′(t) = 0}, then φ(A) has Lebesgue measure
zero.

Proof. Let ǫ > 0 and let δ > 0 correspond to ǫ as in the definition of absolute
continuity for φ. For every t ∈ A there exists δt > 0 such that (t− δt, t+ δt) ⊂ (0, 1)
and

|φ(t+ h)− φ(t)|
|h| < ǫ

whenever 0 < |h| < δt.

The family U = {[t, t + h] : t ∈ A and 0 < h < δt} is a Vitali cover. By Vitali’s
covering theorem, there exists a countable subfamily of U consisting of pairwise
disjoint intervals Ik = [tk, tk + hk], k ∈ N, such that

λ

(

A ∩
( ∞
⋃

k=1

Ik

)c)

= 0

where λ denotes the Lebesgue measure. Thus, there exists a countable family of
closed intervals Jk, k ∈ N, such that

A ∩
( ∞
⋃

k=1

Ik

)c

⊂
∞
⋃

k=1

Jk and

∞
∑

k=1

λ(Jk) < δ.

Now

φ(A) ⊂
∞
⋃

k=1

φ(Ik) ∪
∞
⋃

k=1

φ(Jk)

and φ(Ik), φ(Jk), k ∈ N, are intervals. Since φ is assumed to be increasing, we have

∞
∑

k=1

λ(φ(Ik)) < ǫ

∞
∑

k=1

hk ≤ ǫ.
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On the other hand, let Fm =

m
⋃

k=1

Jk and let Fm,1,..., Fm,l be the connected compo-

nents of Fm. Since
l
∑

j=1

λ(Fm,j) < δ, the absolute continuity of φ gives

λ(φ(Fm)) = λ

( m
⋃

j=1

φ(Fm,j)

)

≤
m
∑

j=1

λ(φ(Fm,j)) < ǫ.

This holds for every m ∈ N, which means that

∞
∑

k=1

λ(φ(Jk)) = sup{λ(φ(Fm)) : m ∈ N} ≤ ǫ.

Therefore,
∞
∑

k=1

λ(φ(Ik)) +
∞
∑

k=1

λ(φ(Jk)) ≤ 2ǫ.

This proves that φ(A) is a set of Lebesgue measure zero. �
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Chapter 2

Sub-Riemannian manifolds as

length metric spaces

2.1 The Sub-Riemannian distance

As in the case of a Riemannian manifold, if M is a connected Sub-Riemannian
manifold, we can define the ”distance” of two points x, y ∈ M in a similar way.
More precisely, the Sub-Riemannian distance (also known as Carnot-Caratheodory
distance) of x and y is defined to be

d(x, y) = inf{L(γ) : γ is a horizontal curve in M with L1 controls from x to y}.

It is obvious that d is symmetric and satisfies the triangle inequality. Also
d(x, x) = 0 for every x ∈ M . However, d(x, y) may be infinite, because there may
not exist any horizontal curve from x to y. For example, if E ⊂ TM is (the total
space of) an integrable subbundle of the tangent bundle of M , then there exists a
horizontal curve in M from x to y if and only if x and y belong to the same leaf of
the foliation to which E integrates. So we have to answer the following:

Question 2.1.1. Under what sufficient conditions d is a distance function? In
particular, under what conditions on the Sub-Riemannian structure of M any two
points x, y ∈M can be connected with a horizontal curve?

In the Riemannian case, the topology induced by d coincides with the original
manifold topology.

Question 2.1.2. If d is a distance, does it induce the original manifold topology?

This chapter is devoted to giving satisfactory answers to these two questions.
Recall however that in Riemannian Geometry the distance can be realized by
minimizing geodesics.

Definition 2.1.3. A horizontal curve γ : [0, T ] → M , T > 0, with L1 controls is
called a length minimizer if L(γ) = d(γ(0), γ(T )).

17
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In Riemannian Geometry geodesics are smooth curves.

Question 2.1.4. Are all Sub-Riemannian length minimizers smooth?

This question will be answered in chapter 3, which is devoted to the study
of Sub-Riemannian geodesics. As in Riemannian Geometry, it is sometimes more
convenient to work with the energy of curves instead of the length.

Definition 2.1.5. The energy of a horizontal curve γ : [0, T ] →M , T > 0, with L2

controls is

J(γ) =
1

2

∫ T

0
‖γ̇(t)‖2dt

and is not invariant under reparametrizations.

Proposition 2.1.6. For any x, y ∈M let

e(x, y) = inf{2J(γ) : γ : [0, 1] →M is horizontal with L2 controls from x to y}.

Then, (d(x, y))2 = e(x, y). Moreover, a horizontal curve γ : [0, 1] → M with L2

controls from x to y is an energy minimizer if and only if it is a length minimizer
and ‖γ̇‖ is constant a.e.

Proof. If there is no horizontal curve with L1 controls from x to y, both d(x, y) and
e(x, y) are equal to infinity. So we assume that there are horizontal curves with L2

controls from x to y. From the Cauchy-Schwarz inequality we have

(L(γ))2 =

(
∫ 1

0
‖γ̇(t)‖dt

)2

≤
∫ 1

0
‖γ̇(t)‖2dt = 2J(γ)

and the equality holds if and only if ‖γ̇‖ is constant a.e. Hence (d(x, y))2 ≤ e(x, y).
To prove the reverse inequality, for every ǫ > 0 there exists a horizontal curve
γ : [0, 1] → M with L1 controls from x to y such that L(γ) ≤ d(x, y) + ǫ. By
Proposition 1.3.4, γ is the absolutely continuous, increasing reparametrization of a
horizontal curve δ : [0, 1] →M from x to y with ‖δ̇‖ = L(γ) a.e. Consequently,

2J(δ) = (L(γ))2 ≤ (d(x, y) + ǫ)2.

This shows that e(x, y) ≤ (d(x, y)+ǫ)2 for every ǫ > 0 and hence e(x, y) = (d(x, y))2.
The second assertion is obvious from the above. �

2.2 The Lie bracket generating condition

Let A be a real Lie algebra and let F ⊂ A. The Lie subalgebra of A generated by F
is the smallest Lie subalgebra of A which contains F and will be denoted by Lie(F ).
We shall give a description of Lie(F ). Let F 1 =< F >, where < · > denotes span
as a vector space. We define inductively

F j+1 = F j+ < [F 1, F j ] >, j ∈ N,
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where [F 1, F j ] = {X,Y : X ∈ F 1, Y ∈ F j}. Obviously,

F 1 ⊂ F 2 ⊂ · · · ⊂ F j ⊂ F j+1 ⊂ · · · ⊂ A.

Lemma 2.2.1. [F i, F j ] ⊂ F i+j for every i, j ∈ N.

Proof. This holds by definition for i = 1 and j ∈ N. For i = 2 and all j ∈ N we have
(suppressing the spans < · >)

[F 2, F j ] = [F 1 + [F 1, F 1], F j ] = [F 1, F j ] + [[F 1, F 1], F j ]

⊂ F j+1 + [[F 1, F j ], F 1] + [[F j , F 1], F 1] = F j+1 + [[F 1, F j ], F 1]

⊂ F j+1 + [F j+1, F 1] = F j+2.

For the proof of the general formula we use induction with repect to i. Suppose that
[F i−1, F j ] ⊂ F i−1+j for all j ∈ N. Then,

[F i, F j ] = [F i−1, F j ] + [[F 1, F i−1], F j ] ⊂ F i−1+j + [[F i−1, F j ], F 1] + [[F j , F 1], F i−1]

⊂ F i−1+j + [F i−1+j , F 1] + [F j+1, F i−1] ⊂ F i+j + [F i−1, F j+1] ⊂ F i+j. �

If F∞ =

∞
⋃

j=1

F j, then F∞ is a Lie subalgebra of A, by Lemma 2.2.1, and thus

Lie(F ) ⊂ F∞. On the other hand, by definition F 1 =< F >⊂ Lie(F ) and induc-
tively we have F j+1 = F j+ < [F 1, F J ] >⊂ Lie(F ). Consequently,

Lie(F ) =
∞
⋃

j=1

F j.

Note that if F j0+1 = F j0 for some j0 ∈ N, then Lie(F ) = F j0 . So, if A is finite
dimensional, there always exists some j0 ∈ N such that

< F >= F 1 ⊂ F 2 ⊂ · · · ⊂ F j0 = Lie(F ).

Let now M be a connected Sub-Riemannian manifold with corresponding hor-
izontal distribution D. Let D denote the subsheaf of the tangent sheaf T M of M
consisting of germs of horizontal local smooth vector fields. As in the case of Lie
algebras we have a flag of subsheaves

D = D1 ⊂ D2 ⊂ · · · ⊂ Dj ⊂ Dj+1 ⊂ · · · ⊂ T M,

where Dj+1 = Dj+ < [D1,Dj ] >, the span taken over the germs of smooth
functions defined on open subsets of M .

Definition 2.2.2. The Sub-Riemannian structure of the connected Sub-
Riemannian manifold M is said to be Lie bracket generating if for every x ∈ M

there exists r(x) ∈ N such that Dr(x)−1
x 6= Dr(x)

x = TMx. We call r(x) the step
(or degree of non-holonomy) of the Sub-Riemannian structure of M at the point
x ∈ M . If evx : Di → TxM denotes the evaluation at x ∈ M and Di

x = evx(Di
x),



20CHAPTER 2. SUB-RIEMANNIANMANIFOLDS AS LENGTHMETRIC SPACES

1 ≤ i ≤ r(x), we also put nj(x) = dimDj
x and call (n1(x), n2(x), ..., nr(x)(x)) the

growth vector at x.

The step may vary from point to point and in this case Dj is a sheaf which
does not arise as a sheaf of germs of smooth sections of a vector subbundle of the
tangent bundle TM of M .

Definition 2.2.3. The Sub-Riemannian structure of M is called regular at the
point x ∈ M if the growth vector is constant on an open neighbourhood of x. If
the growth vector is constant throughout M , then the Sub-Riemannian structure
is called equiregular.

The continuity of linear independence implies that if the Sub-Riemannian
structure is Lie bracket generating, then the step r is an upper semicontinuous
function on M and each nj, is a lower semicontinuous function, because every
point x ∈ M has an open neighbourhood V such that r(y) ≤ r(x) for every
y ∈ V . Moreover, the set Wj ⊂ V of points at which nj takes its maximal value
on V is not empty and open, since nj is lower semicontinuous. Thus, the set
W1 ∩W2 ∩ · · · ∩Wr(x) is open and consists of regular points. Therefore, the set of
regular points is an open and dense subset of M .

Examples 2.2.4. (a) The Sub-Riemannian structure of the Heisenberg group is
free and of contact type and defined by the subbundle of the tangent bundle TR3

of R3 which is the kernel of the differential 1-form

ω = dz − 1

2
(xdy − ydx).

It is generated by the globally defined smooth vector fields

X =
∂

∂x
− 1

2
y
∂

∂z
, Y =

∂

∂y
+

1

2
x
∂

∂z
.

Since [X,Y ] =
∂

∂z
, it follows that the Sub-Riemannian structure of the Heisenberg

group is Lie bracket generating of constant step 2 and growth vector (2, 3). In
particular, it is equiregular.

(b) The Martinet distribution on R
3 is the kernel of the differential 1-form

ω = dz − y2dx

and is a Sub-Riemannian structure of constant rank 2. The kernel of ω is generated
by the globally defined smooth vector fields

X =
∂

∂x
+ y2

∂

∂z
and Y =

∂

∂y
.

Since [X,Y ] = −2y
∂

∂z
and [[X,Y ], Y ] = 2y

∂

∂z
, the Martinet distribution is Lie

bracket generating. The growth vector outside the plane y = 0 is (2, 3) and on that
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plane it is (2, 2, 3). Thus, this distribution is not equiregular, as no point of the
plane y = 0 is regular.

(c) On R
3 we consider the Sub-Riemannian structure of constant rank 2 defined

by the subbundle of TR3 which is generated by the globally defined smooth vector
fields

X =
∂

∂x
and Y =

∂

∂y
+ xz

∂

∂z
.

Then we have

[X,Y ] = z
∂

∂z
, [X, [X,Y ]] = 0, [Y, [X,Y ]] = 0.

Hence off the plane z = 0 this Sub-Riemannian structure is Lie bracket generating
of step 2, but is not Lie bracket generating at the points of this plane.

2.3 The Chow-Rashevskii Theorem

This section is devoted to the proof of the following theorem which gives answers
to Questions 2.1.1 and 2.1.2.

Theorem 2.3.1. (W-L. Chow and P.K. Rashevskii) Let M be a connected smooth
Sub-Riemannian n-manifold with corresponding Sub-Riemannian ”distance” d. If
the Sub-Riemannian structure of M satisfies the Lie bracket generating condition,
then (M,d) is a metric space and the topology induced by d coincides with the
manifold topology.

The proof will be divided into steps. The most crucial and informative step is
the following.

Proposition 2.3.2. Let M be a smooth Sub-Riemannian n-manifold. If the
Sub-Riemannian structure of M satisfies the Lie bracket generating condition, then
for every x ∈ M and every ǫ > 0 there exists an open neighbourhood U of x in
M such that every point of U can be joined in M to x with a piecewise smooth
horizontal curve with L∞ controls of length at most ǫ.

Proof. There exists an open neighbourhood of the point x ∈ M over which the
horizontal distribution is generated (over C∞ functions) be a finite set of horizontal
smooth vector fields X1,X2, ...,Xm for some m ∈ N. Let Φi be the (local) flow of
Xi, 1 ≤ i ≤ m. We shall show first that for every open neighbourhood V of 0 ∈ R

n

there exist (s1, s2, ..., sn) ∈ V and 1 ≤ i1, i2, ..., in ≤ m such that (s1, s2, ..., sn) is a
regular point of the smooth map ψ : V →M defined by

ψ(t1, t2, ..., tn) = (Φin
tn ◦ · · ·Φi1

t1)(x).

There exists 1 ≤ i1 ≤ m such that Xi1(x) 6= 0, because otherwise the Sub-
Riemannian structure is not Lie bracket generating at x. So there exists an open
interval I1 containing 0 ∈ R such that the map φ1 : I1 → V with φ1(t) = Φ1

t (x)
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is a smooth embedding. Thus, S1 = φ1(I1) is a regular 1-dimensional submanifold
of M . If n = 1, we have finished. If n > 1, there exists some t11 ∈ I1 and some
1 ≤ i2 ≤ m such that Xi2(Φ

1
t11
(x)) is not tangent at S1, because otherwise all X1,

X2,..., Xm are tangent to S1 and the Sub-Riemannian structure is not Lie bracket
generating. The map φ2(t1, t2) = (Φi2

t2 ◦ Φ
i1
t1)(x) is defined and is smooth on some

open neighbourhood of (t11, 0) in R
2 with values in V and

∂φ2
∂t1

(t11, 0) = Xi1(Φ
i1
t11
(x))

is tangent to S1, while
∂φ2
∂t2

(t11, 0) = Xi2(Φ
i1
t11
(x)) is transverse to S1. Hence, φ2

maps some smaller open neighbourhood of (t11, 0) diffeomorphically onto a regular
2-dimensional submanifold S2 of M . In particular, the conclusion is proved in case
n = 2. If n > 2, there exist (t21, t

2
2) close enough to (t11, 0) and some 1 ≤ i3 ≤ m such

that Xi3(φ2(t
2
1, t

2
2)) is not tangent to S2, because the Sub-Riemannian structure is

assumed to be Lie bracket generating. The map φ3(t1, t2, t3) = (Φi3
t3 ◦ Φ

i2
t2 ◦ Φ

i1
t1)(x)

is defined and is smooth on an open neighbourhood of (t21, t
2
2, 0) in R

3 with values
in V and

∂φ3
∂t1

(t21, t
2
2, 0),

∂φ3
∂t2

(t21, t
2
2, 0) ∈ Tφ2(t21,t

2
2)
S2

while
∂φ3
∂t3

(t21, t
2
2, 0) = Xi3(φ2(t

2
1, t

2
2)). Again since Xi3(φ2(t

2
1, t

2
2)) is not tangent to

S2, it follows that φ3 maps some open neighbourhood of (t21, t
2
2, 0) diffeomorphically

onto a regular 3-dimensional submanifold S3 of M . If n = 3, we have finished. If
n > 3 we repeat the same argument a finite of times to reach the assertion.

Since (s1, s2, ..., sn) is a regular point of ψ, there exists an open neighbourhood
W ⊂ V of (s1, s2, ..., sn) such that ψ(W ) is an open subset of M and ψ maps
W diffeomorphically onto ψ(W ). Note that x /∈ ψ(W ). In order to get a local
parametrization of M around x, we consider the smooth embedding ψ̂ : W → M
defined by

ψ̂(t1, t2, ..., tn) = (Φi1
−s1 ◦ Φ

i2
−s2 ◦ · · · ◦Φ

in
−sn)(ψ(t1, t2, ..., tn)).

Then, ψ̂(s1, s2, ..., sn) = x and ψ̂(W ) is an open subset of M .
If now we are given ǫ > 0, we apply the above taking

V = {(t1, t2, ..., tn) ∈ R
n : |t1|+ |t2|+ · · ·+ |tn| <

ǫ

2
}.

If y = ψ̂(t1, t2, ..., tn) ∈ ψ̂(W ), then y can be joined to x with a piecewise smooth
curve γ (not necessarily in ψ̂(W )) consisting of pieces of integral curves of the vector
fields Xi1 , Xi2 ,..., Xin of successive time lengths |t1|, |t2|,..., |tn|, |s1|, |s2|,..., |sn|.
Therefore, γ is horizontal with L∞ controls and

L(γ) ≤ |t1|+ |t2|+ · · ·+ |tn|+ |s1|+ |s2|+ · · · + |sn| < ǫ.

Consequently, it suffices to take U = ψ̂(W ). �

Rephrasing Proposition 2.3.2, if the Sub-Riemannian structure is Lie bracket
generating, then for every x ∈ M and every ǫ > 0 there exists an open set U ⊂ M
such that x ∈ U ⊂ {y ∈ M : d(x, y) < ǫ}. This means that each ”open ball”
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B(x, ǫ) = {y ∈ M : d(x, y) < ǫ} is an open subset of M . Moreover, the function
d(x, .) is continuous on U .

Going one step further, in order to prove that d is actually finite on all of
M × M , always assuming the Lie bracket generating condition, we consider the
binary relation

x ∼ y if and only if d(x, y) is finite.

This is an equivalence relation, because d is symmetric and satisfies the triangle
inequality. Also, Proposition 2.3.2 implies that the corresponding equivalence
classes are open subsets of M . Thus, if M is connected, there must be only one
equivalence class and d must be finite on M ×M .

Proof of Theorem 2.3.1. So far we have proved that d is a pseudo-distance and
that the manifold topology is finer than the d-topology. To conclude the proof of
Theorem 2.3.1 it remains to prove that the d-topology is finer than the manifold
topology.

Let x ∈M and let U be an open neighbourhood of x in M for which there exists
a smooth diffeomorphism φ : U → R

n. Let K ⊂ U be a compact neighbourhood
of x. There exists δ > 0 (depending on K) such that if γ : [0, T ] → U , T > 0, is
a horizontal curve with L1 controls, γ(0) = x and L(γ) ≤ δ, then γ([0, T ]) ⊂ K.
Indeed, by the equivalence of norms in finite dimensional real vector spaces and the
compactness of K, there exists a constant c > 0 such that

‖φ(γ(t)) − φ(γ(0))‖ ≤ c

∫ t

0
|γ̇(s)|ds

for every horizontal curve γ : [0, T0] → K with L1 controls and γ(0) = x, where the
norm in the left hand side is euclidean. There exists a small enough δ > 0 such that

0 < cδ < inf{‖φ(x) − y‖ : y ∈ ∂φ(K)}.

If there exists a horizontal curve γ : [0, T ] → U , T > 0, with L1 controls such that
γ(0) = x and γ([0, T ]) is not contained in K, then T0 = sup{t ∈ [0, T ] : γ(t) ∈ K} <
T and γ(T0) ∈ ∂K. Therefore

L(γ) ≥ 1

c
‖φ(γ(T0))− φ(x)‖ ≥ δ.

It follows immediately from the assertion we have just proved that

{y ∈M : d(x, y) < δ} ⊂ K ⊂ U

which means that U is open in the d-topology. This concludes the proof of Theorem
2.3.1. �

Example 2.3.3. LetM be a smooth 3-manifold and let a be a contact differential 1-
form, that is a∧da 6= 0 everywhere onM . Since a is nowhere vanishing, D = Kera is
a smooth subbundle of TM which is the horizontal distribution of a Sub-Riemannian
structure on M , having chosen a Riemannian metric g on M and restricting it on
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D. In particular, M is orientable and a∧ da is a volume element. If ψ :M → R is a
nowhere vanishing smooth function, then ψa is another contact differential 1-form
which defines the same contact distribution D and the volume element ψ2a ∧ da.
Thus the induced orientation ofM depends only on the contact distribution D. The
orthogonal line bundle D⊥ of D is trivial and generated by a smooth vector field
on M such that a = g(X, ·) and g(X,X) = 1. If Y , Z are two pointwise linearly
independent horizontal smooth (local) vector fields then we have

(a ∧ da)(X,Y,Z) = 2da(Y,Z) and

da(Y,Z) = Y a(Z)− Za(Y )− a([Y,Z]) = −a([Y,Z]).

It follows that the contact condition a ∧ da 6= 0 is equivalent to da|D 6= 0 and also
equivalent to [Y,Z]x /∈ Dx for every point x in the domain of definition of any two
pointwise linearly independent horizontal smooth (local) vector fields Y , Z. This
last form of the contact condition implies that a Sub-Riamannian structure of con-
tact type on a smooth 3-manifold M satisfies the Lie bracket generating condition
and is equiregular with constant growth vector (2, 3). From Proposition 2.3.2, if
M is connected, any two points of M can be joined with a piecewise smooth hor-
izontal curve with L∞ controls. The origins of this fact can be traced back to C.
Caratheodory’s theory on the mathematical foundations of thermodynamics.

2.4 Existence of length minimizers

In this section we shall be concerned with the existence, locally and globally, of
length minimizers and the Sub-Riemannian version of the Hopf-Rinow theorem. If
M is a Sub-Riemannian manifold with a free Sub-Riemannian structure and its
horizontal distribution is generated by globally defined smooth vector fields X1,
X2,..., Xm, for some m ∈ N, then the length minimizers from x ∈ M to y ∈ M are
the solutions of the constrained optimal control problem

γ̇(t) =
m
∑

k=1

uk(t)Xk(γ(t))

min

∫ T

0
‖γ̇(t)‖dt

where γ : [0, T ] →M , T > 0, with u1, u2,..., um in L1 and γ(0) = x, γ(T ) = y.

Throughout this section we shall assume thatM is a Sub-Riemannian n-manifold
carrying a Sub-Riemannian structure consisting of a smooth real vector bundle
p : E → M endowed with a Riemannian metric g and a smooth vector bundle
morphism f : E → TM with horizontal distribution D = {Dx : x ∈M}. Moreover,
we assume that the Lie bracket generating condition is satisfied, so that if d is the
Sub-Riemannian distance, then (M,d) is a metric space and d induces the manifold
topology on M , by Theorem 2.3.1.

We shall need the weak semicontinuity of the length functional.
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Proposition 2.4.1. Let γ, γk : [0, 1] → M , k ∈ N be absolutely continuous curves
with the following properties:

(i) Each γk is horizontal with a.e. constant ‖γ̇‖ = L(γk).

(ii) γ = lim
k→+∞

γk uniformly.

(iii) lim inf
k→+∞

L(γk) is finite.

Then γ is horizontal with L∞ controls and L(γ) ≤ lim inf
k→+∞

L(γk).

Proof. Let us denote L = lim inf
k→+∞

L(γk). Passing to a subsequence, we may assume

that L = lim
k→+∞

L(γk) and we have to prove that γ is horizontal with L∞ controls

and L(γ) ≤ L. Let ǫ > 0. If K is a compact neighbourhood of γ([0, 1]), there exists
k0 ∈ N such that L(γk) < L + ǫ and γk([0, 1]) ⊂ K for every k ≥ k0, by uniform
convergence. The set

Vx = {f(x, u) : |u| ≤ L+ ǫ} ⊂ TxM

is convex, because f is fiberwise linear. Thus, γ̇k(t) ∈ Vγk(t), if γ̇k(t) exists, for
k ≥ k0.

Let 0 < t < 1 and h > 0 be so small that γ([t, t + h]) is contained in an
open neighbourhood U ⊂ K of γ(t) in M for which there exists a diffeomorphism
φ : U → R

n. If u∗k is the minimal control of γk, then

1

h
[(φ ◦ γk)(t+ h)− (φ ◦ γk)(t)] =

1

h

∫ t+h

t
φ∗γk(s)(f(γk(s), u

∗
k(s)))ds

which belongs to conv
⋃

t≤s≤t+h

φ∗γk(s)(Vγk(s)), where conv means convex hull.

On the other hand, taking larger k0, if necessary, for k ≥ k0 and t ≤ s ≤ t+h we
have ‖φ(γk(t))− φ(γ(t))‖ < h, by uniform convergence, and there exists a constant
c > 0, depending on K and the metric g, such that

‖φ(γk(s))− φ(γk(t))‖ ≤ c

∫ s

t
|u∗k(τ)|dτ ≤ c(L+ ǫ)h

where the norm on the left hand sides are euclidean. It follows that there is a
constant C > 1 independent of k and h such that

‖φ(γk(s))− φ(γ(t))‖ ≤ Ch

for every t ≤ s ≤ t + h. Since the Sub-Riemannian metric d induces the manifold
topology, we conclude that γk([t, t+h]) ⊂ B(γ(t), r(h)), where the radii of the Sub-
Riamannian balls B(γ(t), r(h)) satisfy lim

h→0+
r(h) = 0. Thus, eventually we have

B(γ(t), r(h)) ⊂ U for small enough h. Since

1

h
[(φ◦γk)(t+h)−(φ◦γk)(t)] ∈ conv

⋃

t≤s≤t+h

φ∗γk(s)(Vγk(s)) ⊂ conv
⋃

x∈B(γ(t),r(h))

φ∗x(Vx)
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eventually for all k, taking the limit for k → +∞ we get

1

h
[(φ ◦ γ)(t+ h)− (φ ◦ γ)(t)] ∈ conv

⋃

x∈B(γ(t),r(h))

φ∗x(Vx).

If now γ is differentiable at t, taking the limit for h→ 0+ we arrive at γ̇(t) ∈ Vγ(t).
So, there exists a unique u∗(t) such that γ̇(t) = f(γ(t), u∗(t)) and

‖γ̇(t)‖ = |u∗(t)| ≤ L+ ǫ.

Evidently, u∗ is the minimal control of γ and γ is horizontal with L∞ controls.
Moreover, L(γ) ≤ L+ ǫ for every ǫ > 0. �

Corollary 2.4.2. Let x ∈ M and r > 0 be such that the Sub-Riemannian closed
ball B(x, r) is compact. Then, for every y ∈ B(x, r) there exists a length minimizer
in B(x, r) from x to y.

Proof. Let y ∈ B(x, r). There exists a sequence of horizontal curves with
L∞ controls γk : [0, 1] → M from x to y such that ‖γ̇‖ = L(γk) a.e. and
lim

k→+∞
L(γk) = d(x, y). Eventually, L(γk) < r and γk([0, 1]) ⊂ B(x, r). There exists

a constant c > 0 depending on B(x, r) and the metric g such that if 0 < t < 1 and
U ⊂ M is an open neighbourhood of γ(t) for which there exists a diffeomorphism
φ : U → R

n, then

‖(φ ◦ γ)(t)− (φ ◦ γ)(s)‖ ≤ cL(γk)|t− s| < Cr|t− s|

for s close enough to t. This means that γk is locally Lipschitz with Lipschitz
constant independent of k. Also,

d(γk(t), γk(s)) ≤ L(γk)|t− s| < r|t− s|

for every t, s ∈ [0, 1]. It follows from the Arzala-Ascoli theorem that there exists
a subsequence (γkl)l∈N which converges uniformly to some locally Lipschitz curve
γ : [0, 1] → M , hence absolutely continuous. Thus, the assumptions of Proposition
2.4.1 are satisfied and we conclude that γ is horizontal from x to y with L∞ controls.
Moreover, it has length

L(γ) ≤ lim inf
k→+∞

L(γk) = d(x, y). �

As in a general length metric space, we have now a Sub-Riemannian version of
the Hopf-Rinow-Cohn Vossen theorem.

Theorem 2.4.3. Let M be a connected Sub-Riemannian manifold whose Sub-
Riemannian structure satisfies the Lie bracket generating condition with Sub-
Riemannian distance d. If the metric space (M,d) is complete, then

(a) for every x ∈M and r > 0 the closed Sub-Riemannian ball B(x, r) is compact
and
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(b) for every x, y ∈M there exists a length minimizer from x to y.

Proof. The second assertion (b) follows from (a) and Corollary 2.4.2. We proceed
to the proof of (a). We first observe that if there exists some point x ∈M such that
B(x, r) is compact for every r > 0, then this holds for every point of M . Suppose
that this is not true. Then,

ρ(x) = sup{r > 0 : B(x, r) is compact}

is finite for every x ∈ M . Since M is locally compact and d induces the manifold
topology, we have a well defined function ρ :M → (0,+∞). We shall prove that ρ is
(uniformly) continuous. Let x, y ∈M . If ρ(x) ≤ d(x, y), then ρ(x)− ρ(y) ≤ d(x, y).
If ρ(x) > d(x, y), we pick 0 < δ < ρ(x) − d(x, y) and ρ(x) − δ < r ≤ ρ(x). Then,
r − d(x, y) > ρ(x) − δ − d(x, y) > 0 and B(y, r − d(x, y)) ⊂ B(x, r). This implies
that r ≤ ρ(y) + d(x, y) for all ρ(x)− δ < r ≤ ρ(x) and so ρ(x) ≤ ρ(y) + d(x, y). By
symmetry, we conclude |ρ(x)− ρ(y)| ≤ d(x, y) and ρ is uniformly continuous.

Now we observe that for every ǫ > 0 the set B(x, ρ(x)− ǫ) is a compact ǫ-
net in B(x, ρ(x)). Indeed, let y ∈ B(x, ρ(x)). There exists a sequence (yk)k∈N in
B(x, ρ(x)) converging to y and so eventually d(yk, y) < ǫ. By Corollary 2.4.2, there
exists a length minimizer γk : [0, 1] → B(x, ρ(x)) with L∞ controls from x to yk.
If yk ∈ B(x, ρ(x)− ǫ) for some large k, we are done. If not, there exists some
0 < tk < 1 such that d(γk(tk), x) = ρ(x)− ǫ and then eventually

d(yk, γk(tk)) = d(x, yk)− d(x, γk(tk)) < ρ(x)− (ρ(x)− ǫ) = ǫ.

Taking the limit for k → +∞ we get d(y,B(x, ρ(x) − ǫ)) ≤ ǫ. This shows that
B(x, ρ(x)− ǫ) is a ǫ-net in B(x, ρ(x)).

Since B(x, ρ(x)) is d-complete, we conclude that it is compact. Therefore ρ takes
on a minimum value η on B(x, ρ(x)). Let {z1, ..., zl} be a finite η-net in B(x, ρ(x))
and

A =
l
⋃

i=1

B(zi, η).

The set A is compact by the choice of η and of course A contains B(x, ρ(x)). By
the compactness of B(x, ρ(x)), there exists some ǫ > 0 such that d(y, z) ≥ 2ǫ for
every y ∈ M \ A and z ∈ B(x, ρ(x)). If y ∈ M \ A and γ : [0, 1] → M is any
horizontal curve with L1 controls from x to y, there exists some 0 < t0 < 1 such
that γ(t0) ∈ ∂B(x, ρ(x)) and

L(γ) = L(γ|[0,t0]) + L(γ|[t0,1]) ≥ ρ(x) + 2ǫ.

Therefore, d(x, y) > ρ(x) + ǫ. This shows that B(x, ρ(x) + ǫ) ⊂ A. Hence
B(x, ρ(x) + ǫ) is compact, which contradicts the definition of ρ(x). This concludes
the proof. �
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Chapter 3

Sub-Riemannian geodesics

3.1 Normal and abnormal length minimizers

In Riemannian Geometry geodesics locally minimize length and are solutions of a
second order (in general non-linear) system of differential equations. Hence they
are always smooth curves that can be determined uniquely by initial position and
initial velocity. In Sub-Riemannian Geometry this is not possible, because the ini-
tial velocities of geodesics emanating from a given point belong to a proper linear
subspace of the tangent space at this point. It is however possible to determine the
geodesic from its initial point and an element of the cotangent space. This motivates
a Hamiltonian approach for the study of Sub-Riemannian geodesics. The starting
point is the Pontryagin Maximum Principle.

Let M be a connected Sub-Riemannian n-manifold whose Sub-Riemannian
structure consists of a smooth real vector bundle p : E → M endowed with a
Riemannian metric g, a smooth vector bundle morphism f : E → TM with
horizontal distribution D = {Dx : x ∈ M} and satisfies the Lie bracket generating
condition. Let X1, X2,..., Xm be globally defined horizontal smooth vector fields
which generate the horizontal distribution coming from an orthonormal frame of
the bundle.

Theorem 3.1.1. Let γ : [0, L] →M , L > 0, be a horizontal curve with L∞ controls
parametrized by arclength and with minimal control u∗ = (u∗1, u

∗
2, ..., u

∗
m), that is

γ̇(t) =

m
∑

k=1

u∗k(t)Xk(γ(t))

for a.e. t ∈ [0, L]. If γ is a length minimizer, then there exists a (not necessarily
unique) continuous lift λ : [0, L] → T ∗M of γ such that one of the following is
satisfied:

(N) λ(t)(Xk(γ(t)) = u∗k(t) a.e. for every 1 ≤ k ≤ m or

(A) λ(t)(Xk(γ(t)) = 0 for every 1 ≤ k ≤ m and λ 6= 0.

29
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T ∗M

[0, L] M

λ

γ

In Rimannian Geometry the case (A) does not occur, because then X1, X2,...,
Xm generate TM (or rather the tangent sheaf T M) and (A) would imply that
λ = 0.

In the proof of Theorem 3.1.1 we shall use flows of non-autonomous vector fields.
Recall that a non-autonomous smooth vector field onM is a family of smooth vector
fields (Xt)t∈R of M such that for every smooth function φ : M → R the function
X.(φ) : R → R is L∞. An integral curve is by definition a solution of the ODE
γ̇(t) = Xt(γ(t)). Locally, it is a solution of an ODE

x′ = F (t, x)

where F : Ω → R
n is a map which is defined on an open set Ω ⊂ R × R

n and has
the following properties:

(i) F (., x) is measurable and locally bounded for fixed x.
(ii) F (t, .) is smooth for fixed t.
(iii) F (t, x) has locally bounded derivatives with respect to x, meaning that if

I ⊂ R and K ⊂ R
n are compact such that I ×K ⊂ Ω, then there exists a constant

C > 0 (depending on I and K) such that
∥

∥

∥

∥

∂F

∂x

∥

∥

∥

∥

≤ C on I ×K.

The existence and uniqueness of integral curves are provided by Caratheodory’s
theorem which we recall.

Theorem 3.1.2. (C. Caratheodory) If F : Ω → R
n satisfies (i), (ii) and (iii), then

for every (t0, x0) ∈ Ω there exists a unique local solution x(t; t0, x0) of the non-
autonomous differential equation x′ = F (t, x), that is x′(t; t0, x0) = F (t, x(t; t0, x0))
for a.e. t in an open interval with center t0 and x(t0; t0, x0) = x0. Moreover,
x(t; t0, x0) is Lipschitz with respect to t and smooth with respect to x0.

If we assume that the solutions are defined for every t ∈ R and denote
Φt0,t(x0) = x(t; t0, x0), then the family of maps Φt0,t is the flow of the non-
autonomous vector field. Obviously, Φt,t = id, Φt2,t3 ◦ Φt1,t2 = Φt1.t3 and
(Φt1,t2)

−1 = Φt2,t1 . If the solutions are not defined for all t ∈ R, the above hold
locally. In the case of an autonomous smooth vector field, the corresponding flow
is Φ0,t and satisfies Φ0,t ◦ Φ0,s = Φ0,t+s.

Proof of Theorem 3.1.1. Since we assume that γ is parametrized by arclength and
is a length minimizer, by Proposition 2.1.6, its minimal control u∗ minimizes the
energy functional J : L∞([0, L],Rm) → R defined by

J(u) =
1

2

∫ L

0
|u(t)|2dt



3.1. NORMAL AND ABNORMAL LENGTH MINIMIZERS 31

under the constraint that the corresponding to the control u horizontal curve joins
γ(0) and γ(L).

A variation u = u∗ + v of u∗, for some v ∈ L∞([0, L],Rm), defines a horizontal
curve δ : [0, L] → M , which is the solution of δ̇(t) = f(δ(t), u(t)) a.e. in [0, L] with
δ(0) = γ(0). Let Φ0,t denote the flow of the non-autonomous vector field

f(., u∗(t)) =
m
∑

k=1

u∗k(t)Xk

whose solution is γ, so that γ(t) = Φ0,t(γ(0)) for t ∈ [0, L]. We define

x(t) = (Φ0,t)
−1(δ(t)), t ∈ [0, L].

Note that in case v = 0 we have x(t) = γ(0). In general, x(t) is a solution of an ODE
which is obtained by differentiating the formula Φ0,t(x(t)) = δ(t). More precisely,
we have

f(Φ0,t(x(t)), u(t)) = f(δ(t), u(t)) = δ̇(t) =
∂Φ0,t

∂t
(x(t)) + (Φ0,t)∗x(t)(ẋ(t))

= f(Φ0,t(x(t)), u
∗(t)) + (Φ0,t)∗x(t)(ẋ(t))

Therefore
ẋ(t) = (Φ0,t)

−1
∗x(t)(f(Φ0,t(x(t)), v(t)))

and x(0) = γ(0). The left hand side of this ODE depends linearly on v. In the
sequel, we shall write

gv(t, x) = (Φ0,t)
−1
∗x(t)(f(Φ0,t(x), v(t)))

and x(t;u∗ + v) instead of x(t), because x(t) comes from the variation u∗ + v of u∗.
For every v ∈ L∞([0, L],Rm) we consider now hv : R → R×M which is defined

by

hv(s) =

(

J(u∗ + sv)
x(L;u∗ + sv)

)

∈ R×M.

Claim. There exists some λ̃ ∈ T ∗(R×M) ∼= R⊕T ∗M , λ̃ 6= 0, such that λ̃(ḣv(0)) = 0
for every v ∈ L∞([0, L],Rm).
Proof of the claim. If the claim is not true, there exist v0, v1,..., vn ∈ L∞([0, L],Rm)
such that the vectors

(

∂J(u∗+sv0)
∂s

∣

∣

s=0
∂x(L;u∗+sv0)

∂s

∣

∣

s=0

)

,

(

∂J(u∗+sv1)
∂s

∣

∣

s=0
∂x(L;u∗+sv1)

∂s

∣

∣

s=0

)

, ...,

(

∂J(u∗+svn)
∂s

∣

∣

s=0
∂x(L;u∗+svn)

∂s

∣

∣

s=0

)

are linearly independent. The map with

F (s0, s1, ..., sn) =

(

J(u∗ + s0v0 + s1v1 + · · · + snvn)
x(L;u∗ + s0v0 + s1v1 + · · ·+ snvn)

)

∈ R×M

is defined and is smooth on some open neighbourhood of 0 in R
n+1, by the smooth

dependence of the solutions of smooth ODE’s from parameters, and the above vec-
tors are the columns of the Jacobian matrix F∗0. From the inverse map theorem,
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F sends some open neighbourhood of 0 in R
n+1 diffeomorphically onto an open

neighbourhood of

F (0) =

(

J(u∗)
x(L;u∗))

)

=

(

J(u∗)
γ(0))

)

.

This implies that there exist s0, s1,..., sn ∈ R such that x(L;u∗ + v) = p and
J(u∗ + v) < J(u∗) for v = s0v0 + s1v1 + · · ·+ snvn. But since

δ(L) = Φ0,L(x(L;u
∗ + v)) = Φ0,L(γ(0)) = γ(L),

this contradicts the assumption that γ is a (constrained) minimizer of J . This proves
the claim.

Normalizing, there exists some λ0 ∈ T ∗M such that λ̃ = (−1, λ0) or λ̃ = (0, λ0)
and in the second case necessarily λ0 6= 0. Now the claim becomes

λ0

(

∂x(L;u∗ + sv)

∂s

∣

∣

s=0

)

=
∂J(u∗ + sv)

∂s

∣

∣

s=0

or

λ0

(

∂x(L;u∗ + sv)

∂s

∣

∣

s=0

)

= 0 and λ0 6= 0.

On the one hand we have

∂J(u∗ + sv)

∂s

∣

∣

∣

∣

s=0

=
1

2

∫ L

0

∂

∂s

∣

∣

∣

∣

s=0

|u∗(t) + sv(t)|2dt =
∫ L

0

( m
∑

k=1

u∗k(t)vk(t)

)

dt

for every v = (v1, v2, ..., vm) ∈ L∞([0, L],Rm). Since

x(L;u∗ + sv) = x(0;u∗ + sv) +

∫ L

0
gsv(t, x(t;u

∗ + sv))dt

= γ(0) + s

∫ L

0
gv(t, x(t;u

∗ + sv))dt,

on the other hand we have

∂x(L;u∗ + sv)

∂s

∣

∣

∣

∣

s=0

=

∫ L

0
gv(t, x(t;u

∗))dt =

∫ L

0
(Φ0,t)

−1
∗x(t;u∗)(f(Φ0,t(x(t;u

∗), v(t)))dt

=

∫ L

0
(Φ0,t)

−1
∗γ(0)(f(γ(t), v(t)))dt

and therefore

λ0

(

∂x(L;u∗ + sv)

∂s

∣

∣

∣

∣

s=0

)

=

∫ L

0
((Φ0,t)

−1)∗λ0)(f(γ(t), v(t)))dt

=

∫ L

0

( m
∑

k=1

vk(t)((Φ0,t)
−1)∗λ0)(Xk(γ(t)))

)

dt.
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Thus, if we put λ(t) = ((Φ0,t)
−1)∗λ0, then λ : [0, L] → T ∗M is a continuous lift of γ

and
∫ L

0

( m
∑

k=1

λ(t)(Xk(γ(t))vk(t)

)

dt =

∫ L

0

( m
∑

k=1

u∗k(t)vk(t)

)

dt

or
∫ L

0

( m
∑

k=1

λ(t)(Xk(γ(t))vk(t)

)

dt = 0 and λ 6= 0

for every (v1, v2, ..., vm) ∈ L∞([0, L],Rm). It follows that λ(t)(Xk(γ(t))) = u∗(t)
a.e. on [0, L] for all 1 ≤ k ≤ m or λ(t)(Xk(γ(t))) = 0 for all 1 ≤ k ≤ m and λ 6= 0. �

A length minimizer γ : [0, L] → M parametrized by arclength with minimal
control u∗ = (u∗1, u

∗
2, ..., u

∗
m) is called normal if it satisfies conclusion (N) of Theorem

3.1.1, that is it has a continuous lift λ : [0, L] → T ∗M such that λ(t)(Xk(γ(t)) =
u∗k(t) a.e. for every 1 ≤ k ≤ m. If γ satisfies (A) it will be called abnormal. A
non-constant length minimizer can be normal and abnormal at the same time due
to the non-uniqueness of the lift λ.

In Riemannian Geometry all minimal geodesics are normal. The question now
arises whether there do exist abnormal Sub-Riemannian length minimizers. We shall
describe examples of abnormal length minimizers later in this chapter. For the time
being we make the observation that normal length minimizers are always smooth.
Indeed, if (N) holds, then the minimal control u∗ is continuous and therefore γ̇ is
defined everywhere and is continuous. As the definition of λ in the last part of the
proof of Theorem 3.1.1 shows, if γ is C1, then its lift λ is also C1 and so u∗ is C1.
Continuing, this shows inductively that γ and its minimal control u∗ are smooth.

Theorem 3.1.1 motivates the introduction of Hamiltonian methods to the study
of Sub-Riemannian length minimizers. The Sub-Riemannian Hamiltonian of the
Sub-Riemannian manifold M is defined as in the Riemannian case to be the smooth
function H : T ∗M → R with

H(q, p) =
1

2
|p ◦ fq|2 =

1

2

m
∑

k=1

(p(Xk(q)))
2

where |p ◦ fq| denotes the norm of the element

Eq TqM R
fq p

of the dual space E∗
q . Equivalent Sub-Riemannian structures on M define the same

Sub-Riemannian Hamiltonian function on T ∗M .

Proposition 3.1.2. A normal length minimizer on M is the projection of
an integral curve of the Hamiltonian vector field on T ∗M corresponding to the
Sub-Riemannian Hamiltonian H.

Proof. Let Hk : T ∗M → R be the smooth function Hk(q, p) = p(Xk(q)), 1 ≤ k ≤ m.
Then,

H =
1

2

m
∑

k=1

H2
k and dH =

m
∑

k=1

HkdHk.
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If we denote by XH the Hamiltonian vector field of H and XHk
the Hamiltonian

vector field of Hk, then

XH =

m
∑

k=1

Hk ·XHk
.

If γ : [0, L] →M is a normal length minimizer with minimal control u∗, then

γ̇(t) =

m
∑

k=1

u∗k(t)Xk(γ(t))

and therefore

λ̇(t) =

m
∑

k=1

u∗k(t)XHk
(λ(t))

for every t ∈ [0, L], by the following Remark 3.1.3. The condition (N) of normality
now gives

λ̇(t) =

m
∑

k=1

u∗k(t)XHk
(λ(t)) =

m
∑

k=1

Hk(λ(t))XKk
(λ(t)) = XH(λ(t)). �

Remark 3.1.3. Let M be a smooth n-manifold and let Y be a smooth vector field
on M with flow φt. Then the infinitesimal generator Y ∗ of the flow (φ−1

t )∗ on T ∗M
is the Hamiltonian vector field with corresponding Hamiltonian H(q, p) = p(Y (q)).
Indeed, if we work locally and

Y =

n
∑

k=1

Yk
∂

∂qk
, p =

n
∑

k=1

pkdq
k,

then

H(q1, ..., qk, p1, ..., pk) =

n
∑

k=1

Yk(q
1, ..., qn)pk

and so

dH =
n
∑

k=1

pkdYk +
n
∑

k=1

Ykdpk =
n
∑

k=1

( n
∑

l=1

pl
∂Yl
∂qk

)

dqk +
n
∑

k=1

Ykdpk.

On the other hand, the value of the infinitesimal generator Y ∗ at (q, p) is

Y ∗(q, p) =
d

dt

∣

∣

∣

∣

t=0

(φt(q), (φ
−1
t )∗∗φt(q)

(p)) = (Y (q),
d

dt

∣

∣

∣

∣

t=0

(φ−1
t )∗∗φt(q)

(p)).

Recall that the standard symplectic 2-form ω on T ∗M is given locally by the formula

ω =

n
∑

k=1

dqk ∧ dpk.



3.1. NORMAL AND ABNORMAL LENGTH MINIMIZERS 35

Now we compute

(iY ∗ω)(q, p) =

n
∑

k=1

Ykdpk −
n
∑

k=1

dpk

(

d

dt

∣

∣

∣

∣

t=0

(φ−1
t )∗∗φt(q)

(p)

)

dqk

and

dpk

(

d

dt

∣

∣

∣

∣

t=0

(φ−1
t )∗∗φt(q)

(p)

)

= dpk

( n
∑

i=1

pi
d

dt

∣

∣

∣

∣

t=0

(φ−1
t )∗∗φt(q)

(dqi)

)

= dpk

( n
∑

i=1

pi
d

dt

∣

∣

∣

∣

t=0

(qi ◦ φ−t)∗φt(q)

)

= dpk

( n
∑

i=1

pi

( n
∑

j=1

(

−∂Yi
∂qj

)

∂

∂pj

))

= −
n
∑

i=1

pi
∂Yi
∂qk

.

Substituting we arrive at

(iY ∗ω) =

n
∑

k=1

Ykdpk +

n
∑

k=1

( n
∑

i=1

pi
∂Yi
∂qk

)

dqk = dH.

In Darboux local coordintes on T ∗M the integral curves of the Hamiltonian vec-
tor field XH of the Sub-Riemannian Hamiltonian H are the solutions of Hamilton’s
equations

q̇ =
∂H

∂p
=

m
∑

k=1

p(Xk(q)) ·Xk(q)

ṗ = −∂H
∂q

= −
m
∑

k=1

p(Xk(q)) · p(
∂Xk

∂q
(q)).

A curve on M which is the projection of an integral curve of XH will be called
a normal geodesic of the Sub-Riemannian manifold M . Sub-Riemannian normal
geodesics have two basic similar properties like Riemannian geodesics do. Firstly, it
follows immediately from the above equations that if λ(t) = (q(t), p(t)) is an integral
curve of XH , then the rescaled curve λa(t) = (q(at), p(at)) is also an integral curve of
XH for a 6= 0. Secondly, normal geodesics are always parametrized proportionally to
arclength. Indeed, if γ is a normal geodesic with minimal control u∗ = (u∗1, u

∗
2, ..., u

∗
m)

and lift λ, then the first one of Hamilton’s equations becomes the already known

γ̇(t) =

m
∑

k=1

λ(t)(Xk(γ(t)) ·Xk(γ(t)) =

m
∑

k=1

u∗(t) ·Xk(γ(t))

and

‖γ̇(t)‖2 =
m
∑

k=1

(u∗k(t))
2 = 2H(λ(t)) = 2H(λ(0))

since the Sub-Riemannian Hamiltonian is constant along the integral curves of the
associated Hamiltonian vector field XH .

We turn now to abnormal length minimizers. From the definition of the Sub-
Riemannian Hamiltonian and the characteristic property (A) follows immediately
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that if γ : [0, L] → M is an abnormal length minimizer with lift λ : [0, L] → T ∗M ,
then λ(t) ∈ H−1(0) for every t ∈ [0, L]. However, H−1(0) = D◦ is the annihilator
of the horizontal distribution, again by the very definition of H. This implies that
the abnormal length minimizers do not depend on the Sub-Riemannian metric but
only on the horizontal distribution itself.

Before we describe an explicit example, we make a helpful final remark. Let
σ : I → H−1(0) = D◦ ⊂ T ∗M be any smooth curve defined on some open interval
I. Using the notations of the proof of Proposition 3.1.2, we have Hk(σ(t)) = 0 for
all t ∈ I and 1 ≤ k ≤ m. Differentiating we get

ω(XHk
(σ(t)), σ̇(t)) = dHk(σ(t))(σ̇(t)) = 0,

where ω is the standard symplectic 2-form on T ∗M . This implies that in case D◦

is a smooth submanifold of T ∗M , then XHk
∈ Ker(ω|D◦) for every 1 ≤ k ≤ m.

Example 3.1.4. Let M be a connected, orientable, smooth 3-manifold and a a
contact differential 1-form on M . The annihilator D◦ ⊂ T ∗M of the contact dis-
tribution D = Kera is a smooth 4-dimensional submanifold of T ∗M and is actually
the total space of an orientable real line bundle over M , hence trivial, whose fi-
bre is generated by a. In other words, we have an isomorphism of vector bundles
F :M × R → D◦ given by the formula F (q, t) = (q, ta).

M × R D◦

M

F

projection

Suppose that locally a = h1dq
1 + h2dq

2 + h3dq
3. Then,

F ∗(ω|D◦) =

3
∑

k=1

d(qk ◦ F ) ∧ d(pk ◦ F ) =
3
∑

k=1

dqk ∧ d(thk) =
3
∑

k=1

dqk ∧ (hkdt+ tdhk)

=

( 3
∑

k=1

hkdq
k

)

∧ dt+ t
3
∑

k=1

dqk ∧ dhk = a ∧ dt− tda

and so
F ∗((ω|D◦) ∧ (ω|D◦)) = 2tdt ∧ a ∧ da.

Since a is a contact form, that is a ∧ da 6= 0 on M , it follows that the standard
symplectic 2-form ω on T ∗M is non-degenerate on D◦ \M ×{0}. Actually, the two
connected components of D◦\M×{0} endowed with the restriction of ω on them are
copies of the symplectization of the contact manifold M . Thus, Ker(ω|D◦\M×{0}) =
{0}, which implies that there are no abnormal length minimizers.

In particular, there are no abnormal length minimizers in the Sub-Riemannian
Geometry of the Heisenberg group. If dH denotes the Sub-Riemannian distance on
the Heisenberg group H, then trivially dH(x, y) ≥ ‖x− y‖ for every x, y ∈ H, where
‖ · ‖ is the euclidean norm of R3. Hence dH is complete and from Theorem 2.4.3
we have that any two points of H can be joined with a length minimizer which is a
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normal geodesic, that is the projection of a solution of Hamilton’s equations of the
Sub-Riemannian Hamiltonian H.

Recall that the Heisenberg horizontal distribution is generated by the vector
fields

X =
∂

∂x
− 1

2
y
∂

∂z
, Y =

∂

∂y
+

1

2
x
∂

∂z
.

If we denote the coordinates (q, p) on T ∗R3 by q = (x, y, z) and p = (px, py, pz), the
Sub-Riemannian Hamiltonian is

H =
1

2
(H2

X +H2
Y )

where the functions HX , HY are defined by the formulas

HX(q, p) = px −
1

2
ypz and HY (q, p) = py +

1

2
xpz.

Differentiating we find DH = HX ·DHX +HY ·DHY and

DHX(x, y, x, px, py, pz) = (0,−1

2
pz, 0, 1, 0,−

1

2
y),

DHY (x, y, x, px, py, pz) = (
1

2
pz, 0, 0, 0, 1,

1

2
x).

Hence

DH(x, y, x, px, py, pz) = (
1

2
pzHY ,−

1

2
pzHX , 0,HX ,HY ,−

1

2
yHX +

1

2
xHY )

and the corresponding Hamiltonian system of differential equations is

ẋ = HX

ẏ = HY

ż = −1

2
yHX +

1

2
xHY

ṗx = −1

2
pzHY

ṗy =
1

2
pzHX

ṗz = 0.

Note that the third equation is just ż = −1

2
yẋ+

1

2
xẏ, which is the differential

constraint of the third coordinate of the lifts of solution curves of Dido’s isoperimetric
problem, as we saw in section 1.1. Also pz is constant by the sixth equation and
so the system can be considered as a parametrized dynamical system on R

4, the
parameter being pz. Setting u = x+ iy, the first two equations become

u̇ = HX + iHY = px + ipy +
1

2
pziu.

Differentiating and using the fourth and fifth equations we arrive at

ü = −1

2
pxHY +

1

2
pziHX +

1

2
pzi(HX + iHY ) = pzi(HX + iHY ) = ipzu̇.
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Integrating once we get u̇(t) = u̇(0)eipzt. A second integration gives

u(t) = u(0) +
u̇(0)

ipz
(eipzt − 1).

Thus, the geodesics in the Sub-Riemannian Geometry of the Heisenberg group are
given by the general formulas

x(t) + iy(t) =
HX(0) + iHY (0)

ipz
(eipzt − 1) + x(0) + iy(0),

z(t) = z(0) +

∫ t

0
[x(s)ẏ(s)− ẋ(s)y(s)]ds.

3.2 Local optimality of normal geodesics

Let M be a Sub-Riemannian smooth n-manifold which satisfies the Lie bracket
generating condition, as in the previous section 3.1, the notations of which we adopt
in the present section. Let γ : (a, b) → M , a < b, be a normal geodesic. By
definition, γ is the projection on M of an integral curve (γ, λ) : (a, b) → T ∗M of the
Hamiltonian vector field XH of the Sub-Riemannian Hamiltonian H : T ∗M → R.

Without loss of generality we may assume that H(γ(t), λ(t)) =
1

2
for every a < t < b,

so that γ is parametrized by arclength. The goal of this section is to prove that γ
locally minimizes length, that is to prove that for every a < c < b there exists some
δ > 0 such that [c− δ, c+ δ] ⊂ (a, b) and γ|[c−δ,c+δ] is a length minimizer.

Let x = γ(c) and λ = λ(c). There exist a smooth submanifold S ⊂ M of
codimension 1 such that x ∈ S and TxS = Kerλ and a differential 1-form λ̃ defined
on an open neighbourhood Ω of x (with S ⊂ Ω) such that λ̃(x) = λ, TyS = Kerλ̃(y)

and H(y, λ̃(y)) =
1

2
for every y ∈ S. This can be constructed as follows. Let Ω be

an open neighbourhood of x contained in the domain of a chart on which we have
a generating frame X1, X2,..., Xm of the horizontal distribution. Let h : Ω → R be
a smooth function with dh(x) = λ. We assume that γ is non-constant, otherwise

there is nothing to prove, and so dh(x) 6= 0. Since H(x, dh(x)) =
1

2
, we may choose

Ω so that H(y, dh(y)) > 0 for all y ∈ Ω. Taking a smaller open neighbourhood
if necessary, S = h−1(h(x)) is a smooth submanifold of M of codimension 1 and
TyS = Kerdh(y) for every y ∈ S. If now

φ(y) =
m
∑

k=1

(dh(y)(Xk(y)))
2

then

H(y,
1

√

φ(y
dh(y)) =

1

2

m
∑

k=1

1

φ(y)
(dh(y)(Xk(y)))

2 =
1

2
.

Thus, it suffices to take λ̃ =
1√
φ
dh.
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For each y ∈ S we have a unique integral curve (γy, λy) of XH with γy(c) = y
and λy(c) = λ̃(y). Since

λ̃(x)(γ̇(c)) = λ(c)(γ̇(c)) = λ(c)

( m
∑

k=1

λ(c)(Xk(γ(c)))Xk(γ(c))

)

= 1,

we have γ̇(c) /∈ TxS. It follows from the inverse map theorem that there
exist ǫ > 0 and some open neighbourhood W of x in S such that the map
µ : (c − ǫ, c + ǫ) × W → M defined by µ(t, y) = γy(t) maps (c − ǫ, c + ǫ) × W
diffeomorphically onto an open neighbourhood U ⊂ Ω of x. Let V : U → R be the
smooth function defined by V (γy(t) = t and ω be the differential 1-form on U with
ω(γy(t)) = λy(t).

Lemma 3.2.1. ω = dV .

Taking Lemma 3.2.1 for granted, we have H(y, dV (y)) =
1

2
for every y ∈ U . Let

c− ǫ < t1 < t2 < c+ ǫ and let σ : [0, L] → U , L > 0 be a horizontal curve with L1

controls parametrized by arclength such that σ(0) = γ(t1) and σ(L) = γ(t2). Then

L(γ|[t1,t2]) = t2 − t1 = V (γ(t2))− V (γ(t1)) = V (σ(L)) − V (σ(0))

=

∫ L

0
dV (σ(t))(σ̇(t))dt ≤

∫ L

0
‖σ̇(t)‖dt = L(σ),

because
m
∑

k=1

(dV (y)(Xk(y)))
2 = 2H(y, dV (y)) = 1

and so |dV (σ(t))(σ̇(t))| ≤ ‖σ̇(t)‖, from the Cauchy-Schwartz inequality.
Thus, γ restricted to any closed subinterval of (c−ǫ, c+ǫ) minimizes length within

the class of horizontal curves with L1 controls and with values in U . However, as in
the proof of Theorem 2.3.1, there exists some sufficiently small 0 < δ < ǫ such that
for every horizontal curve σ : [0, L] → U , L > 0, with L1 controls parametrized by
arclength such that σ(0) = x and L(σ) ≤ δ we have σ([0, L]) ⊂ U . Then, γ|[c−δ,c+δ]

is a length minimizer.
To conclude the proof of the local optimality of the normal geodesics, it remains

to prove Lemma 3.2.1.

Proof of Lemma 3.2.1. The flow ψ of the smooth vector field X = µ∗
( ∂

∂t

)

is defined

on an open subset of R × U . From the definition of V we have V (ψs(y)) = s +
V (y) and differentiating with respect to y we get dV (ψs(y)) ◦ (ψs)∗y = dV (y), or
equivalently (ψs)

∗(dV ) = dV . In other words, dV is invariant under the flow of X.
Note that V |S = 0 and

dV (µ(c, y))(X(µ(c, y))) = (V ◦ µ)∗(c,y)
( ∂

∂t

)

= 1.

On the other hand,

ω(y))(X(y)) = λy(c)(X(y)) = λy(c)(γ̇y(c)) = 1
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for every y ∈ W . Thus, the differential 1-forms ω and dV coincide on W . If we
show that ω is also invariant under the flow of X, then ω = dV on U will follow.

For the invariance of ω it suffices to prove that if y ∈ W , v0 ∈ TyM and
v(t) = (ψt−c)∗y(v0), then (ω(µ(t, y))(v(t)) is constant with respect to t. Locally
on M , we have

dv

dt
=
∂X

∂y
(v)

and

X(µ(t, y)) = γ̇y(t) =

m
∑

k=1

λy(t)(Xk(γy(t))Xk(γy(t)) =

m
∑

k=1

ω(γy(t))(Xk(γy(t))Xk(γy(t)),

that is X =

m
∑

k=1

ω(Xk)Xk. Since

m
∑

k=1

(ω(Xk))
2 = 1, differentiating we get

m
∑

k=1

ω(Xk) ·
∂

∂y
ω(Xk) = 0.

Hence

ω
(∂X

∂y

)

=
m
∑

k=1

ω(Xk)ω
(∂Xk

∂y

)

+
m
∑

k=1

ω(Xk)
∂

∂y
ω(Xk))

=
m
∑

k=1

ω(Xk)ω
(∂Xk

∂y

)

+ 0 = − d

dt
ω(µ(t, y))

from the second equation of the Hamiltonian system of differential equations. There-
fore,

d

dt
(ω(µ(t, y))(u(t)) =

d

dt
ω(µ(t, y)) · v(t) + ω

(∂X

∂y

)

(v(t)) = 0.

This concludes the proof. �.

3.3 The abnormal length minimizer of W. Liu and H.J.

Sussmann

In this section we shall present an example of an abnormal length minimizer due
to W. Liu and and H.J. Sussmann. On R

3 we consider the nowhere vanishing
differential 1-form

θ = x2dy − (1− x)dz

whose kernel E is a smooth subbundle of TR3 of rank 2. If

X =
∂

∂x
and Y = (1− x)

∂

∂y
+ x2

∂

∂z
,

then θ(X) = θ(Y ) = 0 and {X,Y } is a global basis of sections of E. On E we
consider the metric g which makes {X,Y } a global orthonormal frame of E and is
defined by formula

g(x,y,z)

(





v1
v2
v3



 ,





u1
u2
u3





)

= v1u1 +
1

(1− x)2 + x4
(v2u2 + v3u3).
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We have

[X,Y ] = − ∂

∂y
+ 2x

∂

∂z
,

[X, [X,Y ]] = 2
∂

∂z
, [Y, [X,Y ]] = 0,

[X, [X, [X,Y ]]] = 0, [Y, [X, [X,Y ]]] = 0.

Obviously, X, Y and [X,Y ] are linearly independent everywhere except at the planes
x = 0 or x = 2 and X, Y and [X, [X,Y ]] are linearly independent everywhere except
at the plane x = 1. Thus, the Lie bracket generating condition is satisfied and by
Theorem 2.3.1 any two points of R3 can be joined with a piecewise smooth horizontal
curve with L∞ controls. This Sub-Riemannian structure of R3 is not equiregular,
as outside the planes x = 0 or x = 2 the step is 2 and the growth vector is (2, 3)
and on these planes the step is 3 and the growth vector is (2, 2, 3).

The Sub-Riemannian Hamiltonian H : T ∗
R
3 → R is given by the formula

H(x, y, z, ξ, η, ζ) =
1

2

[

ξ2 +
(

(1− x)η + x2ζ
)2]

and the associated Hamiltonian system of differential equations is
ẋ = ξ
ẏ = (1− x)[(1 − x)η + x2ζ]
ż = x2[(1− x)η + x2ζ]
ξ̇ = (2xζ − η)[(1 − x)η + x2ζ]
η̇ = 0
ζ̇ = 0.
For any a, b ∈ R, a < b, the smooth curve γ : [a, b] → R

3 with γ(t) = (0, t, 0) is
parametrized by arclength and is horizontal with controls u∗X(t) = 0 and u∗Y (t) = 1.
For any continuous function ζ : [a, b] → R, we have a continuous lift λ : [a, b] →
T ∗

R
3 of γ defined by (γ(t), λ(t)) = (0, t, 0, 0, 0, ζ(t)) which satisfies the abnormality

condition (A) of Theorem 3.1.1 and H(γ(t), λ(t)) = 0 for every a ≤ t ≤ b.
We observe that γ is not a normal geodesic. Indeed, if it were, there would exist

smooth functions ξ, η, ζ : [a, b] → R such that (0, t, 0, ξ(t), η(t), ζ(t)), a ≤ t ≤ b, is a
solution of the above system of differential equations, that is

0 = ξ, 1 = η, 0 = 0, ξ̇ = −η2, η̇ = 0, ζ̇ = 0

from which follows the contradiction 1 = η = 0. We shall prove however that γ is a
length minimizer, if b− a is small enough.

Let γ̃ : [ã, b̃] → R
3 be any other horizontal curve with L1 controls from (0, a, 0)

to (0, b, 0) and let τ = L(γ̃). We shall prove that τ ≥ b − a, if b − a is sufficiently
small. There is no loss of generality if we assume that ã = 0. Let u, v be the L1

controls of γ̃, which are unique and if γ̃(t) = (x̃(t), ỹ(t), z̃(t)), then

u(t) = x̃′(t), v(t)(1 − x̃(t)) = ỹ′(t), v(t)(x̃(t))2 = z̃′(t)

a.e. on [0, b̃]. Therefore,

v(t) =
(1− x̃(t))ỹ′(t) + (x̃′(t))2z̃′(t)

(1− x̃(t))2 + (x̃(t))4
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a.e. on [0, b̃]. We also have the additional formulas x̃(b̃) = 0 and

x̃(t) =

∫ t

0
u(s)ds,

∫ b̃

0
v(t)(x̃(t))2dt = z̃(b̃)− z̃(0) = 0.

We shall use the following technical lemma, whose proof will be postponed.

Lemma 3.3.1. Let 0 < τ <
2

3
and u, v ∈ L1([0, τ ],R) with |u(t)| ≤ 1 and |v(t)| ≤ 1

a.e. on [0, τ ]. We define the function x : [0, τ ] → R by

x(t) =

∫ t

0
u(s)ds

and we assume that x(τ) = 0 and

∫ τ

0
v(t)(x(t))2dt = 0.

Then,
∫ τ

0
v(t)(1 − x(t))dt ≤ τ

and the equality holds if and only if u = 0 and v = 1 a.e.

We assume first the γ̃ is parametrized by arclength, that is τ = b̃ and u2+v2 = 1.

In this case Lemma 3.3.1 gives that if 0 < τ <
2

3
, then

b− a = ỹ(b̃)− ỹ(0) =

∫ b̃

0
v(t)(1 − x(t))dt ≤ τ.

Thus, if 0 < b− a <
2

3
, then either 0 < τ <

2

3
, and so b− a ≤ τ , from the above, or

τ ≥ 2

3
> b− a. Hence, if 0 < b− a <

2

3
, then b− a ≤ τ . Moreover, b− a = τ if and

only if u = 0 and v = 1 a.e., which means that x̃(t) = 0, ỹ(t) = a+ t and z̃(t) = 0.
In other words, γ̃(t) = γ(a+ t).

If γ̃ is not parametrized by arclength, according to Proposition 1.3.4, there exist
an absolutely continuous, surjective and increasing function h : [0, b̃] → [0, τ ] and
a horizontal curve δ : [0, τ ] → R

3 parametrized by arclength such that γ̃ = δ ◦ h.
From the previous part we have b− a ≤ τ , if 0 < b− a <

2

3
, and the equality hods

if and only if δ(t) = γ(a+ t) or equivalently γ̃ is a reparametrization of γ.

Thus, in any case if 0 < b− a <
2

3
, then γ is a length minimizer and it remains

to prove the technical Lemma 3.3.1.

Proof of Lemma 3.3.1. Let V (t) =

∫ t

0
v(s)ds and α = τ −V (τ). Obviously, we have

|V (t)| ≤ t and α ≥ 0. If β = sup{|x(t)| : 0 ≤ t ≤ τ}, then
∣

∣

∣

∣

∫ τ

0
x(s)v(s)ds

∣

∣

∣

∣

≤ βτ



3.3. THE ABNORMAL LENGTHMINIMIZER OFW. LIU AND H.J. SUSSMANN43

and therefore
∫ τ

0
v(t)(1 − x(t))dt ≤

∫ τ

0
v(t)dt +

∣

∣

∣

∣

∫ τ

0
x(s)v(s)ds

∣

∣

∣

∣

≤ V (τ) + βτ = τ − α+ βτ.

So, it suffices to prove that βτ ≤ α. This is trivial if β = 0. Suppose that β > 0.

If β ≤ 3

2
α, then certainly βτ ≤ 3

2
τα < a, from our assumption 0 < τ <

2

3
. Hence it

suffices to prove that
2

3
β3 ≤

∫ τ

0
(x(t))2dt ≤ β2α.

For the right inequality we have
∫ τ

0
(x(t))2dt ≤

∫ τ

0
(x(t))2(1− |v(t)|)dt ≤ β2

∫ τ

0
(1− |v(t)|)dt ≤ β2(τ−|V (τ)|) ≤ β2α.

In order to prove the left inequality, let 0 ≤ t0 ≤ τ be such that β = |x(t0)|.
Then, t0 ≥ β, since |u| ≤ 1 a.e., and

β =

∣

∣

∣

∣

−
∫ τ

t0

u(s)ds

∣

∣

∣

∣

≤ τ − t0.

Thus, 0 ≤ t0 − β ≤ t0 ≤ t0 + β ≤ τ . For t ∈ [t0 − β, t0] we have

β ≤
∣

∣

∣

∣

∫ t

0
u(s)ds

∣

∣

∣

∣

+

∫ t0

t
|u(s)|ds ≤ |x(t)|+ t0 − t

and similarly for t ∈ [t0, t0 + β] we have β ≤ |x(t)|+ t− t0. This implies that

∫ t0

t0−β
(x(t))2dt ≥

∫ t0

t0−β
(t+ β − t0)

2dt =
β3

3

and
∫ t0+β

t0

(x(t))2dt ≥
∫ t0+β

t0

(−t+ β + t0)
2dt =

β3

3
.

It follows that
∫ τ

0
(x(t))2dt ≥ 2β3

3
.

The above reasoning shows that if
∫ τ

0
(1− x(t))v(t)dt = τ

then βτ = α and so necessarily β = α = 0. This means that x = 0 and therefore
u = 0 a.e. Also, V (τ) = τ and this can happen only if v = 1 a.e., because v(t) ≤ 1
a.e. �

This concludes the description of the example of W. Liu and H.J. Sussmann
which appeared in 1995. The first example of an abnormal length minimizer had
been constructed by R. Montgomery in 1994. It was simplified later by I. Kupka on
the one hand and by F. Pelletier and L-V. Bouche on the other.
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Chapter 4

Popp’s Sub-Riemannian Volume

4.1 Construction of Popp’s volume

Let M be a Sub-Riemannian smooth n-manifold whose Sub-Riemannian structure
satisfies the Lie bracket generating condition and let

D = D1 ⊂ D2 ⊂ · · · ⊂ Dj ⊂ Dj+1 ⊂ · · · ⊂ T M

be the associated flag of subsheaves of the tangent sheaf T M of M . Recall that D
is the subsheaf of TM of horizontal vector fields and Dj+1 = Dj+ < [D1,Dj] >,
where the span is taken over the germs of smooth functions defined on open subsets
of M . The Lie bracket generating condition ensures, by definition, that for every

x ∈M there exists some r(x) ∈ N such that Dr(x)−1
x 6= Dr(x)

x = T Mx.
Let x ∈ M be a regular point, that is the step r(x) and the growth vector

(n1(x), n2(x), ..., nr(x)(x)) are constant on an open neighbourhood U of x, where

nj(x) = dimDj
x. Let gr(D) denote the graded sheaf

gr(D) = D1 ⊕D2/D1 ⊕ · · · ⊕ Dr/Dr−1

over U . The Lie bracket of local vector fields induces a bilinear map [·, ·] on gr(D)
which respects the grading, meaning that

[Di/Di−1,Dj/Dj−1] ⊂ Di+j/Di+j−1.

Indeed, if X, X ′ ∈ Di, Y , Y ′ ∈ Dj and X ′ −X = V ∈ Di−1, Y ′ − Y = W ∈ Dj−1,
then

[X ′, Y ′]− [X,Y ] = [X,W ] + [V, Y ] + [V,W ]

and [X,W ], [V, Y ], [V,W ] ∈ Di+j−1. The stalk of gr(D) at x is called the nilpoten-
tization of D at x. In general the nilpotentizations at different regular points are
not isomorphic Lie algebras.

The following lemma is crucial for the rest of this section.

Lemma 4.1.1. (O. Popp) Let E be a real vector space of finite dimension n with a
flag of subspaces

{0} = E0 ≤ E1 ≤ · · · ≤ Er−1 ≤ Er = E

45
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for some r ∈ N. Let gr(E) = E1 ⊕ (E2/E1) ⊕ · · · ⊕ (Er/Er−1) be the associated
graded vector space. Then, there exists a natural isomorphism

θ :
∧

nE∗ →
∧

ngr(E)∗.

Proof. Let [X1,X2, ...,Xn] be an ordered basis of E adapted to the given flag of
subspaces. This means that if ki = dimEi, then [X1,X2, ...,Xki ] is a basis of Ei.
We define θ̂ : E → gr(E) by

θ̂(Xki+l = Xki+l + Ei ∈ Ei+1/Ei, 1 ≤ l ≤ ki+1 − ki.

This is a linear isomorphism, which is not natural since it depends on the
initial choice of the adapted basis. However, the induced linear isomorphism

θ :
∧

nE →
∧

ngr(E) does not depend on the choice of the adapted basis. If

[X∗
1 ,X

∗
2 , ...,X

∗
n] is the dual basis on E∗, then θ is defined by

θ(X∗
1 ∧X∗

2 ∧ · · · ∧X∗
n) = θ̂(X1)

∗ ∧ θ̂(X2)
∗ ∧ · · · ∧ θ̂(Xn)

∗.

We shall show that this holds for any other choice of adapted basis. Let [Y1, Y2, ..., Yn]
be another adapted basis of E. The change of basis matrix is of the form











A1 ∗ · · · ∗
0 A2 · · · ∗
...

...
. . .

...
0 0 · · · Ar











where Ai is (ki − ki−1)× (ki − ki−1) matrix. So, if [Y ∗
1 , Y

∗
2 , ..., Y

∗
n ] is the dual basis

we have

Y ∗
1 ∧ Y ∗

2 ∧ · · · ∧ Y ∗
n =

( r
∏

i=1

detAi

)

X∗
1 ∧X∗

2 ∧ · · · ∧X∗
n

On the other hand, the corresponding change of basis matrix on gr(E) is











A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Ar











and therefore

θ̂(Y1)
∗ ∧ θ̂(Y2)∗ ∧ · · · ∧ θ̂(Yn)∗ =

( r
∏

i=1

detAi

)

θ̂(X1)
∗ ∧ θ̂(X2)

∗ ∧ · · · ∧ θ̂(Xn)
∗

=

( r
∏

i=1

detAi

)

θ(X∗
1 ∧X∗

2 ∧ · · · ∧X∗
n) = θ

(( r
∏

i=1

detAi

)

X∗
1 ∧X∗

2 ∧ · · · ∧X∗
n

)

= θ(Y ∗
1 ∧ Y ∗

2 ∧ · · · ∧ Y ∗
n ). �
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Let now M be an equiregular Sub-Riemannian n-manifold with growth vector
(n1, n2, ..., nr) and associated flag D = D1 ⊂ D2 ⊂ · · · ⊂ Dr ⊂ T M. For each x ∈M
let evx : Di → TxM denote the evaluation at x and Di

x = evx(Di
x), 1 ≤ i ≤ r. So,

we have a family Di, 1 ≤ i ≤ r, of distributions, where D1 = D is the horizontal
distribution of the Sub-Riemannian structure, and a flag of vector subspaces

Dx = D1
x ≤ D2

x ≤ · · · ≤ Dr
x = TxM

for each x ∈M .
Let x ∈ M be fixed and v, w ∈ D1

x. Let V and W be arbitrary horizontal
extensions of v and w, respectively, to smooth local vector fields defined on an open
neighbourhood of x. Then, the element [V,W ](x) +D1

x ∈ D2
x/D

1
x does not depend

on the choices of the extensions V , W . Indeed, let {X1,X2, ...,Xm} be a generating
frame of horizontal vector fields on a perhaps smaller open neighbourhood of x. If
Ṽ and W̃ is another choice of local horizontal extensions of v and w, respectively,
then

Ṽ − V =

m
∑

k=1

fkXk and W̃ −W =

m
∑

k=1

gkXk

for some smooth functions fk, gk, 1 ≤ k ≤ m, defined on some open neighbourhood
of x such that fk(x) = gk(x) = 0 for every 1 ≤ k ≤ m. We have

[Ṽ , W̃ ]− [V,W ]

=

m
∑

k=1

(

V (gk)Xk + gk[V,Xk]
)

+

m
∑

k=1

(

W (fk)Xk − fk[Xk,W ]
)

+

m
∑

k,ll=1

(

fkgl[Xk,Xl]− glXl(fk)Xk − fkXk(gl)Xl

)

and evaluating at x we get

[Ṽ , W̃ ](x)− [V,W ](x) =
m
∑

k=1

(

V (gk)(x) −W (fk)(x)
)

Xk(x).

Therefore, [Ṽ , W̃ ](x)− [V,W ](x) ∈ D1
x.

The above implies that the linear epimorphism π̃ : D1
x⊗D1

x → (D2/D1)x defined
by

π̃([V ]x ⊗ [W ]x) =
[

[V,W ]
]

x
+D1

x

induces a linear epimorphism π : D1
x⊗D1

x → D2
x/D

1
x such that the following diagram

commutes. Here
[

·
]

x
denotes the germ at x.

D1
x ⊗D1

x (D2/D1)x

D1
x ⊗D1

x D2
x/D

1
x

π̃

evx⊗evx π

π
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Similarly, for every 2 ≤ k ≤ r we have a well defined linear epimorphism

π̃k :

k
⊗

i=1

D1
x → (Dk/Dk−1)x by

π̃k([V1]x ⊗ · · · ⊗ [V ]k) =
[

[V1, [V2[· · · , [Vk−1, Vk] · · · ]
]

x
+Dk−1

x

which induces a linear epimorphism πk :
k
⊗

i=1

D1
x → Dk

x/D
k−1
x .

Since D1
x carries an inner product, πk induces an inner product on Dk

x/D
k−1
x .

Further, we get an inner product on

gr(TxM) = D1
x ⊕ (D2/D1

x)⊕ · · · ⊕ (Dr
x/D

r−1
x )

which makes this direct sum an orthogonal direct sum. Using the natural isomor-
phism

θ :
∧

n(TxM)∗ →
∧

n(gr(TxM))∗

of Lemma 4.1.1 we get a canonical volume on TxM , defined from any orthonormal
basis of gr(TxM).

The above can be carried out in an open neighbourhood of the point x. So, if
M is orientable, gluing in the usual way we get a smooth volume element on M . Its
smoothness will follow from the local formula which will be proved in the sequel.
This is Popp’s volume on M .

First we consider the case where the equiregular Sub-Riemannian structure is
of step 2. The growth vector is then (k, n) where k = dimDx for all x ∈ M and
D+ < [D,D] >= TM. Let {X1,X2, ...,Xk} be a local orthonormal frame of the
horizontal distribution D and let Xk+1,..., Xn be any choice of pointwise linearly
independent local vector fields such that {X1,X2, ...,Xk,Xk+1, ...,Xn} is a local
frame of TM . According to the construction of Popp’s volume we need to compute
the inner product on the orthogonal direct sum

gr(TxM) = Dx ⊕ (TxM/Dx).

By construction, this inner product is induced from the linear epimorphism

π : Dx ⊗Dx → TxM/Dx

with π(Xi ⊗Xj) = [Xi,Xj ] +Dx all evaluated at x. Recall that if 〈·, ·〉 is the Sub-
Riemannian inner product on Dx, the inner product of Dx ⊗ Dx is given by the
formula 〈V1 ⊗W1, V2 ⊗W2〉 = 〈V1, V2〉 · 〈W1,W2〉. We shall calculate explicitly the
norm on TxM/Dx from which the inner product will follow by polarization.

There exist smooth locally defined functions blij , k + 1 ≤ l ≤ n, 1 ≤ i, j ≤ k, on
an open neighbourhood of x such that

[Xi,Xj ](x) +Dx =

n
∑

l=k+1

blijXl(x) +Dx.
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Let v +Dx =
n
∑

l=k+1

clXl(x) +Dx ∈ TxM/Dx and w =
k
∑

i,j=1

aijXi(x)⊗Xj(x) with

π(w) = v +Dx or equivalently

n
∑

l=k+1

( k
∑

i,j=1

aijb
l
ij

)

Xl(x) =

n
∑

l=k+1

clXl(x).

We can consider bl = (blij)1≤i,j≤k and a = (aij)1≤i,j≤k as vectors in R
k2 and then

the norm of v +Dx is

min{‖a‖ : 〈a, bl〉 = cl, k + 1 ≤ l ≤ n},

where the inner product 〈·, ·〉 and norm ‖ · ‖ are euclidean. Note that the vectors
bl = (blij)1≤i,j≤k, k + 1 ≤ l ≤ n, are linear independent, because they are the
rows of the matrix of the epimorphism π with respect to the ordered basis
[Xi(x) ⊗ Xj(x) : 1 ≤ i, j ≤ k] of Dx ⊗ Dx and [Xk+1(x) + Dx, ...,Xn(x) + Dx] of
TxM/Dx.

Lemma 4.1.2. Let 1 ≤ q ≤ d be integers and b1,..., bq ∈ R
d be linearly independent

vectors. Let also c1,..., cq ∈ R. If c = (c1, ..., cq) ∈ R
q and B = (〈bi, bj〉)1≤i,j≤q, then

min{‖a‖2 : a ∈ R
d, 〈a, bj〉 = cj , 1 ≤ j ≤ q} = 〈B−1(c), c〉.

Proof. If gj : Rd → R is the function gj(a) = 〈a, bj〉 − cj , then ∇gj(a) = bj for
every x ∈ R

d, 1 ≤ j ≤ q. Since b1,..., bq are assumed to be linearly independent, the
minimum is attained at a solution of the system of equations

2a =

q
∑

i=1

λibi,

〈a, bj〉 = cj, 1 ≤ j ≤ q,

by Lagrange’s theorem, where λ1,..., λq are the Lagrange multipliers. Substituting
we get the linear system

1

2

q
∑

i=1

λi〈bi, bj〉 = cj , 1 ≤ j ≤ q,

and therefore

λi = 2

q
∑

j=1

B̃ijcj , 1 ≤ i ≤ q,

where B−1 = (B̃ij)1≤i,j≤q. Note that B is symmetric and positive definite, in
particular invertible, because b1,..., bq are linearly independent. It follows now that

a =

q
∑

i=1

( q
∑

j=1

B̃ijcj

)

bi
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and so the minimum value we seek is

‖a‖2 =

q
∑

i,j,ρ,s=1

B̃ijB̃ρscjcs〈bi, bρ〉 =
q
∑

i,j,s=1

B̃ijcscj

q
∑

ρ=1

〈bi, bρ〉B̃ρs

=

q
∑

i,j=1

B̃ijcicj = 〈B−1(c), c〉. �

From the preceding Lemma 4.1.2 we get that if B = (〈bs, bl〉)k+1≤s,l≤n, then B
−1

is the Gram matrix of the inner product on TxM/Dx with respect to the ordered
basis [Xk+1(x) + Dx, ...,Xn(x) +Dx] of TxM/Dx. From its definition follows now
that if {X∗

1 , ...,X
∗
k ,X

∗
k+1, ...,X

∗
n} is the dual basis, then Popp’s volume is

1√
detB

X∗
1 ∧ · · · ∧X∗

k ∧X∗
k+1 ∧ · · · ∧X∗

n.

This concludes the local description of Popp’s volume in the case of an equiregular
Sub-Riemannian structure of step 2.

The local formula for Popp’s volume of a general equiregular Sub-Riemannian
structure of step r and growth vector (n1, n2, ..., nr) is analogous. Let
{X1,X2, ...,Xn} be an adapted local frame on an open neighbourhood of a given
point x ∈ M of the associated flag D = D1 ⊂ D2 ⊂ · · · ⊂ Dr ⊂ TM. There exist
locally defined smooth functions bli1i2···ik , 2 ≤ k ≤ r, such that

[Xi1 , [Xi2 , [· · · , [Xik−1
,Xik ] · · · ] +Dk−1

x =

kk
∑

l=nk−1+1

bli1i2···ikXl +Dk−1
x

evaluated at x, for 1 ≤ i1, ..., ik ≤ n1. Again we consider bl = (bli1i2···ik)1≤i1,...,ik≤n1

as a vector in R
nk
1 . Recall the linear epimorphism πk :

k
⊗

i=1

D1
x → Dk

x/D
k−1
x with

πk(Xi1 ⊗ · · · ⊗Xik) = [Xi1 , [Xi2 , [· · · , [Xik−1
,Xik ] · · · ] +Dk−1

x .

The norm in Dk
x/D

k−1
x is induced by πk and can be computed as before. More

precisely, if v +Dk−1
x =

nk
∑

l=nk−1+1

clXl +Dk−1
x , then

‖v +Dk−1
x ‖ = min{‖a‖ : 〈a, bl〉 = cl, nk−1 ≤ l ≤ nk} = 〈B−1

k (c), c〉

where c = (cnk−1+1, ..., cnk
), Bk = (〈bi, bj〉)nk−1≤i,j≤nk

and the inner products are

euclidean, Thus, B−1
k is the Gram matrix of the inner product in Dk

x/D
k−1
x . If

{X∗
1 ,X

∗
2 , ...,X

∗
n} is the dual frame, then Popp’s volume is locally

( r
∏

k=2

detBk

)−1/2

X∗
1 ∧ · · · ∧X∗

n.
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4.2 Examples of Popp’s volume

Let M be a contact 3-manifold with contact 1-form a and contact distribution
D = Kera. There exists a unique smooth vector field Z on M such that iZa = 1
and iZda = 0, which is called the Reeb vector field of the contact structure. Recall
that the contact Sub-Riemannian structure (with a chosen Riemannian metric 〈·, ·〉
on D) satisfies the Lie bracket generating condition and is equiregular of step 2 with
growth vector (2, 3). If {X1,X2} is a local orthonormal frame of D, then [X1,X2, Z]
is an adapted local frame, since Z is transverse to D. Corresponding to the Sub-
Riemannian metric there is a skew-symmetric vector bundle morphism J : D → D
defined by the property

da(v,w) = 〈J(v), w〉
for every v, w ∈ Dx, x ∈M . The quantity

‖J‖ =

( 2
∑

i,j=1

〈Xi, J(Xj)〉2
)1/2

is known as the Hilbert-Schmidt norm of J .
For every 1 ≤ i, j ≤ 2 there is a locally defined smooth function bij such that

[Xi,Xj ](x) +Dx = bij(x)Z(x) +Dx. According to the calculations of the previous
section 4.1, Popp’s volume is locally

( 2
∑

i,j=1

b2ij

)−1/2

X∗
1 ∧X∗

2 ∧ Z.

However,

2
∑

i,j=1

b2ij =

2
∑

i,j=1

(a([Xi,Xj ]))
2 =

2
∑

i,j=1

(da(Xi,Xj))
2 =

2
∑

i,j=1

〈Xi, J(Xj)〉2 = ‖J‖2

and so Popp’s volume is locally

1

‖J‖X
∗
1 ∧X∗

2 ∧ Z.

Example 4.2.1. The Heisenberg group H is a special case of a contact 3-manifold.

Recall that the contact 1-form is the standard one ω = dz − 1

2
(xdy − ydx) whose

kernel D is globally generated by the vector fields

X =
∂

∂x
− 1

2
y
∂

∂z
, Y =

∂

∂y
+

1

2
x
∂

∂z
.

The metric on D is the one with respect to which {X,Y } becomes an orthonormal

frame. Here Z =
∂

∂z
is the Reeb vector field and since [X,Y ] = Z, it follows from

the above that Popp’s volume on the Heisenberg group is

(dx− 1

2
ydz) ∧ (dy +

1

2
xdz) ∧ dz = dx ∧ dy ∧ dz.



52 CHAPTER 4. POPP’S SUB-RIEMANNIAN VOLUME

In other words, Popp’s volume on the Heisenberg group H coincides with the
3-dimensional euclidean volume.

Example 4.2.2. The Martinet distribution D on R
3 was defined in Example

2.3.4(b) and is the kernel of the differential 1-form ω = dz − y2dx. It is globally
generated by the vector fields

X =
∂

∂x
+ y2

∂

∂z
, Y =

∂

∂y

and satisfies the Lie bracket generating condition but is not equiregular. The growth
vector at points on the plane y = 0 is (2, 2, 3). Its restriction on the subspace
M = R

3 \ {y = 0} is equiregular with growth vector (2, 3). On D we consider the
restriction of the euclidean metric. Note that X and Y are orthogonal and

{

1
√

1 + y2
X,Y,

∂

∂z

}

is an adapted frame. Moreover,
[

1
√

1 + y2
X,Y

]

+D =
−2y

√

1 + y2
∂

∂z
+D.

Therefore, Popp’s volume on M is

1

|2y|(dx+ y2dz) ∧ dy ∧ dz = 1

|2y|dx ∧ dy ∧ dz.

The singularities of this form occur precisely on the plane y = 0, which consists of
the non-regular points and the equiregularity of D fails.

4.3 Sub-Riemannian isometries and Popp’s volume

Let M be a Sub-Riemannian manifold with corresponding horizontal distribution
D satisfying the Lie bracket generating condition. A diffeomorphism φ :M →M is
called a Sub-Riemannian isometry if the following two conditions are satisfied:

(i) φ∗x(Dx) = Dφ(x) for every x ∈M and
(ii) 〈φ∗x(v), φ∗x(w)〉 = 〈v,w〉 for every v, w ∈ Dx and x ∈M .
Note that φ induces a map of sheaves φ∗ : T M → TM which makes the following

diagram commutative

T M T M

M M

φ∗

φ

and such that φ∗(D1) = D1. Since φ∗ preserves Lie brackets, we also have φ∗(Dk) =
Dk for every k ∈ N. Taking evaluations we conclude that φ∗(D

k
x) = Dk

φ(x) for every
x ∈M , k ∈ N.
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It is obvious that the set of all Sub-Riemannian isometries of M is a subgroup
of the group of diffeomorphisms of M .

Suppose now that the Sub-Riemannian structure of M is equiregular of step r
and with growth vector (n1, n2, ..., nr). If φ :M →M is a Sub-Riemannian isometry,

then we have a linear isometry φ̃∗x :

k
⊗

i=1

Dx →
k
⊗

i=1

Dφ(x) for every k ∈ N and x ∈M .

Since φ∗ preserves the flag

D = D1 ⊂ D2 ⊂ · · · ⊂ Dr = T M,

it induces linear isomorphisms φ̂∗x : Dk
x/D

k−1
x → Dk

φ(x)/D
k−1
φ(x) for every 2 ≤ k ≤ r

and x ∈ M . Actually, φ̂∗x is a linear isometry of inner product vector spaces. To
see this, we recall that the inner product on Dk

x/D
k−1
x is induced by the linear

epimorphism πk :
k
⊗

i=1

Dx → Dk
x/D

k−1
x of section 4.1. Since φ∗ preserves the Lie

brackets, the following diagram commutes.

k
⊗

i=1

Dx

k
⊗

i=1

Dφ(x)

Dk
x/D

k−1
x Dk

φ(x)/D
k−1
φ(x)

φ̃∗x

πk πk

φ̂∗x

If v +Dk−1
x ∈ Dk

x/D
k−1
x , we have

‖v +Dk−1
x ‖ = min{‖a‖ : a ∈

k
⊗

i=1

Dx and πk(a) = v +Dk−1
x }

= min{‖φ̃∗x(a)‖ : a ∈
k
⊗

i=1

Dx and πk(φ̃∗x(a)) = φ̂∗x(v+D
k−1
x )} = ‖φ̂∗x(v+Dk−1

x )‖,

since φ̃∗x is a linear isometry and φ̂∗x is a linear isomorphism.

Theorem 4.3.1. The Sub-Riemannian isometries of an equiregular Sub-
Riemannian orientable manifold M preserve Popp’s volume. Moreover, if the
group of the Sub-Riemannian isometries of M acts transitively on M , then Popp’s
volume is the unique volume element on M which is invariant by Sub-Riemannian
isometries, up to multiplication by a scalar constant.

Proof. It follows from the above that if φ :M →M is a Sub-Riemannian isometry,
then φ̂∗ : gr(TxM) → gr(Tφ(x)M) is a linear isometry. The definition of Popp’s
volume implies now that it is preserved by φ. For the second assertion, let Ω be a
volume form onM such that φ∗Ω = Ω for every Sub-Riemannian isometry φ. There
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exists a nowhere vanishing smooth function f : M → R such that fΩ is Popp’s
volume. We have

fΩ = φ∗(fΩ) = (f ◦ φ)φ∗Ω = (f ◦ φ)Ω

and therefore f = f ◦ φ. The transitivity of the action of the Sub-Riemannian
isometries implies that f must be constant. �

Example 4.3.2. As we saw in section 1.1 the left translations of the Heisenberg
group H leaves invariant the two standard horizontal global smooth vector fields X,
Y which generate its horizontal distribution and form an orthonormal frame, as well
as Z = [X,Y ]. It follows that the group of Sub-Riemannian isometries of H acts
transitively on H. Since Popp’s volume on H is euclidean volume on R

3, it follows
that euclidean volume is invariant under left translations of H. But it is easy to see
that the euclidean volume is also invariant under the right translations of H. This
implies that H is a unimodular group and the euclidean volume is its Haar measure.

4.4 The Sub-Riemannian Laplacian

Let M be a Sub-Riemannian connected n-manifold whose Sub-Riemannian struc-
ture consists of a smooth real vector bundle p : E →M endowed with a Riemannian
metric g, a smooth vector bundle morphism f : E → TM with horizontal distri-
bution D = {Dx : x ∈ M} and satisfies the Lie bracket generating condition. Let
〈·, ·〉 be the induced Sub-Riemannian metric on D by g. If ψ : M → R is a smooth
function, then for every x ∈M there exists a unique vector ∇hψ(x) ∈ Dx such that

ψ∗x(v) = 〈∇hψ(x), v〉

for every v ∈ Dx. The vector field ∇hψ on M defined in this way is called the
horizontal gradient of ψ. If x ∈ M has an open neighbourhood on which the Sub-
Riemannian structure is of constant rank k, there exists a horizontal orthhonormal
local frame {X1,X2, ...,Xk} on a possibly smaller open neighbourhood of x gener-
ating D and the horizontal gradient is locally given by the formula

∇hψ =

k
∑

i=1

Xi(ψ) ·Xi.

It follows that if the Sub-Riemannian structure is of constant rank, the horizontal
gradient of a smooth function is a smooth vector field.

Recall now that if M is orientable and Ω is a volume form on M , then for
every smooth vector field X on M the Ω-divergence of X is defined to be the
unique smooth function divΩX : M → R such that LXΩ = (divΩX) · Ω. Note that
divΩX = div−ΩX. If we have a Sub-Riemannian structure of constant rank k, the
Sub-Riemannian Laplacian associated to the volume form Ω of a smooth function
ψ :M → R is defined to be

∆hψ = divΩ(∇hψ)
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and is a second order differential operator. In terms of a generating horizontal
orthonormal local frame {X1,X2, ...,Xk} we have

∆hψ =
k
∑

i=1

divΩ(Xi(ψ) ·Xi) =
k
∑

i=1

Xi(Xi(ψ)) +
k
∑

i=1

(divΩXi) ·Xi(ψ).

Thus, locally

∆h =
k
∑

i=1

X2
i +

k
∑

i=1

(divΩXi) ·Xi

as a second order differential operator. Therefore, only the first order terms of the
Sub-Riemannian Laplacian depend on the choice of the volume form Ω.

If M is an orientable Sub-Riemannian manifold whose horizontal distribution
has constant rank and Ω is a smooth volume form on M with associated Sub-
Riemannian Laplacian ∆h, then the Sub-Riemannian heat equation on M is the
PDE

∂

∂t
φ(x, t) = ∆hφ(t, x)

and governs the heat diffusion in the directions of the horizontal distribution.

Example 4.4.1. In the case of the Heisenberg group H we have the global gener-
ating orthonormal frame consisting of the vector fields

X =
∂

∂x
− 1

2
y
∂

∂z
, Y =

∂

∂y
+

1

2
x
∂

∂z
.

According to Example 4.2.1, Popp’s volume on H is the 3-dimensional euclidean vol-
ume. Therefore, X and Y have divergence zero and the Sub-Riemannian Laplacian
on H is given by the formula

∆h = X2 + Y 2 =
∂2

∂x2
+

∂2

∂y2
+

1

4
(x2 + y2)

∂2

∂z2
− y

∂2

∂x∂z
+ x

∂2

∂y∂z
.

Thus, the Sub-Riemannian heat equation in the Heisenberg group is

∂φ

∂t
(x, y, z, t) =

∂2φ

∂x2
(x, y, z, t) +

∂2φ

∂y2
(x, y, z, t) +

1

4
(x2 + y2)

∂2φ

∂z2
(x, y, z, t)

−y ∂
2φ

∂x∂z
(x, y, z, t) + x

∂2φ

∂y∂z
(x, y, z, t).

We assume now that our Sub-Riemannian structure of M of constant rank k is
equiregular of step r and growth vector (n1, n2, ..., nr). Using the same notations as
in section 4.1, let {X1,X2, ...,Xn} be an adapted local frame. There exist locally
defined smooth functions bli1i2···ik , 2 ≤ k ≤ r, such that

[Xi1 , [Xi2 , [· · · , [Xik−1
,Xik ] · · · ] +Dk−1 =

kk
∑

l=nk−1+1

bli1i2···ikXl +Dk−1
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for 1 ≤ i1, ..., ik ≤ n1. As in section 4.1, if we put bl = (bli1i2···ik)1≤i1,...,ik≤n1 and

Bk = (〈bi, bj〉)nk−1≤i,j≤nk
, where the inner products are euclidean, then Popp’s

volume is locally
( r
∏

j=2

detBj

)−1/2

X∗
1 ∧ · · · ∧X∗

n.

We shall find a local formula for the Sub-Riemannian Laplacian associated to Popp’s
volume P . This will be an immediate consequence of the local expression of diver-
gence with respect to Popp’s volume.

Recall that if ω is a differential 1-form and X, Y are smooth vector fields on M ,
then X(ω(Y )) = (LXω)(Y ) + ω([X,Y ]). Therefore,

(LXi
X∗

j )(Xs) = Xi(X
∗
j (Xs))−X∗

j ([Xi,Xs]) = −X∗
j

( n
∑

l=1

clisXl

)

= −cjis

where [Xi,Xs] =

n
∑

l=1

clisXl. Hence,

LXi
X∗

j = −
n
∑

l=1

cjilX
∗
l .

Since LXi
is a derivation, we compute

LXi

(( r
∏

j=2

detBj

)−1/2

X∗
1 ∧ · · · ∧X∗

n

)

= Xi

(( r
∏

j=2

detBj

)−1/2)

X∗
1 ∧ · · · ∧X∗

n

+

( r
∏

j=2

detBj

)−1/2
(

LXi
X∗

1 ∧ · · · ∧X∗
n + · · ·+X∗

1 ∧ · · · ∧ LXi
X∗

n

)

=

[

Xi

(( r
∏

j=2

detBj

)−1/2)

+

( r
∏

j=2

detBj

)−1/2(

−
n
∑

j=1

cjij

)]

X∗
1 ∧ · · · ∧X∗

n.

This means that the divergence of Xi with respect to Popp’s volume is

divPXi = −
( r
∏

j=2

detBj

)−1/2

·Xi

(( r
∏

j=2

detBj

)1/2)

−
n
∑

j=1

cjij.

But

( r
∏

j=2

detBj

)−1/2

·Xi

(( r
∏

j=2

detBj

)1/2)

=

r
∑

j=2

(detB2) · · ·Xi(detBj) · · · (detBr)

2
r
∏

j=2

detBj
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=

r
∑

j=2

(detB2) · · · (detBj)Tr(B
−1
j Xj(Bj)) · · · (detBr)

2

r
∏

j=2

detBj

=
1

2

r
∑

j=2

Tr(B−1
j Xj(Bj))

and so

divPXi = −1

2

r
∑

j=2

Tr(B−1
j Xj(Bj))−

n
∑

j=1

cjij .

Substituting now we get the local expression

∆h =
k
∑

i=1

X2
i −

k
∑

i=1

(

1

2

r
∑

j=2

Tr(B−1
j Xj(Bj)) +

n
∑

j=1

cjij

)

Xi

for the Sub-Riemannian Laplacian in the equiregular case of step r and rank k.
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