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0. Introduction

The study of compact invariant sets plays a central role in the qualitative theory of
differential equations and dynamical systems. There are basic difficulties in this study.

1. The compact invariant sets are global objects and so one needs to develope global
methods and tools for their study.

2. Their structure may be extremely complicated.
3. Even in the case of a simple compact invariant set, its structure may change

dramatically under small perturbations of the system.
4. The structurally stable dynamical systems are not dense.
In practice, when studying a parametrized family of differential equations one has to

handle all these four problems simultaneously.
We will be concerned with the study of the topology and dynamics in compact

invariant sets of a continuous flow, and in particular compact minimal sets, in connection
with the description of the dynamics around such a set. In particular, we want to examine
how the complexity of a compact minimal set affects the behaviour of the flow around
it. The most famous classical results are the Poincaré-Bendixson Theorem, about the
structure of compact minimal sets for planar flows, and and the Lyapunov Stability
Theorem, about the behavior of a flow near a compact invariant set.

1. Stable attractors

The simplest behavior occurs near an asymptotically stable compact invariant set.
Let (φt)t∈R be of a continuous flow on a separable, locally compact, metrizable space M .
The positive limit set of x ∈M is the closed, invariant set

L+(x) = {y ∈M : φtn(x) → y for some tn → +∞}.

Obviously, L+(φt(x)) = L+(x) for every t ∈ R. Let A ⊂ M be a compact invariant set.
The invariant set

W+(A) = {x ∈M : ∅ 6= L+(x) ⊂ A}

is called the region of attraction of A. If W+(A) is an open neighbourhood of A, then A
is called an attractor. A compact invariant set A is called (positively) Lyapunov stable
if every neighbourhood of A contains a positively invariant open neighbourhood of A. A
Lyapunov stable attractor is usually called asymptotically stable.

If A ⊂M is an asymptotically stable compact invariant set, there exists a continuous
Lyapunov function f :M → [0, 1] such that

(i) f−1(0) = A and f−1(1) =M \W+(A), and
(ii) f(φt(x)) < f(x) for every t > 0 and x ∈W+(A) \ A.
One way to construct f is the following. Let ψ :M → [0, 1] be a continuous function

such that ψ−1(0) = A and ψ−1(1) = M \ V , where V is a positively invariant, open
neighbourhood of A with V ⊂ W+(A). If g : M → [0, 1] is the continuous function
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defined by g(x) = sup{ψ(φt(x)) : t ≥ 0}, then g−1(0) = A, M \ W+(A) ⊂ g−1(1)
and g(φt(x)) ≤ g(x) for t ≥ 0 and x ∈ M . Moreover, lim

t→+∞
g(φt(x)) = 0 for every

x ∈W+(A). It suffices now to define

f(x) =

∫ +∞

0
e−tg(φt(x))dt.

If 0 < c < 1, for every x ∈ W+(A) \ A there exists a unique τ(x) ∈ R such that
f(φτ(x)(x)) = c. Actually,

τ(x) = sup{t ∈ R : φt(x) ∈M \ f−1([0, c])}.

Obviously, τ(φt(x)) = τ(x)− t for every t ∈ R and x ∈W+(A) \A. We set τ(A) = −∞.
Note that for every positively invariant, open neighbourhood V of A with compact
closure there exists 0 < c < 1 such that f−1([0, c]) ⊂ V . Indeed, since ∂V is compact, it
suffices to take any 0 < c < inf{f(x) : x ∈ ∂V }.

Lemma 1.1. If 0 < c < 1 is such that f−1([0, c]) is compact, then the so defined
function τ : W+(A) → [−∞,+∞) is continuous.

Proof. If x ∈ W+(A) \ A and ǫ > 0, then f(φτ(x)+ǫ(x)) < c < f(φτ(x)−ǫ(x)) and
from the continuity of f and the flow, there exists an open neighbourhood U of
x such that f(φτ(x)+ǫ(y)) < c < f(φτ(x)−ǫ(y)) for every y ∈ U . It follows that
τ(x) − ǫ < τ(y) < τ(x) + ǫ, which shows the continuity of τ on W+(A) \ A. Let now
x ∈ A and xn ∈ W+(A) \ A, n ∈ N, be such that there exists a ∈ R with τ(xn) ≥ a,
for every n ∈ N and xn → x. Then eventually τ(xn) < 0, and so a < 0. Thus, the
sequence (τ(xn))n∈N is bounded. Since φτ(xn)(xn) ∈ f−1(c) for every n ∈ N, taking a
subsequence if necessary, we may assume that there exist a ≤ t ≤ 0 and z ∈ f−1(c) such
that τ(xn) → t and φτ(xn)(xn) → z. But then z = φt(x) ∈ A. This contradiction shows
the continuity of τ at the points of A. �

We see immediately now that the map h :W+(A) \ A→ R× f−1(c) defined by

h(x) = (−τ(x), φτ(x)(x))

is a homeomorphism such that h(φt(x)) = (−τ(x) + t, φτ(x)(x)) for every t ∈ R and
x ∈W+(A) \A. In other words, h conjugates the restricted flow on W+(A) \A with the
parallel flow on R× f−1(c).

Note that F : W+(A) → [0,+∞) defined by

F (x) =

{

eτ(x), if x ∈W+(A) \A

0, if x ∈ A

is also a continuous Lyapunov function for A and F (φt(x)) = e−tF (x) for every t ∈ R

and x ∈W+(A)\A. Thus, F−1([0, a]) is homeomorphic to F−1([0, b]) for every a, b > 0,
because

φlog(b/a)(F
−1([0, b]) = F−1([0, a]).
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This implies that F−1([0, c]) is compact for every c > 0. In the sequel we may replace f
with F .

Remark 1.2. In case M is a smooth manifold and the flow is smooth, there is a smooth
Lyapunov function F for A. From the implicit function theorem follows that F−1([0, c])
is a compact, smooth submanifold with boundary ∂F−1([0, c]) = F−1(c). Moreover, τ
is smooth on W+(A) \A.

If c > 0, the continuous map r : W+(A) → F−1([0, c]) defined by

r(x) =

{

x, if 0 ≤ F (x) ≤ c

φτ(x)(x), if F (x) > c

is a retraction. The continuous map H : [0, 1] ×W+(A) → W+(A) defined by

H(t, x) =

{

x, if 0 ≤ F (x) ≤ c

φ(1−t)τ(x)(x), if F (x) > c

is a homotopy H : i ◦ r ≃ id rel F−1([0, c]), where i : F−1([0, c]) →֒ W+(A) is the
inclusion. So, F−1([0, c]) is a strong deformation retract of W+(A) and i induces
an isomorphism i∗ : H̄∗(W+(A);Z) ∼= H̄∗(F−1([0, c]);Z) in Alexander-Spanier coho-
mology. Similarly, the inclusion F−1([0, a]) →֒ F−1([0, b]) induces an isomorphism
H̄∗(F−1([0, b]);Z) ∼= H̄∗(F−1([0, a]);Z) for every 0 < a < b. From the continuity prop-
erty of the Alexander-Spanier cohomology follows that

H̄∗(A;Z) ∼= lim
→
H̄∗(F−1([0, c]);Z) ∼= H̄∗(W+(A);Z),

since A =
⋂

c>0

F−1([0, c]) and F−1([0, c]) is compact for every c > 0.

Proposition 1.3. Let M be a locally compact ANR carrying a continuous flow (φt)t∈R.
If A ⊂ M is an asymptotically stable, compact, invariant set, which contains no fixed
point of the flow, then H̄∗(A;Z) is finitely generated and

∞
∑

q=0

(−1)qrankH̄q(A;Z) = 0.

Proof. Since M is a locally compact ANR, so is W+(A), and therefore F−1([0, c]) is
a positively invariant, compact ANR, for any c > 0, because it is a retract of W+(A).
Hence H̄∗(A;Z) ∼= H̄∗(F−1([0, c]);Z) is finitely generated. The assumption that A is
compact and does not contains fixed points of the flow implies that there exists some
ǫ > 0 such that φt(x) 6= x for every 0 < t < ǫ and x ∈ A, and so for every x ∈ F−1([0, c]).
If we choose any 0 < t < ǫ and apply the Lefschetz fixed point theorem to φt on
F−1([0, c]), we get

∞
∑

q=0

(−1)qrankH̄q(A;Z) =

∞
∑

q=0

(−1)qrankHq(F−1([0, c]);Z) = 0. �

3



Remark 1.4. One can show that actually A and F−1([0, c]) have the same shape. In
case M is a manifold, F−1([0, c]) has the shape of a finite polyhedron, and therefore also
A [7], [9].

2. One-dimensional minimal sets

Of particular interest is the case of compact minimal sets. Recall that an invariant set
is called minimal if it is nonempty, closed, invariant and has no proper subset with these
properties. G. Allaud and E.S. Thomas have shown that an asymptotically stable, almost
periodic, k-dimensional, compact minimal set of a flow on a manifold is homeomorphic
to a k-torus (see Theorem 3.4 in [1]). The almost periodicity is a very restrictive internal
property, which implies that the minimal set is an abelian compact topological group.
This result is not true without the almost periodicity assumption if k > 1. As it is
remarked in [11], there exists a smooth diffeomorphism of R2 having an asymptotically
stable, 1-dimensional compact minimal set (the pseudocircle) and so its suspension gives
a smooth flow on a smooth 3-manifold (the open solid torus) with an asymptotically
stable, 2-dimensional compact minimal set.

We shall now be concerned with periodicity criteria of cohomological type for 1-
dimensional compact minimal sets. Let X be a 1-dimensional, compact metric space
carrying a minimal flow (φt)t∈R. Every point x0 ∈ X is contained in a some local section
S0 (see Lemma 1 in [8]). This means that there exists some ǫ > 0 such that the flow
maps (−2ǫ, 2ǫ)×S0 homeomorphically onto an open neighbourhood of x0. It follows that
S0 is a 0-dimensional, locally compact, metric space and thus x0 has an open-compact
neighbourhood S in S0. Then S is a compact local section at x0 such that (−2ǫ, 2ǫ)× S
is mapped by the flow onto an open neghbourhood of x0. Let fS : X → S1 be the
continuous function defined by

fS(x) =

{

e2πit/ǫ, if x ∈ φt(S) and 0 ≤ t ≤ ǫ

1, otherwise.

The homotopy class of fS does not depend on ǫ, but depends only on S. Recall that
H̄1(X;Z) is naturally isomorphic to the abelian group [X;S1] of homotopy classes
of maps of X into S1 and is torsion free. Using this identification, the element
[fS ] ∈ H̄1(X;Z) is called the flow class of the local section S. The function fS is called
the cosection map of S.

Lemma 2.1. Let P , Q be two disjoint, open-compact subsets of S. If m, n ∈ Z are
such that m · n 6= 0 and fmP · fnQ is homotopic to a constant, then m · n < 0.

Proof. Since fmP · fnQ is homotopic to a constant, there exists a continuous function

α : X → R such that fmP (x) · fnQ(x) = e2πiα(x) for every x ∈ X. Let β : X → R be the
function defined by

β(x) =











mt/ǫ, if x ∈ φt(P ) and 0 ≤ t ≤ ǫ

nt/ǫ, if x ∈ φt(Q) and 0 ≤ t ≤ ǫ

0, otherwise.
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Then e2πiα(x) = e2πiβ(x) for every x ∈ X and β is everywhere continuous except at the
points of the set φǫ(P ∪Q). Let γ = α−β : X → Z. By continuity of the restriction of γ
on the set

⋃

|t|≤ǫ φt(P ∪Q), there exists a finite cover {W1,W2, ...,Wq} of P∪Q consisting
of mutually disjoint, open-compact subsets of P ∪Q such that γ takes a constant value
kj ∈ Z on

⋃

|t|≤ǫ φt(Wj), 1 ≤ j ≤ q. Taking a finer cover if necessary, we may assume
that for each 1 ≤ j ≤ q we have Wj ⊂ P or Wj ⊂ Q. If now x ∈ φǫ(Wj) and (xk)k∈N is a
sequence of points of X \

⋃

0≤t≤ǫ φt(S) converging to x, then lim
k→+∞

γ(xk) = β(x) + γ(x),

and so the sequence (γ(xk))k∈N is eventually constant and equal to m+ kj, if Wj ⊂ P ,
or n + kj , if Wj ⊂ Q. This implies that there exists some 0 < δ < ǫ such that if
x ∈

⋃

−ǫ≤t≤ǫ+δ φt(Wj), 1 ≤ j ≤ q, then

γ(x) =











kj , if x ∈
⋃

|t|≤ǫ φt(Wj)

m+ kj , if x ∈
⋃

ǫ<t≤ǫ+δ φt(Wj) and Wj ⊂ P

n+ kj , if x ∈
⋃

ǫ<t≤ǫ+δ φt(Wj) and Wj ⊂ Q.

Let 1 ≤ j0 ≤ q be such that x0 ∈ Wj0 . Since the flow is minimal, there are times
0 = t0 < t1 < ... < tl such that φtl(x0) ∈Wj0 , φtj (x0) ∈ P ∪Q and φt(x0) ∈ X \ (P ∪Q)
for tj < t < tj+1, 1 ≤ j < l. Then, γ(x0) = γ(φl(x0)) and γ(φtj (x0)) = nj+γ(φtj−1

(x0)),
where nj = m or n, 1 ≤ j ≤ l. This implies that n1 + n2 + ...+ nl = 0 and therefore m
and n must have opposite signs. �

Corollary 2.2. If X is a one-dimensional, compact metric space carrying a minimal
flow, then H̄1(X;Z) 6= {0}.

Proof. Applying Lemma 2.1 for P = S, Q = ∅ and m = n = 1, we conclude that the
cosection map fS is not homotopic to a constant, and therefore it defines a nonzero
element of H̄1(X;Z). �

Theorem 2.3. Let X be a one-dimensional, compact metric space carrying a minimal
flow. Then, X is homeomorphic to the unit cricle S1 if and only if H̄1(X;Z) ∼= Z.

Proof. Only the converse needs proof, and for this it suffices to prove that x0 is an
isolated point of S, using the same notation as above. Let P be an open-compact,
proper subset of S and Q = S \ P . Then, fS = fP · fQ and fQ is not homotopic to
a constant, by Corollary 2.2. Thus, fS is not homotopic to fP and therefore fkS is not
homotopic to fkP for any nonzero k ∈ Z, since H̄1(X;Z) is torsion free. The flow classes of
S and P correspond to integers n and m, respectively, through the assumed isomorphism
H̄1(X;Z) ∼= Z. Then, m · n 6= 0 and n 6= m, by Corollary 2.2. Since m · n = n ·m, fmS is
homotopic to fnP and so fmS · f−nP is homotopic to a constant. However,

fmS · f−nP = (fS · f−1P )m · fm−nP = fmQ · fm−nP

and from Lemma 2.1 we conclude that m(m − n) < 0 or equivalently 0 < |m| < |n|.
Suppose now that there exists a strictly decreasing, neighbourhood basis {Sk : k ∈ N}
of x0 in S consisting of open-compact sets. The flow class of Sk corresponds to a
nonzero integer nk and what we have already proved shows that |nk+1| < |nk| for ev-
ery k ∈ N, which is absurd. This contradiction proves that x0 is an isolated point of S. �
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From Proposition 1.3 and Theorem 2.3 follows directly the Poincaré-Bendixson type
result that if A is an asymptotically stable, 1-dimensional, compact, minimal set of a flow
on a locally compact ANR, then A is a periodic orbit. Indeed, since A is 1-dimensional,
H̄k(X;Z) = {0}, for k > 1. From Proposition 1.3 follows that H̄1(A;Z) is a finitely
generated, torsion free, abelian group of rank 1. Hence H̄1(X;Z) ∼= Z and A must be a
periodic orbit, from Theorem 2.3.

However, using another more elementary approach, one can show that this conclusion
is true in general locally connected spaces [6].

Theorem 2.4. Let M be a locally compact, metric space carrying a continuous flow.
Let A ⊂M be an asymptotically stable, one-dimensional, compact minimal set. If M is
locally connected at the points of A, then A is a periodic orbit. �

Remarks 2.5. (a) Theorem 2.3 says that if X is a nonperiodic, one-dimensional, com-
pact minimal set, then either rankH̄1(A;Z) ≥ 2, or rankH̄1(A;Z) = 1 and H̄1(X;Z) is
not free abelian. An example for the first case is the unique minimal set of the Denjoy
C1 flow on the 2-torus, whose integral first Alexander-Spanier cohomology group is iso-
morphic to Z ⊕ Z. On the other hand, the dyadic solenoid carries a minimal flow and
is an example for the second case, since its integral first Alexander-Spanier cohomology
group is isomorphic to the additive group of the dyadic rationals. One can prove that
the integral first Alexander-Spanier cohomology group of a surface compact minimal set
is always free abelian [3].

(b) The conclusion of Theorem 2.3 is true under the much more general assumption
that X is a one-dimensional continuum carrying a fixed point free flow (see Theorem 3.5
in [2]) and similarly for Theorem 2.4 in case the phase spase is a locally compact ANR
(see Theorem 4.2 in [2]).

3. Isolated unstable attractors

Asymptotically stable compact invariant sets are very special cases of isolated in-
variant sets. A compact invariant set A ⊂ M is called isolated if it has a compact
neighbourhood V such that A is the maximal invariant set in V . Each such V is called
an isolating neighbourhood of A and contains a smaller isolating neighbourhood N of A
such that there are compact sets N+, N− ⊂ ∂N with the following properties:

(i) ∂N = N+ ∪N−.
(ii) For every x ∈ N+ there exists ǫ > 0 such that φt(x) ∈ M \ N for −ǫ ≤ t < 0,

and for every y ∈ N− there exists δ > 0 such that φt(y) ∈M \N . for 0 < t ≤ δ.
(iii) For every x ∈ ∂N \N+ there exists ǫ > 0 such that φt(x) ∈ intN for −ǫ ≤ t < 0,

and for every y ∈ ∂N \N− there exists δ > 0 such that φt(y) ∈ intN for 0 < t ≤ δ.
The triad (N,N+, N−) is called an isolating block of A. The sets A± = {x ∈

N : C±(x) ⊂ N} and α± = ∂N ∩ A± are compact and A = A+ ∩ A−. Moreover,
∅ 6= L+(x) ⊂ A for every x ∈ A+ and α+ ⊂ N+ \N−.

If A is asymptotically stable and F : W → R
+ is a Lyapunov function as before,

then (F−1([0, c]), ∂F−1([0, c]),∅) is an isolating block for every c > 0.
If M is a smooth n-manifold and the flow is smooth, then every neighbourhood of

an isolated invariant set A contains a smooth isolating block (N,N+, N−) of A. This
means that N is a smooth compact n-manifold with boundary ∂N = N+ ∪N−, the sets

6



N+ and N− are smooth compact (n− 1)-manifolds with common boundary N+ ∩N−,
which is a smooth compact (n− 2)-manifold (without boundary) and on which the flow
is externally tangent to N . Moreover, the flow is transverse to N+ \ N− into N and
transverse to N− \N+ out of N .

Let A ⊂M be an isolated compact invariant set and let (N,N+, N−) be an isolating
block of A. The final entrance time function τ :W+(A) → [−∞,+∞) defined by

τ(x) = sup{t ∈ R : φt(x) ∈M \N},

if x ∈ W+(A) \ A and τ(x) = −∞, if x ∈ A, is lower semicontinuous. This follows
immediately from the definition and the continuity of the flow. Obviously, φτ(x)(x) ∈ α

+

and τ(φt(x)) = τ(x) − t for every t ∈ R and x ∈ W+(A) \ A. The final entrance time
function τ is discontinuous at x ∈W+(A) \ A if and only if there are xn → x such that
τ(xn) → +∞ (see Lemma 3.1 [4]). These are the points of the set A ∪ φ(R × ∂∂Na

+).
It is clear from the above that if A is an isolated compact invariant set, then A is not

necessarily asymptotically stable with respect to the restricted flow inW+(A). However,
it is possible to define a new topology in W+(A), which is finer than the subspace topol-
ogy, with respect to which the flow remains continuous and A becomes asymptotically
stable. Roughly speaking, this new topology is obtained by cutting W+(A) along the
discontinuity set of the final entrance time function with respect to any isolating block
of A. It was originally defined in [13].

Let (Xt, pst)s,t∈R be the following inverse system of compacta. For every t ∈ R we
let Xt = N/N+ and for s ≤ t the map pst : Xt → Xs is defined by

pst(x) =

{

φs−t(x), if φr(x) ⊂ N \N+ for s− t ≤ r ≤ 0,

[N+], otherwise.

Obviously, pst([N
+]) = [N+] for every s ≤ t.

Let XN = lim
←

(Xt, pst) and let ∗ denote the point of X all of whose coordinates are

equal to [N+]. Clearly, XN \ {∗} is a locally compact, separable, metrizable space. If
(xt)t∈R ∈ XN \ {∗} and xt0 = [N+], then xt = [N+], for every t ≤ t0. Moreover, there
exists s ∈ R such that xs 6= [N+] and so xt ∈ N \ N+ and xs = φs−t(xt) for every
t ≥ s. Let hN : XN \ {∗} → M be defined by hN ((xt)t∈R) = φ(−s)(xs), where s ∈ R

is any such that xs 6= [N+]. Since φt−s(xs) = xt ∈ N \ N+ for every t ≥ s, we have
C+(xs) ⊂ N , and so xs ∈W

+(A), because N is an isolating neighbourhood of A. Thus,
hN (XN \ {∗}) ⊂W+(A). Conversely, if x ∈W+(A), we let

xt =

{

[N+], if t ≤ τ(x),

φt(x), if t > τ(x).

Then, hN ((xt)t∈R) = x. This shows that hN (XN \ {∗}) = W+(A), and it is easy to see
that hN is also injective and continuous. Note that

(hN )−1(A) = {(φt(x))t∈R : x ∈ A} = lim
←

(A, pst|A),

which is homeomorphic to A, since (φs|A) ◦ (pst|A) = φt|A, for every s ≤ t, hence
compact. So, hN maps (hN )−1(A) homeomorphically onto A. Similarly, hN maps
(hN )−1(α+) homeomorphically onto α+.
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It is immediate from the above formula giving (hN )−1(x) that (hN )−1 is discontin-
uous at x ∈W+(A) if and only if the final entrance time function τ is discontinuous at x.

Lemma 3.1. If (N,N+, N−) and (Λ,Λ+,Λ−) are two isolating blocks of A, then
(hN )−1 ◦ hΛ : XΛ \ {∗} → XN \ {∗} is a homeomorphism.

Proof. It suffices to show that (hN )−1 ◦ hΛ is continuous. First we observe that if x ∈ A
then ((hN )−1 ◦ hΛ)((φt(x))t∈R) = (φt(x))t∈R. If now (xt)t∈R ∈ (XΛ \ {∗}) \ (hΛ)

−1(A),
there exists x ∈ W+(A) \ A and some t0 ∈ R such that xt = [N+] for t ≤ t0 and
xt = φt(x) for t > t0. Suppose that (yt)t∈R = ((hN )−1 ◦ hΛ)((xt)t∈R). There exists
some s0 ∈ R such that yt = [N+] for t ≤ s0 and yt = φt(x) for t > s0. The pair (x, t0)
is uniquely determined by (xt)t∈R and similarly (x, s0) by (yt)t∈R, and φt0(x) ∈ α+

Λ ,
φs0(x) ∈ α+

N . There is a continuous function λ : α+
Λ → R such that λ(z) is the unique

real number with φλ(z)(z) ∈ α+
N for every z ∈ α+

Λ . Then, λ(φt0(x)) = s0 − t0. It follows
that each coordinate yt is a continuous function of (xt)t∈R. �

It follows now that there is a topology on W+(A), which is finer than the subspace
topology inherited from M , and which makes hN a homeomorphism and does not
depend on the chosen isolating block (N,N+, N−). It is called the intrinsic topology
of the region of attraction of A and we denote by W+

i (A) the region of attraction of A
equiped with this topology.

Lemma 3.2. The final entrance time function τ : W+
i (A) → [−∞,+∞) is continuous

for any isolating block (N,N+, N−) of A.

Proof. We have to prove the continuity of g = f ◦ hN : XN \ {∗} → [−∞,+∞), defined
by g((xt)t∈R) = inf{t ∈ R : xt 6= [N+]}. Suppose that g((xt)t∈R) = t0 and a < t0 < b
for some a, b ∈ R. There exists x ∈ α+ such that xt = φt−t0(x) for every t > t0. Since
α+ is a compact subset of N+ \N−, there is an open neighbourhood V of x such that
V ∩ N− = ∅, and φ−ǫ(V ) ⊂ M \ N and φǫ(V ) ⊂ intN , for some ǫ > 0 such that
a < t0 − ǫ < t0 < t0 + ǫ < b. The set

C =
(

φǫ(V )×
∏

t6=t0+ǫ

N/N+
)

∩ (XN \ {∗})

is an open neighbourhood of (xt)t∈R in XN \ {∗}. If (yt)t∈R ∈ C, then yt0+ǫ ∈ φǫ(V ) ⊂
intN and so g((yt)t∈R) < t0+ǫ < b. On the other hand, there exists a unique−2ǫ < s ≤ 0
such that φs(yt0+ǫ) ∈ α+, because φ−ǫ(V ) ⊂ M \ N , and so g((yt)t∈R) = t0 + ǫ + s >
t0 − ǫ > a. This shows the continuity in case t0 ∈ R. If t0 = −∞, there exists some
x ∈ A such that xt = φt(x) for every t ∈ R and there is an open neighbourhood V of x
such that φǫ(V ) ⊂ intN for some ǫ > 0. In this case it suffices to take

C =
(

φǫ(V )×
∏

t6=ǫ

N/N+
)

∩ (XN \ {∗}). �

We observe that for every x ∈W+(A) and s ∈ R, if (hN )−1(sx) = (yt)t∈R, then

yt =

{

[N+], if s+ t ≤ f(x),

tx, if s+ t > f(x).
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Thus, (hN )−1 transforms the restricted flow on W+(A) to the left shift on XN \ {∗},
which is a continuous flow. This implies that the flow remains continuous with respect
to the intrinsic topology and A remains a compact invariant set in W+

i (A).
The function F : W+

i (A) → [0,+∞) defined by

F (x) =

{

eτ(x), if x ∈W+
i (A) \ A,

0, if x ∈ A

where τ is the final entrance time function with respect to any isolating block
(N,N+, N−) of A. From Lemma 3.2 we have that F is continuous. It is also imme-
diate from the definition that A = F−1(0) and F (φt(x)) = e−tF (x) for every t ∈ R

and x ∈ W+
i (A) \ A. This shows that A is globally asymptotically stable in W+

i (A).
Moreover, the restricted flow on W+

i (A) \ A is parallelizable and each level set F−1(c),
c > 0, is a compact global section. In particular the set α+ = F−1(1) is a global section
to the flow on W+

i (A) \ A and thus W+
i (A) \ A is homeomorphic to R× α+.

Note that F : W+(A) → [0,+∞) is a lower semicontinuous Lyapunov function for
A, which by no means implies that A is stable with respect to the restricted flow in
W+(A). The identity map id :W+(A) →W+

i (A) is continuous that a point x ∈W+(A)
if and only if F is continuous at x.

Lemma 3.3. Let X be a locally compact, metric space and h : X → Y be an
injective, continuous map onto a metric space Y . Let D be the set of points of X
such that h−1 is not continuous at h(x). Then, h(D) is closed in Y and D is closed in X.

Proof. Suppose that h(D) is not closed in Y . There exists x ∈ X such that
h(x) ∈ (Y \ h(D)) ∩ h(D). Since x ∈ X \ D, h−1 is continuous at h(x), and
if V is a compact neighbourhood of x, there exists an open neighbourhood U of
h(x) such that h−1(U) ⊂ V or equivalently U ⊂ h(V ). Let z ∈ X be such that
h(z) ∈ U ∩ h(D) ⊂ h(V ∩ D), that is z ∈ V ∩ D. There exists a sequence (zn)n∈N,
which does not converge to z, such that the sequence (h(zn))n∈N converges to h(z).
Passing to a subsequence if necessary, we may assume that z is not a limit point of
(zn)n∈N. Eventually h(zn) ∈ U and so zn ∈ V . Since V is compact, the sequence (zn)n∈N
has a limit point y ∈ V . It follows that h(y) = h(z) and therefore y = z, contradiction. �

SinceW+
i (A) is locally compact, id : W+(A) → W+

i (A) is continuous on an invariant,
open subset of W+(A) by Lemma 3.3. In general, W+(A) may not be locally compact,
but is only an Fσ-set inM . IfW+(A) is not locally compact, then id : W+(A) → W+

i (A)
may be nowhere continuous.

An alternative description of the intrinsic topology is given in [15] and is stated in
the following.

Proposition 3.4. The intrinsic topology is the smallest topology T which contains the
subspace topology of W+(A) and the sets

W+(A) ∩
⋂

t≥0

φ−t(V ),

where V runs over the open neighbourhoods of A in M .
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Proof. We shall prove first that if V is an open neighbourhood of A in M then

W+(A) ∩
⋂

t≥0

φ−t(V ) is intrinsically open. In the special case where V = intN and

(N,N+, N−) is an isolating block, this set is equal to τ−1[−∞, 0), where τ is the cor-
responding final entrance time function, and is intrinsically open. In any case, every

open neighbourhood V of A contains such an N . If x ∈W+(A) ∩
⋂

t≥0

φ−t(V ), there is

some s > τ(x) such that φs(x) ∈ intN and so x ∈W+(A) ∩ φ−s(
⋂

t≥0

φ−t(V )), which is

intrinsically open. There is also an open neighbourhood U of x such that φr(y) ∈ V for
0 ≤ r ≤ s and y ∈ U , by compactness. Therefore

x ∈ U ∩W+(A) ∩ φ−s(
⋂

t≥0

φ−t(V )) ⊂W+(A) ∩
⋂

t≥0

φ−t(V ).

This shows that W+(A) ∩
⋂

t≥0

φ−t(V ) is intrinsically open.

To prove the converse it suffices to show that given an isolating block (N,N+, N−)
of A, the map

h−1N : (W+(A),T ) → XN \ {∗} ⊂
∏

t∈R

Xt

is continuous. Let t ∈ R and x ∈W+(A). In order to prove that the t-coordinate of h−1N

is continuous at x, we consider two cases.
Let first τ(x) < t. Then the t-coordinate of h−1N (x) is φt(x) ∈ N/N+ and φr(x) ∈ intN

for r ≥ t. Let U ⊂ intN be an open neighbourhood of φt(x). By continuity, there is an
open neighbourhood G of x such that φt(G) ⊂ U . For every

y ∈ G ∩W+(A) ∩ φ−t(
⋂

r≥0

φ−r(intN))

we have τ(y) > t and the t-coordinate of h−1N (y) is φt(y) ∈ U . This proves the continuity
of t-coordinate of h−1N at x in this case.

Let now τ(x) ≥ t. The t-coordinate of h−1N (x) is [N+]. Let U be an open neigh-
bourhood of N+ in M . By continuity, there exist ǫ > 0 such that φr(x) ∈ U for
|τ(x) − r| ≤ ǫ and φτ(x)−ǫ(x) /∈ N , and an open neighbourhood G of x such that
φr(y) ∈ U for |τ(x)− r| ≤ ǫ, y ∈ G and φτ(x)−ǫ(G) ∩N = ∅. If now

y ∈ G ∩W+(A) ∩ φτ(x)+ǫ(
⋂

r≥0

φ−r(intN)),

then either τ(y) ≥ t, and so t-coordinate of h−1N (y) is [N+], or τ(y) < t and it is φt(y).
In the latter, we have τ(x) − ǫ < τ(y) < t ≤ τ(x) and therefore φt(y) ∈ U . This
completes the proof. �

A compact invariant set A ⊂ M is called an isolated unstable attractor if it is an
isolated invariant set such that W+(A) is an open neighbourhood of A, but A is not
(positively) Lyapunov stable. Having in mind Theorem 2.4, the question arises whether
a 1-dimensional compact minimal set A which is an isolated unstable attractor of a
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flow on a locally compact ANR M must be a periodic orbit. This is true in case A is
almost periodic and M is a 3-manifold under the weaker assumption that A is only
isolated and not necessarily an attractor [1], [17]. The observations of the present
section and Theorem 2.4 show that it is also true if W+

i (A) is locally connected at the
points of A. So we are led to the following topological problem: Let M be a separable,
locally compact, ANR (for instance a manifold) and X be a connected, locally compact,
metrizable space. If there is a continuous, one-to-one, onto map h : X → M , such that
h−1 :M → X is continuous on an open, dense subset of M , under what conditions is X
locally connected or even an ANR?

In the sequel we will make some remarks about the complexity of the flow in W+(A)
(see [5]).

Proposition 3.5. If A is an isolated compact invariant set and W+(A) is locally com-
pact, then

(a) A is asymptotically stable with respect to the restricted flow in W+(A) if and only
if the identity id : W+(A) →W+

i (A) is continuous at every point of A.
(b) The identity id : W+(A) → W+

i (A) is continuous on an invariant, dense, open
subset of W+(A) \ A.

Proof. (a) Suppose that id : W+(A) →W+
i (A) is continuous at every point of A. Then

the final entrance time function τ : W+(A) → [−∞,+∞), with respect to any isolating
block of A, is continuous at every point of A. If A is not stable in W+(A), then, since
W+(A) is locally compact, there exist points x ∈ A, y ∈ W+(A) \ A, xn ∈ W+(A) \ A,
n ∈ N, and times tn → +∞ such that xn → x and φtn(xn) → y. Since τ is continuous
at x, we have τ(xn) → −∞, and therefore τ(φtn(xn)) = τ(xn)− tn → −∞. But since τ
is lower semicontinuous, −∞ < τ(y) ≤ lim inf

n→+∞
τ(φtn(xn)) = −∞. The converse is trivial.

(b) The identity from W+(A) to W+
i (A) is discontinuous at a point x ∈W+(A) \A

if and only if the final entrance time function τ : W+(A) \A→ R is discontinuous at x.
Since τ is lower semicontinuous and W+(A) \ A is locally compact, the set of points of
W+(A) \ A at which τ is continuous, is dense in W+(A) \ A from the Baire Category
Theorem. �

Let now A ⊂ M be an isolated unstable attractor. The identity from W+(A) to
W+

i (A) is continuous on an open, invariant subset G0 of W+(A) \ A. Since W+(A)
is locally compact, G0 is also dense in W+(A) \ A, and the invariant set W+

1 (A) =
W+(A) \ G0 is locally compact. If α is an ordinal, and W+

α (A) ⊂ W+(A) has been
defined, then the identity fromW+

α (A) toW+
αi(A), which is the same set with the intrinsic

topology, is continuous on an open, invariant subset Gα ofW+
α (A)\A, and Gα is dense in

W+
α (A)\A, beauseW+

α (A) is locally compact. We define then W+
α+1(A) =W+

α (A)\Gα.
If α is a limit ordinal, we put

W+
α (A) =

⋂

β<α

W+
β (A).

SinceM has a countable basis, there exists an ordinal δ smaller than the first uncountable
ordinal such thatW+

α (A) =W+
δ (A), for all α > δ. We call the least such δ the instability

depth of W+(A). It is a measure of the complexity of the flow in W+(A), and measures
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how far A is from being asymptotically stable, with respect to the restricted flow in
W+(A). Note that at every step W+

α (A) is locally compact, and Gα 6= ∅, since it is
dense in W+

α (A). So the instability depth is δ if and only if δ is the least ordinal such
that W+

δ (A) = A.
The instability depth δ of an isolated unstable attractor A is a successor ordinal. To

see this, assume on the contrary that it is a limit ordinal and let (N,N+, N−) be an
isolating block of A such that N ⊂ W+(A). For every α < δ the set ∂N ∩W+

α (A) is
compact and so (∂N ∩W+

α (A))α<δ is a decreasing family of non-empty, compact subsets
of ∂N such that

⋂

α<δ

∂N ∩W+
α (A) = ∂N ∩W+

δ (A) = ∂N ∩A = ∅

which contradicts the compactness of ∂N .
Isolated unstable atractors whose region of attraction have instability depth 1 have

been studied in [12] and [14].

Example 3.6. Consider the smooth flow on R
2 defined by the system of differential

equations (in polar coordinates)

r′ = r(1− r), θ′ = sin2(
θ

2
).

Then, {(1, 0)} is an isolated unstable attractor with W+(1, 0) = R
2 \ {(0, 0)}. The

closed disc of radius 1/2 centered at (1, 0) is an isolating block N and α+ is the
southern semicircle on ∂N , hence homeomorphic to the closed interval [0, 1]. The
final entrance time function is discontinuous at (s, 0) or equivalently the identity
id : W+(1, 0) → W+

i (1, 0) is not continuous at (s, 0). Now W+
i (1, 0) \ {(1, 0)} is

homeomorphic to R × [0, 1] and W+
i (1, 0) is homeomorphic to R × R

+. Here the
instability depth is 2, because W+

1 (1, 0) = (0,+∞) × {0} and W+
2 (1, 0) = {(1, 0)}.

It can be proved that if a fixed point of a flow on R
2 or S2 is an isolated unstable

attractor, then the instability depth is at most 2. This is not true for flows on the
2-torus. However, in the case of a fixed point of a flow on an orientable, closed 2-
manifold, which is an isolated unstable attractor, the instability depth is always finite [4].

LetM be a connected smooth manifold carrying a smooth flow (φt)t∈R and let A ⊂M
be an isolated unstable attractor. If (N,N+, N−) is a smooth isolating block of A with
N ⊂ W+(A), then the interior of a+ in ∂N is not empty, because otherwise the corre-
sponding final entrance time function τ : W+(A) → [−∞,+∞) would be discontinuous
at every point of W+(A) \ A. However τ is lower semicontinuous and its points of
continuity form a dense subset of W+(A), since the latter is locally compact. If now
S ⊂ int∂Na

+ is open in ∂N , then it is a local section to the flow, because the flow finally
enters N through a+ intersecting transversally ∂N . It follows that φ(I × S) is an open
subset of M for every open interval I ⊂ R. Now any open neighbourhood V ⊂ W+(A)
of A contains such a smooth isolating block of A and for every open set U ⊂W+(A) we
have

U ∩ φ((0,+∞) × int∂Na
+) ⊂ U ∩

⋂

t≥0

φ−t(V ).

This and the above observation show that each open subset of W+
i (A) contains an open

subset of W+(A). Stated otherwise, the identity id :W+
i (A) →W+(A) sends open sets
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to sets with non-empty interior, although it is not open. In particular, the open dense
subset of W+(A) \ A at the points of which id : W+(A) → W+

i (A) is continuous (see
Proposition 3.5) is also open and dense in W+

i (A) \ A.
Since we are interested in 1-dimensional compact minimal sets and such sets for

flows on 2-manifolds are never isolated, the following shows that the flow is sufficiently
complex around it.

Theorem 3.7. Let ξ be a smooth vector field on a connected, smooth n-manifold M
and A ⊂ M be an invariant continuum of dimension at most n − 2. If A is an isolated
unstable attractor, then the instability depth of W+(A) is at least 2.

Proof. Suppose that the instability depth of W+(A) is 1. This means that the identity
maps W+

i (A) \ A homeomorphically onto W+(A) \ A. If (N,N+, N−) is a smooth
isolating block of A, then the flow on W+(A) \ A is parallelizable with section α+. It
follows that α+ is a union of connected components of ∂N , thus being a compact, (n−1)-
dimensional, smooth submanifold of M without boundary. Since the dimension of A is
at most n − 2 and W+(A) is connected and open, W+(A) \ A is connected. It follows
now from Theorem 3.4 in [4] that M is compact and M = W+(A). Moreover, A is an
isolated unstable attractor with respect to −ξ, whose region of attraction (with respect
to −ξ) has instability depth 1. This implies that ∂N = α+ ∪ α− and

N \ A =
⋃

t≥0

φt(α
+) ∪

⋃

t≤0

φt(α
−),

where these two sets are nonempty, disjoint and open in N \ A. This contradicts our
assumption that A has dimension at most n− 2, since A ⊂ intN . �

We note that although there is an example of a C1 vector field on S3 having an
isolated, nonperiodic, 1-dimensional compact minimal set, constructed by P. Schweitzer
in [16], we do not have a smooth example. The question on the existence of such a
smooth vector field on a 3-manifold is Problem 3.112 on page 177 in R. Kirby’s List of
Problems on Low-dimensional Topology. The minimal set in Schweitzer’s example is not
an isolated unstable attractor and we do not know such an example. In any case, an
isolated, 1-dimensional, compact minimal set of a C1 vector field on a 3-manifold is a
surface minimal set [10], and so its integral first Alexander-Spanier cohomology group
is free abelian [3]. Concluding, we arrive at the following question: Let A be a one-
dimensional compact minimal set of a C1 vector field on an orientable 3-manifold M . If
A is an isolated unstable attractor, is then A necessarily a periodic orbit? If no, can the
instability depth be infinite?
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