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ABSTRACT 
I address four of the seven themes of the 2nd International Conference on the Teaching of Mathematics – 

research, technology, pedagogical innovation, and curricular innovation – from the point of view that 
learning mathematics is, first of all, learning.  Research from a variety of fields – education, neurobiology, 
cognitive psychology – provides a consistent set of messages about what learning is, how learning takes 
place, and how teachers can facilitate learning.   

I offer necessarily brief surveys of research on the main themes, and then I describe how my 
understanding of this research has led to the design of a learning environment (a combination of an 
interactive classroom, an online delivery system, a rich set of tools, demanding course requirements, 
innovative course materials, effective in-class and assessment practices, and intangibles) that is radically 
different from my practice of, say, 20 years ago.  I also provide an example of a research-based design for a 
single lesson. 

My conclusions touch on the need for continuous curriculum renewal, for effective strategies to stimulate 
deep learning, for goal-directed assessments, for addressing the needs of a would-be mathematically literate 
public, and for preservice and inservice professional development. 
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1. Introduction 
The 2nd International Conference on the Teaching of Mathematics intends to address new ways 

of teaching undergraduate mathematics.  The first four of seven conference themes (slightly 
abridged) are 

• EDUCATIONAL RESEARCH: Results of current research in mathematics education and 
the assessment of student learning. … 

• TECHNOLOGY: Effective integration of computing technology…into the undergraduate 
curriculum  

• INNOVATIVE TEACHING METHODS: … cooperative and collaborative teaching, 
writing in mathematics, laboratory courses.  

• CURRICULA INNOVATIONS: Revisions of specific courses and assessment of the 
results … innovative applications, project driven curricula. 

This paper cuts across all four of these themes – and has some implications for the other three 
as well – professional development, relationships to other disciplines, and distance learning 
technologies. 

I write from the perspective of a 40-year teaching career at Duke and other universities, 
including many attempts at innovative curriculum development and incorporation of technology 
into the learning process.  To be candid, for the first half of my career I mostly failed to have any 
significant impact on my students, at least in the sense of stimulating sound knowledge and 
understanding of mathematics.  My truly successful students were few enough in number that I 
still remember their names – and I have always suspected that they would have succeeded just as 
well without me.   

I’m obviously a slow learner, but frustration is a powerful motivator.  A series of opportunities 
in the 1980’s and since has permitted me to learn a good deal about my profession that I should 
have learned much earlier, and to put that learning to use as a teacher and curriculum developer.  
At first my learning was experiential (that is to say, ad hoc), trying things in the classroom, 
rejecting what did not work, and reinforcing what did.  One might describe this as “natural 
selection” in the evolutionary sense.  Later I began to study the research literature – not just in 
mathematics education, but also in cognitive psychology and neurobiology – to find reasons for 
my successes and failures.  It probably would have been more efficient to proceed in the other 
order – as I said, I’m a slow learner.  In this paper I share some of what I have learned, along with 
connections to the conference themes. 

 

2. Research 
The first part of my title comes from the book How People Learn: Brain, Mind, Experience, 

and School, a (U.S.) National Research Council study (Bransford, et al., 1999) that summarizes the 
very substantial body of research on learning, especially that of the past 30 years.  Here is the start 
of the Executive Summary (p. xi): 

“Learning is a basic, adaptive function of humans.  More than any other species, people 
are designed to be flexible learners and active agents of acquiring knowledge and skills.  
Much of what people learn occurs without formal instruction, but highly systematic and 
organized information systems – reading, mathematics, the sciences, literature, and the 
history of a society – require formal training, usually in schools.  Over time, science, 



mathematics, and history have posed new problems for learning because of their growing 
volume and increasing complexity.  The value of the knowledge taught in school also began 
to be examined for its applicability to situations outside school. 

“Science now offers new conceptions of the learning process and the development of 
competent performance.  Recent research provides a deep understanding of complex 
reasoning and performance on problem-solving tasks and how skill and understanding in 
key subjects are acquired. … ” 

My point in citing this and other works on learning research is that learning mathematics is, 
first and foremost, learning.  Our subject is not exempt from what others have learned about 
learning, and indeed our curricula and pedagogy, to be successful, must be informed by research 
on learning.  Readers of this paper will probably not be surprised by any of the findings in the 
NRC study – but may be surprised to learn the strength of the research base underlying the 
strategies we have come to associate with the words “reform” and “renewal.” 

The 1990’s have been described as “The Decade of the Brain,” a period in which the study of 
live, functioning, normal brains has come into its own through non-invasive technologies, such as 
positron emission tomography (PET) and functional magnetic resonance imaging (fMRI).  This 
research will continue for many decades, of course.  As the NRC study states (p. xv), “What is 
new, and therefore important for a new science of learning, is the convergence of evidence from a 
number of scientific fields.”  (Emphasis in the original.)  That is, the messages from neuroscience 
are entirely consistent with and supportive of what we have learned from developmental 
psychology, cognitive psychology, and other areas of research. 

There is one sense in which learning mathematics is different from learning many other things, 
such as speaking our native language, remembering visual and aural images of familiar people and 
places, and driving a car.  The first and most fundamental biological fact about our brains is that 
they have not evolved significantly from the brains of our hunter-gatherer ancestors.  Thus, we are 
superbly adapted – or would be if it were not for environmental influences – for fight-or-flight 
decisions and other survival tactics.  As Dehaene (1997) has so beautifully documented in The 
Number Sense, this means that humans (and other species as well) are practically hard-wired to do 
arithmetic with small integers – but everything else in mathematics is hard, because it doesn’t 
come to us instinctively.  On the other hand, we learn many things that are not instinctive in an 
evolutionary sense, such as history, philosophy, foreign languages (beyond infancy), music, and 
neurobiology.  One might say the Education is about learning the things that hard to learn – of 
which mathematics is just one example.  [Exercise for the reader: Why is “driving a car” – clearly 
not an evolutionary adaptation – a relatively easy task for adolescents and adults in a developed 
society?] 

We summarize here some of the key findings from the NRC study (Bransford, et al., 1999, pp. 
xii-xviii) that are relevant to collegiate education, in particular, to undergraduate mathematics. 

♦ Collateral Development of Mind and Brain 
• “Learning changes the physical structure of the brain.” 
• “Structural changes alter the functional organization of the brain, [i.e.], learning 

organizes and reorganizes the brain.” 
• “Different parts of the brain may be ready to learn at different times.” 

♦ Durability of Learning and Ability to Transfer to New Situations 
• “Skills and knowledge must be extended beyond the narrow contexts in which they are 

first learned.” 



• “…a learner [must] develop a sense of when what has been learned can be used ….  
Failure to transfer is often due to … lack of … conditional knowledge.” 

• “Learning must be guided by general principles ….  Knowledge learned at the level of 
rote memory rarely transfers ….” 

• “Learners are helped in their independent learning attempts if they have conceptual 
knowledge. …” 

• “Learners are most successful if they are mindful of themselves as learners and thinkers.  
… self-awareness and appraisal strategies keep learning on target … .  … this is how 
human beings become life-long learners.” 

♦ Expert vs. Novice Performance 
• “Experts notice … patterns … that are not noticed by novices.” 
• “Experts have … [organized] content knowledge …, and their organization … reflects a 

deep understanding of the subject matter.” 
• “Experts’ knowledge cannot be reduced to sets of isolated facts … but, instead, reflects 

contexts of applicability ….” 
• “Experts have varying levels of flexibility in their approaches to new situations.” 
• “Though experts know their disciplines thoroughly, this does not guarantee that they are 

able to instruct others ….” 
♦ Designs for Learning Environments 

• “Learner-centered environments … Effective instruction begins with what learners 
bring to the setting … learners use their current knowledge to construct new knowledge 
… what they know and believe at the moment affects how they interpret new 
information … Sometimes learners’ current knowledge supports new learning; 
sometimes it hampers learning.” 

• “Knowledge-centered environments  The ability to think and solve problems requires 
knowledge that is accessible and applied appropriately. … Curricula that are a ‘mile 
wide and an inch deep’ run the risk of developing disconnected rather than connected 
knowledge.” 

• “Assessment to support learning … Assessments must reflect the learning goals ….  If 
the goal is to enhance understanding and applicability of knowledge, it is not sufficient 
to provide assessments that focus primarily on memory for facts and formulas.” 

• “Community-centered environments  [An] important perspective on learning 
environments is the degree to which they promote a sense of community. …” 

♦ Effective Teaching 
• “Effective teachers need ‘pedagogical content knowledge’ – knowledge about how to 

teach in [the] particular [discipline], which is different from knowledge of general 
teaching methods.” 

• “Expert teachers know the structure of their disciplines and [have] cognitive roadmaps 
that guide the assignments they give …, the assessments they use …, and the questions 
they ask in the … classroom ….” 

♦ New Technologies 
• “Because many new technologies are interactive, it is now easier to create environments 

in which students can learn by doing, receive feedback, and continually refine their 
understanding and build new knowledge.” 

• “Technologies can help people visualize difficult-to-understand concepts ….” 



• “New technologies provide access to a vast array of information, including digital 
libraries, real-world data for analysis, and connections to other people who provide 
information, feedback, and inspiration, all of which can enhance the learning of teachers 
and administrators as well as students.” 

•  

3. Technology 
There has been a great deal of controversy over the past two decades about the presumed 

effects, good and bad, of using technological tools (calculators and computers) in teaching and 
learning mathematics.  The debate is beginning to be informed by a substantial and growing body 
of research, which one hopes in time will replace strident assertions of deeply held opinions.  The 
NRC report cited in the preceding section highlights the positive features, particularly of 
interactive technologies, for learning in general.  A forthcoming volume (Heid and Blume, to 
appear) surveys research on the role of technology in teaching and learning mathematics at all 
levels.  As a co-author of one of the chapters in that volume (Tall, et al., to appear), I have had an 
opportunity to learn more about this research as it relates to college-level mathematics.  Our paper 
includes an analysis of a large number of recent research papers and Ph.D. theses in mathematics 
education that focus on technology in calculus and related subjects.  In simplified form, the key 
messages are 

1. Technology used inappropriately makes no significant difference.  In particular, 
adding calculators and/or computers to a traditionally taught and assessed 
mathematics course may make it marginally better or worse, but there won’t be 
much change.  “Better” is likely to be associated with students finding ways to use 
the technology that are not necessarily planned by the instructor.  “Worse” is likely 
to be associated with time and effort devoted to yet another task, particularly if it is 
seen as disconnected from all the others. 

2. Technology integrated intelligently with curriculum and pedagogy produces 
measurable learning gains.  It may be impossible to tease out whether the 
gains are the direct result of the technology or of the rethought curriculum and 
pedagogy.  (Do it matter?) 

3. There is little evidence that one technology is “better” than another.  What 
matters is how the technology is used. 

4. There is substantial evidence that using computer algebra systems for conceptual 
exploration and for learning how to instruct the software to carry out symbolic 
calculations leads to conceptual gains in solving problems that can transfer to later 
courses. In comparison, students in traditional courses tend to use more procedural 
solution processes that do not easily transfer to new situations. 

5. Technology enables some types of learning activities (e.g., discovery learning) and 
facilitates some others (e.g., cooperative learning) that are harder or impossible to 
achieve without technology. 

These results are completely consistent with what is known about learning in general – which 
reinforces my point that learning mathematics is, first of all, learning, and only secondarily about 
mathematics. 

One of the more interesting points in the research on technology in mathematics courses is the 
role of the teacher in influencing the outcome. Keller and Hirsch (1998) found that students’ 
preferences for numeric, graphic, or symbolic representations reflect in part the teacher’s 



preference.  Kendal and Stacey (1999) studied three teachers who taught the same calculus 
syllabus using TI-92 symbolic calculators. Teacher A enthusiastically used the computer algebra 
system at every opportunity, while Teacher B was more reserved and underpinned the work with 
paper-and-pencil calculations. Teacher C was enthusiastic about the graphing abilities of the 
calculator and used it more often for graphical insight than for symbolic calculation.  The three 
teachers also had different predictions about their students’ algebraic competence, geometric 
competence, and likelihood of success while using the technology.  Mean scores on the common 
end-of-course assessment were essentially the same for the three sections, but students in each of 
the sections were successful on different questions, more or less in accord with their teacher’s 
expectations and privileging of specific uses of the technology. 

 

4. Curriculum 
What do we really want to teach, and why do we want to teach it?  Are the important topics in 

mathematics essentially unchanged over time, or should the curriculum be viewed as something 
like a living organism – perhaps as a species of organisms, with births, deaths, evolution? 

Whenever I think about these questions, I am reminded of our sister sciences, for which the 
answers are much more obvious.  For example, when I was a student, continental drift was 
considered a heretical theory – not just wrong but wrong-headed, not worth serious scientific 
discussion.  One could easily list several dozen significant paradigm shifts in science over the past 
50 years, most of which have been reflected in science curricula at some level. 

Over the same period of time, mathematical knowledge has literally exploded, both in its pure 
sense and in its relationship to science and technology.  And yet we tend to think of the academic 
content of our discipline (at least K-14) as essentially static.  We know better, of course.  When I 
was a student, the list of important skills (necessarily paper-and-pencil skills, except for occasional 
use of a slide rule) included calculation of square roots, interpolating in trig and log tables, and 
polar and logarithmic graphing, along with others that subsequently disappeared from the 
“standard” curriculum.  It is very rare now to encounter a student who has ever calculated a 
nontrivial square root by hand or who has ever seen a log table or a slide rule (never mind knowing 
what to do with them).  The non-Cartesian graphing techniques disappeared because the presumed 
benefits were not commensurate with the intellectual demands of learning how to do them (not to 
mention the cost of special graphing paper).  But now those techniques are back in our curricula 
(or should be), because they have important conceptual content and modeling significance, and 
because our modern technology makes them easy, cheap, and accessible to all. 

So why do some of our colleagues continue to insist on advanced factoring techniques as a 
prerequisite skill for calculus, when the original reason they were in the curriculum was to be able 
to solve carefully contrived max/min problems?  And why do we assume that essentially all of 
single-variable calculus is a prerequisite for differential equations – or that the really important 
techniques in differential equations are the purely symbolic ones?  Any problem that has been 
reduced to a button on an omnipresent calculator – such as square root, log function, max/min, or 
graphical-numerical solution of a differential equation – can no longer be considered a difficult or 
inaccessible problem.  Now that many of these formerly difficult problems have been rendered 
easy, we have to confront the fact that solving the problems does not imply understanding of the 
conceptual content. 

Much of our profession continues to resist research-based calls for curricular (and other) 
changes, such as the NCTM Principles and Standards (NCTM, 2000).  The current Standards are 



themselves the product of extensive debate, development of curricular materials, trial, research, 
and revision since publication of the predecessor document in 1989.  And yet many academic 
mathematicians cannot conceive of a successful secondary curriculum that is not organized by 
presumed precursor topics for calculus, organized into courses titled Algebra I, Geometry, Algebra 
II, Trigonometry (perhaps in combination with, say, Analytic Geometry), and Precalculus. 

The calculus reform initiative in the U.S. (see Roberts, 1996, Ganter, 2000) has more or less 
coincided with NCTM efforts to reform school curricula and has been the driving force in reform 
of collegiate curricula at all levels.  Successes and failures of this initiative have to be viewed 
against the backdrop of an established system in which the table of contents of a textbook was seen 
as a complete description of a course.  Thus, among the early “reformers” were some who saw 
their task as grafting technology onto an unchanged (unchangeable?) syllabus.  (We have already 
noted in the preceding section the failure of these efforts to produce significant learning gains.)  
Others saw their task as creating the next best-selling calculus textbook – or, in some cases, 
grudgingly accepted commercial publication of a textbook as the primary means of dissemination 
of their good ideas for reform.  Only a relative handful of these curricular efforts ever made it to 
commercial publication, and, for a number of reasons, only one (Hughes Hallett, et al., 2001) was 
ever a true commercial success.  Each subsequent edition of this work looks more “traditional” but 
still retains the creative problems and other tasks that set it apart from a traditional text.  
Meanwhile, the commercially successful traditional calculus books are taking on a more 
“reformed” appearance without a significant change in real content or approach. 

Over the next few years, and perhaps beyond, we will see growing use of the World Wide Web 
for dissemination of innovative curricular materials, both commercial and free (or grant-
supported), bypassing the traditional publishers and enabling direct access to interactive materials 
that cannot reasonably be reduced to print.  One example of this is the Web publisher Math 
Everywhere, Inc. (http://matheverywhere.com/), an enterprise created by Bill Davis and colleagues 
to market interactive courseware, including Calculus & Mathematica® (1994), one of the most 
successful products of the calculus reform initiative.  By “successful,” I do not mean in the 
commercial sense – it’s not clear to an outside observer that Addison-Wesley’s marketing attempts 
were ever successful.  On the other hand, a number of the research studies cited by Tall, et al. (to 
appear) compared C&M to traditional courses and found significant learning gains for the C&M 
students.  In addition to the “classic” C&M, the MEI Web site now offers a range of similar 
courses, in various stages of maturity, addressing much of the lower-division college curriculum. 

The Connected Curriculum Project (http://www.math.duke.edu/education/ccp/), in which I am 
a principal, is an example of free distribution (supported by a National Science Foundation grant) 
of materials that grew out of an earlier calculus reform project (Smith and Moore, 1996), another 
commercial failure for which the research studies generally showed significant learning gains.  The 
CCP materials are not entire courses – rather they are modular, interactive units that lead students 
through important concepts and applications throughout the lower-division curriculum. 

There are a number of free Web sites offering peer-reviewed college-level curriculum materials 
in a variety of disciplines, including mathematics.  Among these are the Mathematical Sciences 
Digital Library (MathDL, http://www.mathdl.org/), MERLOT (http://www.merlot.org/), and 
iLumina (www.ilumina-dlib.org/).  I am affiliated with the first of these – an NSF-funded project 
of the Mathematical Association of America – as Editor of the Journal of Online Mathematics and 
its Applications (JOMA, http://www.joma.org/).  JOMA is a peer-reviewed academic journal that 
includes, among other things, high-quality, innovative, and class-tested curricular materials, as 
well as user and research articles about these materials. 

http://matheverywhere.com/
http://www.math.duke.edu/education/ccp/
http://www.mathdl.org/)
http://www.merlot.org/)
http://www.ilumina-dlib.org/
http://www.joma.org/


 

5. Pedagogy 
The NRC study (Bransford, et al., 1999), while extensive, does not encompass all of the 

important research threads in the study of higher education.  For example, researchers in Scotland, 
Australia, and Sweden (Entwistle and Ramsden, 1983; Entwistle, 1987; Ramsden, 1992; Bowden 
and Marton, 1998) have studied student approaches to learning, with a focus on approaches that 
lead to deep vs. surface learning.  (See also Rhem, 1995.)  Deep learning approaches are quite 
different from surface learning approaches, and a given student – whatever his or her “learning 
style” – may exhibit different approaches simultaneously in different courses.  These student-
selected “coping strategies” are often influenced by expectations set by the instructor, consciously 
or unconsciously.  

In particular, surface learning is encouraged by 
• excessive amounts of material to be covered, 
• lack of opportunity to pursue subjects in depth, 
• lack of choice over subjects and/or method of study, and 
• a threatening assessment system. 
On the other hand, deep learning – the organized and conceptual learning described in the NRC 

study – is encouraged by 
• interaction with peers, especially working in groups, 
• a well-structured knowledge base with connections of new concepts to prior experience and 

knowledge, 
• a strong motivational context, with a choice of control and a sense of ownership, and 
• learner activity followed by faculty connecting the activity to the abstract concept. 
These are especially important aspects of pedagogy for those of us whose goals include 

teaching mathematics to a much broader audience than just those who intend to replace us as 
mathematicians.  Notice in particular, the similarity of the “surface” list to the way many 
mathematics courses are taught in many colleges and universities – with results that are almost 
universally considered unacceptable.  And notice also that the “deep” list comprises principles that 
have been incorporated into all of the major “reform” efforts of the past 15 years or so.   

Much of the reform has been carried out with scant or no knowledge of research – in some 
cases, even as the relevant research was under way.  However, it is no accident that the strategies 
we found empirically to be effective are the same as those that have been shown by research to be 
effective.  Perhaps the most significant aspect of the reform efforts has been the near-universal 
realization that revision of curricula is not enough, that decisions about topics are not enough, that 
inclusion of technology is not enough – that none of this matters unless our pedagogical strategies 
are also effective. 

 

6. Putting it All Together: Research, Technology, Curriculum, 
Pedagogy 

In a recent paper (Smith, 2001) I wrote about the Web-supported classroom environment in 
which I have taught for the past three years.  The courses I teach now are the product of what I 
have learned over the past two decades about research on learning (in neurobiology, cognitive 
psychology, and empirical educational studies), supported by modern computer technology, 
carefully designed curricular and assessment materials, and active-learning strategies in and out of 



the classroom.  My students and I benefit from Duke University’s commitment to quality 
education in the form of an Interactive Computer Classroom, Web delivery support via Blackboard 
5.5, an extensive array of site-licensed software, and excellent staff support.  Unfortunately, one of 
the disadvantages of committing a classroom or course description to paper is that it quickly goes 
out of date, expecially if Web resources are involved. There is an online version of my 2001 paper 
at http://www.math.duke.edu/~das/essays/classroom/ in which I have kept the links to classroom 
and course resources current. 

Key features of my courses include 
• articulated goals and assessments directed toward achieving the goals; 
• a goal-setting exercise at the start of each term to give students a sense of common purpose 

and joint ownership; 
• weekly plans that spell out the objectives, activities, readings, and problem assignments;   
• a carefully cultivated sense of community in which students see each other and me as 

partners in their learning enterprise, not as competitors or adversaries; 
• an online discussion board, plus easy access to e-mail for all course participants, to 

facilitate the sense of community; 
• a mix of in-class activities – lecture supported by online interactive “notes” in a computer 

algebra file, informal group activities in teams of two to four (with or without use of a 
computer), structured lab activities using Connected Curriculum Project materials, and 
online use of resources from remote sites; 

• challenging take-home open-book tests with all resources available; 
• regular homework graded assignments on a weekly cycle, with a requirement that all 

submitted solutions be accompanied by a check and/or a correctness argument; 
• campus-wide access to a computer algebra system (currently Maple® 7); 
• use of every learning task as an assessment (formal or informal) for which feedback is 

given, and conversely, use of every assessment as a learning opportunity; 
• a non-threatening distributed grading system among a range of different activities, roughly 

half with group grades and half with individual grades; 
• a weekly electronic journal submission with a paragraph or two of reflection on the week’s 

work; 
• team projects with classroom presentation and multiple-submission papers; 
• Web delivery of all important course documents and online submission of most student 

work; 
• emphasis on realistic or real-world problems that are meaningful to students on their own 

terms and that serve as motivators and scaffolding for the mathematical concepts 
Without my belaboring the point, the reader should find many points of contact between this 

list of strategies and the research findings cited earlier. 
To illustrate the construction and use of research-based materials, I will give one example of a 

module (Moore, et al., 2001) that I use early in a multivariable calculus course.  This module could 
be used with any students who have had some exposure to polar coordinates, parametric 
representations, logarithmic graphing, and the relationship between tangent lines and derivatives.   

The module, which may be seen at the URL given in the References, starts with a background 
page on spirals in nature, in particular, the spiral shell of the chambered nautilus (N. pompilius).  
This page is linked to other sites for information about Aristotle, who studied gnomonic growth, 
and D’Arcy Thompson, author of the 1917 classic On Growth and Form, from which some of the 
content of the module is taken.  There are also links to other sites with information about spirals in 

http://www.math.duke.edu/~das/essays/classroom/


nature (seed patterns, nebulae, etc.) or related mathematical topics (Fibonacci numbers, evolutes of 
curves, etc.).  My observation has been that students seldom follow any of these links – that they 
may do no more with the background page than look at the pictures, because it doesn’t appear to 
contribute anything to completion of their assignment.  However, part of the richness of the Web is 
that one can provide alternate learning paths for those who choose to take them – and without 
interfering with those who want to follow a straight line toward a specific goal. 

The “business” of the module starts on the next page, where students are shown an enlarged 
cross-section of the nautilus shell superimposed on a polar grid and are challenged to reproduce 
the spiral shape.  Their first step is to make a list of radial measurements (with a ruler), either on 
the screen or on a printed version of the picture.  Thus we start with a tactile activity that leads to 
student ownership of the data from which the model will be derived.  Students then test their data 
by logarithmic plotting for an exponential growth pattern, from which they can then derive a polar 
formula, r = f(θ) = Aekθ, and immediately test their model to see if the polar graph fits the data.  
They don’t have to ask anyone “Is this right?” – they see immediately if they have made a mistake, 
and they have to get the formula right before they can move on. 

On the next page, students link polar plotting to parametric plotting via the polar-to-Cartesian 
change-of-coordinate formulas and plot their spiral again in rectangular coordinates.  They also use 
this representation to zoom in at the origin and discover the self-similarity of the exponential spiral 
– a rather different result from the local linearity they usually associate with “zooming in.”   

Finally, students use the power of the computer algebra system (CAS) to explain the name 
“equiangular” – that is, to show that the angle between radius vector and tangent line is constant.  
This calculation involves calculus and algebra steps that only a few students would complete 
successfully with pencil and paper.  With the CAS, almost everyone can complete the calculation 
and at the same time keep their focus on the mathematical concepts involved. 

At the end of the lab activity, each student team completes their CAS-based report by 
answering the following summary questions: 

1. Describe in general terms the process of finding a polar formula from the radial 
measurements on a seashell picture.  

2. What happens when you zoom in at the center of an equiangular spiral? The behavior you 
observed is called self-similarity. Explain the name.  

3. What remains constant as r grows in an equiangular spiral?  
4. Describe in geometric terms why the equiangular spiral has the name it has.  
5. What is the shape of an equiangular spiral with β = π/2? How is this reflected in the 

formula for r as a function of θ? How is it reflected in the relationship between β and k? 
The last question asks about a case not previously encountered in the module – that in which 

the “equiangle” β is a right angle and the “spiral” is a circle.  Since the relationship they have 
found is tan β = 1 / k, they have make sense of this formula when the left-hand side is ∞.  

This module illustrates design that takes students through at least one complete Kolb learning 
cycle (see Wolfe and Kolb, 1984): 

• Concrete experience: input to the sensory cortex of the brain in the form of seeing, 
touching, moving – e.g., taking measurements; 

• Reflection and observation: mainly right-brain activity, reinforced by use of previous 
learning – e.g., logarithmic plotting); 

• Abstract conceptualization: left-brain activity – e.g., finding the polar exponential growth 
formula; 



• Active experimentation: often involves the motor brain, sometimes the sensory cortex as 
well – e.g., testing the conceptual model against the reality of the data. 

If the testing phase does not show complete success, the cycle may start over with the same 
problem, now being viewed from a slightly enhanced knowledge base – at least with the 
knowledge that something they thought would work in fact did not.  When students achieve 
success at one experimentation point, they are ready to move on to the next learning cycle. 

This example links Kolb’s research on experiential learning to the neurobiological evidence 
that deep learning is whole-brain activity (see e.g., Rhem, 1995, Zull, 1998).   

 

7. Conclusions 
Research studies on learning in general and on learning mathematics in particular (with or 

without technology), together with my teaching and development experiences of the last two 
decades, lead me to several conclusions: 

1. Curricula need to be rethought periodically from the ground up, taking into consideration 
the tools that are available.  It is not enough to think of clever ways to present mathematics 
as the content was understood in the mid-20th century, when the available tool set was quite 
different, as was the intended audience. 

2. Much of the effort that goes into curriculum design can be squandered if one does not also 
rethink pedagogical strategies in the light of research showing the effectiveness of active-
learning strategies and distinguishing between good and bad ways to stimulate deep 
learning approaches.  It is not enough to adopt (or write) a new book or even a new book-
plus-software package. 

3. Our tools for assessing student learning – whether for purposes of assigning grades or for 
evaluating effectiveness of our curricula – need to be consistent with stated goals for each 
course and with the learning environments in which we expect students to function.  It is 
not enough to continue giving timed, memory-based, multiple-choice, no-tech 
examinations. 

4. If we are serious about mathematical understanding for everyone with a “need to know” – 
not just the potential replacements for the mathematics faculty – then we must plan our 
curricula, pedagogy, and assessments for effective learning of the skill sets and mental 
disciplines that will be needed by a mathematically and technologically literate public in 
the 21st century.  It is not enough to keep using ourselves as “model learners.” 

5. Revision of curricula, pedagogy, assessment tools, and technology tools will accomplish 
little without concurrent professional development to keep faculty up to date with the 
required skills, knowledge, attitudes, and beliefs.  It is not enough to continue acting as 
though an advanced degree in mathematics is evidence of adequate preparation to teach. 

 
 

REFERENCES 
-Bowden, J., and Marton, F., 1998, University of Learning: Beyond Quality and Competence in Higher 
Education, London: Kogan Page; Sterling, VA: Stylus Publishing. 
-Bransford, J. D., Brown, A. L., and Cocking, R. R. (eds.), 1999, How People Learn: Brain, Mind, 
Experience, and School, Washington: National Academy Press. 
-Dehaene, S., 1997, The Number Sense: How the Mind Creates Mathematics, New York: Oxford University 
Press. 
-Entwistle, N. J., 1987, Understanding Classroom Learning. London: Hodder and Stoughton.  



-Entwistle, N. J., and Ramsden, P., 1983, Understanding Student Learning. London: Croom Helm. 
-Ganter, S. L. (ed.), 2000, Calculus Renewal: Issues for Undergraduate Mathematics Education in the Next 
Decade, New York: Kluwer Academic/Plenum Publishers. 
-Heid, K., and Blume, G. (eds.), to appear, Research on Technology in the Learning and Teaching of 
Mathematics: Syntheses and Perspectives, Infoage. 
-Hughes Hallett, D., and 14 others, 2001, Calculus, Single and Multivariable, 3rd ed., New York: Wiley. 
-Keller, B. A., and Hirsch, C. R., 1998, “Students’ Preferences for Representations of Functions”, 
International Journal of Mathematical Education in Science and Technology, 29 (1), 1-17. 
-Kendal, M., and Stacey, K., 1999, “Varieties of teacher privileging for teaching calculus with computer 
algebra systems”, Internat. J. of Computer Algebra in Mathematics Education, 6 (4), 233-247. 
-Moore, L. C., Smith, D. A., and Mueller, B., 2001, “The Equiangular Spiral”, Journal of Online 
Mathematics and its Applications, 1 (3), December 2001, http://www.joma.org/vol1-3/modules/equispiral/.  
-National Council of Teachers of Mathematics, 2000, Principles and Standards for School Mathematics, 
Reston, VA: NCTM. 
-Ramsden, P., 1992, Learning to Teach in Higher Education. London: Routledge. 
-Rhem, J., 1995, “Deep/Surface Approaches to Learning”, National Teaching And Learning Forum, 5 (1), 1-
5. 
-Roberts, A. W. (ed.), 1996, Calculus: The Dynamcis of Change, MAA Notes No. 39, Washington: 
Mathematical Association of America. 
-Smith, D. A., 2001, “The Active/Interactive Classroom”, pp. 167-178 in D. Holton (ed.), The Teaching and 
Learning of Mathematics at University Level: An ICMI Study, Dordrecht: Kluwer Academic Publishers. 
-Smith, D. A., and Moore, L. C., 1996, Calculus: Modeling and Application, Boston: Houghton Mifflin Co. 
-Tall, D. O., Smith, D. A., and Piez, C., to appear, “Technology and Calculus”, Chapter 8 in Heid and Blume 
(eds.), to appear. 
-Wolfe, D.M. and Kolb, D.A., 1984, “Career Development, Personal Growth, and Experiential Learning”, 
pp. 128-133 in D. A. Kolb, I. M. Rubin and J. M. McIntyre (Eds.), Organizational Psychology: Readings on 
Human Behavior in Organizations (4th ed.), Englewood Cliffs, NJ: Prentice-Hall. 
- Zull, J. E., 1998, “The Brain, The Body, Learning, and Teaching”, National Teaching And Learning 
Forum, 7 (3), 1-5. 
 

http://www.joma.org/vol1-3/modules/equispiral/

	HOW PEOPLE LEARN … MATHEMATICS
	David A. SMITH
	ABSTRACT
	Introduction
	Research
	Technology
	Curriculum
	Pedagogy
	Putting it All Together: Research, Technology, Curriculum, Pedagogy
	Conclusions
	REFERENCES


