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ABSTRACT

Although most linear algebra problems can be solved using a number of software packages,
in our judgment MATLAB (MATrix LABoratory) is the most suitable package. MATLAB is
a versatile and powerful, yet user - friendly software package designed to handle wide - ranging
problems involving matrix computations and linear algebra concepts. MATLAB incorporates
professionally developed quality computer routines for linear algebra computations.

In this paper, we make use of elements from MATLAB to devise a programme that helps
in determining the structure and classification, up to isomorphism, of a naturally arising class
of finite associative local rings.

We demonstrate this in the case where the finite local ring has a finite residue field K of
characteristic p, although our results apply in fact over any field K.



1 Introduction

The use of computer technology has been widely discussed as having the potential to
radically change higher education.

The ways in which information is put to work today seem almost countless, and
computers are continually assuming a larger role in preparing this information suitably
for the needs of teachers and students. Problem solving is an important example.

For computers to play a part in problem solving, it is necessary that communication
be established between them and their users. In presenting a problem for a solution,
the user still has a substantial role to play. It is still not possible to address the machine
in one’s own language, but it is fairly easy to learn and use programming language that
resembles it and the effort to improve that resemblance is relentless. Computers are
gradually being taught to accept more and more of the communications burden.

MATLAB (MATrix LABoratory) is a high-performance interactive software pack-
age for scientific and engineering numeric computations. MATLAB integrates numer-
ical analysis, matrix computation, signal processing, and graphics in an easy-to-use
environment where problems and solutions are expressed just as they are written math-
ematically - without traditional programming.

In this paper, we make use of elements from MATLAB to devise a programme that
helps in determining the structure and classification, up to isomorphism, of a naturally
arising class of finite associative local rings. In particular, we consider rings of the form

R = K ⊕ J

in which K = Fq, a finite field of q = pr elements, (with p a prime, r a positive integer)
and the Jacobson radical J is such that J3 = (0) and J2 6= (0).

2 A Problem in Finite Rings

In investigating the structure of finite associative local rings, one is led to consider such
a ring of the form

R = K ⊕ J

in which K = Fq, a finite field of q = pr elements, and the Jacobson radical J is such
that J3 = (0) and J/J2 is two-dimensional and J2 is three-dimensional over R/J = K.

Rings with J3 = (0) and J2 6= (0) form an object of study (e.g. Chikunji 1999), the
case J2 = (0) having long been settled (e.g. Corbas 1969, 1970).

If
J = Kx1 ⊕Kx2 ⊕ J2

and
J2 = Ky1 ⊕Ky2 ⊕Ky3,

then we may write
xixj = αijy1 + βijy2 + γijy3,

with αij, βij, γij ∈ K, and these four products span J2. The ring structure is now
determined by the triple of 2× 2 matrices A = (αij), B = (βij), and C = (γij), which



are linearly independent over K and any triple of linearly independent matrices defines
such a ring.

In Chikunji 2002, on the basis of computational calculations, we conjectured that
there are 5 isomorphism classes for p = 2 and when p is odd, the number of isomorphism
classes of such rings is p+ 4. We further conjectured that exactly one of these rings is
commutative, for every prime p.

In this paper, we extend the above results to all finite fields Fq, where q = pr.
If (x′1, x

′
2, y

′
1, y

′
2, y

′
3) is a new basis of J with corresponding matrices A′ , B′ , C ′ , then

x
′
1, x′2 are linear combinations of x1, x2, y1, y2, y3. Since J3 = (0), we may assume that

the coefficients of y1, y2, y3 are zero and write

x
′

i = p1ix1 + p2ix2,

so that P = (pij) is the transition matrix from the basis (x̄1, x̄2) of J/J2 to the basis
(x̄′1, x̄

′
2).

Equally, let Q = (qij) be the transition matrix from the basis (y1, y2, y3) to
(y′1, y

′
2, y

′
3).

If we now calculate x′ix
′
j and compare coefficients of yi, we obtain equations which,

in matrix form, are
P tAP = q11A

′
+ q12B

′
+ q13C

′

P tBP = q21A
′
+ q22B

′
+ q23C

′

P tCP = q31A
′
+ q32B

′
+ q33C

′
,

where P t is the transpose of the matrix P .
Evidentily, the problem of classifying our rings up to isomorphism amounts to that

of classifying triples of linearly independent matrices under the above relation of equiv-
alence, P and Q being arbitrary invertible matrices, and it is this problem of linear
algebra that the paper is devoted to illustrate using elements of MATLAB.

If < A,B,C > is a subspace of M2(K) spanned by A, B and C, we may equally
speak of < A,B,C > and < A

′
, B

′
, C
′
> being ”congruent” via P . Also, if X is the set

of all triples (A,B,C), then GL2(K) acts on the right of X by

(A,B,C) · P = (P tAP,P tBP, P tCP )

and on the left by

Q · (A,B,C) = (q11A+ q12B + q13C, q21A+ q22B + q23C, q31A+ q32B + q33C),

where Q = (qij).
These two actions are permutable and define a (left) action of G = GL2 × GL3 on

X :

(P,Q) · (A,B,C) = Q · (A,B,C) · P−1.

By restriction, G acts on the subset Y consisting of triples with A, B, C linearly
independent. This amounts to studying the congruence action (via P ) of GL2 on the
subset Y of 3-dimensional subspaces of M2(K), Q just representing a change of basis in
a given subspace. In the same way, the whole action of G on X may be reinterpreted
as an action of GL3 on the subset X of subspaces of dimension ≤ 3. The two triples in
the same G−orbit will be called equivalent.

The complex nature of this problem prompts us to look for ways of finding the
number of non-isomorphic classes.



3 Problem Analysis

With all this superlative hardware and software in place, how much is left for the user
to do? As already noted, there is a programming language to be learned, which in
this case is MATLAB, to complete the closing of the communications gap. But before
programming can begin, the problem to be solved needs preparation. In spite of their
impressive capabilities, computers still have to be told exactly what to do, in a step-
by-step fashion. This process of satisfactorily achieving the required level of detail is
called Problem Analysis, and it is the user’s responsibility. It is by no means an easy
assignment.

4 A MATLAB Programme With Elements From
The Field K = F3

In this section, we devise a programme that illustrates the use of MATLAB to solve
the problem of §2. We illustrate this for the case where the ring R is of characteristic
p = 3 and the residue field R/J is isomorphic to F3.

In our programme, the invertible matrices P and Q given in §2 are denoted by the
matrices M and N , respectively.

function jo(a)
global A
global B
global C
T=[ ];
for i=1:12

if a >= 2*3^(12 - i) T(i) = 2; a = a - 2*3^(12 - i);
elseif a >= 3^(12 - i) T(i) = 1; a = a - 3^(12 - i);
else T(i) = 0;

end
end
A = [T(1:2); T(3:4)];
B = [T(5:6); T(7:8)];
C = [T(9:10); T(11:12)];

function joh(a)
global M
T = [ ];
for i = 1:4

if a >= 2*3^(4 - i) T(i) = 2; a = a - 2*3^(4 - i);
elseif a >= 3^(4 - i) T(i) = 1; a = a - 3^(4 - i);
else T(i) = 0;

end
end
M = [T(1:2); T(3:4)];

function john(a)
global N
T = [ ];
for i = 1:9

if a >= 2*3^(9 - i) T(i) = 2; a = a - 2*3^(9 - i);
elseif a >= 3^(9 - i) T(i) = 1; a = a - 3^(9 - i);



else T(i) = 0;
end

end
N = [T(1:3); T(4:6); T(7:9)];

function ph(A, B, C)
global a
a = 3^11*A(1, 1)+3^10*A(1, 2)+3^9*A(2, 1)+3^8*A(2, 2)+

3^7*B(1, 1)+3^6*B(1, 2)+3^5*B(2, 1)+3^4*B(2, 2)+
3^3*C(1, 1)+3^2*C(1, 2)+3*C(2, 1)+C(2, 2);

x = [1:3^12 - 1];
global x

global x
for i = 1:6560 x(i) = 0; end
global A;
global B;
global C;
global M;
global N;
global a;
for i = 6560:3^12 - 1

jo(i);
if A == zeros(2) x(i) = 0;

if B == zeros(2) x(i) = 0;
if C == zeros(2) x(i) = 0;

if rem( (A + B), 3) == 0 x(i) = 0;
if rem( (A + C), 3) == 0 x(i) = 0;

if rem( (B + C), 3) == 0 x(i) = 0;
if rem( (A + 2*B), 3) == 0 x(i) = 0;

if rem( (A + 2*C), 3) == 0 x(i) = 0;
if rem( (B + 2*C), 3) == 0 x(i) = 0;

if rem( (A + B + C), 3) == 0 x(i) = 0;
if rem( (A + B + 2*C), 3) == 0 x(i) = 0;

if rem( (A + 2*B + C), 3) == 0 x(i) = 0;
if rem( (A + 2*B + 2*C), 3) == 0 x(i) = 0;
end

end
end

end
end
end
end

end
end
end

end
end

end
end
for k = 6561:3^12 - 1
if x(k) ~= 0
jo(k);

for i = 1:80
joh(i);

if rem( det(M), 3) ~= 0



for j = 1:19682
john(j);

if rem( det(N), 3) ~= 0
X = M * A * M’;
Y = M * B * M’;
Z = M * C * M’;
F = N(1, 1)*X + N(1, 2)*Y + N(1, 3)*Z;
G = N(2, 1)*X + N(2, 2)*Y + N(2, 3)*Z;
H = N(3, 1)*X + N(3, 2)*Y + N(3, 3)*Z;
J = rem(F, 3);
K = rem(G, 3);
L = rem(H, 3);
ph(J, K, L);
if a ~= k x(i) = 0;
end

end
end

end
end

end
end

global x;
n = 0;

for i = 6561:3^12 - 1
if x(i) ~= 0

n = n + 1;
jo(i)
A
B
C

end
end

n

After running the above programme, we obtain the following triples of matrices
representing 7 non-isomorphic classes of the rings of §2. Of the 7 sets of matrices, there
is only one triple of symmetric matrices which represents the class of commutative rings.

A =
(

0 0
0 1

)
, B =

(
0 0
1 0

)
, C =

(
0 1
0 0

)
;

A =
(

0 0
0 1

)
, B =

(
0 0
1 0

)
, C =

(
1 0
0 0

)
;

A =
(

0 0
0 1

)
, B =

(
0 1
1 0

)
, C =

(
1 0
0 0

)
;

A =
(

0 0
0 1

)
, B =

(
0 1
1 0

)
, C =

(
1 0
1 0

)
;

A =
(

0 0
0 1

)
, B =

(
0 1
2 0

)
, C =

(
1 0
0 0

)
;



A =
(

0 0
1 0

)
, B =

(
0 1
0 0

)
, C =

(
1 0
0 2

)
;

A =
(

0 0
1 0

)
, B =

(
0 1
0 1

)
, C =

(
1 0
0 1

)
.

This programme may be modified several times to obtain results over other finite
fields Fq, where q = pr, p a prime and r a positive integer.

We may now state the following result based on our computational calculations
using MATLAB programmes.

4.1 Theorem For the rings of §2, there are 5 isomorphism classes for p = 2 and when
p is odd, the number of isomorphism classes of such rings is pr+4. Furthermore, exactly
one of these rings is commutative, for every prime p.

5 Conclusion

MATLAB is an interactive system whose basic element is a matrix that does not require
dimensioning. This allows one to solve many numerical problems in a fraction of the
time it would take to write a programme in a language such as Fortran, Basic or
C. Furthermore, as may be seen from the above problem, solutions are expressed in
MATLAB almost exactly as they are written mathematically.

In university environments, it has become the standard instructional tool for intro-
ductory courses in applied linear algebra, as well as advanced courses in other areas.
Just like in trying to find a solution to the above classification problem in finite rings,
MATLAB can be used for research and to solve practical engineering and mathematical
problems.
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