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ABSTRACT

Here we describe and illustrate an alternative to the method of undetermined coeffi-
cients for obtaining a particular solution of a linear differential equation with constant
coefficients. The method requires only polynomial differentiation and some elementary
algebra. The procedure has also been expressed as a recursive algorithm. Examples
have been included to show the usefulness of the recursive analogue. Both the tech-
nique and its recursive equivalent can be suitably reformulated for similar difference
equations.



1 Introduction

In this paper we are concerned with nonhomogeneous linear differential equations with
constant coefficients. The term which makes the equation nonhomogeneous is a linear
combination of the terms of the type eαxpn(x), where α is a (real or complex) constant
and pn is a polynomial of finite degree n in x.

The method of undetermined coefficients is, perhaps, one of the most widely used
procedures for obtaining a particular solution of such a differential equation. The
procedure is affected by choosing an appropriate trial solution containing unknown
constants. Evaluation of these constants so that the trial solution satisfies the given
differential equation leads to the required particular solution. The trial solution can
be obtained by the annihilator method, but usually, it is obtained by following a set of
rules [1], and unknown constants are determined by solving a system of linear equations.
The procedure may be quite involved and often leads to tedious algebra.

For instance, consider the problem of finding a particular solution of

L(D)y = (D6 +D5 +D4 −D2 −D − 1)y

= x3 + 4(11− 6x2)e−x + 24x2 sinx+ 6e−x/2 cos(x
√

3/2), D ≡ d

dx
. (1.1)

Appropriate choice for a particular solution of this differential equation (1.1) will con-
tain 17 constants, to be determined by solving a linear system of 17 equations in 17
unknowns! However, by the superposition principle, its particular solution would be
the sum of particular solutions of

L(D)y = x3 (1.2)
L(D)y = 4(11− 6x2)e−x (1.3)
L(D)y = 24x2 sinx (1.4)
L(D)y = 6e−x/2 cos(x

√
3/2). (1.5)

Computation of particular solution for the above equations would respectively lead to
solutions of different systems of linear equations in four, three, six and four unknowns.
In the following we present a much simpler alternative which uses only differentiation
and some very simple algebra.

2 The procedure

Consider the equation

P (D)y =
m∑
i=0

biD
m−iy = eαxpn(x), (2.1)

where bi, 0 ≤ i ≤ m, b0 6= 0 are constants, D denotes d/dx and other symbols have
already been described. In general, the integers m and n are not the same. Set y = eαxu
in (2.1) to get

P (D)(eαxu) = eαxP (D + α)u = eαxpn(x).



This leads to finding a particular solution of

P (D + α)u =
m∑
i=0

ciD
m−iu = pn(x), (say) (2.2)

Here ci, 0 ≤ i ≤ m are real or complex constants, and we assume cm 6= 0. Now
differentiate both sides of (2.2) repeatedly n times, so that the right of the last equation
becomes a constant (= Dnpn(x)). Then a particular solution would be given by

Dnu = Dnpn(x)/cm = constant

Dn+su = 0, s = 1, 2, · · · . (2.3)

Finally by backsolving we obtain a particular solution of (2.2) and since y = eαxu, a
particular solution of (2.1) is obtained. It may be remarked here that the procedure
leads to a particular solution in terms of lowest order derivative of u appearing in (2.2),
which on integration leads to a particular solution of (2.2).

This procedure is based on the description given by Love [2] and its generalisation
[3].

3 Examples

To illustrate we obtain particular solutions of equations (1.2)-(1.5).
• Differentiate (1.2) three times to get

(D7 +D6 +D5 −D3 −D2 −D)y = 3x2 (3.1)
(D8 +D7 +D6 −D4 −D3 −D2)y = 6x (3.2)
(D9 +D8 +D7 −D5 −D4 −D3)y = 6. (3.3)

A particular solution of this equations is

D3y = −6, D3+ry = 0, r = 1, 2, · · · .

Substitute these in (3.2) to get D2y = 6 − 6x. Combining these with (3.1) we get
Dy = 6x− 3x2, and finally (1.2) gives y = −6 + 3x2 − x3.

•• To obtain a particular solution of (1.3) set y = e−xu(x) to arrive at

L(D − 1)u = (D6 − 5D5 + 11D4 − 14D3 + 10D2 − 4D)u = 4(11− 6x2). (3.4)

Differentiating this we obtain

(D7 − 5D6 + 11D5 − 14D4 + 10D3 − 4D2)u = −48x

(D8 − 5D7 + 11D6 − 14D5 + 10D4 − 4D3)u = −48

Its obvious solution is D3u = 12, D3+ku = 0, k = 1, 2, · · ·. Backsubstituting in the
preceding equation we get

D2u = 30 + 12x,



and (3.4) gives
Du = 22 + 30x+ 6x2.

This is satisfied by u = x(22 + 15x+ 2x2).
Thus Eq. (1.3) has a particular solution y = xe−x(22 + 15x+ 2x2).
• • • By the principle of superposition a particular solution of (1.4) would be the

imaginary part of the particular solution of

L(D)y = 24x2eix (3.5)

Here we set y = eixu so that (3.5) becomes

(D6 + (1 + 6i)D5 + (−14 + 5i)D4 − (10 + 16i)D3 + (8− 10i)D2 + 4D)u = 24x2

Proceeding as before we get

u = 2x3 − 3(4− 5i)x2 + 3(1− 24i)x,

and
Im(ueix) = 3x(5x− 24) cosx+ x(2x2 − 12x+ 3) sinx

is a particular solution of (1.4).
• • • • Again by superposition principle a particular solution of (1.5) is real part of

the particular solution of

L(D)y = 6e(−1+i
√

3)x/2. (3.6)

The substitution y = e(−1+i
√

3)x/2u in this equation gives

(D6+(−2+3
√

3i)D5−(9+5
√

3i)D4+(13−3
√

3i)D3+
3
2

(−1+3
√

3i)D2−3
2

(1+i
√

3)D)u = 6.

Obviously this equation has Du = (−1 + i
√

3) as its solution and

Re((−1 + i
√

3)xe(−1+i
√

3)x/2) = −xe−x/2(cos(x
√

3
2

) +
√

3 sin(x
√

3
2

))

is a particular solution of (1.5).

4 The recursive algorithm

We notice [3] that the problems of finding a particular solution of a nonhomogeneous
linear differential equation of the form (2.1) is reduced to finding a particular solution
of (2.2). In view of (2.3) we rewrite (2.2) as

n∑
i=0

βiD
n−iu = pn(x). (4.1)

This has been obtained from (2.2) by ignoring all the terms containing D(n+s)u, s =
1, 2, · · ·m−n when m > n and adding terms containing D(m+r)u, r = 1, 2, · · ·n−m with



zero coefficients when m < n. For convenience, we take βn 6= 0 in (4.1). The process of
n-times differentiation and backsubstitution can be expressed as the recursive relation

βnD
n−ju(x) = Dn−jpn(x)−

n−1∑
i=n−j

βiD
2n−i−ju(x), j = 0, 1, · · ·n (4.2)

For j = 0 this gives a particular solution of the equation obtained by differentiating (4.1)
n times and its recursive use gives u(0)(x)(= u(x)) when j = n, which is a particular
solution of (4.1).

However, if βn = 0 and βn−1 6= 0, one obtain a solution u′ which, after one integra-
tion, gives the required u. In fact, this recursive scheme gives a particular solution in
terms of lowest order derivative in (4.1).

To illustrate the use of this algorithm (4.2) we obtain particular solutions of some
differential equations.
• Following the above remarks, a particular solution of (1.2) is the same as that of

the equation
(0D3 −D2 −D − 1)y = x3

Here we have n = 3, β0 = 0, β1 = −1 = β2 = β3, p3(x) = x3, and the equation (4.2)
takes the form

−D3−jy = D3−jp3 −
2∑

i=3−j

βiD
6−i−jy, j = 0, 1, 2, 3

This gives

(j = 0) −D3y = 6
(j = 1) −D2y = 6x− (−1)(D3y)

= 6x− 6
(j = 2) −Dy = 3x2 − (−1)(−6)− (−1)(6− 6x)

= 3x2 − 6x
(j = 3) − y = x3 − (−1)(6− 6x)− (−1)(6x− 3x2)

= x3 − 3x2 + 6

which gives the same particular solution of (1.2) as obtained earlier.
•• Particular solution of (3.4) is the same as that of

(−7D2 + 5D − 2)v = 2(11− 6x2)

with v = Du. For this equation n = 2, β0 = −7, β1 = 5, β2 = −2, p2(x) = 2(11 − 6x2).
The scheme (4.2) becomes

−2D2−jv = D2−jp2 −
1∑

i=2−j

βiD
4−i−ju, j = 0, 1, 2.

This yields

(j = 0) − 2D2v = −24



(j = 1) − 2Dv = −24x− 5(D2v)
= −24x− 60

(j = 2) − 2v = 2(11− 6x2)− (−7)(12)− 5(12x+ 30)
= −44− 60x− 12x2,

as expected, leading to the same particular solution of (3.4) as computed earlier.
• • • The differential equation

(D7 +D5 −D4 −D2)u = 30x4 (4.3)

is the same as
(D5 +D3 −D2 − 1)v = 30x4

with v = D2u. Its particular solution is the same as that of the equation

(0D4 +D3 −D2 + 0D − 1)v = 30x4

For this equation n = 4, β0 = 0, β1 = 1, β2 = −1, β3 = 0, β4 = −1, p4(x) = 30x4. The
algorithm (7) becomes

−D4−jv = D4−jp4 −
3∑

i=4−j

βiD
8−i−jv, j = 0, 1, 2, 3, 4.

This gives

(j = 0) −D4v = 720
(j = 1) −D3v = 720x
(j = 2) −D2v = 360x2 − (−1)(D4v)

= 360x2 − 720
(j = 3) −Dv = 120x3 − (D4v)− (−1)(D3v)

= 120x3 − 720x+ 720
(j = 4) − v = 30x4 − (−720x)− (−1)(720− 360x2)

= 30x4 − 360x2 + 720x+ 720.

Since v = D2u, this gives u = 30x2(−12−4x+x2)−x6 as a particular solution of (4.3).
The procedure used here completely replaces the method of undetermined coef-

ficients for a particular solution of nonhomogeneous linear differential equation with
constant coefficients.

5 Epilogue

Here we consider ordinary linear differential equations with constant coefficients in
which the nonhomogeneous term is a linear combination of the terms of the type
eαxpn(x), where α is a (real or complex) constant and pn is a polynomial of finite
degree n in x.

The method of undetermined coefficients is commonly used to find a particular
solution of such differential equation. Both from teaching and learning point of view,



this is usually quite demanding. It would, therefore, be pedagogically interesting to
have a simpler alternative to this method. In this paper we have presented such a
method which requires only differentiation and some additions. Several examples have
been included to manifest its versatality.

It has been observed that the problem is finally reduced to finding a particular
solution of a linear differential equation with constant coefficients with nonhomogeneous
term being a polynomial of a finite degree. The procedure in such a situation can be
expressed as a recursive algorithm [3]. This has also been featured and illustrated by
obtaining particular solutions of several differential equations.

Thus the present paper contains a simpler alternative to the method of undeter-
mined coefficients in its totality. The differential equations which are amenable to the
method of undetermined coefficients are taught almost everywhere at the undergrad-
uate level, perhaps, due to the fact that their applications to the real world problems
can not be over emphasized. In view of this, the procedure presented herein is didacti-
cally relevant and should attract the attention of everyone involved in the teaching of
ordinary differential equations. Finally, it is remarked that the procedure can suitably
be reformulated for similar difference equations [4, 5].
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