
 
THE USE OF THE HISTORY OF MATHEMATICS IN THE LEARNING AND 

TEACHING OF ALGEBRA 
The solution of algebraic equations: a historical approach 

 
Ercole CASTAGNOLA 

N.R.D. Dipartimento di Matematica 
Università “Federico II” NAPOLI (Italy) 

 
 

ABSTRACT 
The Ministry of Education (MPI) and the Italian Mathematical Union (UMI) have produced a teaching 

equipment (CD + videotapes) for the teaching of algebra. The present work reports the historical part of that 
teaching equipment. 

From a general point of view it is realised the presence of a “fil rouge” that follow all the history of 
algebra: the method of analysis and synthesis. 

Moreover many historical forms have been arranged to illustrate the main points of algebra development. 
These forms should help the secondary school student to get over the great difficulty in learning how to 
construct and solve equations and also the cognitive gap in the transition from arithmetic to algebra. 

All this work is in accordance with the recent research on the advantages and possibilities of using and 
implementing history of mathematics in the classroom that has led to a growing interest in the role of history 
of mathematics in the learning and teaching of mathematics.  



1. Introduction  
We want to turn the attention to the subject of solution of algebraic equations through a 

historical approach: an example of the way the introduction of a historical view can change the 
practice of mathematical education. Such a subject is worked out through the explanation of 
meaningful problems, in the firm belief that there would never be a construction of mathematical 
knowledge, if there had been no problems to solve. 

Gaston Bachelard (1967, p. 14) has written: “It is precisely this notion of problem that is the 
stamp of the true scientific mind, all knowledge is a response to a question.” That is, the concepts 
and theories of mathematics exist as tools for solving problems. 

Also Evelyne Barbin (1996) has pointed out that. “There are two ways of thinking about 
mathematical knowledge: either as product or as process. Thinking about mathematical as 
product means being concerned with the results and the structure of that knowledge, that is to say, 
with mathematical discourse. Thinking about mathematical as process means being concerned 
with mathematical activity. A history of mathematics centred on problems brings to the fore the 
process of the construction and rectification of knowledge arising out of the activity of problem 
solving.” 

Algebra (mostly that part relative to the so-called “literal calculus”) is the more suitable branch 
of mathematics for the use of the method of analysis. Such a method is very old and still today one 
of the best definitions [together with that of synthesis] is that given by Pappus in his Collection: 
“Now, analysis is the path from what one is seeking, as if it were established, by way of its 
consequences, to something that is established by synthesis. That is to say, in analysis we assume 
what is sought as if it has been achieved, and look for the thing from which it follows, and again 
what comes before that, until by regressing in this way we come upon some one of the things that 
are already known, or that occupy the rank of a first principle. We call this kind of method 
“analysis” as if to say anapalin lysis (reduction backward). In synthesis, by reversal we assume 
what was obtained last in the analysis to have been achieved already, and, setting now in natural 
order, as precedents, what before were following, and fitting them to each other, we attain the end 
of the construction of what was sought. This is what we call “synthesis.”.” [Pappus, Book 7 of the 
Collection (tr., comm. A. Jones), 2 vols., New York, Springer, 1986] 

Simply with reference to an educational point of view, we can say that analysis is a “backward 
reasoning”. In (Rojano & Sutherland, 2001) this method is used for explaining the solutions of 
word problems. 

 

2. The method of analysis in the construction of an  
    equation 
Before considering some algebraic problems drawn from the history, let us consider a typical 

problem that students deal during the first year of high school as an example of the method of 
analysis. 

Problem. In a rectangle the difference between its sides is 12 m and the perimeter is 224 m; 
find its area. 

We suppose that such a rectangle exist; to find its area we have to know the base and the height 
of rectangle; but we know the difference between the base and the height. Therefore 

base = height + 12 
or 



height = base − 12. 
However we know the semi-perimeter, that is 112 m. Then, if we take away the base from the 

semiperimeter, we can get the height. At this point, starting from what the problem asks, we have 
reached what we are given: the difference between the sides and the semiperimeter. 

We suppose that the height is known and call it x and then the base is x + 12. From such an 
analysis we get 

x = 112 − base 
x = 112 − (x + 12). 
From that it is easy to obtain x = 50, the height; then we get the base, 62, and consequently we 

can compute the area, which is 3100 m2. Geometrically we realise the symmetry of problem (that 
is, the base can be exchanged with the height). 

We can note, from a didactical point of view, that the backward reasoning comes, step by step, 
from the question: what do I need to compute…? We go on putting these questions until we find, 
by splitting the problem, something known (given by the text of problem). 

 

3. The Egyptian Rule of False Position 
The next problem is one of 85 problems in the Rhind Papyrus, now housed in the British 

Museum. 
Problem. A quantity whose seventh part is added to it becomes 19. 
In modern notation the problem is equivalent to the solution of the equation x + (1/7)x = 19. 

The Egyptian method of solution, called the Rule of False Position, consist of giving to the 
unknown quantity x at the left side the beginning value 7, so that the resulting value at the right 
side is 7 + (1/7)⋅7 = 8. 

The argument goes on supposing that, if some “multiple” of 8 gives 19, than the same 
“multiple” will produce the sought number. 

Therefore we can solve the problem by the proportion 
8 : 19 = 7 : x  that is  x = (19/8)⋅7. 

The “False Position” in the history of mathematical education 
Till the nineteenth century the rule of “false Position” is proposed again to present to the 

students first-degree equations. In the handbook Elementi di matematica [Elements of 
mathematics] by V. Buonsanto, Società Filomatica, Naples 1843 (pp. 117-119) we find the 
following passage: 

“We shall look for a number, which solve the problem: but you will find it only by means of a 
false number, which does not solve it. This is the rule of simple false position. You have been told: 
A third and a quarter of my money are 24 ducats. How much money has I? Since you don’t know 
the true number of ducats, you suppose that who is speaking gets 12 ducats. This number, 
supposed in such an arbitrary way, is called position. But it is easy to see that such a supposition 
is false, because a third and a quarter of 12 are 4 + 3 = 7 and so your friend should have not 24 
ducats for a third and a quarter, but 7. However you can argue in this way. If 7 are the result of the 
false position 12, what number does 24 come from? You will do 7 : 12 = 24 : 288/7 and 288/7 = 
41 and 1/7. Your friend has 41 and 1/7 ducats. To solve such problems you can suppose every 
number, but it is better to choose it in a way to avoid fractions. It is also better to choose a small 
number.” 



The rule of false position was also taught to American students of XIX century and is present in 
the textbook Daboll’s Schoolmaster’s Assistant, that was, till 1850, the most popular book of 
arithmetic in that country. 

We can find still in recent works some notes on this method. The rule of false position can be 
used today, besides teaching first-degree equations (Winicki, 2000, and Ofir & Arcavi, 1992), to 
analyse as the spreadsheet works, e.g. the hidden algorithms (Rojano & Sutherland, 2001). 

 

4. A Babylonian problem considered also by Diophantus 
Babylonian algebra consisted of a totally algorithmic method formed by a list of operating rules 

to solve problems (rhetorical algebra). The algorithms were illustrated by numerical examples, 
however the recurrent use of some terms gives us a first concept of symbolism. Instead Diophantus 
introduces (in his Arithmetica) a literal symbolism and a form of language half way between 
“rhetorical” and “symbolic”, that is “syncopated”. In particular he introduces the “arithme” an 
indeterminate quantity of units that becomes a real unknown. Diophantus accepts only exact 
rational positive solutions, while Babylonians accepted also approximations of irrational solutions. 

Problem. Find two numbers whose product is 96 and sum is 20. 
Using modern notation the problem becomes 





=
=+
96

20
xy

yx
 or, in general form  





=
=+
axy

byx
 

which is equivalent to quadratic equations z2 − bz + a = 0. 
What follows is the rhetorical solution of scribe (instructions) and his modern “translation”. 
                instructions         translation 

1. Divide by two the sum of numbers   20:2 = 10               
2
b

 

2. square          102 = 100                 
2

2
b 

  
 

3. subtract the given area, 96, from 100    100 – 96 = 4             ab −






2

2
 

4. take the square root      2            ab −






2

2
 

5. the base is 10 + 2 = 12                                                      
2

2 2
b bx a = + −  

 

the height is 10 – 2 = 8                      
2

2 2
b by a = − −  

 

This method of solution shows that the Babylonians knew some laws of algebraic operations, 
made substitutions and solved by algebraic methods quadratic equations and systems equivalent to 
quadratic equations (Bashmakova & Smirnova, 2000). 

The following Diophantus’ method of solution (also used by Babylonians) is called “plus or 
minus”. 
1. “The difference between two numbers is two arithme”     x − y = 2ς 



2. “If we divide the sum into two equal parts, each part will be half the sum that is 10”  
22
byx

=+
 

3. “If we add to one part and subtract from the other one half the difference of number, that is one 
arithme, we find again that the sum of two numbers is 20 units and the difference is two arithme” 





=−
=+

ς2yx
byx

 

4. “Let us suppose the bigger number is 1 arithme plus 10 units that are half the sum of numbers; 
therefore the smaller one is 10 units minus 1 arithme” 

     2

2

bx

by

ς

ς

 = +

 = −

 

5. “It is necessary that the product of two numbers is 96” 

     
2 2
b b aς ς  + − =    

 

6. “Their product is 100 units minus a square of arithme, that is equal to 96 units” 

     ab =−




 2

2

2
ς  

7. “And the arithme becomes 2 units. Consequently, the bigger number is 12 units and the smaller 
one is 8 units and these numbers meet the statement ” 

    ab −




=

2

2
ς  from which    abbx −





+=

2

22
  and 

 abby −




−=

2

22
. 

The description of Diophantus shows awareness in the use of unknowns that we shall find only 
in the works of Arabic mathematicians. 

 

5. Algebra and geometry in Euclid and Bombelli 
Traditionally Book II of the Euclid’s Elements (but also part of Book VI) is considered as an 

example of “geometrical algebra”, also if this name can be misleading because the formulation is 
completely geometrical. We don’t want to enter into the merits of debate concerning geometrical 
algebra (still far from over) that has seen engaged some famous mathematicians as Unguru, Van 
der Waerden, Freudenthal and Weil. We want instead to stress that the so called problems of 
applications of areas, also if explained and solved in geometrical way, can be considered 
equivalent to first and second-degree equations. 

The first application consists of constructing a rectangle of area S on a given base a and finding 
its height. 

This problem is equivalent to first-degree equation a⋅x = S. 
 

 
 
 



 

Figure1 
Such a problem is solved by Euclid both in Book VI by means of proportions theory (thinking 

S = b⋅c) and in Book I by means of that we can call a theory of equivalence of polygons. 
Bombelli (Algebra, Book IV) proposes the same problem again in the following form: “Find a 

line that is in proportion to .c. as .b. is to .a.” Therefore we have to find the fourth proportional 
after three segments a, b, c. [a : b = c : x] 

Bombelli in his Algebra gives for this problem two different constructions, both taken from 
Euclid. 

 
Figure 2 

In the first one he considers the rectangle FPBE (Fig. 2), whose sides are b and c, then, having 
set BA = a, he joins points A, E, I and constructs the rectangle PAGI. The two rectangle PBEF and 
EDGH are equivalent for the Proposition I.43 of the Euclid’s Elements and therefore DG is the 
solution of the equation ax = bc, that is 

a
bcx = . 

In the second construction (Proposition [73]) Bombelli uses the Thales’ theorem and sets AB = 
c, BC = a and CD = b (Figure 3) and using the Proposition VI.12 of the Elements, concludes that 
AB : BC = DE : CD, so that DE is the required solution. 

 
Figure 3 

The method of Bombelli can be outlined in the following way: 
1. Enunciation of the problem 
2. Geometrical construction of the solution 
3. Solution of a numerical example via algebra. 



Always the geometrical solution precedes the algebraic one. Yet it is apparent from the 
analysis of the single cases, that it is the equation, or better the form of its algebraic solution, 
which determines the subsequent steps of the construction (Giusti, 1992). 

We can note that this part of Algebra (Books IV and V), devoted to the application of algebra 
to geometry, marks almost a turning point, and sometimes a bringing forward, of the analytic 
geometry of Descartes (Bashmakova & Smirnova, 2000 and Giusti, 1992). 

 

6. The Arab algebraists of the Middle Ages, the Italian  
    algebraists of 16th century and the solution of the cubic   
    equation 

We owe to Arab algebraists, beside the introduction of word “algebra”, the more and more 
aware use of substitutions to simplify the solutions of problems; Diophantus had already proposed 
such a method. 

Moreover we find in the works of Abu Kamil (850-930?), more than in those of Al-Khwarizmi 
(800?-847), complicated transformations of expression with irrational numbers as the following 
problem shows. 

Problem. Divide 10 into two parts x and 10 − x to get 
10 5

10
x x

x x
−+ =

−
. 

The relative quadratic equation is 

( ) ( )22 5 100 20 500x x+ + = +  

that, multiplying by 5 2− , becomes 
2 50000 200 10x x+ − = . 

But Abu Kamil finds another simpler solution setting 
x

xy −= 10
. He obtains immediately the 

equation 
2 1 5y y+ =  

which has the solution 
1 11
4 2

y = + − . 

In this way we arrive to the linear equation 
10 1 11

4 2
x

x
− = + −  

that could be solved as 
10 1 11 1

4 2x
− = + −  

that allows determining the unknown x, but it gives a result with an irrational denominator. Abu 
Kamil instead finds 

1 110 1
4 2

x x x− = + −     that is    
110 1

2 4
x x− = +  

and squaring both the sides he obtains, after some calculations, the equation 
x2 + 10 x = 100 



of which he finds the solution 125 5x = − . 
The method of making a substitution of an unknown to reduce a more difficult equation to a 

simpler one will become, as we shall see, quite usual. 
The Italian algebraists of 16th century have used these substitutions to solve cubic equations. 

We know that this mathematical “discovery” is the result of the works of Scipione del Ferro 
(1456-1526), Girolamo Cardano (1501-1576) e Niccolò Fontana (1500-1557) called Tartaglia 
[the “stammerer”]. Del Ferro begins with the equation ax3 + bx = c that he immediately reduces to 
the form x3 + px = q (p, q > 0), dividing by a. Tartaglia, in his famous cryptic poem, assumes that 
the solution is of the form 

x = u − v. 
Then the equation can be reduced to the form 

u3 − v3 + (u − v)(p − 3uv) = q. 
If one imposes on u and v the additional condition 3uv = p, then u and v can be determined from 
the system 

3 3

3

u v q
puv

 − =



=

 

Or also 
3 3

3
3 3

3

u v q

pu v

 − =

  =   

. 

Putting z = u3 we see that this system is equivalent to the quadratic equation 
z2 − qz − (p/3)3 = 0, 

which means that 
2 2 2 2

3 3

4 27 2 4 27 2
q p q q p qx = + + − + − . 

Let us consider, as an example of application of this method, the equation x3 + 6x = 20. We set 
u3 − v3 = 20 and u3v3 = 8. We get u3 = 6 3  + 10 and v3 = 6 3  − 10 or u3 = −6 3  + 10 and 
v3 = −6 3  − 10. In both cases we get 

3 33 3 6 3 10 6 3 10 2x u v= − = + − − = . 
Remark. It is possible to reduce the standard cubic equation (in modern notation) 
ax3 + bx2 + cx + d = 0 
to the form 
y3 + py = q, 
used by the Italian algebraists by means of the substitution 

3
bx y
a

= − . 

Viète will use a similar method to obtain the quadratic formula. 
 



7. The quadratic equation in Viète and Descartes 
The method of Viète 
A possible way to obtain the quadratic formula was proposed by Viète in De aequationum 

recognitione et emendatione Tractatus duo (1591). He uses a substitution quite similar to that of 
Italian algebraists of 16th century. Viète begins with the equation 

ax2 + bx + c = 0 
(of course, he uses different symbols for the unknowns and the parameters). He puts x = y + z and 
obtains 

a(y + z)2 + b(y + z) + c = 0 
ay2 + (2az + b)y + az2 + bz + c = 0. 

To eliminate the first degree term it is necessary that  
2az + b = 0, 

from which we get 
a

bz
2

−= . The substitution in the equation gives 

2
2 0

2 2
b bay a b c
a a

   + − + − + =      
 

that is 
4a2y2 = b2 − 4ac. 

From this he obtains 
2

2

4
4

b acy
a

−= ±  

and lastly, using again the variable x 
2 4

2
b b acx

a
− ± −= , 

the well known quadratic formula. 

The method of Descartes 
In the Book I of the Geométrie (1637) Descartes gives detailed rules to solve quadratic 

equations. He uses, with a different approach, the classic Greek geometry; particularly the 
problems of applications of areas (Bos, 2001). 

Hyperbolic application 
a) Equation: x2 − ax − b2 = 0  (a, b > 0). 

Construction: 

1. Draw a right-angled triangle AOB with OA = 
1
2

a, OB = b and ∠AOB = 90°. 

2. Draw a circle with center A and radius 
1
2

a. 

3. Prolong AB; the prolongation intersects the circle in C. 
4. x = BC is the required line segment. 

[Proof: BA intersects the circle in D; by Elements III.36 BC⋅BD = OB2, i.e., x(x − a) = b2, so 
x2 − ax − b2 = 0.] 

 
 
 
 



Figure 4 
b) Equation: x2 + ax − b2 = 0  (a, b > 0). 
The construction is the same of previous case: it is enough to put x = BD. 

Elliptic applications 
Equation: x2 − ax + b2 = 0  (a/2 > b > 0). 
Construction: 

1. Draw a line segment AB = a, with midpoint O. 

2. Draw a semicircle with center O and radius 
1
2

a. 

3. Draw the line tangent at B to semicircle and mark on that line BP = b in the half-
plane where the semicircle is. 

4. Draw a line through P parallel to AB. It intersects the semicircle in Q and S is the 
projection of Q into AB. 

5. x = SB is the required line segment, but also x = AS is a solution. 
[Proof: By Elements VI.8 BP2 = SB⋅AS, i.e. b2 = x(a − x), so x2 + ax − b2 = 0.] 

Figure5 
Remark. In the cases of hyperbolic application Descartes constructs only the positive solution. 

Actually, also if he uses negative numbers in calculations, he doesn’t give a geometrical meaning 
of negative numbers and therefore doesn’t use negative abscissas. 

 

7. Conclusions 
The problems and the selected subject are meant to give relevance to the history and also to 

motivate and deepen student understanding of subject matter. Student can also see how problems 
were solved before the use of what to us are familiar equations and realise how a good symbolism 
make life easier for us in studying mathematics. 

On the other hand it is difficult for student to give meaning to the “handling of symbols”, when 
he meets the first time with algebraic equations. In this case the use of geometry, that gives a 
concrete meaning to symbols, can help student to overcome this epistemological obstacle. 
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