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ABSTRACT 
Much of the author’s recent experience is attempting to teach Mathematics primarily to undergraduate 

students following degree programmes in Electronics or Audio Technology.  Increasingly, it is found that 
although such students may be able to perform mechanistic steps such as obtaining a simple derivative, or 
evaluating a straightforward definite integral, they have little idea as to what these quantities mean.  Very 
few (if any?) would know that these results are connected to a limiting process. 

Unless the student’s understanding of basic calculus is strengthened, they have little chance of 
subsequently dealing with the solution of differential equations or the construction of Fourier series.  This 
paper shows how imaginative deployment of computer algebra (DERIVE) can substantially assist the 
understanding of calculus and its applications in the aforementioned areas.  In particular, the paper will 
demonstrate the advantages of using computer algebra as an on-line teaching aid in the classroom compared 
with using traditional methods of teaching topics such as solving differential equations. 



1. Introduction 
Mathematics is increasingly perceived as being a difficult subject with the inevitable 

consequence that many students will try to avoid its study if at all possible.  However, it is also 
well known that knowledge, understanding and competence in certain areas of Mathematics are 
required for the successful study of many undergraduate courses in Science and Engineering. 

Instructors are frequently facing an audience of students, normally with weak mathematical 
backgrounds [1], who are obliged/forced to study more Mathematics to support their chosen 
degree programmes.  This situation presents considerable challenges to instructors who have the 
difficult task of motivating reluctant students and of finding ways to facilitate understanding so 
that such students end up being reasonably competent in the areas taught. 

The author believes that imaginative deployment of computer algebra in the undergraduate 
Mathematics curriculum can greatly assist the understanding of many concepts and applications 
encountered therein.  Using the software package DERIVE, this is achieved by the use of built in 
commands, bespoke user defined commands and visual graphics.  In the classroom/lecture theatre, 
the form of tuition is a combination of traditional methods – white board etc., and interactively 
generated computer algebra images provided via a notebook PC linked to a data projector. 

 In this paper, the author gives examples of how computer algebra can be imaginatively 
deployed to assist with the teaching and learning of differential and integral calculus, solving 
differential equations and construction of Fourier series.  Bespoke user defined commands will be 
presented for the benefit of instructors.  In practice, the definitions of such commands are 
normally hidden from students who simply need to know how to supply the values of the 
arguments contained in these commands for their own use during workshop sessions. 

 

2. Differential Calculus 
When introducing differential calculus, it is customary to begin with the simple function 

2)( xxuy == .  We obtain a value for the gradient function (rate of change function, derivative 
etc.) at some fixed point e.g. 3=x , by drawing a series of chords with ends anchored at (3, 9) that 
are decreasing in length and then calculating their gradients.  We conclude quite straightforwardly 
that the gradient function has the value 6 when 3=x . 

In order to demonstrate this approach for a wide range of different functions, we can employ 
the User Defined Command (UDC) GRAD_FUNC_POINT( axu ,, ) which simplifies to a vector 
containing two entries namely a and the value of the gradient function evaluated at ax = . 

 

This UDC was authored as: 

)]0,,/)),,lim(),,lim((lim(,[:),,POINT(GRAD_FUNC_ hhaxuhaxuaaxu −+=  

Examples of its use are  

(This was obtained by authoring the command followed by an “equals sign”, then selecting 

simplify). 

 



 

In the case of )ln(t , GRAD_FUNC_POINT can be used for several suitable values of t and, 
invariably, students are able to conclude that if at =  where 0>a , then the gradient function will 

have value 
a
1

.  However, the aim is to be able to obtain the gradient function for an arbitrary given 

function at an arbitrary point.  The UDC GRAD_FUNC_POINTS( sebxu ,,,, ) simplifies to a 
matrix of coordinates corresponding to discrete points of the gradient function for )(xu , beginning 

with 
bx =  

and 
ending with ex =  in steps of s. 

 
We demonstrate the use of this command on xxuy sin)( ==  by authoring: 

The matrix of co-ordinates (not shown here but obtained via the ≈ button) can now be plotted to 
see: 

Figure 1 - xsin  plotted along with discrete points of its gradient function. 

From the plot, it should be apparent that the derivative of xxuy sin)( ==  is xcos .  This can 
now be reinforced by returning to the first UDC and not specifying a numerical value for a. 

or even 

! 

Hence, CAS has been used to generate the derivative of xsin  using a graphical/visual approach 
as opposed to solely using an abstract/rigorous approach that students often struggle with.  (The 
reader will recall that students will not be exposed to the definition of the command 
GRAD_FUNC_POINT). 

 

3. Integral Calculus 

It would be unwise for an instructor to launch into definite integration for non specialist 
Mathematics students (or others?) by starting with the definition: 
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A much gentler approach, which will make the above more palatable if the instructor later 
chooses to expose this to their students, is to associate definite integration with the area under a 
curve by means of a simple (i.e. equal length subintervals with iii xxx or   1

*
−= ) Riemann sum. 

This can be achieved by employing the UDC MAKE_RECTS( nbaxu ,,,, ) which simplifies to a 
vector containing )24( ×  matrices whose elements are the coordinates of the four corners of the n 
rectangles, with width nab /)( − , under the curve )(xu  between bxax ==   and  , arranged in 
such a way as to provide a lower bound for the exact area under the curve for a monotonically 
increasing function. 

The command is authored as : 
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Plotting this vector of matrices, i.e. the rectangles, gives a visual display which is easy to 

understand.  We demonstrate this by approximating to the area under the curve 3)( xxu = , 

bounded by 2,1 == xx  and the x-axis using 8 rectangles. 

(The matrix of coordinates is not displayed here). 

The figure was produced by simplifying the 
previous command and then plotting the resulting 
matrix of coordinates. 
Display options need to be set to suppress colour 
changes and to join the vertices of the rectangles 
in order to construct the rectangles shown. 
 

 

 

 

Figure 2 – A lower bound approximation to the area under the curve 3)( xxu = , bounded by 
2,1 == xx  and the x-axis using 8 rectangles. 

 

The UDC ),,,,(REASSUM_RECT_A nbaxu  simplifies to a left Riemann sum of the areas of the 
rectangles produced by MAKE_RECTS. 

The command is authored as: 
)1,0,),/)(,,(SUM(LIM*/)(:),,,,(REASSUM_RECT_A −−+−= nrnrabaxunabnbaxu . 

Applying this command to the above example gives: 
 

 



By increasing the number of rectangles to say, 100, we obtain the following: 

Figure 3 – A lower bound approximation to the area under the curve 3)( xxu = , bounded by 
2,1 == xx  and the x-axis using 200 rectangles. 

This treatment should clearly demonstrate the limiting process inherent in the definition of a 

definite integral since, visually, we can see that an infinite number of rectangles must correspond 

to the exact area when summed.  The area shown in figure 3 is readily calculated, yielding 

Leaving the number of rectangles, n, arbitrary yields the closed form sum: 

It is clear that the right hand side can be expanded as 24
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At this stage, students could be shown the relationship 
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Closed form sums are nice to see.  Of particular interest is to calculate the left Riemann sum for 

the area bounded by axis-  theand  2/,0  ,sin xxxx π== using an arbitrary number of rectangles. 

 

Expanding the above command gives:  

 

We can use DERIVE’s limit command (from within the calculus menu) to obtain the exact value  

 

for the area i.e.   

 



This result also demonstrates that 1)cot(lim
0

=
→

αα
α
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We note further that  

This result can be used to introduce the concept of the anti-derivative.  Koepf and Ben-Israel [2] 
pursue this approach showing that an indefinite integral can be regarded as a definite integral over 
a variable interval. 

It is the author’s experience that even students who have encountered integral calculus prior to 
embarking on their undergraduate course have rarely appreciated that definite integration is 
connected to a limiting process.  CAS enables this important concept to be presented both visually 
and algebraically by generating, where possible, closed form sums. 
 

4. Differential Equations 
Students can often be intimidated by the term “differential equation” and expect these to be 

difficult at the outset simply because of the presence of one or more derivatives in an equation. 

It is useful to begin with a very simple example such as t
dt
dy 2= .  Most students will be able to say 

that “the” solution is 2ty =  and the instructor then normally has to interject to coax out the infinite 
number of solutions given by cty += 2 , where c is an arbitrary constant.  DERIVE can be used 
here to demonstrate diagrammatically that, in the absence of any boundary conditions, a 
differential equation will have an infinite number of solutions that can cover the whole real plane. 
 
This is readily accomplished by authoring, simplifying and then plotting the command 

If we only consider tangent line segments drawn at regular 

points on these solution curves, then the resulting diagram 

should give a very good indication as to what the actual 

solution curves look like. 

The tangent field can be obtained via the BIC 

),,,,,,,),,((FIELDDIRECTION_ 00 nyyymxxxyxf nm   

where ),( yxf
dx
dy = , x varies from 0x  to mx       Figure 4 - Solution curves for t

dt
dy 2=  

in m steps and y varies from 0y  to ny  in n steps. 

We now author, approximate, then plot the command: 

Thus, via this very simple example, students can appreciate 
that much information about the general solution of a 
differential equation can be obtained from the initial 
differential equation without the need to solve it.  It would 
be very difficult to convey these ideas to students without 

the use of a software package.        Figure 5 – Tangent field for t
dt
dy 2=  



Of course, another obvious advantage of this approach is to emphasise that seeing the tangent field 

determined by a differential equation is possibly the best we can see with regard to the complete 

solution curves if analytical techniques cannot be employed to solve the equation.  Indeed, we may 

only be able to generate points for particular solutions using numerical techniques. 

Several of the aforementioned concepts can be encapsulated by the following example.  We shall 

consider the solutions of the differential equation tyy
dt
dy )1( += , and begin by obtaining a plot of 

its tangent field. 

 

Using the approximate command, 

we obtain a large matrix of 

coordinates (not shown here) 

which can now be plotted.  

This rather interesting diagram 

shows the flow of the solution 

curves and also indicates 

asymptotic behaviour. 

                    Figure 6 – Tangent field for tyy
dt
dy )1( +=  

It is a straightforward matter to analytically obtain the general solution 
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presents the instructor and students with a rich mathematical investigation.  We may pose the 

question “for which values of k do we obtain solutions in that part of the plane where 

0 )and1,0[  where,1 >−∈−< yyy ?”  Using DERIVE’s SUB command, by experimentation, we 

can discover that if 1>k , we obtain solution curves in the region where 1−<y .  If we choose 

0<k , we obtain solution curves in the region )1,0[ −∈y .  Both these ranges for k show solution 

curves that are asymptotic to the line 1−=y .  For )1,0(∈k , we obtain solution curves each 

consisting of three pieces with two vertical asymptotes and the horizontal asymptote 1−=y .  The 

case 1=k  yields a solution curve with different characteristics to the previous cases.  A selection 

of these solution curves is shown below. 



For completeness, at this stage students 

can be informed that sometimes only 

numerical techniques are available to 

obtain a numerical solution of a 

differential equation.  DERIVE 

supports a variety of numerical 

techniques the simplest of which is 

),,,,,),,((EULER_ODE 00 nhyxyxyxf  

and approximates to a vector of 1+n  

solution points of the equation  

),( yxf
dx
dy =  with 0yy =  and 0xx =  

Figure 7 – Particular solutions of tyy
dt
dy )1( +=     using a step size of h. 

We apply the EULER_ODE command to generate solution points on the particular solution 

passing through the point )3,0( −  and contrast these solution points with the exact solution given 

by 
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Simplifying EULER_ODE via the approximate command, yields: 

     Figure 8 – Numerical solution of tyy
dt
dy )1( +=  passing 

          through )3,0( − . 
Solution points for 0<t  are obtained by replacing 0.25 with 25.0−  in the EULER_ODE 
command. 



Very few (if any) students have seen tangent fields associated with the solutions of differential 
equations even though they may already be familiar with solving simple differential equations.  It 
is a revelation for them to see tangent field diagrams “on-line” by a CAS  in the classroom and this 
stimulates them to engage with the topic with greater confidence and understanding. 
 

5. Fourier Series 
DERIVE is an indispensable tool for dealing with piecewise defined periodic functions and their 
associated Fourier Series representations.  As an example, consider the function with graph: 
         f(t) 
          
 
 
      -2                   -1               1  2 t 
 
 
 
Defined as: 
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It is useful to be able to plot the graph of this periodic function using DERIVE, so that, later, we 
can superimpose the graph of its Fourier Series and contrast the two. 

Plotting the graphs of piecewise defined periodic functions is achieved by defining the function 
over the interval (0, T), where T is the period using DERIVE’s built-in function ),,(CHI bxa , 

where 
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),,(CHI , and then using the built-in MOD function to take care of the 

periodicity. 

 

Plotting the latter expression produces the graph of the piecewise defined periodic function. 

Figure 9 – Plotting piecewise defined periodic functions using DERIVE’s CHI and MOD 

functions. 

The standard Fourier Series representation for a function with period T is given by: 
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and the Fourier coefficients are given by: 
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Since the given example is an odd function, 0  and  ,00 == kaa  for +∈ NNk .  In addition  
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The required Fourier Series is therefore: 
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As a check, or otherwise, we can use DERIVE’s BIC ),,,),((FOURIER 21 nttttf  to generate the 

first n harmonics of the Fourier Series for )(tf  defined over the periodic interval 21     to tt . 

which simplifies to the expression below: 

Superimposing this truncated Fourier Series onto the original piecewise defined periodic function, 

we obtain: 

Figure 10 – Plotting the truncated Fourier Series representation along with the original piecewise 

defined periodic function. 

At this stage, a discussion can take place over the behaviour of the synthesised function around the 
points of discontinuity.  Classical theory states that in general, the magnitude of the combined 



undershoot and overshoot together at a point of discontinuity amount to about 18% of the 
magnitude of the discontinuity.  This is the so called onset of Gibbs’ phenomenon. 
We can “test” this theory using DERIVE’s trace facility to measure the lengths of the under and 
overshoots on a plot of the truncated Fourier Series containing 50 harmonics.  
 

The pronounced “peak” has  

coordinates (2.04, 1.178) provided by 

DERIVE. 

 

The pronounced “trough” has  

coordinates )178.1,96.1( −  

Figure 11 – Using DERIVE to explore Gibbs’ phenomenon 

In the above example, at 2=t , the magnitude of the discontinuity is 2.  We can from the 
coordinates obtained using DERIVE’s trace facility, that the distance from the trough to the peak is 
2.356.  Hence the magnitude of the combined under and overshoot is equal to 356.02356.2 =− , 

and %8.17100
2
356.0 =×  

The main use of DERIVE here is to show, visually, how a Fourier series can generate a given 
periodic signal function even when it is piecewise defined.  Moreover, the ability to measure the 
onset of Gibbs’ phenomenon in such a straightforward manner is particularly appealing. 

 

6. Conclusion 
There is no doubt that the ability to perform tedious or repetitive symbolic manipulation using 

computer algebra focuses the student’s mind on the concepts that are very often obscured by the 
time consuming process of carrying out the manipulation by hand.  Furthermore, computer 
generated plots provide a powerful means of visualising concepts and applications. 

Much of the treatment demonstrated in this paper would simply not be viable using traditional 
teaching methods.  Certainly, the interactive use of computer algebra in the classroom both helps 
to “bring alive” the Mathematics being presented and stimulates interest.  The very fact that a 
computer image is being projected catches the attention of the audience.  This type of delivery, 
coupled with the enthusiasm and pedagogical skills of the instructor can result in a positive, 
productive and enjoyable experience for the students. 

Whenever asked, students invariably welcome the deployment of computer algebra within the 
curriculum to assist their teaching and learning. This is further demonstrated by the many 
occasions where this style of exposition has provoked questions from the audience and has 
inspired dialogue between students and instructor. Common remarks have included statements 
such as “I never really understood calculus before” and “it is helpful to see what solutions to 
expect before actually finding them” etc. 

The author’s experience of this type of delivery has been to non-specialist Mathematics 
undergraduates where the emphasis has been on a less rigorous exposition of the Mathematics 
needed.  However, the software can be used to address important and more rigorous aspects of 
calculus such as differentiability and continuity where the limiting processes need to be more 
controlled involving, for example, left and right limits. 
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