THE BIRTHDAY PROBLEM: USING AN ELECTRONIC
SPREADSHEET IN A GENTLE INTRODUCTION TO
DISCRETE MATHEMATICS

Thomas C. McMILLAN
Department of Mathematics & Statistics, University of the Arkansas at Little Rock
2801 South University Avenue, Little Rock, AR 72204-1099, USA

e-mail: tcmemillan@ualr.edu

ABSTRACT

In elementary probability and statistics classes, a common example is the “Birthday Prob-
lem”: In a group of people, what is the probability that at least two people have the same
birthday? After the probability has been calculated, it is natural to look for a match by
having students announce their birthdays one by one. A question that arose in my class (in
which a match was found) was “Why did we find a match so quickly?” This naturally led
to the question “On average, how many queries are necessary to find a match or determine
that one does not exist?” At first, this problem seems intractable, but an analysis that is
accessible to elementary students leads to a recursive model that can be examined with an
electronic spreadsheet. A similar analysis is used to find the probability distribution for the
random variable representing the number of queries required to find, in a group of fixed size,
a match or to determine that one does not exist. In this paper, I present the details of these
mathematical analyses and the results of exploring the consequent models with an electronic
spreadsheet. The graphs produced by the electronic spreadsheet are an integral part of the
analysis. I also present the results of a computer simulation that validates the mathemat-
ical model. The data produced by the computer simulation are entered into the electronic
spreadsheet so that they can be compared graphically with the numbers produced by the
mathematical analyses.

This problem is related to more practical applications. For example, what are the impli-
cations that size of a secondary key has in a database? What are the security implications
of the large, but finite, number of physical keys available for a lock design? 1 will give other
examples from the areas of finance, probability, and analysis of algorithms that illustrate how
an electronic spreadsheet can be used in a gentle introduction to discrete mathematics.

1 Introduction

The “birthday problem” is a standard example in elementary classes on probability.
The problem is to find, for a group of n people, the probability p, that at least two of
them have the same birthday. It is an easy exercise to show that

| 365364+ (365 —n+1)
Pn=1— .

365"
(Ignoring leap day as a possible birthday introduces only a minor error.) This formula
yields po3 &~ 0.507, so in any group of 23 or more people, the probability is greater than
0.5 that at least two people have the same birthday.

In a typical class of about 30 people (p3p ~ 0.706), I look for matches using the
following technique: My students and I, one by one, announce our birthdays. All
students listen for a match, and as soon as one is found, we stop. In those classes in
which a match is found, both my students and I are surprised to find it in as few as six
or seven queries. This has prompted the question: In a group of n people, what is the
expected number of queries (birthday announcements) that will be required to find a
match, or determine that one does not exist?

In this paper, we analyze the “expected number of queries” question. The analysis
is within the grasp of elementary students, if they can understand the rudiments of an
electronic spreadsheet. We also give the results of a computer simulation that validates
our analysis.

2 A Spreadsheet Analysis

To begin our analysis, let E, ,, denote the expected number of queries required to find
a match among n people who are known to have birthdays from a set of m possible
dates, or to determine that there is no match. We want to know the value of E,, 5 for
the particular value M = 365. It is easy to see that E,; = E;,, = 0 for all n,m > 1.
Also, E,, ,, satisfies the recurrence relation

-1 n—1
Eym=1+ (L) Ey 1m-1 foralln>2andm > 2. (2.1)
m

The “1” on the right hand side equation (2.1) results from the fact that one query will
be required if there are two or more people and two or more possible dates remaining.
The probability that this query does not yield a match is (mT’l)n_l. Therefore, with

probability (mT_l)n_l, we will have to look for a match among the remaining n — 1
people who are known to have birthdays among m — 1 possible dates. That is, with
probability (mT’l)n_l, we can expect £, ;,,—1 additional queries after the first. This
explains the second term in equation (2.1).

A quick analysis of equation (2.1) can be obtained by plugging it into a spreadsheet.
Figure 1 gives the layout for such a spreadsheet. The top row and the left most col-
umn in Figure 1 are not part of the spreadsheet. They give the column coordinates,
AB,....Z,AAAB, ... IV, and the row coordinates, 1,2,3,...,367, of the spreadsheet cells.
The first row and column are used for the labels “People” and “Dates” (n and m,

.l a [B|C[D[E[F[| 1V]

1 People

2 112134 ---]204

3 110]0[0]O0 0

4 || Dates 2100|010 0

5 310|000 O
367 3650|000 O

Figure 1: Spreadsheet Layout

respectively, in F, ,,). The numbers in row 2 give values for n, and the numbers in
column B give values for m.

The values for E} 1, ..., Fas4 365 are contained in the spreadsheet cells C3, ... ,IV367.
The zeroes in column C and row 3 encode the boundary conditions F, ; = E,, = 0.
The values in the cells marked with [] are calculated by a spreadsheet formula. The
formula in cell D4 is

=1+($B3/$B4) "C$2*C3. (2.2)

When this formula is copied to other cells, the coordinates preceded by a $ (absolute
addresses) will remain unchanged, and those not preceded by a $ (relative addresses) will
change by the distance between the source cell and the destination cell. For example,
when formula (2.2) is copied into cell F5, the formula in F5 will be

=1+ ($B4/$B5) "E$2+E4. (2.3)

Careful examination of formulas (2.2) and (2.3) reveals that they calculate one plus the
number of dates for the previous row divided by the number of dates for the current
row raised to the number of people for the previous column times the expected value
calculated in the previous column and the previous row. This exactly encodes the
recurrence relation in equation (2.1).

With a couple of copy operations, the recurrence encoded in formula (2.2) can
be copied into all of cells D4,...,IV367. The last row instantly contains £, 5s, for
n=1,2,...,254. We are limited in our spreadsheet to 256 columns. To get values
of E, p for n > 254, the table can be continued in a bank of rows below row 367.
First create a row containing the people counts (n) by entering the values 254, ..., 507.
For the continuation of the table, instead of entering zeroes in column C, copy the
values that were calculated in cells IV3,...,IV367. Adjust the absolute addresses in the
formula that encodes the recurrence relation and populate the cells in the second bank
of rows as was done for the first bank. Now the last row instantly contains F, »s, for
n = 254,...,507. By repeating this process, we obtained values for Ej ur, ..., Easa r,
E254’M, RN E507,]V[7 E507’M, ceey E76O,M7 and E76O,M7 ceey ElOlS,]V[in four different rows of
the spreadsheet.

The values for E, s can be plotted using graphing utilities of the spreadsheet.
Figure 2 is a representation of the result obtained by graphing the four rows indicated
above. It is evident from the spreadsheet calculations that £, j; is maximum when
n = 26. In a group of 26 people, it will take on average Eas ps ~ 14.591 queries to find a

Average Number of Queries Required to Find a Match

15
14 A

[\ Series 1: n=1,...,254
13 [\ Series 2: n = 254, ...,507
12 | \ Series 3: n = 507, ..., 760
1(1) | \ Series 4: n = 760, . ..,1013
ol | \
ol \
N \
oL AN
L .
Al S~
3 ’ \\
2
1

| | | | | | | | | | |
1 25 50 75 100 125 150 175 200 225 250

Number of People (n) in the group

Figure 2: Spreadsheet Graph

birthday match or determine that one does not exist. Using Eyg pr = 14.591, pag ~ 0.598
and the fact that 25 queries are needed to discover that there is no match, it can be
shown that in a group of 26 people that contains at least one match, it will take, on
average, about 7.594 queries to find a match. Using Espp ~ 14.289 and psy ~ 0.706
the comparable figure for groups of 30 people is 8.163.

The graph in Figure 2 suggests that nh_)rglo E, ., =1. This is a reasonable result.

For large groups (n > m) the probability of a match is one. The probability that the
first person queried matches none of the others, ((m —1)/ m)n_l, approaches zero as
n — oo. Here is a proof based on the recurrence relation (2.1). A straightforward
induction yields E,,, < m for all n > 1. (Or, one could argue, the number of queries
remaining is dominated by the number of dates remaining.) Now,

1 < liminf £, ,,

m—1\"""
1 + () En—l,m—l]
m

1 n—1
())
n—oo m

= liminf

n—~oo

3

< limsup |1+

. 1 n—1
< limsup |1+ | —— (m—1)| =1
n—oo m

3

Comparison of Analytical and Simulation Results

15
‘*<+-% * %
% ¥ *
14 * * "
* X
X x
* X
13 <
Expected * N
number of * .
queries 12 n
* x = Simulation Result X x x
+
* + = Predicted Result n
11 X
X
X
i ¥

T T T TTTT T
1314151617181920212223242526272829303132333435363738394041424344454647
Number of People (n) in the group

Figure 3: Comparison with Simulation Results

3 A Computer Simulation

In this section, we describe a computer simulation that validates the results found in
the previous section. For each n = 2,...,254, this experiment was simulated 10,000
times: Generate a list of n birth dates at random; with each date in turn, look for a
match with the dates that follow on the list (a query); record the number of queries
required to find a match or determine that one does not exist. For each value of n, the
average number of queries for the 10,000 experiments was recorded. These averages are
quite close to the expected values calculated by the spreadsheet.

The graphing utilities of the spreadsheet can be used to compare the results of the
simulation with the values predicted by the spreadsheet model. Simply copy the results
of the simulation into the spreadsheet and create a single graph containing both the
expectations calculated by the spreadsheet and the averages produced by the simulation.
Figure 3 compares, for n = 13,...,47, the averages produced by the simulation with
the expected values predicted by the spreadsheet. Outside of this range, the differences
are barely discernible at the resolution of this graph.

4 The Probability Distribution

Using similar techniques with a spreadsheet, we can find the probability distribution
for p,, the probability that n queries are required to find a match. To generalize the
problem, slightly, let us assume that one of K different keys is assigned randomly
(uniformly) to each of N different records. (With K = 365, we have the birthday
problem.) Assume initially that N < K. For 1 <n < N — 1, let p,, be the probability
that matching keys are found in exactly n queries. (As with the birthday problem, a
query is comparing the key of a given record with the keys of the records that come

Probability that first match is found on query n. (pso=probability of no match)
0.12

0.1

0.08

0.06
Pn N

0.04 Ao

0.02

Xxxxx
X X
xxxxxxxxxxxxX

0 I I I I I I | I
1 5 10 15 20 25 30 35 40

Number of queries (n)

Figure 4: Probability density function

after it.) Let py be the probability that there is no match.

Still assuming that N < K, we attack this problem by finding the cumulative
distribution function P,. Note that Py, = 0, and, for 1 < n < N — 1, P, is the
probability that a match is found in n or fewer queries. Also, Py = 1, the probability
that there is no match, or that a match is found in N — 1 or fewer queries. Py_; is the
probability that there is at least one match. Once we have found P,, p, = P, — P,_1, for
1 <n < N. The cumulative distribution function P, satisfies the recurrence relation

P=1 K =n N_n(1 Py forl<n<N-1 (4.1)
n — K—n+1 n—1 or SN S . .

As justification, note that 1— P,_; is the probability that n or more queries are required,

and (Kfi ;ZI)NW is the probability that the last N — n records all have keys different

from the key of the nth record. (When the nth record is queried, there are K —n

keys that have not yet been encountered.) Therefore, (2 ;Zl)N_n (1 = P,_q) is the

probability that it will take n or more queries and the nth query fails to produce a
match. Therefore, 1 — (Klf;il)N_n (1 — P,_4) is the probability that fewer than n
queries are required or the nth query succeeds. This is P,, the probability that a match
is found with n or fewer queries.

Now, in one column of a spreadsheet, encode the recurrence relation given by (4.1)
and the boundary conditions Py = 0 and Py = 1. In the next column, use the formula
pn = P, — P,,_1 to obtain the probability density function. Figure 4 is a representation
of the spreadsheet graph of the probability density function for the birthday problem
(K = 365) with N = 40 people. The expectation Ex x that was calculated in the

spreadsheet of Section 2 can be verified in a third column of this spread sheet by

encoding the formula
N-1
Enk = Z npn + (N —1)py.
n=1

The factor N —1 on the last term results from the fact that when there are no matching
keys, N — 1 queries are needed. Evaluate each of the terms in the appropriate cell of
the third column and then apply the spreadsheet’s SUM function. The spreadsheet of
Section 2 and this calculation both return a value of 12.00336 for Eyg 365-

When N > K, the development is the same except that the domain for n in (4.1)
is 1 < n < K rather than 1 < n < N — 1. In this case, Px = 1 follows from the
recurrence. If there are K keys and N > K, then a match in K or fewer queries is
certain.

Thinking in terms of keys and records instead of birthdays and people allows us to
see the relevance of this type of problem to the performance of computerized databases.
A technique called “hashing” helps to economize the computational effort required to
search a database. For example, a nine digit key provides enough keys to give each of
10° records a unique identifier, but the key space is too large for the key to be used
as the index into an array. A common approach is to implement a “hashing function”
which associates with each unique key a “hash key” with fewer digits. The hash key can
then be used as an index into an address array. The problem, of course, is that more
than one unique key may “hash” to the same hash key. (This is called a “collision”.)
Therefore, each entry in the address array is a list of addresses for the keys that hash
to the index of that entry. Suppose a database maintains 100,000 records and we hash
keys to a four digit key. If the hashing function distributes the hash keys uniformly,
then, on average, the database needs to scan a list of 10 addresses to find a given record.

In the USA, the nine digit social security number is often used as a key, and it is
common to identify students with the last four digits of the social security number.
Using the techniques we applied to the birthday problem, we find that in a class of
30 people, the probability of a collision is 0.0426. In classes of this size, it will take,
on average, 28.20 queries to determine if a collision exists. A class of 119 students is
the smallest class for which the probability of a collision (0.5058) exceeds one half. In
classes of this size, it will take, on average 75.83 queries to determine if a collision exists.
For a class of 132 students, the average number of queries to determine if a collision
exists is maximized at about 76.47 queries. In a class of this size, the probability of a
collision is about 0.5804.

5 Examples (Exercises)

Here are some examples of other problems that can be solved with a recursive model
encoded in a spreadsheet.

1. Create an amortization table for a mortgage that repays a loan of P dollars over
N months with an monthly interest rate of r. There is a spreadsheet function that
calculates the monthly payment, but do not use it. Rather, encode the recurrence
relation B,, = (1 +r)B,,_1 — M for the balance after n payments in terms of the
monthly payment M. Now enter the boundary condition By = P and experiment
with values of M until the other boundary condition By = 0 is satisfied.

Subsequent columns in this spreadsheet can be used to verify the intermediate
steps taken in solving the recurrence relation B, = (1+r)B,,_1 — M and deriving
a formula for M.

2. (The gambler’s ruin.) Suppose Tom has m coins and Linda has n coins. They
play the following game until one of them wins all of the coins: Flip a coin (fairly).
If it comes up heads, Tom pays Linda a coin. If it comes up tails, Linda pays
Tom a coin. What is the probability that Tom wins all the coins? What is the
probability that Linda wins all the coins? What is the probability that the games
do not terminate? On average, how many flips of the coin will it take until one
of the players wins all of the coins?

3. (Thanks to Dr. Alan Johnson, Professor of Statistics) From a standard well-
shuffled deck of 52 cards, deal one card at a time until at least one card of each
value (two through ace) has been dealt. On average, how many cards will be
dealt? For n = 13,...,49, what is the probability p, that n cards will be dealt?
Explore the problem in which cards are dealt until at least two cards of each value
have been dealt.

4. An array contains n elements. On average, what is the minimum number of
interchanges required to sort the array? (If j # k, an interchange is accomplished
by placing the item in the kth position of the array into position j and the item
that was in the jth position into position k.)

5. Here is a variation on the uniform hashing scheme described above. Records are
posted to a table with indices between 0 and m —1 by applying a hashing function
to the record’s key that produces an index k between 0 and m — 1. If possible,
the record is then stored in the kth row of the table. If the kth row is already
occupied by another record (a collision), then the record key is “rehashed” until
an open row is found. (The rehashing function keeps track of what row indices
have been tried.) This process facilitates storing records and searching the table
for a record. Call each attempt to find an open row for the record a “probe” of
the table. For n such that 0 < n < m, find a formula for P, ,,, the expected
number of probes needed to post the (n + 1)st record.

In each of these examples, a solution can be obtained by encoding a recurrence relation
into a spreadsheet. Subsequent columns of the spreadsheet can be used to validate
the intermediate steps encountered while solving the recurrence relation. This can be
illustrative while developing general techniques for solving recurrence relations.

6 Concluding Remarks

We have seen how the spreadsheet can be used to solve problems that can be modelled
recursively. This can be useful when the recursive model cannot (or is very difficult to)
be solved analytically. Exploring the spreadsheet model may suggest an approach to
solving the recurrence analytically. Using the spreadsheet is also helpful in illustrating
the intermediate steps in deriving a solution for a class of recurrence relations. The
examples (exercises) provided give a starting point for further explorations.

REFERENCES

-Collins W. and McMillan T., 1989, “A Recurrence Relation in Uniform Hashing”, Proceed-
ings, CSC 89, (New York: ACM Press), 410.

-Honsberger R., 1973, Mathematical Gems I, (Washington: MAA), 128-130.

-Knuth D., 1973, The Art of Computer Programming, Volume 3: Sorting and Searching,
(Reading: Addison-Wesley), 527-528.

-Liss I., McMillan T. and Milton S., 1990, “A Note on the Minimum Number of Interchanges
Needed to Sort an Array”, The AMATYC Review, 12 (1), 35-40.

-Maurer S. and Ralston A., 1991, Discrete Algorithmic Mathematics, (Reading: Addison-
Wesley), ch.5.

-McMillan T., 2002, “The Gambler’s Ruin—How Long Does It Take?”, The AMATYC Re-
view, to appear.

-Tan S., 1997, Applied Finite Mathematics, (Pacific Grove: Brooks/Cole), ch.7.

