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ABSTRACT 
Recognizing interconnections within mathematics is one of the main emphases of the NCTM’s standards 

(2000): ”Thinking mathematically involves looking for connections, and making connections builds 
mathematical understanding.” From our experience we have come to realize that many teachers are not 
aware to the various interconnections exist within mathematics.  

In this paper we describe a process in which the main purpose was to develop teachers’ (pre-service and 
in-service) awareness to some interconnections and bring them to appreciate the importance of holding such 
view. The initial stages of the process were based on confronting the participants with questions regarding 
three concepts that have different representations in different contexts: ‘a straight line’, ‘a parabola’ and 
‘similarity’. The analysis of the data, obtained through a questionnaire and a discussion, showed that 
teachers tend to build in mind several isolated concept-images for a certain concept.  Each concept image is 
formed in accordance with a specific context, and the dominant ones are those including algebraic properties 
of the related object. In advanced stages of the process we introduced answers to the questions in order to 
illuminate interconnectivity, and thus support the participants in creating a concept image that unites all the 
relevant aspects.  Finally, the teachers were asked to reflect on the process they have gone through. The 
reflection showed that all the participants had acquired new mathematical and didactical ideas and that 
awareness to the importance of acquiring a connectionist view was formed.  
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similarity. 
 



 

Introduction 

Recognizing interconnections within mathematics is one of the main emphases of the NCTM’s 
standards (2000): ”Thinking mathematically involves looking for connections, and making 
connections builds mathematical understanding. Without connections students must learn and 
remember too many isolated concepts and skills. With connections, they build new understandings 
on previous knowledge”.  

We believe that in order to convey such a perspective it is essential that the teachers themselves 
possess a ‘meta perception’ of mathematics.  
In this paper we describe a process in which the main purpose was to develop teachers’ awareness 
to interconnections within mathematics and bring them to realize the importance of holding such 
view. The participants were two groups of mathematics teachers. One group consisted of seven in-
service teachers (IST), each having at least five years of experience teaching high-school 
mathematics. The other one consisted of twenty-six pre-service teachers (PST) in their third year 
of academic studies towards the B.Sc degree in mathematics education. The process was based on 
confronting the participants with concepts that have different representations in different contexts. 
To our opinion, such concepts have the potential to emphasis interconnections within mathematics. 
 

   Theoretical background 

In order to analyze the ways in which teachers comprehend various concepts we have found it 
constructive to gather two theoretical frameworks: the theory of concept image and concept 
definition and the theory of global and local coherence.    

According to the theory of concept image and concept definition (Tall & Vinner, 1981), during 
the process of learning a certain concept, one builds a concept image and a concept definition in 
his mind. A concept image is the “total cognitive structure that is associated with a concept” and a 
concept definition is the “form of words used to specify that concept”. One might hold a concept 
definition that does not correspond to its mathematical definition or is not linked to his or her 
concept image. Poor concept image means using a few prototypical examples of the concept while 
considering that concept (Hershkowitz, 1990). A somewhat richer concept image means basing 
judgment upon more prototypical examples and their mathematical properties. A full concept 
image includes a wide variety of examples associated with the concept and their properties. 

Using the theory, we have found (Shriki & David, 2001) that teachers are able to demonstrate a 
full concept image while relating to a concept in a specific context (e.g. considering the parabola 
as a graph of a quadratic function). However, when they are asked to explain the connection 
between contexts, they are not always able to do so, and thus exhibit a poor concept image.  

To explain this phenomenon we use the theory of global and local coherence. The theory 
relates to the way information is stored and retrieved from our memory. According to the theory, 
the tendency is to look for a lack of contradiction within a view (local coherence, LC) rather then 
for a lack of contradiction between possible views (global coherence, GC).  One of the main 
questions derives from the theory concerns the factors that are the most influential in creating a 
certain view. Chi & Koeske (1983) found that the configuration and the structure of the associative 
network1 determine whether or not one is able to utilize efficiently his or her knowledge.  Shriki & 
Bar-On (1997) found that students’ errors are not always a result of deficiencies in knowledge but 
can be sometimes attributed to a lack of GC view. The ability to create a GC view (and thus 

                                                 
1 For more details see Anderson (1985)  



 

producing correct answers) was influenced by the nature of the structures contained in the 
associative network: structures that united the required elements and the connections between 
them enabled generating answers from a GC perspective.   

Unifying both theories, it can be argued that teachers might build in their mind distinct 
structures, each of them containing the required elements and connections for a specific context. 
They are capable of exhibiting a full concept image regarding each context in an isolated manner, 
but at the same time they exhibit a poor concept image regarding the concept as a whole. The 
reason for this apparent contradiction can be explained by the absence of a connection between 
those distinct structures.  
 

Interconnections within Mathematics:  
The case of the straight line, the parabola and similarity 
Various concepts and topics are taught in a cyclic manner in different contexts. Many teachers 

tend not to exhibit the connection between the contexts, and thus cause the creation of separate 
structures. In the following, we describe a four-phase process in which two groups of teachers 
(seven IST and twenty-six PST) were exposed to three examples of such concepts: the straight 
line, the parabola and similarity.  
Phase I – The participants were asked to complete a questionnaire  (Appendix A), and then to 
reflect on the task.  
Phase II – Mathematical background was presented, and was followed by introducing questions. 
The questions were formulated in such a manner that would enable to initiate a conversation 
regarding the issue of interconnections.  
Phase III – Answers were given and a discussion was held.  
Phase IV – The participants were asked to reflect on the process.  

     SUMMARY OF THE ANSWERS RECEIVED FROM THE QUESTIONNAIRE 
14 out of 26 PST suggested a ‘geometrical definition’ for the straight line. The most frequent 

suggestions were given: “The shortest path between two points” and “A collection of an infinite 
number of points”. All the IST responded correctly.  

The answers obtained regarding the concept of parabola were quite similar to our previous 
findings (Shriki & David, 2001) 2.  

The distribution of answers to the question that dealt with parabola’s similarity and the 
explanations that were given are summarized in Table 1. 

 
 
 
 
 
 

                                                 
2 Twenty-one IST and thirty-three PST teachers participated in that study. They were asked to complete a 

questionnaire, which included questions 3-7 in appendix A. Analyzing the data gained from the 
description of the curves properties it was found that on average 38% of the PST and 48.82% of the IST 
teachers demonstrated a full concept image regarding each defined curve, in an isolated manner. When the 
teachers were asked to explain the logical connections between the definitions and to sketch a Venn-
Diagram, only 1 PST and 2 IST were able to do it correctly, and thus the others expressed a non-
connectionist view of that concept.  
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Table 1 
Summarizing the data we can argue that there is a strong tendency towards conceiving the three 

mentioned concepts in an algebraic manner, with almost no reference to the interconnections 
within each concept.  

     WHAT QUESTIONS SHOULD BE ASKED? 
In order to emphasize the interconnections exist within each concept we confronted the 

teachers with questions we believe had the potential to bring them to rethink and rebuild their 
concepts images. 

The concept of straight line 
Mathematical background: Students first encounter the concept of a straight line as a 

fundamental concept in Euclidean geometry. Later on they learn to identify the graph of a linear 
function as a straight line when they learn basic concepts in analytic geometry. In other words, a 
fundamental concept in geometry appears as a ‘defined’ concept in algebra. As a result, we arouse 
the question of our ‘right’ to entitle this mathematical object by the same name (‘a straight line’) in 
both contexts.  

What should be asked? Is it allowed to denominate a function like  
y=3x+5 by the name ‘a linear function’ and to entitle its graph ‘a straight line’? Why?  

The concept of parabola 
Mathematical background: In ninth grade, students in Israeli high school learn the concept of 

quadratic function, to sketch its graph and to find ‘special’ points. By that time, the word 
‘parabola’ becomes a synonymous with ‘a graph of quadratic function’. As a consequence the 
statement: “the parabola is a graph of a quadratic function” develops into teachers’ and students’ 
dominant concept image regarding the parabola (Shriki & David, 2001). The definition of the 



 

parabola as a geometrical object3 or as one of the conic sections is introduced only to eleventh 
grade students who learn in advanced classes of mathematics.  

Based on the geometrical definition, teachers represent an algebraic pattern, but they restrict it 
only to the case in which the focus lies on the x-axis and the diretrix is parallel to the y-axis (the 
graph of an implicit function of the form y2=2px, where p≠0 ;  p∈R).  The core of the instruction 
then becomes exclusively analytic, without any investigation of the geometrical characteristics of 
the parabola.   

 Translating the geometrical representation of the parabola into an algebraic representation, 
three distinct sets are constituted, in accordance with the ‘direction’ of the directrix (parallel to 
the x-axis, parallel to the y-axis, not parallel to the axis). The general equation is usually not 
presented in high schools4. 

What should be asked? Is the graph of quadratic function a parabola? Is the parabola a graph 
of quadratic function? Why? What subgroups of parabola are constituted by its algebraic 
definition? Is the graph of the function y=xn, where n is an even number, n>2, a parabola? How 
can the parabola be built by using only geometrical means?  

The concept of similarity 
Mathematical background: In contrast to the two previous concepts, ‘similarity’ is not a 

mathematical object but a feature that connects between objects. Two objects can be either similar 
to each other or not. In Israeli schools the concept of similarity is introduced to students in ninth or 
tenth grade, but only in the context of triangles, thus teachers refer solely to the concept ‘similar 
triangles’. As a consequence, there is no discussion regarding the various aspects of the concept 
‘similarity’. 

What should be asked? How can we determine whether or not two polygons are similar? Is it 
possible to talk about similarity of other curves?  Can two parabolas be similar? Two ellipses? 
Two circles? Two graphs of third degree functions? 

    WHAT ANSWERS SHOULD BE GIVEN? 
This section includes the essence of answers we suggested to the questions above. 

The concept of straight line    
Why is the graph describing all the points that satisfy an equation of the form:   ax+by+c = 0  ; 

a2 + b2 ≠ 0 a straight line? Since ‘straight line’ is a fundamental concept in Euclidean geometry, 
answering the question one cannot use a definition. He or she should look for necessary and 
sufficient conditions for three points to lie on the same Euclidean line. Verification will focus on 
the case in which a,b≠0, since the other cases are much simpler. Figure 1 shows three points 
A(xa,ya) ; B(xb,yb); C(xc,yc) which satisfy the equation ax+by+c=0. A line through point A, parallel 
to x-axis, and lines through points B and C, parallel to the y-axis, are drown. Points D and E 
designate their intersection.  

We obtain:   
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3  See definition of curve Λ1 in appendix A. 

4 An equation of the form ax2+2hx +by2+2gx+2fy+c=0 is called ‘a second degree equation'. This 
    equation describes a parabola iff h2–ab =0. 



 

The ratio 
X
Y

∆
∆

 is constant (and equals 
a
b− ) for every two points which satisfy the equation 

ax+by+c=0, and thus  
AE
CE

AD
BD = . Using similarity of triangles or an inverse theorem of Thales, 

the three points A,B,C are on the same Euclidean line. The opposite direction is obvious, and is 
performed with the aid of an axis and by using Thales theorem.  

 
 
 

Discussing the need for justifying the ‘right’ to use the same name (‘a straight line’) for two 
concepts within two different contexts, and the proof itself, brought the participants to be aware of 
this obvious but somewhat neglected interconnections within mathematics. 

The concept of parabola 
In order to justify that the graph of a quadratic function is a parabola it is necessary to show 

that the graph of a quadratic function of the form y=ax2+bx+c (a≠0; a,b,c∈R) fulfills  the 
requirements that are derived from the geometrical definition of the parabola.    
The proof is exhibited in figure 2. Based on symmetry considerations of the graph of the function 
y=ax2, suitable ‘candidates’ for the focus and the directrix are a point on the y-axis, F(0,k), and a 
line parallel to the x-axis, l: y = – k, in accordance.  
In order to find the value of k, we have to solve an equation that satisfies the geometrical condition 
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(figure 2a):   (x–0)2+(ax2–k)2=(ax2+k)2. It follows that k=1/(4a) and thus   l: y = – 1/(4a) ; 
F(0,1/(4a)). The rest of the proof is left to the readers (figures 2b, 2c). 

We have shown that the graph of any quadratic function is a parabola. It is important to note 
that the inverse is not true. 

A similar proof is introduced in figure 3 regarding the graph of an implicit function of the form 
y2=2px (p≠0 ;  p∈R).  

 
 
 
 
 
 
 
 

 
 
 
As we know, the graphs of functions of the form y=xn, where n is an even number n>2, are all 

'look like' parabola. Are they really all parabolas? Using the same process, we have to solve the 
equation: (x–0)2+(xn–k)2 = (xn + k)2. We get: x2+x2n–2xnk+k2=x2n+2xnk+k2  ⇒  k=1/(4xn-2). Since the 
value of k  depends on the selection of a point (x, xn) on the graph of the function y = xn

, it can be 
concluded that those graphs are not parabola. 

Following is a Venn-diagram, which describes the logical connection between the four sets of 
curves described in appendix A5: 

In order to emphasize the geometrical characteristic of the parabola we introduced two methods 
for receiving a parabola by using only ‘geometrical tools’ (see appendix B and C).  

The concept of similarity 
As it was mentioned, most teachers are not familiar with the definition of the concept 

‘similarity’. Furthermore, we have found out that they were not even aware to that fact, since they 
did not distinguish between ‘triangles' similarity’ and ‘similarity’. The first step should be to 

                                                 
5 A function of the form f(x)=(ax+b)⋅(cx+d);  a,c≠0 , a,b,c,d∈R, has at least one root, since its roots are determined by 
the roots of the two linear generator functions. Algebraically it means that if a quadratic function has no roots, it is not 
possible to write its pattern as a product of two linear patterns.   
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define ‘similarity’: Two figures are similar iff there is a transformation (translation, rotation, 
reflection and stretching/shrinking) or a composition of transformations that maps them into each 
other. If it is possible to map one figure into another by isometric transformations, those figures 
are congruent. According to that definition, it is obvious that all regular polygons with the same 
number of sides are similar, and that all the parabolas are similar. Algebraically, all congruent 
parabolas are obtained by manipulating isometric transformations on the graph of y=x2, as shown 
in figure 2.  For the graphs of the functions y=ax2,  y=bx2 , where a≠b a stretching/shrinking 
transformation should be manipulated (multiply the coefficient of the function y=ax2 by b/a or the 
coefficient of the function y=bx2 by a/b). The same can be done with any two parabolas.  
 

Discussion   
By the end of Phase I, the teachers’ reflection expressed confusion, embarrassment and even 

frustration for their inability to answer the questions correctly.  
A further reflection was conducted at the fourth phase. It is interesting to note that the PST 

responses emphasized mathematical aspects, while those of the IST focused on didactical aspects. 
Most of the mathematical ideas were new to the PST, and they indicated that they had learned 
many new facts. They expressed their fear from teaching those subjects, and admitted to feeling 
ashamed for not knowing them. Many PST expressed their surprise of the fact that their teachers 
had never asked them those questions, and were never concerned about introducing the 
interconnections in mathematics.  

The IST said they have never thought about the connection within each concept in the various 
contexts, and thus they have never felt the need to ‘justify’ using the same name of objects within 
different contexts. They stated that definitions and concepts should not be taken for granted, 
without rethinking and investigating them.  

 The analysis of the data we collected through all four phases of the process described above 
reveals the tendency to yield answers from a LC view. Most participants demonstrated isolated 
concept images, and could reason only in the framework of a single context. By the beginning of 
the process each participant held a certain concept image and concept definition regarding the 
mentioned concepts in the various contexts. We have found that the most common prototypical 
examples of those concepts carried algebraic characteristics. 

Relating to this finding it is interesting to refer to the finding of a study, which dealt with 
reading comprehension of mathematical proofs by undergraduate students at the course of 
advanced calculus (David, 1996). It was found that students, while reading mathematical proofs, 
focused mostly on their algebraic parts. As a consequence they misinterpreted and misunderstood 
the mathematical text. We believe a further study is needed in order to explain this ‘algebraic 
tendency’ phenomenon. 

The fact that the participants were not bothered by the absence of links between contexts for a 
specific concept can be well explained by the LC theory: In each context the appropriate part of 
the mental image of that concept is retrieved. It is quite obvious that the concept image of each 
distinct part of the concept has its ‘own independent life’, without any interconnections between 
parts, despite the fact that those different concept images share many components. The remarkable 
point is that those common components do not function as motivators for unifying all the distinct 
concept images of a specific concept under a new comprehensive image. Such an image could 
successfully confront the complementary as well as the contradictory aspects exist between each 
isolate image held for each context. 



 

 We are confident that all the teachers had learned new mathematical facts, and had begun to 
establish some interconnections between them. It is hard to tell whether old structures were broken 
and new ones were formed instead, but we believe the teachers will continue to inquire the 
concepts introduced and the connections between them, as well as develop a new look at other 
concepts, and thus create a GC view of mathematics.  
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Appendix A 
1. How is a straight line defined in Euclidean geometry? 
2. How is a straight line defined in algebra? 
_____________________________________________________________________ 
Following are four definitions of curves. Draw each curve and describe its properties6: 
3. Given a line l and a point F not on the line. The curve Λ1 is the locus of the points in the 
     plane so that their distance from the point F equals their distance from the line l. 
4. The curve Λ2 is the graph of a function of the form: y=ax²+bx+c, where a≠0 ; a,b,c∈R.   
5. The curveΛ3 is the graph of an implicit function of the form; y2=2px, where    p≠0 ; p∈R.  
6. The curve Λ4 is the graph of a function which its pattern is a product of two non- 
     constant linear patterns. 

 
7. Sets Γi , i=1,2,3,4,  contain  all the curves of the form Λi, in accordance.  
    Sketch a Venn-Diagram that describes the logical connections between the four sets of curves. 
_____________________________________________________________________ 
8. Mark the statement you agree with, and explain your choice: 

There are no two parabolas that are similar to one another. 
There are some parabolas that are similar to one another, and there are some parabolas 

             that are not.  
All the parabolas are similar to one another. 

 
_____________________________________________________________________ 

                                                 
6 This assignment was taken from Shriki & David, 2001. 



 

Appendix B 

  
 
 
Appendix C7 
a. On a rectangular paper mark a point C near the bottom edge, and a point D on its edge 

(figure 1). 
b. Fold the paper so that point D will unite with point C (figure 2). 
c. Make a crease, open the paper, and mark the crease (figure 3). 
d. Mark additional points on the bottom edge, and repeat the process (point C remains 

the same). 
Questions: 
- Assume you could repeat this process an infinite number of times, what curve do you 
   think would bound the area where there are no creases? Explain your answer. 
- What is the connection between that curve and the points C and D? 

 
 
 
 
 
 
 
 
 
   
 

                                                 
7 This activity is based on Scher (1995). 
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Below is a sketch of concentric circles with 
a center at point F. 
The distance between each two adjacent
circumferences is one unit as well as the
distance between two adjacent lines. One of 
the lines is designated as l.   
Draw points that their distance from the 
point F equals their distance from the line l. 
 

Assume you could repeat this process an infinite number of times, what would you get? 
 _____________________________________________________________ 

 
This activity demonstrates a simple process of constructing a parabola based on its geometrical
definition. 



 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
What can you say about a line tangent to parabola? 
 
_____________________________________________________________________ 
The proof that the obtained curve is a parabola is beyond the scope of this paper.  
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Figure 1 – marking points C and D 
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Figure 2 – folding the paper 
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Figure 3 – marking the crease 
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