CRITICAL FACTORSAND PROGNOSTIC VALIDITY
IN MATHEMATICS ASSESSMENT

Christer BERGSTEN
Department of Mathematics, Linkdpings Universitet
SE 58183 Linkdping, Sweden
e-mail: chber@mai.liu.se

ABSTRACT

High school mathematics is traditionally more procedura than conceptual in character, as well as formally
less rigorous, than is mathematics at the university level, and hence puts less demand on logical reasoning and
conceptual understanding. To find an instrument to make a reasonably good prognosis for success in
undergraduate mathematical studies, it is therefore necessary to look closely at the demands of the future
mathematical activities rather than only more narrowly at what has actually been accomplished at the high
school level in terms of content and methods. In this paper the development of a short test for prognosticating
academic performance in mathematics is discussed, and the results from a group doing the test when entering
university isrelated to the results on their first mathematics courses.

Based on research literature and an analysis of the demand of the courses, the design of the test was built
upon ten factors that were found to be critical for passing the mathematics courses in the educational programme
being considered: conceptual depth, control, creativity, effort, flexibility, logic, method, organization, process,
and speed. The critical factors cut across the content -process distinction and are expressions of aholistic view of
mathematical performance. To prognosticate academic performanceit is necessary to identify important nodes of
integration in the web of mathematical ideas, concepts, skills, forms, affects, and so on. The critical factors
constitute vertices where the different dimensions of mathematical thinking meet.

In the paper the construction of thetest is discussed, and the results show a strongly significant correlation to
performance on the target undergraduate mathematics course. A notion of prognosgtic validity of the test is
outlined and discussed. The paper shows how test construction, analysis and interpretation of the outcome,
depends heavily on what the result is going to be used for, and how a mathematics assessment design by
necessity leads into discussions about the nature of mathematics and the understanding/performance of
mathematics. What seems to be typical in mathematical problem solving is that many of the critical factors are
involved in one problem solving process and must be combined for success.



1. Introduction

School marks in mathematics alone may have limited vaue for prognogticating performance in
mathemetics a the universty level. High school mathematics is traditionaly more procedura than
conceptud (cf. Hiebert, 1986) in character, as wdl as formdly less rigorous, and hence puts less
demand on logicd reasoning and conceptud understanding. To find an ingrument to make a
reasonably good prognosis for future success in college mathematics, it is therefore necessary to look
more closdly at the demands of the future mathematica activities than only more narrowly a what has
actualy been accomplished at high school.

The development of an assessment ingtrument to prognosticate academic performance in mathema-
tics is discussed, aong with test results, compared to results from the first university course in mathe-
matics for one group of students. An underlying assumption is that some of the generd problems of
assessment in mathemeatics become visible through the window of an example.

In mathematics assessment it is common to make the digtinction between content and process
variables, thus forming a matrix of combinations of different aspects of these two objectives’. In the
NAEP mathematics assessment there are five content and four process variables. To the framework of
the APU secondary assessment further dimensons affecting the assessment outcome have been added
to the matrix, such as the mode of assessment, context, and attitudes. The content and process cate-
gorization is used aso in The Nationd Criteria for Mathematics, where as much as 17 process objec-
tives are listed. (See Ernest, 1989, for descriptions and references) Content and process knowledge, or
domain-specific and genera-strategic knowledge, are closdy related or dependent of each other
(Alexander & Judy, 1988; Perkins & Sadomon, 1989), making it difficult to separate them in a
meaningful way in an assessment Stuation.

During the work with the assessment standards in the USA it has been stressed that any assessment
in mathematics should ded with important mathematics. “Answers to the question What is the
important mathematics here? Should bereflected in: « the plans for the assessment, ¢ each assessment
task and activity, ¢ the interpretation of students responses, and e the intended uses of assessment
results” (NCTM, 1993, p. 29). It is part of the nature of prognostic testing that the mathematics
achievement one is trying to predict dedls with content unknown for the students at the time of the
testing. Therefore it is necessary to look at what aspects of mathematical thinking are important for the
future studies, and then find rdlevant known content.

Important factors for doing mathematics successfully have been analysed for example by Krutetski
(1976), and an increasing number of studies dso of advanced mathematica thinking have appeared
(e.g. Tdl, 1991; Holton, 2001). The choice of such factors must be based on literature studies and on
experienced teacher judgement, including the marking of exams protocols (cf. Webb, 1992, p. 672).
The term critical factor has been chosen here to indicate that with low ‘levels of these factors
students will (most likely) meet problems to pass the mathematics courses considered. Also belief
factors influence study results significantly (Niss, 1993; Webb, 1992), but will not be considered here.

! The meani ng of theterm ‘ process’ is here vague, asit could refer to a specific mathematical skill, orto a
genera cognitive strategy.



2. Critical factors

In the present study 119 civil engineering students were enrolled in a four-and-a-half years
programme with four different branches. Computer science (D), Industria engineering (1), Mechanica
enginee-ring (M), and Applied physics and dectrica engineering (Y). Ten factors have been found to
be critica here.

Conceptual depth — That mathematical concepts and procedures have been learned by root is
often observed in students attempts to solve well chosen prablems. Conceptua depth shows for
example when solutions are “smple’ and accurate, right to the point without unnecessary compli-
cations over a number of tasks, but is often hard to trace in protocols.

Control — There are at least two aspects of control that are critica in this context. Onerefersto the
“looking back” process of checking up a result that has been obtained and the feding that it is
reasonable. The other aspect is more ddicate to describe but may be captured by the phrase ‘I know
what I'm doing’, I’'m controlling the mathematica entities I'’m working with because I'm familiar with
their properties (cf. Bergsten, 1993).

Creativity — In school mathematics fantasy, or origindity in mathematical thought, is seldom
emphassed, but when it shows is an indicator of problem solving ability. In the internaiona
mathematics education community there are now specia conferences on crestivity.

Effort — It can sometimes show in a protocol that the student has tried hard to work out the
problem. For wesker students effort is one of the most criticd factors. However, as thisis an affective
factor, it can't ways be judged from a written response protocol aone.

Flexibility — The ability to change to a thinking mode suitable for the particular problem, for
example to dter between a numeric, graphic, or symboalic form of representing mathematical ideas
(sometimes called versatile thinking; see Tal 1991), is important for solving a wide range of mathe-
matical problems. Included here is the ability to view mathematical symbols representing either a
mathematical object or amathematica operation to be performed (Gray & Tall, 1991; Sfard, 1991).

L ogic — There are many faces of logic involved in a problem solving process. Oneisrigour, i.e. the
extent to which a concluson in the solution process is logicdly valid, and the necessary assumptions
pointed out. Another face is consistency, i.e. the absence of contradictions. Completeness, accuracy,
and generality in reasoning may aso be regarded faces of logic.

Method — There are ‘natural’ and easy ways to solve a problem, and there are ‘clumsy’ ways.
Choice of method with respect to its efficacy isacritica factor. Student often loose track in producing
an increasing amount of ‘agebraic mess. The degree d smplicity may be viewed asalogica factor
but may be considered a factor of its own as it goes beyond logic.

Organisation — This factor refers to the ‘layout’ of the written student response to a given
problem. Isthelogic visible, or are different points made randomly, as it looks, over the page?

Process — |Is the student response predominantly procedural or conceptual in character? Messy
agebraic manipulations are often indicators of a procedura gpproach, detached from conceptua
understanding. Conclusions based on such an gpproach are often mathematicaly incorrect or meaning-
less. Figurative components, such as diagrams, reved the presence of imagigtic thinking, indicating
that a conceptual approach has been used (cf. Goldin, 1987). Another such indicator is the text
incluson of reasoning in words, or short dgebraic solutions. An integration of the procedurad and



conceptua process aspects is often stated a characteristic of understanding mathematics (Hiebert,
1986; Gray & Tal, 1991).

Speed — In university mathematics exams the speed factor can of course be significant for both the
amount and the quality of the outcome.

A point of discussion is how the critica factors relate to the content-process distinction. Now, the
diginction in itsdf is fuzzy (cf. above, and eg. Lerman, 1989), and Perkins and Saomon (1989)
advocate a synthesis. In any reasonable meaning of the terms, clearly content is involved in the
conceptua depth factor, and process for example in the logic and method factors. In fact, method is
the outcome of a content -process integration. Thus, the critical factors cut across the content-process
digtinction, and are expressons of a synthess of the kind just mentioned, i.e. of a holigic view of
mathematical performance. To prognosticate academic performance it is necessary to identify impor-
tant nodes of integration in the web of mathematica ideas, concepts, procedures, skills, and so on. The
critical factors condtitute vertices where the different dimensions of mathematica thinking meet. Thet
iswhy they are consdered critical for prognogticating mathematica performance.

3. Test condtruction and results

With the previous discussion in mind, how should a written test be designed to predict the degree
of successful academic performance in mathematics, and how should the responses be andysed and
interpreted? It should not be possible to solve an item by direct reproduction of memorised techniques
only, excluding pure routine tasks (cf. Christiansen & Water, 1986) in favour of more complex
problem solving. It is aso obvious that dl the critical factors above cannot be ‘covered’ in each one of
the items. Therefore the design and the interpretation of the results must be based on an integrated
local-globa andysis. The rationales behind the sdlection of the items of the prognostic test® will be
briefly discussed.

Mathematics cons gts, among other things, of ideas and the formal representations of ideas (cf. Mac
Lane, 1986). One important idea is that of generdisation, often formdised by usng agebrac
symbolism (item 8). In mathematicd problem solving the input is often an adgebraic expresson. The
problem can consst of reasoning in agebraic terms (items 1 and 7), using only procedural knowledge
or a combined (integra) procedural-conceptua approach by using for example numbers or diagrams.
Mathematica reasoning can gart with a diagram that needs to be analysed (item 6) and/or linked to
agebraic symbolism (item 5), or a diagram may be constructed as a support for reasoning (item 4,
posshly dso items 3, 7, 8 and 10). Solving quadratic equations (item 3) is an example of a skill that
can become highly automated, and is here used to reved the presence of the control function. Control
is critical dso in items 1, 2 and 7. Hypotheticd thinking is implicit in most mathematicad problem
solving, and has therefore been chosen as the core of a problem (item 9), keeping the ‘technicd’ parts
a alow leve of difficulty. Pattern recognition is often fundamental for finding a solution to a
mathematical problem (items 3 and 10).

To ensure effort the level of difficulty has been kept rather high, considering the students in focus
and the time congtraint (the speed factor). A test with tasks where only little effort is needed will not
capture the status of the critical factors.

2 The DPtest, with 10 items; see Appendix A.



The achievement level may be viewed as a product or as a synthesis of the critica factors and
content knowledge. A point of discussion is if the levels of the critical factors can be quantified and
scored separately, or if they should be integrated in the achievement score®

The person congtructing the DP test (i.e. the present author) did not teach the calculus courses in
question (but has done so previous years), nor did collaborate with the examiners, nor did they take
part in the congtruction or evauation of the tet.

Out of atotd of gpproximately 600 beginners at the civil engineering programme of the university,
one group (i.e. class) from each of the branches D, I, M, and Y was randomly chosen, making atota
of 119 students doing the DP test. The test* was administered before the beginning of the first regular
mathematics course (calculus). Calculators or mathematica tables were not allowed. On each item the
scoring was 0, 1, 2, or 3, where 3 was indicating a correct solution, with high levels on the relevant
criticl factors, 0 or 1 an insufficient solution, with low levels of the factors. Thus the range of the
tota score (sum) was from 0 to 30. Group means and standard deviations are shown in table 1,
frequencies of different sumsin table 2, and means of itemsin table 3.°

As can be seen from the tables some groups differ significantly in achievement, differences that are
not explained by their school marks in mathematics. That the items 9 and 10 scored very low (table 3)
cannot be explained by their difficulty done but aso by the time congraints. The corrdation between
item scores and totd score (table 3) are relatively even (i.e. homogenous test), the lowest explained by
the low variance d the item. A factor anaysis (table 3) reveds only one dominating factor, possibly a
generd reasoning factor®. The second factor in Sizeis related to items of an agebraic character. Item
5, with low variance, did not correlate with the other items.

The prognogtic vaue of the DP test can be measured by its correlation to the results of the
mathematics courses that the same students took during their studies. For this paper results from the
caculus course that followed immediately after the DP test will be discussed. This was a one semester
course with one mid term exam and one fina exam. The courses and the exams were identical for the
groups D and Y. Groups | and M had separate (Smilar, less demanding) courses. On al exams there
were seven items of problem solving with a maximum score of 3 on each item. In tables 4a (mid term
exam) and 4b (fina exam) group means, standard deviations, and correlations with the DP test are
shown.” All corrdlations in table 4 are Significant or strongly significant.

4. Comments on response protocols

Some general comments to each item of the DP test are given below.

[tem 1— A vast mgority of the students seemed to bring a purely procedura approach from high
school when it came to deding with inequdities. After ‘smplifying’ the conclusons were often
incorrect, irrdlevant, or nonsense. There were often low levels on the logic, method, and control
factors.

3 An integral approach was chosen here
Announced as a 90 minutes long diagnostic test
5 See Appendix B
® Often labelled g intheliterature (e.g. Gustafsson, 1988)
! See Appendix B



Item 2 — The most common mistake on this item was to not multiply the denominator outside and
insde the parenthesis.

Item 3 — Only athird of the students observed that one of the roots of the equation they obtained
was fase (in most cases due to ‘squaring’ the equation). Here the control factor was indeed criticdl,
process being purely procedural.

Item 4— Most students based their solutions on the notion of smilar triangles, and only a few
applied the Pythagorean theorem. The direct solution obtained by transforming the triangle to a
trgpezoid with equa area (related to the crestivity factor; see figure below) was not found in the
response protocols.

AN

Item 5 — Students used different identification methods, the most common checking up the vaue of
y for one or two vaues of x. Only afew seemed to have argued on asymptotic behaviours.

Item 6— Methods differed alot in smplicity. Some students displayed a bunch of remembered area
formulas, without knowing what to do with them.

Item 7 — Comments made on item 1 apply aso here. The conceptua depth factor scored low on
this item. ‘Rules from solving an equation were in some cases trandated to an inequdity. With low
conceptua depth the control factor cannot work, and the procedura approach can lead almost
anywhere. The incluson of a parameter has put an extra load on the logic and the conceptud depth
factors. As dready noted, the absence of graphica solutions is here, most likely, an indicator of alow
level of the conceptua depth factor.

Item 8 — This item puts emphasis on many aspects of the logic factor. Levels of explanation
differed consderably (rigour), and difficulties of expressing the generd formulain a smple form were
frequent.

Item 9 — The problem was attempted by 46% of the students but solved (score O 2) only by 8 %.
Many sudents got lost in dgebraic manipulations, an indicator of not understanding the logic, not
redlly knowing what to do with dl the agebra.

Item 10 — The problem was attempted by 51% of the students but solved (score [J 2) only by 3 %.
In most of the attemptsthe equation x* - x> =0 was solved, or agraph was drawn.

As an overal comment, what seems to be typicad in mathematica problem solving is that many of
the critica factors are involved in one problem solving process and must be combined for success.

5. Prognostic validity

The vdidity of atest depends on what the information (test result) isto be used for. For the kind of
test discussed here it seems proper to talk about prognostic validity. This means that the analysis and
interpretation of the results (i.e. the written test protocols) must be based on how well they may
prognosticate academic performance in mathematics. The prognostic vaidity of the test may then be
vaued from the outcomes of this process, and is thus a function of such factors as design, selection of
tasks, content specification, and rationae for protocol analysis (see eg. Webb, 1992, p. 674).



In this paper, with prognostic vdidity in focus, a framework for the protocol andyss has been
suggested consigting of ten factors that have been judged to be critica for future academic perfor-
mance in mathematics. In atraditiona achievement score, which within a mathematics department has
a congderable rdiability and validity ®, according to the standards of the faculty, critical factors may
implicitly be evoked. There s seldom, however, a stated ‘generd manua’ for the correcting proce-
dure. The validity and reliability of the markings are normaly based on teacher experience and
judgement only.

A theory of how to find appropriate forms for analysing responses to an assessment Situation is il
lacking (Webb, 1992). One has to take into account not only the four components mentioned above®
but dso the interaction between them. This means that one must keep some kind of control of the
whole assessment process, so that dl its agpects are in alignment with the purpose of the assessment.

One preliminary quantitative measure of the prognostic vdidity of the DP test is given by the
correlation between the total score on the DP test and the total score on the university mathematics
exams. As can be seen from table 4, these ranged from .52 to .90 on the first calculus exam, and from
44 to .86 on the second. For the Y and D programmes, this prognogtic vaidity of the DP test was
quite substantial.

A fact that must be considered here is that the DP test and the first calculus exam both are written
problem solving mathematics tests, given with a delay of only two months. Therefore a positive corre-
lation between those tests was to be expected and explained maybe by the genera cognitive ability
factor g (cf. the factor analysis in table 3). However, the point made here is that the DP test, based on
high school mathematics content only, was designed to have a srong corrdation with the exams
results, and it may well be the case tha in basic universty mathematics the g factor shows by its
influence on the criticd factors (cf Gustafsson, 1988). More data will be needed to further evauate the
prognogtic validity of the DP test.

6. Discussion

It is becoming generdly acknowledhed that to provide a good picture of a student’s mathematical
ability an assessment ‘package’ is needed (Niss, 1993). It is, however, dso necessary to ask the
‘reverse question: How much, and what kind of information can you get from only one written test?
After dl, written tests are often dl you can get. What information there is hidden in a response
protocol isaresult of the interaction of the student with the test tasks and the assessment situation. The
test will measure the kind of mathematical performance that the items and the situation will evoke.

The items of the DP test were constructed to show the students' levels on the critical factors. This
influenced the andysis of the protocols in such a way that the scoring was made againgt the relevant
critical factors. The judging of the levels of these factors from the protocols are related to what is
expected from this group of students, which means that they cannot be objective or absolute but are
socidly referenced. During the work it was impaossible to keep these factors apart from mathematical
content or achievement. An attempt was made to mark one achievement score (localy on each item)
and one globa score on the critical factors, to give a summarised or adjusted score of mathematical

8 Validity in relation to course objectives
9 Asthere quoted from NCTM, 1993, p. 29



performance. However, the achievement score was, indeed, aways based on the level of some critical
factor(s). Therefore, only one integral score was chosen.

One shortcoming in dl testing is that students may have the knowledge but don't use it (cf.
Schoenfeld, 1987). To what extent the critical factors are related to the ability of evoking relevant
knowledge in a problem solving Situation is an open question. This is related to the cognitive satus of
the critical factors, which is beyond the present scope.

This paper illudtrates how test congtruction, andysis and interpretation of the outcome, depend
heavily on what the result is going to be used for. It aso shows how a mathematics assessment design
by necessity leads into discussions about the nature of mathematics and of doing and understanding
mathematics. The prognogtic test DP was designed to make the critical factors visible. The results
indicated a substantia prognostic vaidity of the test, and further developments and experiences will
show the degree of substance in this conceptualisation.
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APPENDIX A — The DP test

1. For what positive numbers a, b and ¢ does the inequality % <—Z:

2. Forthenumbers g ,a,, a;, .. wehave a =0, a,=1, and a,.,, :%(Sanﬂ+an)
For al natural numbers n O 1. Evaluate a; .

3. Finddl red solutionsto the equation x =1+ +/x .

4. Inscribe asguarein aright-angled triangle so that two of its Sdes fal dong the smdler sides of the
triangle, and one vertex on the hypotenuse. Show that the inverted value of the side of the square
equds the sum of the inverted values of the smaller sides of the right-angled triangle.

5. Match the function (a-d) to the corresponding graph (1-4):
1 X X2 X 3

C
x2-1 x2-1 ) x2-1 x2-1

o™=
o=
I

0 ) ©) @

6. A circleisinscribed in an equilaterd triangle, which is inscribed in acircle that isinscribed in a
sguare inscribed in acircle (with figure in test). What portion, in percentage, isthe smallest circle
area of the biggest circle area?

7. For what redl numbersxis x*<ax ? (aisarea congtant)

8. A triangle has no diagond. A sguare has two diagonds. A regular pentagon has five diagonds.
How many diagonals are there in aregular

a) hexagon ? b) n-polygon? (nisanatura number [1 3
9. Letaand b beany positive numbers. For the numbers A:_; (a+b), G=-/ab and H,

where 2 18, 1¢ wehae () ADG and (9 GOH
H 2& be
Show that (1) implies (2).
10. Find (without the use of derivatives) the minimum value of

a) x*-x° b) 4*- 2



APPENDIX B — Tables

Sum 1-3
F 8

46
19

Group

Total

7-9

33

D
I
M
Y

10-12
27

m
109
8.6
88
134
103

S
6.4
44
25
6.1
53

1315
10

min/max n
2/130 29
3/22 31
312 31
127 28
/30 119

Table 1. Means (m), standard deviations(s), minimum/maximum score,
and group sizes on the diagnostic test DP

16-18 1921 22-24 25-27 28-30

13 5 2 1 1

Table 2. Frequencies (f) of studentswith sumsin given intervals (sum) on the diagnostic test DP

Item

© 00N O O b W NP

=
o

Factor 1
.03
.03

-04

43
17
72
65
.69
33
Sl

Factor 2

.65
.03
.68
45
15
-01
27
.02
72
49

Factor 3 r m %
27 .58 10 87
82 42 19 92
.18 46 10 %
.39 72 9 77
23 34 26 %
.26 59 9 64
.28 .65 4 80
-.08 45 11 85
-19 57 3 46
-23 49 1 51

Table 3. Factor loadings (varimax rotation) on DP items (eigenvalues 3.00, 1.09,

and 1.08 respectively), and Pearson correlations item-sum (r). Means of
items (m) and the proportion of students(%) that attempted items (n=119).

Group m
D 44

I 44

M 54
Y 7.7
D+Y 6.1

S
53
45
34
41
49

Table4a

0/21
0/15
011
2/17
021

min/max

n
25
30
28
27
52

Means (m), standard deviations (s), min/max

scores, group size (n) and Pearson correlations (r)

-

52
.62
.79

between mid term exam of calculus and the test DP

Group m S min/max n r
D 5.7 53 017 23 .86
I 6.7 49 0/16 0 M4
M 70 48 0/15 27 64
Y 9.1 39 2/19 27 .66
D+Y 75 49 0/19 5 .78
Table 4b.

Means (m), standard deviations (s), min/max
scores, group size (n) and Pearson correlations (1)
between final exam of calculus and the test DP



