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ABSTRACT 
High school mathematics is traditionally more procedural than conceptual in character, as well as formally 

less rigorous, than is mathematics at the university level, and hence puts less demand on logical reasoning and 
conceptual understanding. To find an instrument to make a reasonably good prognosis for success in 
undergraduate mathematical studies, it is therefore necessary to look closely at the demands of the future 
mathematical activities rather than only more narrowly at what has actually been accomplished at the high 
school level in terms of content and methods. In this paper the development of a short test for prognosticating 
academic performance in mathematics is discussed, and the results from a group doing the test when entering 
university is related to the results on their first mathematics courses.  

Based on research literature and an analysis of the demand of the courses, the design of the test was built 
upon ten factors that were found to be critical for passing the mathematics courses in the educational programme 
being considered: conceptual depth, control, creativity, effort, flexibility, logic, method, organization, process, 
and speed. The critical factors cut across the content -process distinction and are expressions of a holistic view of 
mathematical performance. To prognosticate academic performance it is necessary to identify important nodes of 
integration in the web of mathematical ideas, concepts, skills, forms, affects, and so on. The critical factors 
constitute vertices where the different dimensions of mathematical thinking meet. 

In the paper the construction of the test is discussed, and the results show a strongly significant correlation to 
performance on the target undergraduate mathematics course. A notion of prognostic validity of the test is 
outlined and discussed. The paper shows ho w test construction, analysis and interpretation of the outcome, 
depends heavily on what the result is going to be used for, and how a mathematics assessment design by 
necessity leads into discussions about the nature of mathematics and the understanding/performance of 
mathematics. What seems to be typical in mathematical problem solving is that many of the critical factors are 
involved in one problem solving process and must be combined for success. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

1. Introduction 
School marks in mathematics alone may have limited value for prognosticating performance in 

mathematics at the university level. High school mathematics is traditionally more procedural than 
conceptual (cf. Hiebert, 1986) in character, as well as formally less rigorous, and henc e puts less 
demand on logical reasoning and conceptual understanding. To find an instrument to make a 
reasonably good prognosis for future success in college mathematics, it is therefore necessary to look 
more closely at the demands of the future mathematical activities than only more narrowly at what has 
actually been accomplished at high school.  

The development of an assessment instrument to prognosticate academic performance in mathema-
tics is discussed, along with test results, compared to results from the first university course in mathe-
matics for one group of students. An underlying assumption is that some of the general problems of 
assessment in mathematics become visible through the window of an example. 

In mathematics assessment it is common to make the distinction between content and process 
variables, thus forming a matrix of combinations of different aspects of these two objectives1. In the 
NAEP mathematics assessment there are five content and four process variables. To the framework of 
the APU secondary assessment further dimensions affecting the assessment outcome have been added 
to the matrix, such as the mode of assessment, context, and attitudes. The content and process cate-
gorization is used also in The National Criteria for Mathematics, where as much as 17 process objec-
tives are listed. (See Ernest, 1989, for descriptions and references) Content and process knowledge, or 
domain-specific and general-strategic knowledge, are closely related or dependent of each other 
(Alexander & Judy, 1988; Perkins & Salomon, 1989), making it difficult to separate them in a 
meaningful way in an assessment situation.  

During the work with the assessment standards in the USA it has been stressed that any assessment 
in mathematics should deal with important mathematics: “Answers to the question What is the 
important mathematics here? Should be reflected in: • the plans for the assessment, • each assessment 
task and activity, • the interpretation of students’ responses, and  • the intended uses of assessment 
results” (NCTM, 1993, p. 29). It is part of the nature of prognostic testing that the mathematics 
achievement one is trying to predict deals with content unknown for the students at the time of the 
testing. Therefore it is necessary to look at what aspects of mathematical thinking are important for the 
future studies, and then find relevant known content.  

Important factors for doing mathematics successfully have been analysed for example by Krutetski 
(1976), and an increasing number of studies also of advanced mathematical thinking have appeared 
(e.g. Tall, 1991; Holton, 2001). The choice of such factors must be based on literature studies and on 
experienced teacher judgement, including the marking of exams protocols (cf. Webb, 1992, p. 672). 
The term critical factor has been chosen here to indicate that with low ‘levels’ of these factors 
students will (most likely) meet problems to pass the mathematics courses considered. Also belief 
factors influence study results significantly (Niss, 1993; Webb, 1992), but will not be considered here. 

 

                                                 
1 The meaning of the term ‘process’ is here vague, as it could refer to a specific mathematical skill, or to a 
general cognitive strategy. 



2. Critical factors 
In the present study 119 civil engineering students were enrolled in a four-and-a-half years 

programme with four different branches: Computer science (D), Industrial engineering (I), Mechanical 
enginee-ring (M), and Applied physics and electrical engineering (Y). Ten factors have been found to 
be critical here.  

Conceptual depth – That mathematical concepts and procedures have been learned by root is 
often observed in students’ attempts to solve well chosen problems. Conceptual depth shows for 
example when solutions are “simple” and accurate, right to the point without unnecessary compli-
cations over a number of tasks, but is often hard to trace in protocols.  

Control – There are at least two aspects of control that are critical in this context. One refers to the 
“looking back” process of checking up a result that has been obtained and the feeling that it is 
reasonable. The other aspect is more delicate to describe but may be captured by the phrase ‘I know 
what I’m doing’, I’m controlling the mathematical entities I’m working with because I’m familiar with 
their properties (cf. Bergsten, 1993).  

Creativity – In school mathematics fantasy, or originality in mathematical thought, is seldom 
emphasised, but when it shows is an indicator of problem solving ability. In the international 
mathematics education community there are now special conferences on creativity. 

Effort – It can sometimes show in a protocol that the student has tried hard to work out the 
problem. For weaker students effort is one of the most critical factors. However, as this is an affective 
factor, it can’t always be judged from a written response protocol alone. 

Flexibility – The ability to change to a thinking mode suitable for the particular problem, for 
example to alter between a numeric, graphic, or symbolic form of representing mathematical ideas 
(sometimes called versatile thinking; see Tall 1991), is important for solving a wide range of mathe-
matical problems. Included here is the ability to view mathematical symbols representing either a 
mathematical object or a mathematical operation to be performed (Gray & Tall, 1991; Sfard, 1991). 

Logic – There are many faces of logic involved in a problem solving process. One is rigour, i.e. the 
extent to which a conclusion in the solution process is logically valid, and the necessary assumptions 
pointed out. Another face is consistency, i.e. the absence of contradictions. Completeness,  accuracy , 
and generality in reasoning may also be regarded faces of logic. 

Method – There are ‘natural’ and easy ways to solve a problem, and there are ‘clumsy’ ways. 
Choice of method with respect to its efficacy is a critical factor. Student often loose track in producing 
an increasing amount of ‘algebraic mess’. The degree of simplicity  may be viewed as a logical factor 
but may be considered a factor of its own as it goes beyond logic.  

Organisation – This factor refers to the ‘layout’ of the written student response to a given 
problem. Is the logic visible, or are different points made randomly, as it looks, over the page?  

Process – Is the student response predominantly procedural or conceptual in character? Messy 
algebraic manipulations are often indicators of a procedural approach, detached from conceptual 
understanding. Conclusions based on such an approach are often mathematically incorrect or meaning-
less. Figurative components, such as diagrams, reveal the presence of imagistic thinking, indicating 
that a conceptual approach has been used (cf. Goldin, 1987). Another such indicator is the text 
inclusion of reasoning in words, or short algebraic solutions. An integration of the procedural and 



conceptual process aspects is often stated a characteristic of understanding mathematics (Hiebert, 
1986; Gray & Tall, 1991).  

Speed – In university mathematics exams the speed factor can of course be significant for both the 
amount and the quality of the outcome.  

A point of discussion is how the critical factors relate to the content-process distinction. Now, the 
distinction in itself is fuzzy (cf. above, and e.g. Lerman, 1989), and Perkins and Salomon (1989) 
advocate a synthesis. In any reasonable meaning of the terms, clearly content is involved in the 
conceptual depth factor, and process for example in the logic and method factors. In fact, method is 
the outcome of a content-process integration. Thus, the critical factors cut across the content-process 
distinction, and are expressions of a synthesis of the kind just mentioned, i.e. of a holistic view of 
mathematical performance. To prognosticate academic performance it is necessary to identify impor-
tant nodes of integration in the web of mathematical ideas, concepts, procedures, skills, and so on. The 
critical factors constitute vertices where the different dimensions of mathematical thinking meet. That 
is why they are considered critical for prognosticating mathematical performance. 

 

3. Test construction and results 
With the previous discussion in mind, how should a written test be designed to predict the degree 

of successful academic performance in mathematics, and how should the responses be analysed and 
interpreted? It should not be possible to solve an item by direct reproduction of memorised techniques 
only, excluding pure routine tasks (cf. Christiansen & Walter, 1986) in favour of more complex 
problem solving. It is also obvious that all the critical factors above cannot be ‘covered’ in each one of 
the items. Therefore the design and the interpretation of the results must be based on an integrated 
local-global analysis. The rationales behind the selection of the items of the prognostic test2 will be 
briefly discussed. 

Mathematics consists, among other things, of ideas and the formal representations of ideas (cf. Mac 
Lane, 1986). One important idea is that of generalisation, often formalised by using algebraic 
symbolism (item 8). In mathematical problem solving the input is often an algebraic expression. The 
problem can consist of reasoning in algebraic terms (items 1 and 7), using only procedural knowledge 
or a combined (integral) procedural-conceptual approach by using for example numbers or diagrams. 
Mathematical reasoning can start with a diagram that needs to be analysed (item 6) and/or linked to 
algebraic symbolism (item 5), or a diagram may be constructed as a support for reasoning (item 4, 
possibly also items 3, 7, 8 and 10). Solving quadratic equations (item 3) is an example of a skill that 
can become highly automated, and is here used to reveal the presence of the control function. Control 
is critical also in items 1, 2 and 7. Hypothetical thinking is implicit in most mathematical problem 
solving, and has therefore been chosen as the core of a problem (item 9), keeping the ‘technical’ parts 
at a low level of difficulty. Pattern recognition is often fundamental for finding a solution to a 
mathematical problem (items 3 and 10). 

To ensure effort the level of difficulty has been kept rather high, considering the students in focus 
and the time constraint (the speed factor). A test with tasks where only little effort is needed will not 
capture the status of the critical factors. 

                                                 
2 The DP test, with 10 items; see Appendix A. 



The achievement level may be viewed as a product or as a synthesis of the critical factors and 
content knowledge. A point of discussion is if the levels of the critical factors can be quantified and 
scored separately, or if they should be integrated in the achievement score.3  

The person constructing the DP test (i.e. the present author) did not teach the calculus courses in 
question (but has done so previous years), nor did collaborate with the examiners, nor did they take 
part in the construction or evaluation of the test.  

Out of a total of approximately 600 beginners at the civil engineering programme of the university, 
one group (i.e. class) from each of the branches D, I, M, and Y was randomly chosen, making a total 
of 119 students doing the DP test. The test4 was administered before the beginning of the first regular 
mathematics course (calculus). Calculators or mathematical tables were not allowed. On each item the 
scoring was 0, 1, 2, or 3, where 3 was indicating a correct solution, with high levels on the relevant 
critical factors, 0 or 1 an insufficient solution, with low levels of the factors. Thus the range of the 
total score (sum) was from 0 to 30. Group means and standard deviations are shown in ta ble 1, 
frequencies of different sums in table 2, and means of items in table 3. 5 

As can be seen from the tables some groups differ significantly in achievement, differences that are 
not explained by their school marks in mathematics. That the items 9 and 10 scored very low (table 3) 
cannot be explained by their difficulty alone but also by the time constraints. The correlation between 
item scores and total score (table 3) are relatively even (i.e. homogenous test), the lowest explained by 
the low variance of the item. A factor analysis (table 3) reveals only one dominating factor, possibly a 
general reasoning factor6. The second factor in size is related to items of an algebraic character. Item 
5, with low variance, did not correlate with the other items.  

The prognostic value of the DP test can be measured by its correlation to the results of the 
mathematics courses that the same students took during their studies. For this paper results from the 
calculus course that followed immediately after the DP test will be discussed. This was a one semester 
course with one mid term exam and one final exam. The courses and the exams were identical for the 
groups D and Y. Groups I and M had separate (similar, less demanding) courses. On all exams there 
were seven items of  problem solving with a maximum score of 3 on each item. In tables 4a (mid term 
exam) and 4b (final exam) group means, standard deviations, and correlations with the DP test are 
shown.7 All correlations in table 4 are significant or strongly significant.  

 

4. Comments on response protocols 
Some general comments to each item of the DP test are given below.  
Item 1 – A vast majority of the students seemed to bring a purely procedural approach from high 

school when it came to dealing with inequalities. After ‘simplifying’ the conclusions were often 
incorrect, irrelevant, or nonsense. There were often low levels on the logic, method, and control 
factors. 

                                                 
3 An integral approach was chosen here 
4 Announced as a 90 minutes long diagnostic test 
5 See Appendix B 
6 Often labelled g in the literature (e.g. Gustafsson, 1988) 
7 See Appendix B 



Item 2 – The most common mistake on this item was to not multiply the denominator outside and 
inside the parenthesis. 

Item 3 – Only a third of the students observed that one of the roots of the equation they obtained 
was false (in most cases due to ‘squaring’ the equation). Here the control factor was indeed critical, 
process being purely procedural.  

Item 4 – Most students based their solutions on the notion of similar triangles, and only a few 
applied the Pythagorean theorem. The direct solution obtained by transforming the triangle to a 
trapezoid with equal area (related to the creativity factor; see figure below) was not found in the 
response protocols. 

 
 
 
 
 
Item 5 – Students used different identification methods, the most common checking up the value of 

y for one or two values of x. Only a few seemed to have argued on asymptotic behaviours. 
Item 6 – Methods differed a lot in simplicity. Some students displayed a bunch of remembered area 

formulas, without knowing what to do with them.  
Item 7 – Comments made on item 1 apply also here. The conceptual depth factor scored low on 

this item. ‘Rules’ from solving an equation were in some cases translated to an inequality. With low 
conceptual depth the control factor cannot work, and the procedural approach can lead almost 
anywhere. The inclusion of a parameter has put an extra load on the logic and the conceptual depth 
factors. As already noted, the absence of graphical solutions is here, most likely, an indicator of a low 
level of the conceptual depth factor. 

Item 8 – This item puts emphasis on many aspects of the logic factor. Levels of explanation 
differed considerably (rigour), and difficulties of expressing the general formula in a simple form were 
frequent.  

Item 9 – The problem was attempted by 46% of the students but solved (score � 2) only by 8 %. 
Many students got lost in algebraic manipulations, an indicator of not understanding the logic, not 
really knowing what to do with all the algebra. 

Item 10 – The problem was attempted by 51% of the students but solved (score � 2) only by 3 %. 
In most of the attempts the equation x4 − x 2 = 0  was solved, or a graph was drawn.  

As an overall comment, what seems to be typical in mathematical problem solving is that many of 
the critical factors are involved in one problem solving process and must be combined for success. 

 

5. Prognostic validity 
The validity of a test depends on what the information (test result) is to be used for. For the kind of 

test discussed here it seems proper to talk about prognostic validity. This means that the analysis and 
interpretation of the results (i.e. the written test protocols) must be based on how well they may 
prognosticate academic performance in mathematics. The prognostic validity of the test may then be 
valued from the outcomes of this process, and is thus a function of such factors as design, selection of 
tasks, content specification, and rationale for protocol analysis (see e.g. Webb, 1992, p. 674).  



In this paper, with prognostic validity in focus, a framework for the protocol analysis has been 
suggested consisting of ten factors that have been judged to be critical for future academic perfor-
mance in mathematics. In a traditional achievement score, which within a mathematics department has 
a considerable reliability and validity 8, according to the standards of the faculty, critical factors may 
implicitly be evoked. There is seldom, however, a stated ‘general manual’ for the correcting proce-
dure. The validity and reliability of the markings are normally based on teacher experience and 
judgement only.  

A theory of how to find appropriate forms for analysing responses to an assessment situation is still 
lacking (Webb, 1992). One has to take into account not only the four components mentioned above9 
but also the interaction between them. This means that one must keep some kind of control of the 
whole assessment process, so that all its aspects are in alignment with the purpose of the assessment. 

One preliminary quantitative measure of the prognostic validity of the DP test is given by the 
correlation between the total score on the DP test and the total score on the university mathematics 
exams. As can be seen from table 4, these ranged from .52 to .90 on the first calculus exam, and from 
.44 to .86 on the second. For the Y and D programmes, this prognostic validity of the DP test was 
quite substantial.  

A fact that must be considered here is that the DP test and the first calculus exam both are written 
problem solving mathematics tests, given with a delay of only two months. Therefore a positive corre-
lation between those tests was to be expected and explained maybe by the general cognitive ability 
factor g (cf. the factor analysis in table 3). However, the point made here is that the DP test, based on 
high school mathematics content only, was designed to have a strong correlation with the exams 
results, and it may well be the case  that in basic university mathematics the g factor shows by its 
influence on the critical factors (cf Gustafsson, 1988). More data will be needed to further evaluate the 
prognostic validity of the DP test. 

 

 6. Discussion 
It is becoming generally acknowledged that to provide a good picture of a student’s mathematical 

ability an assessment ‘package’ is needed (Niss, 1993). It is, however, also necessary to ask the 
‘reverse’ question: How much, and what kind of information can you get from only one written test? 
After all, written tests are often all you can get. What information there is hidden in a response 
protocol is a result of the interaction of the student with the test tasks and the assessment situation. The 
test will measure the kind of mathematical performance that the items and the situation will evoke.  

The items of the DP test were constructed to show the students’ levels on the critical factors. This 
influenced the analysis of the protocols in such a way that the scoring was made against the relevant 
critical factors. The judging of the levels of these factors from the protocols are related to what is 
expected from this group of students, which means that they cannot be objective or absolute but are 
socially referenced. During the work it was impossible to keep these factors apart from mathematical 
content or achievement. An attempt was made to mark one achievement score (locally on each item) 
and one global score on the critical factors, to give a summarised or adjusted score of mathematical 

                                                 
8 Validity in relation to course objectives 
9 As there quoted from NCTM, 1993, p. 29 



performance. However, the achievement score was, indeed, always based on the level of some critical 
factor(s). Therefore, only one integral score was chosen. 

One shortcoming in all testing is that students may have the knowledge but don’t use it (cf. 
Schoenfeld, 1987). To what extent the critical factors are related to the ability of evoking relevant 
knowledge in a problem solving situation is an open question. This is related to the cognitive status of 
the critical factors, which is beyond the present scope.  

This paper illustrates how test construction, analysis and interpretation of the outcome, depend 
heavily on what the result is going to be used for. It also shows how a mathematics assessment design 
by necessity leads into discussions about the nature of mathematics and of doing and understanding 
mathematics. The prognostic test DP was designed to make the critical factors visible. The results 
indicated a substantial prognostic validity of the test, and further developments and experiences will 
show the degree of substance in this conceptualisation.  
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APPENDIX A – The DP test 
 

1. For what positive numbers a, b and c does the inequality  
a

b
<

a + c

b + c
   hold? 

2.   For the numbers  a1 ,  a 2 ,  a 3 ,  ...  we have a1 = 0 ,  a 2 = 1 ,  and  an +2 =
1

4
(3an +1 + an )  

      For all natural numbers  n � 1. Evaluate a5  . 

3.   Find all real solutions to the equation x = 1+ x  . 

4.   Inscribe a square in a right-angled triangle so that two of its sides fall along the smaller sides of the  
      triangle, and one vertex on the hypotenuse. Show that the inverted value of the side of the square   
      equals the sum of the inverted values of the smaller sides of the right-angled triangle. 

5.   Match the function (a-d) to the corresponding graph (1-4): 

     a)   
1

x 2 −1
  b)   

x

x 2 −1
  c)   

x2

x 2 −1
  d)   

x 3

x 2 −1
 

 

                    
     (1)         (2)            (3)             (4) 
 
6.   A circle is inscribed in an equilateral triangle, which is  inscribed in a circle that is inscribed in a  
      square inscribed in a circle (with figure in test). What portion, in percentage, is the smallest circle  
      area of the biggest circle area? 

7.   For what real numbers x is  x
2 < ax  ? (a is a real constant) 

8.   A triangle has no diagonal. A square has two diagonals. A regular pentagon has five diagonals.  
      How many diagonals are there in a regular 

      a)   hexagon ?  b)   n-polygon ?  (n is a natural number � 3) 

9.   Let a and b be any positive numbers. For the numbers A =
1
2

(a + b) , G = ab  and H,  

     where  1
H

=
1
2

1
a

+
1
b

 
 
 

 
 
  , we have  (1)   A � G and  (2)   G � H 

     Show that (1) implies (2). 

10. Find (without the use of derivatives) the minimum value of 

      a)   x
4 − x

2   b) 4x − 2 x 
 
 
 



APPENDIX B – Tables 
 

Group m s min/max n 

D 10.9 6.4 2/30 29 

I 8.6 4.4 3/22 31 

M 8.8 2.5 3/12 31 

Y 13.4 6.1 1/27 28 

Total 10.3 5.3 1/30 119 
 

Table 1. Means (m), standard devia tions (s), minimum/maximum score,  
and group sizes on the diagnostic test DP 

 
Sum 1-3 4-6 7-9 10-12 13-15 16-18 19-21 22-24 25-27 28-30 

F 8 19 33 27 10 13 5 2 1 1 
 

Table 2. Frequencies (f) of students with sums in given intervals (sum) on the diagnostic test DP 

 
Item Factor 1 Factor 2 Factor 3 r m % 

1 .03 .65 .27 .58 1.0 87 

2 .03 .03 .82 .42 1.9 92 

3 -.04 .68 .18 .46 1.0 96 

4 .43 .45 .39 .72 .9 77 

5 .17 .15 .23 .34 2.6 96 

6 .72 -.01 .26 .59 .9 64 

7 .65 .27 .28 .65 .4 80 

8 .69 .02 -.08 .45 1.1 85 

9 .33 .72 -.19 .57 .3 46 

10 .51 .49 -.23 .49 .1 51 
 

Table 3. Factor loadings (varimax rotation) on DP items (eigenvalues 3.00, 1.09,  
   and 1.08 respectively), and Pearson correlations item-sum (r). Means of  
   items (m) and the proportion of students (%) that attempted items (n=119). 

 
Group m s min/max n r  Group m s min/max n r 

D 4.4 5.3 0/21 25 .90  D 5.7 5.3 0/17 23 .86 

I 4.4 4.5 0/15 30 .57  I 6.7 4.9 0/16 30 .44 

M 5.4 3.4 0/11 28 .52  M 7.0 4.8 0/15 27 .64 

Y 7.7 4.1 2/17 27 .62  Y 9.1 3.9 2/19 27 .66 

 D+Y 6.1 4.9 0/21 52 .79  D+Y 7.5 4.9 0/19 50 .78 
  

Table 4a.       Table 4b. 
Means (m), standard deviations (s), min/max   Means (m), standard deviations (s), min/max  
scores, group size (n) and Pearson correlations (r)   scores, group size (n) and Pearson correlations (r) 
between mid term exam of calculus and the test DP  between final exam of calculus and the test DP 


