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ABSTRACT

In teaching a multivariable calculus course, two main difficulties facing the student are to draw surfaces in three-
dimensions, and to setup and calculate tedious triple integrals. The added third dimension causes great difficulty
even to the well prepared student who has successfully finished a two semester single variable calculus course.
The student must now suddenly think in three-dimensions. Visualizing and drawing the corresponding three—
dimensional surfaces pose a significant challenge to the novice. To alleviate the problem, the student and the
instructor must resort to the modern technologies. Computer algebra systems (CAS) such as Mathematica and
Maple are well equipped to handle such tasks. The paper has two goals: One goal is to demonstrate the usage of
the CAS Mathematica to learn some standard topics of a multivariable calculus course, such as vectors, partial
derivatives, graphing of three-dimensional objects, and multiple integrals. As the second, but most important
goal of the paper, we will consider the special topic of the center of gravity of solid objects. This topic was
chosen because it uses very many of the techniques learned in a multivariable calculus course. We will show
how to use the CAS Mathematica to evaluate tedious triple integrals arising in calculating the center of gravity.
Mathematica can also be used as a visualization tool to draw the graphs of three-dimensional solids under
consideration. Usually a standard multivariable course only considers the center of gravity of fixed solids.
However, with the aid of Mathematica, the students are in an ideal position to consider variable solids as well.
Thus, the paper introduces the novel concept of the locus of the center of gravity of certain types of variable
solids. The paper also illustrates several facets of A CAS in undergraduate education — the usage of a CAS as a
computational tool, visualization tool, experimentation tool, and a conjecture-forming tool.



1. Computer Algebra Systems in a Multivariable Calculus

Course
Some of the topics of a standard multivariable calculus course include vectors, partial derivatives,
directional derivatives, surfaces in three-dimensions, extrema of functions of two variables, cylindrical
and spherical coordinates, multiple integrals, and variable transformations (see [15] and [17]). The
following diagram illustrates some of these different facets of a multivariable calculus course:
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Figure 1.1 Different Facets of a Multivariable Calculus Course

The above diagram is not meant as to represent a complete exhaustive list of topics covered in a
standard multivariable calculus course. In this section, we will discuss how to use the CAS
Mathematica to learn some of the above topics. Mathematica is a general purpose CAS. It can be used
as a numeric or symbolic computational device, a tool to draw two or three dimensional graphs, a
visualization system to analyze data, or even as a multimedia studio to combine sounds and animation.
The built-in programming language of Mathematica makes it an excellent tool to investigate
mathematical or physical problems. Some good references on Mathematica are [2], [13], [18], and
[19]. For the usage of Mathematica as a visualization tool, the reader can refer to [6], [8], [9], [11],
and [12]. For the usage of Mathematica as a computational or a conjecture-forming tool, refer to [3],
[4], [5], [7], and [10].

1.1 Vectors
(a) Dot Products:



The Mathematica command “Dot” can be used to calculate the dot product of any two vectors, two-
dimensional or three-dimensional (see [19]).

Example 1.1 Find the dot product of the vectors # =<1,2,—3>,and v =<—4,1,2 >.

Vectors are represented by objects in Mathematica called lists. For example, the vector u above is
given as the list {1,2,—3}. To find the dot product of the two given vectors, use the following

Mathematica command:
Input: Dot[ {1,2,-3}, {-4,1,2}]

To execute the command, press “Shift-Enter”. The output is —8. Therefore, u.v =—-8.

Note: Another way to input the dot product command in Mathematica is to use the “.” operation
directly from the keyboard. For example, the following command “{1,2,-3}.{-4,1,2}” yields the same
result as before.

(b) Cross Products
The Mathematica command “Cross” can be used to compute the cross product of any two three-
dimensional vectors (see [19]).

Example 1.2 Find the cross product of the vectors # = <1,2,—3> and v =<—4,1,2 >.

The following Mathematica command achieves the task:
Input: Cross[{1,2,-3}, {-4,1,2}]

Press “Shift-Enter” to execute the command. The output implies that u Xy =< 7,10, 9 >.

(c) Triple Scalar Products and Vector Identities
One important result on the dot and cross products is the following vector identity, where u, v, and
w are any three-dimensional vectors (see [15] and [17]):

u.(vxw)=(uxv).w (1.1)
Either side of the equation (1.1) is referred to as the triple scalar product of the vectors u, v, and w.
Example 1.3 Use Mathematica to establish the vector identity (1.1).
The following Mathematica program perform the required task:
Input:
u = {ul,u2,u3};

v ={vl,v2,v3};
w ={wl,w2,w3};



expr1=Dot[u,Cross|[v,w]]
expr2=Dot[Cross[u,v],w]
Simplify[expr1-expr2]

Press “Shift-Enter” to execute the program. The first three lines of the program define the three
vectors u, v, and w. The next two lines will compute the left and right-hand sides of the equation
(1.1). The last line of the program will compute and simplify the difference between the two sides of
equation (1.1). As an output of the program, one can observe that this difference is zero, establishing
equation (1.1).

The following example shows the famous connection between the triple scalar products and 3X3
determinants:

Example 1.4 Given that u =<u,,u,,u, >, v=<v,v,,v; >, and w=<w,,w,,w, >, use
Mathematica to show that the triple scalar product u.(vXw) is given by the following 3X3

determinant:

u(vxw)=\|v, v, v, (1.2)

W W, W

We can use the Mathematica command “Det” to evaluate the determinant of any square matrix
(see [19]). Consider the following program:

Input:

u={ul,u2,u3};

v={vl,v2,v3};

w={wl,w2,w3};

exprl= Dot[u,Cross[v,w]]
expr2=Det[{{ul,u2,u3},{vl,v2,v3},{wl,w2,w3}}]
Simplify[expr1-expr2]

Press “Shift-Enter” to execute the program. The fourth and the fifth lines of the above program
compute the left and right-hand sides of the equation (1.2) as exprl and expr2, respectively.
According to the output corresponding to the last line of the program, the difference between exprl
and expr2 is zero. This verifies the above equation (1.2). The importance of equation (1.2) is that it
provides the volume of the parallelepiped formed by the vectors u, v, and w with a common initial
point (see [15] and [17]).

Example 1.5 Use Mathematica to calculate the equation of the plane passing through the point
(X9,Y0»2,) with the normal vector < a,bc >.



Here is the idea: Let (x, y, z) be an arbitrary point on the required plane. Then
U=<x-Xx,,Yy—Y,, Z—2, > is a vector lying on the plane. Therefore, the vector # must be
perpendicular to the normal vector n = < a,b,c >, so u.n =0. Thus, the equation of the plane can
be can be found by setting the dot product of the vectors u and n to be zero. So, consider the
following Mathematica command:

Input: Dot[ {x-x0,y-y0,z-z0},{a,b,c}] == 0

Press “Shift-Enter” to execute the above command. The output confirms the following well-known
equation of the required plane (see [15] and [17]):

a(x—x,)+b(y—y,)+c(z—2,)=0 (1.3)

One can of course experiment with the command by assigning numerical values for x,,y,, z,, and

a,b,c.

1.2 Partial Derivatives

The Mathematica command for differentiation, “D” can be used to compute all types of partial
derivatives of multivariable functions. For example, the command “D[f[x,y],{x,n}]” computes the nth
partial derivative of a function f'(x, y) with respect to x (see [19]).

Example 1.6 Given that f(x,y)=x"+y’ +xSin(xy)+5, compute the partial derivatives
of /0x, of /Ay, 0> f /ax*, 0> f/dy*, 0> f /dxdy, and 9° '/ dyox .

The following commands perform the required task:

Input:

fIx ,y _]:=x"2+y*2 +x*Sin[x*y] + 5
DIf[x,y],x]

DIf[x,y],y]

D[f[x,yl,{x,2}]

DIf[x,yl,{y,2}]

DIf[x,y],x,y]

DIf[x,yl,y,x]

Press “Shift-Enter” to execute the above commands: The first line of the program defines the
function f{(x, y). The other lines are self-explanatory. The last two lines compute the mixed partials
9° '/ 9xdy and 9 f/dyox. The six results are respectively

2x + xyCos(xy) + Sin(xy), 2y + x*Cos(xy), 2 +2yCos(xy) — xy>Sin(xy),
2 —x’Sin(xy), 2xCos(xy) — x* ySin(xy),and 2xCos(xy) — x> ySin(xy).

Example 1.7 Use Mathematica to show that the function f(x,y,z) =1/+/x> +y* +z°



satisfies the following Laplace’s Equation (see [15] and [17]):

2 2 2
9 OO
ox® oy’ 9z’

1.4

Here are the commands:

Input:

f[x_,y _,z |:=1/Sqrt[x"2+y”2+z"2];
a=DI[f[x,y,z],{x,2}];
b=DIf[x,y,z],{y,2}1;
c=D[f[x,y,z],{z,2}];
Simplify[a+b+c]

The commands are executed by pressing “Shift-Enter”. An output of zero indicates that the given
function  satisfies  the  Laplace’s  Equation  (1.4). A  function such as

f(x,v,2)=1/4x> + y> + z° above, satisfying the Laplace’s Equation (1.4) is called a harmonic

function (see [15] and [17] ). The first line of the above commands can be modified to discover other
types of harmonic functions.

1.3 Three-Dimensional Graphs and Level Curves

(a) Three-Dimensional Graphs

Mathematica provides an excellent system to visualize three-dimensional graphs. Among other
methods, one can use “Plot3D” or “ParametricPlot3D” commands to plot such graphs (see [13],
[18], and [19]).
Example 1.8 Use Mathematica to graph the hyperboloid f(x,y)=x* —y°.
Here is the “Plot3D” command to perform the task:

Input: Plot3D[x*2-y"2,{x,-7,7},{y,-7,7},PlotPoints->25]

Output:

Figure 1.2 The graph of the saddle f(x,y) = x> — y°



One can use the Mathematica command “ViewPoint” to look at the surface from different camera
angles (see [13], [18], and [19]). Execute the following command to look at the surface from the point
(2,2.5,0.1):

Input: Plot3D[x*2-y"2,{x,-7,7},{y,-7,7},PlotPoints->25,ViewPoint->{2, 2.5, 0.1}]

Output:

Figure 1.3 The saddle from a different viewpoint

In this paper, we have used Mathematica version 3.0. However, note that the Mathematica version 4.0
also enables the user to rotate 3D graphs in real time using the “<<RealTime3D” command (see [13]).

Example 1.9 Use Mathematica to graph the sphere x° + y° +z° = 4.

Here it is more convenient to use the “ParametricPlot3D” command of Mathematica. One can
parametrize the sphere using the spherical coordinates (see [15] and [17]): For example,
x=2Cos0 Sing,y =2S8in0 Sing,z =2Cos¢ where 0<0 <27 and 0< ¢ <7 represents any

point on the sphere. We use these coordinates with the “ParametricPlot3D” command:

Input: ParametricPlot3D[{2Cos[theta] *Sin[phi],2Sin[theta]*Sin[phi],2Cos[phi]},
{theta, 0,2Pi},{phi,0,Pi}]
Output:

Figure 1.4 The graph of the sphere x* + y2 +z° =4



One can restrict the parameters @ and ¢ to see an appropriate portion of the sphere. In other words,

this provides a way of “cutting open” the sphere to see the inside: For example, execute the following
Mathematica command to see what happens:

Input: ParametricPlot3D[{2Cos[theta] *Sin[phi],2Sin[theta]*Sin[phi],2Cos[phi]},
{theta, 0, 3Pi/2},{phi, 0, Pi}]
Output:

Figure 1.5 The sphere x° + y* +z> = 4 with an opening

(b) Level Curves of a Two Variable Function
In general, the level curves of a surface z = f(x,y)are the curves in the XY-plane given by

f(x,y)=c where c is an arbitrary constant (see [15] and [17]). The “ContourPlot” command of

Mathematica enables one to draw different level curves of a given surface (see [13] and [19]).
Example 1.10 Draw level curves of the surface given by f(x, y) = x> + y>.

Input: ContourPlot[ x*2+y”2,{x,-5,5},{y,-5,5},Contours->10,PlotPoints->20]

In the above, the option “Contours->10” will draw 10 contour lines corresponding to ten different

heights (c-values):

Output:

Figure 1.6 The level curves of f(x,y)=x"+y°
For the above example, the level curves are all circles. This is because any equation of the type
xt+ y2 = c where ¢ > 0, represents a circle.



Example 1.11 Draw level curves for the surface z = x> — y* corresponding to the values
c=1,-1,and 0.

Mathematica can also be used to draw a specific level curve corresponding to a given c-value as this
example requires. For example, to draw the level curve corresponding to ¢ = 1, one can use the option
“Contours->{1}”:

Input: ContourPlot[x*2 - y*2, {x, -2, 2}, {y, -2, 2}, Contours ->{1}, ContourShading->False]

Output:

-1

-z
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Figure 1.7 The c-level curves of z =x> —y* for ¢ =1

The level curve corresponding to ¢ = 1 is a hyperbola, because the equation x> — y2 =1 represents a

hyperbola in the XY-plane. One can also plot all three level curves corresponding to the values
¢ =1, -1, 0 together in one diagram. In this case, use the option “Contours->{1,-1,0}":

Input: ContourPlot[ x*2-y*2,{x,-2,2},{y,-2,2},Contours->{1,-1,0}, ContourShading->False]|

Output:

-& -1 a 1 Z

Figure 1.8 The c-level curves of z = x* - y2 for c=1,-1,and 0

It is true that Mathematica computes and plots with amazing efficiency, but unfortunately this might
set a dangerous trend in students’ minds. For example, some students might tend to believe that
getting the final answer or the graph is the only objective, and might fail to see beyond this point.
Therefore, it must be repeatedly stressed the importance of interpreting the answers obtained by a
CAS. For instance, the students must be questioned as to why there are two straight lines in the above



level curve diagram. The reason is that the level curve corresponding to ¢ = 0 is given by
x* —y* =0, which is equivalent to the pair of straight lines y =+x. If a CAS is not used with a

very open and inquisitive mind, it can create permanent damage in the mathematical upbringing of the
students!

1.4. Directional Derivatives, Gradients, and Tangent Planes
(a) Directional Derivatives and Gradients

Example 1.12 Find the directional derivative of the function f(x, y) = x> + y* + Sin(xy)
in the direction of the unit vector u = <3/5, —4/5 >.

Note that the directional derivative of a function z = f'(x, y) in the direction of the unit vector

u =<u,,u, > is given by (see [15] and [17])

D, f(x,y) = Vf(x,y).u (1.6)
where Vf'(x,y) is the gradient of the function f'(x, y) defined by
Vf(x,y)=<df /ox, df /dy > (1.7)

Thus, using the previously described Mathematica commands for the dot products and partial
derivatives, one can compute the required directional derivative as follows:

Input:

u={3/5,-4/5};
fIx_,y_]:=x"2+y”*2+Sin[x*y]
gradf={D[f[x,y],x],D[f[x,y],yl};
Dot[gradf,u]

Press “Shift-Enter” to obtain the required directional derivative as

D, f(x,y)=—(4/5)2y + Cos(xy))+ (3/5)(2x + yCos(xy)) .

It must be noted that the two partial derivatives df /dx and df /dy are special cases of the directional
derivative.  For instance, when u =<1,0>, the equations (1.6) and (1.7) imply that
D, f(x,y)=<0df/dx,df /dy >.<1,0> = Jf /dx. The above program can be used to observe

these facts as well.

Note: It must be noted that Mathematica has a built-in function “Grad” to compute the gradient of a
function. However, before using this command, one must separately load the Mathematica vector
analysis package by using the command “<<Calculus’VectorAnalysis® ”. This package also has



other built-in commands such as “Div”, “Curl”, and “Laplacian” (see [19]). Also refer to Example
1.13 below.

(b) Tangent Plane to a surface
Consider a surface given by f(x,v,z)=0. Suppose fis differentiable at the point (x,,y,,Zz,)on

the surface. Then a normal vector to the surface at (x,,y,,z,) is given by the gradient
Vf(xy,¥,,2,) where
Vi(x,y,z) =<df /ox, df /dy, of / 9z > (1.8)

Here we are assuming that Vf(x,,,,z,) #0. Therefore, under these conditions, the equation of the
tangent plane to the surface at (x,,y,,z,) is given by the following dot product equation (see [15]
and [17]):

VI (X0,Y0:2).<X=Xp, V= Vy,2—2,>=0 (1.9

Example 1.13 Use Mathematica to find the equation of the tangent plane to the surface
z=4-x>—y* at (1,1,2). Also graph the surface and the tangent plane together.

The following Mathematica program uses the equation (1.9) to compute the equation of the required
tangent plane. The Mathematica vector analysis package was used to calculate the gradient
conveniently as mentioned before.

Input:

<<Calculus' Vector Analysis"

fIx_,y_]:=4-x"2-y"2

phi[x .y .z ]|:=f[x,y]-z

{x0,y0,z0}={1,1,f[1,1]};

tgpl=Simplify[ Dot|Grad|[phi|[x,y,z],Cartesian|[x,y,z]]/. {x->x0,y->y0,z->z0},
{x-x0,y-y0,z-z0}]]

p1=Plot3D[f[x,y],{x,-3,3},{y,-3,3},DisplayFunction->Identity];

p2=Graphics3D[{RGBColor[1,0,0],PointSize[1/60],Point[{1,1,f]1,1]}]}]

p3=Plot3D[tgpl+z,{x,0,2},{y,0,2},DisplayFunction->Identity]

Show[{p1,p3,p2},DisplayFunction->$DisplayFunction]

As the output, one obtains the equation of the tangent plane as 6 —2x—2y—z =0. The program
also produces the following graphs of the surface together with the tangent plane at the point (1, 1, 2):



Figure 1.9 The tangent plane to the surface z =4 — x> — y* at (1,1,2)

1.5 Multiple Integrals

The Mathematica command “Integrate” can be used to compute many multiple integrals (see

[19]):

x=1 y=x2 z=x+y
Example 1.14 Calculate the triple Integral J. j j xy’z(2xy + y*z)dz dydx .

x=—1 y=2x z=x-y
Input: Integrate[x*y” 2*z(2x*y+y”2*z),{x,-1,1},{y,2X,x"*2},{z,x-y,x+y}]
Press “Shift-Enter” to obtain the output as —256/45.

In the next sections of the paper, we will consider an important topic of a multivariable calculus
course, namely the center of gravity of solids. This topic uses several fundamental concepts of a
multivariable calculus course, such as partial derivatives, three-dimensional graphing, multiple
integrals, variable transformations and Jacobians, normal lines and tangent planes. Thus, the center of
gravity problems provide us an excellent opportunity to present the usage of a CAS in a multivariable
calculus course.

2. The Center of Gravity of Three-Dimensional Solids

Consider the continuous function z = f(x, y) defined on a region R in the XY-plane. We will
assume that f(x,)) =0 forany (x,y)€ R . Let S be the solid under the graph of f, directly sitting
above the plane region R . Then the center of gravity G(;, ;) of the solid S is given by (see [1],
[14], [15], [16], and [17]).

x=1/1 @2.1)
y=1,/1 2.2)
z=1,/1 2.3)



where the integrals /,,/, ,/;and / are defined by

I, = m)c dv (2.4)
I, = ﬁj ydv 2.5)
I, = ﬁj zdV (2.6)

I= ﬁj dv 2.7

In the above integrals (2.4)-(2.7), D denotes the three-dimensional region defined by the solid S.

Mathematica can be used to calculate the above integrals efficiently. The following examples
illustrate how to use Mathematica as a computational and a visualization tool to understand the basic

center of gravity problems:

Example 2.1 Find the center of gravity of the solid bounded by the graphs of
z=x"+y’ 4+, x=-1,x=1,y=—-1, y=1Land z=0.

As discussed in section 1 of the paper, the following “Plot3D” command of Mathematica can be used
to visualize our solid.

Input: Plot3D[x2+y2+1, {x,-1,1}, {y,-1,1}, PlotPoints[140, ViewPoint ->{2.081, -2.552, 0.779}]

Output:

00
0\40
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1
Figure 2.1 The solid bounded above by z = x" + y° +1

One can now setup and calculate the integrals (2.4)-(2.7). For example,

1

I, = j. _l[ X+Jy. Hxa’zdydx: j. j. x(x* +y> +1)dydx= j. |:x3y+xy?3+xy:| dx

x=—1y=-1 z=0 x=—1y=-1 x=-1 y=—1

l 2 xt X l
= J. Q2x’ +Zx+2x)dx =| —+"—+x’ =0
2 3 2 3 .



As the problem gets more complicated, the above types of triple integrals become more tedious to do
by hand. Thus, A CAS becomes very helpful with the calculation. As discussed in section 1, one can

use the “Integrate” command of Mathematica to compute the above integral (see [13] and [19]):

Input:
Integrate [X’{Xﬁ'lal}a{ya'l ,1},{2,053‘/\2"')’/\ 2+1}]

The output is zero, which means /, =0. Similarly, one can use Mathematica to obtain
1,=0,1,=266/45,and I =20/3. Then the equations (2.1)-(2.3) imply that x= 0, ; =0, and

z=133/150. This means that the center of gravity of the solid is given by G (0,0,133/150). At

this point, the students must be questioned as to why the first two coordinates of the center of gravity

are zero. The reason is that our solid is symmetric about the z-axis, so its center of gravity must lie on

the z-axis, which implies x=0 and ; =0.

Example 2.2 Find the center of gravity of the solid bounded by the cylinder x* + y* = 4 the planes
X+y+z=5,and z=0.

The “ParametricPlot3D” command can be used to graph the cylinder, while the “Plot3D” command
can be used to graph the plane. The first two lines of the following program graphs these two objects,
and then suppresses the output using the option “DisplayFunction->Identity”. The final line of the
program combines the cylinder and the plane using the “Show” command, and displays back the

combined output using the option “DisplayFunction->$DisplayFunction” (see [13] and [19]).

Program 2.1

pl=ParametricPlot3D[{2Cos[theta],2Sin[theta],z},{theta,0,2Pi},{z,0,8},
PlotPoints[140,DisplayFunction[Identity];

p2=Plot3D[(5-x-y),{x,-2,2},{y,-2,2},PlotPoints 040,DisplayFunction OIdentity];

Show[{p1,p2},DisplayFunction0$DisplayFunction, ViewPoint->{1.416, -1.191, 2.833}]

The output is as follows:



Figure 2.2 The solid bounded by x* + 3> =4, x+y+2z=5,and z=0

After visualizing the solid, one can now setup the integrals corresponding to equations (2.4)-(2.7).
Note that the base of our solid is a circular region given by x* + y*> < 4. Therefore, it is better to use

cylindrical coordinates to evaluate our integrals. In other words, consider the variable transformation
x=rCos0,y =rSin0, and z = z. The Jacobian J of the transformation is given by the following

determinant of a 3X3 matrix (see [14], [15], [16], and [17]):

ox/dr odx/00 0x/oz
J=|dy/or dy/d0 dy/oz (2.8)
dz/dr 0z/00 9z/0z

The Mathematica command “Det” can be used to calculate the above 3X3 determinant:

Input:
x=r*Cos|theta];
y=r*Sin[theta];
j=Simplify[Det[
{D[x,r],D[x,theta],D[x,z]},{D[y,r],D[y,theta],D[y,z]},{D[z,r],D[z theta],D[z,z]} }]]

The last input line above evaluates the Jacobian (2.8). According to the output, the Jacobian is given
2 2m  5-rCos@-rSin@

by J =r. Therefore, the integral (2.4) becomes [, = J. J. j (rCosO)(r)dzdO dr. The
r=0 6=0 z=0
following Mathematica command evaluates it:

Input:
Integrate[r*Cos[theta] *r,{r,0,2},{theta,0,2Pi},{z,0,5-r*Cos[theta]-r*Sin[theta]}]

The output is —4m, which means that [/, =—4m.  Similarly, it can be shown that

1, =—4r, I, =54r , and I =207 . Then equations (2.1)-(2.3) imply that the center of gravity of



the solid is given by G (—1/5,—1/5, 27/10) . Observe that unlike the Example 2.1, the present solid
is not symmetric around the z-axis, so the x and y-coordinates of its center of gravity are not zero.

In both of the above examples, we considered the center of gravity of fixed solids. But what will
happen to the center of gravity if the solid is changed gradually? Let us consider the solid in Example
2.2 again. Recall that the upper boundary, or the roof, of this solid was given by the plane
X+ y+z=35, and it passes through the point (0,0,5) on the z-axis. The equation of this plane can
be rewritten as (x —0)(1)+ (¥ —0)(1) + (z =5)(1) = 0. Therefore, it follows that the normal vector to
the plane at the point (0,0,5)is given by <1,1,1> (see [1], [14], [15], and [17]). One way of
changing our solid is to change this normal vector gradually. One can imagine that as this normal
vector is changing, the roof of the solid starts tilting around the fixed point (0,0,5). As the solid
changes, its center of gravity changes. It is of interest to track down this center of gravity in three-
dimensional space. This leads to a series of interesting locus problems in three-dimensions (see [11]
and [12]).

Before the CAS became popular, investigating the problems such as the center of gravity of variable
solids was a nontrivial task. Such problems were never dealt with in an undergraduate curriculum
because of the complexity of the calculations. However this situation has completely changed due to
the wide availability of fast computers and CAS.

In the next section, we will utilize Mathematica to investigate the center of gravity of certain types of
variable solids. As mentioned in the second to the last paragraph, our motivation comes from

Example 2.2.

3. The Center of Gravity of a Class of Variable Solids

Consider the elliptic cylinder in three-dimensions given by the equation
x*/a*+y*/b* =1 (3.1)

where a and b are fixed positive constants. Consider the plane through the fixed point (0,0,c), ¢ >0,
with variable normal vector < s,¢,1 > where s and ¢ are real parameters. We will assume that ¢, s, and

t are such that the plane will intersect the elliptic cylinder in the upper-half space z > 0. It is clear
that the equation of the plane is given by (see [1], [15], and [17])
z=c—xs—yt 3.2)

Let S, be the solid bounded by the elliptic cylinder (3.1), the plane (3.2), and the plane z =0. See



the following figure:

==,t,1=

E=C—XS—-YE

Figure 3.1 The solid S, with the normal vector< s,#,1 > at the point (0,0, ¢) on its roof

Let G(;,;,Z) be the center of gravity of the solid S;. As the parameters s and ¢ change, the roof of

the solid changes. Therefore, the center of gravity G of the solid S, changes. We want to investigate
the locus of G in three-dimensions for changing s and ¢ (see [11] and [12]). The following
Mathematica program is written using the ideas described in Example 2.2. This program calculates
the coordinates of the center of gravity G of the solid S, and the locus of G for changing s and #. It
then plots the graphs of the elliptic cylinder (3.1), and the locus of G in the same set of axes. Finally,

the program makes an animation of G and the solid S, in the three-dimensional space.

Program 3.1
Clear|[x,y,z,r,theta,a,b,c]
x=a*r*Cos[theta]; y=b*r*Sin[theta]; (* Defines the variable transformation *)
j=Simplify[Det[{{D[x,r],D[x,theta],D[x,z]},{D[y,r],D[y,theta],D[y,z]},
{D[z,r],D|z,theta],D|z,z]}}]]; (* Calculates the Jacobian *)

ix=Integrate[j*x,{r,0,1},{theta,0,2Pi},{z,0,c-x*s-y*t}];
iy=Integrate[j*y,{r,0,1},{theta,0,2Pi},{z,0,c-x*s-y*t}];
iz=Integrate[j*z,{r,0,1},{theta,0,2Pi},{z,0,c-x*s-y*t}];
i=Integrate[j*1,{r,0,1},{theta,0,2Pi},{z,0,c-x*s-y*t}];

{x0,y0,z0}=Simplify[{ix/i,iy/i,iz/i}] (* Calculates G *)
Clear|[x,y,z]
expr=z/.Solve| Eliminate[{x,y,z}=={x0,y0,20},{s,t}],z][[1]] (* Calculates the locus of G *)
pl1=ParametricPlot3D[Evaluate[{a*Cos[theta],b*Sin[theta],z} /.
{a->1,b->2}],{theta,0,3Pi/2},{z,0,10},DisplayFunction->Identity] (* Defines the cylinder *)
p2=Plot3D[expr/.{a->1,b->2,c->5},{x,-2,2},{y,-2,2},Mesh->False,
DisplayFunction->Identity] (* Defines the locus *)

Show[{p1,p2},PlotRange->{{-2,2},{-2,2},{0,10}},
DisplayFunction->$DisplayFunction] (*Plots the cylinder and the locus together)
p3:=Plot3D[c-x*s-y*t/.{a->1,b->2,c->5,t->s/3+Sin[s]+Cos[s]},
{x,-2,2},{y,-2,2},PlotRange->{0,10} ,DisplayFunction->Identity] (* Defines the roof *)
Do[Show|[Graphics3D| {PointSize[1/40],RGBColor[1,0,0],Point[{x0,y0,z0}]}/.
{a->1,b->2,c->5, t->s/3+Sin|[s]+Cos|s]}], p2,p1,p3, PlotRange->{0,10},
DisplayFunction->$DisplayFunction], {s,-2,2,0.2}]



The program can be executed by pressing “Shift-Enter”. As the first output, one obtains the
following coordinates of the center of gravity G of the solid S, :

G _azs,_b_zt’4cz+s2012+l‘2b2 (33)
4c  4c 8c
As the second output, one obtains the equation of the locus of G, as given by equation below:
2 2
c x° oy
z=—+2c —+— 34
2 [az b* J 3-4)

In fact, one can obtain the equation (3.4) manually by eliminating the variables s and ¢ from the three
equations x =—a’s/(4c), y=—b’t/(4c), and z=(4c’ +s’a’ +1t°b*)/(8¢c), which arise from
equation (3.3). However, the Program 3.1 does this automatically, using the “Eliminate” command
of Mathematica (see [19]). Note that the equation (3.4) represents an elliptic parabolid opening up
with z-intercept at (0,0,c/2). It is interesting to observe that the locus of the solid S, is an elliptic

parabolid.

The third output of the program plots the graphs of the elliptic cylinder (3.1), and the locus of G as

given by equation (3.4) in the same set of axes, showing their relative positions:

Figure 3.2 The graphs of the elliptic cylinder and the locus of G

The final output of the program produces an animation of the solid S, with its tilting roof, along with

its center of gravity. The animation can be run by grouping the graphic cells generated by the program

into a single cell, and then by double clicking on this single cell. One can observe the different

positions of the center of gravity G of the solid S, as a moving red dot. Note that the red dot always



lies on the elliptic parabolid (3.4), which lies inside the elliptic cylinder (3.1). A few frames of the

animation are given below:
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Figure 3.3 An animation of the center of gravity G of the solid S

Example 3.1 Observe that the equation (3.3) providing the coordinates of the center of gravity G
indeed agrees with the results of Example 2.2. Recall that in Example 2.2, the equation of the cylinder

was x° + y2 =4, while the equation of the roof of the solid was x+ y +z =5. By comparing these
with the equations (3.1) and (3.2), one finds that a =2,b=2,¢c=5,5=1, and ¢t =1. For these
values, the equation (3.3) implies that G =(—1/5,—1/5,27/10), agreeing with the final result in

Example 2.2.

One can summarize the findings of this section in the following Theorem (see [11] and [12]) :

Theorem 3.1 Consider the solid S, described in this section, bounded on the sides by the elliptic
cylinder (3.1), bounded on the top by the plane (3.2), and bounded below by the plane z = 0. Then the
center of gravity G of the solid S, is given by

G = (—a’s /(4c),— b*t/(4c),(4c® +s*a® +1t*b*)/(8c)) . For changing parameters s and ¢, the locus
of G is an elliptic paraboloid with equation z =c/2 + 2c(x*/a* + y* /b*).

Proof. The student is encouraged to write a proof independent of Mathematica, using the methods
discussed in Examples 2.1 and 2.2.

4. Conclusion

In this paper we observed how to use a CAS to understand several aspects of a multivariable
calculus course, with the emphasis on the topic the center of gravity of a solid. This topic has inherent
computational difficulties not just because of the third dimension, but also due to the tedious triple
integrals and variable transformations. Mathematica can be used as a powerful computational tool to
calculate those triple integrals involved. We also observed how to use Mathematica as a very effective
visualization tool — not just static visualization, but also as a dynamic visualization tool. = The



Mathematica programs we have used can also serve as a medium to experiment and a form
conjectures on the center of gravity problems. Thus, the paper uncovers different facets of a CAS in
undergraduate education. The paper also introduces a novel aspect of the center of gravity of solids,
namely the study of the locus of the center of gravity of variable solids. This particular topic is not
covered in calculus texts, traditional or otherwise. By introducing such nonstandard topics in a
calculus course in conjunction with a CAS, one can take the undergraduate mathematics instruction to
a new level. The paper uses Mathematica as the choice of CAS, but most of the ideas described here
can be implemented by using other CAS such as Maple.
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