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ABSTRACT 
The classical definition of limit of a function involving ‘epsilon and delta’ is not readily understood by 

students studying calculus for first time. Though teaching/learning calculus from Non-standard models of 
number system and infinitesimals is relatively easier , it is not widely practised. Under these circumstances 
increased use of Landau symbols is suggested. This will promote a greater qualitative understanding of 
limits and the rate of growth of functions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



1. Introduction 
 Every teacher of basic calculus experiences some difficulty in communicating the concept of 

limit of a function / sequence to students learning the subject for the first time. This is not 
surprising, for the precise formulation of the concept of limit of a function or sequence eluded the 
best of mathematical minds for centuries. More specifically, Cauchy’s treatment of the concept of 
limit in his Analyse algebrique (1821) and subsequent treatment of calculus in his Lecons sur le 
calcul infinitesimal (1823 and 1829) was considered an enormous advance over the exposition of 
Newton and Leibnitz. However, Cauchy’s definition of limit (and continuous function) was 
discontinued after 1880 when Heine and Weierstrass formulated the modern ε - δ definition. 
Cauchy was not always rigorous and he did not distinguish between continuity and uniform 
continuity. His discussion of power series reveals that Cauchy treated pointwise and uniform 
convergence of the functional series without distinction. Later in 1872 Weierstrass shocked the 
mathematical world with an example of a nowhere differentiable everywhere continuous function 
when his predecessors and contemporaries thought otherwise. In the light of these historical 
developments it is clear that the concepts of limit, continuity and differentiability of functions and 
their interrelationship are intrinsically abstruse. It is but natural that students find these concepts 
hard to comprehend. For an enlightening discussion of the difficulties involved in providing 
formal approaches to these concepts, Artigue [1] may be referred. 
 
 

2.  Diverse (equivalent) definitions of limit and continuity 
The well-known Weierstrassian ‘ε - δ definition’ of continuity of a function at a point is only 

one of the several options for formulating this idea precisely. A slight variation, based on the 
concept of a neighbourhood of a point (real number) makes the definition qualitative (and 
topological). In terms of neighbourhoods the continuity of f at x0 can be restated as follows : 

for each neighbourhood V of f(x0) there is a neighbourhood U of x0 such that f(U) ⊆ V. 
Based on the concept of convergence of real sequences, continuity of a function f at x0 can be 

viewed as a property of regularity that requires the convergence of f(xn) to f(x0) whenever the 
sequence (xn) converges to x0. 

 Around 1960, Abraham Robinson validated the use of infinitesimals in calculus by means of 
his Non-standard Analysis. Since then, there have been numerous attempts to simplify 
Nonstandard Analysis and make it more accessible to undergraduate and high school students. 
The purpose of such attempts is to retain the intuitive approach of Newton and Leibnitz based on 
infinitesimals without compromising on rigor. At the same time these soften Robinson’s original 
metanumerical  foundations of the real number system.  Notable among such contribution are 
those due to Kinsler, Schwarzenberger and Tall. Such a non-standard formulation leads to simpler 
algebraic treatment of problems of calculus. 

 

3.  A quasi-qualitative approach 
Concepts of nets and filters suffice to investigate questions of convergence in a general 

topological context. However, from a pedagogical point of view, it is impracticable to introduce 



these abstract concepts at the undergraduate level. Besides, Non-standard methods of calculus, 
despite their merits are not widely practised. However, the’ ε – δ approach’ is still in vogue at the 
undergraduate level. Nevertheless it is worthwhile to expose students to qualitative methods of 
studying limits, even if the concept of limit is defined after Weierstrass using epsilons and deltas. 
In the sequel, a procedure embodying such a quasi-qualitative approach is outlined. It is quasi-
qualitative as it is based on classical ‘ε - δ definition’ of a limit. This is exemplified by the 
systematic use of the three Landau symbols defined below. 

Definition 3.1 
   Let (xn) and (yn) be sequences of real numbers, where yn > 0 . 
(i) If there is a constant K such that    | xn  | ≤ K yn  for all n   one writes   xn = O (yn); 

(ii) If n

n

xlim
yn→∞

  = 0 , one writes    xn = o (yn) ; 

(iii) If n

n

xlim
yn→∞

 = 1, one writes     xn  ~  yn 

The symbols o , O and ~ above are usually called  Landau  symbols as the  German 
mathematician Landau (1877 – 1938) was the first to use the o, O  notations systematically. But 
Landau himself attributes this notation to Paul Bachman (1837-1920). P.Du Bois-Reymond 
(1831-89) had earlier used a notation that included the symbol ~ defined above for comparing the 
rates of growth of two increasing functions tending to infinity. 

For functions defined in a neighbourhood of zero, one has the following 
Definition 3.2  Let f,g be two real-valued functions defined in a neighbourhood of zero and 

suppose g is non-zero in that neighbourhood. 
 

(i) If  | f(x ) | ≤ K g(x)  for some K> 0 for all x with | x | < δ, then one writes f = O(g)  as x → 0; 

(ii) If 
0

f(x)lim
g(x)x→

= 0, then one writes  f = o(g) as x → 0; 

(iii) If 
0

f(x)lim
g(x)x→

=1 , then one writes f ~ g as x → 0; 

These growth conditions can also be considered when the independent variable x tends to 
infinity. Landau symbols have been discussed in the text-books of Burkill and Burkill [2] and 
Hardy [3] and are used extensively in analytic number theory. Early training in the use of these 
symbols helps students acquire of qualitative understanding of the relative growth of functions. 
Table 1 displays some well-known limits and their quasi-qualitative versions ( in terms of the 
Landau symbols) : 

 
Students can be encouraged to reformulate problems on limits quasi-qualitatively using 

Landau symbols, in the spirit of the above table of limits. 
Some basic properties of Landau symbols are presented below in the form of a theorem ( see 

Hardy [3] ). 
Theorem 3.1  Let f and g be real-valued functions defined in a neighbourhood of zero. Then  

as x→ 0,  
(a) O(f) + O(g) = O(f+g) ; 



(b) O(f) O(g) = O(fg) ; 
(c) O(f) o(g) = o(fg) ; 
(d) If  h ~ g , then h + o(f) ~ f. 

The  above result is true even when f , g and h are considered real sequences. Students must be  
cautioned to note that  o(1) = O(1) will not, in general, imply O(1) = o(1). For instance, as x→ 0, 
sin x = O(cos x), while cos x ≠o(sin x), though sin x=o(1) and cos x= O(1). 

  These symbols can be profitably employed to define differentiability of functions, as in the 
following 

Definition 3.3  Let f : D ⊆ R  → R be a function and x0  an interior point of D. f is said to be 
differentiable at x0 if there is a number f'(x0) such that 

                            f(x0 + h) = f(x0) + hf '(x0) + o(h) as h→0                                                     ( I )  
  
Formula ( I ) , essentially due to Weierstrass , is often called first order Taylor’s formula and 

can be readily extended to real-valued functions of n-variables and to vector-valued functions of n 
- variables. For f : D ⊆ R n  → R  and x0 = (x0

(1) , x0
(2) , . . . , x0

(n)) an interior point of D and h = 
(h1,h2, …,hn)  (I) can be modified as 

 f(x0+h) = f(x0) + ( )
n

i o
i=1 i

fh x (|| ||) as h  0
x

o h∂ + →
∂∑                                                        ( II ) 

Here 
i

f
x

∂
∂

 are first-order partial- derivatives of f and || h || = 
n

2
i

i=1

h∑ . 

Use  of first order Taylor’s formula and Landau symbols leads to a quick proof of the chain 
rule ( see Rudin [4] ). It also clarifies the ideas underlying the proof of  L’ Hospital’s rule . As a 
sample we have  

Theorem 3.2   Let f , g : D ⊆ R  → R , where x0 is an interior point of D. Suppose f  , g , f ′ 
and g ′ are defined at x0 and f(x0) = g(x0) = f ′ (x0) = g ′ (x0) = 0. If g′′(x0) ≠ 0, then  

0 0

h 0
0 0

f(x h) f '' (x )lim
g(x h) g''(x )→

+ =
+

, h being a real number sufficiently small in absolute value. 

Proof  : Using (I), as h → 0 

 0

0

f(x h)
g(x h)

+
+

=
0 0

0 0

h h h hf(x ) f '(x ) ( )
2 2 2 2
h h h hg(x ) g'(x ) ( )
2 2 2 2

o

o

+ + + +

+ + + +
                                                                   (III)     

                  =  
0 0 0 0

0 0 0 0

h h h h hf(x ) f '(x ) ( ) (f '(x ) f "(x ) ( ))
2 2 2 2 2
h h h h hg(x ) g'(x ) ( ) (g'(x ) g''(x ) ( ))
2 2 2 2 2

o o

o o

+ + + + +

+ + + + +
 

                  =  

2

0

2

0

h h h hf ''(x ) ( ) ( )
4 2 2 2
h h h hg''(x ) ( ) ( )
4 2 2 2

o o

o o

+ +

+ +
      as f′(x0) = g′(x0) = 0 = f(x0) =g(x0)      

  



As g′′(x0) ≠ 0 , Proceeding to the limit in (III) as h → 0  we get 

                          0 0

0
0 0

f(x h) f ''(x )lim
g(x h) g''(x )x→

+ =
+

. 

Theorem 3.2 can be readily formulated for the case when higher order derivatives of  f and g 
also vanish at  x0. The proof is a direct application of first order Taylor’s formula without recourse 
to Taylor’s mean-value theorem and the use of Landau symbols makes the proof direct and 
transparent. 

 

4. Conclusion 
The use of Landau symbols affords a qualitative approach to many problems involving limits 

and derivatives. It also serves to mitigate the punctilious use of epsilons and deltas. Clearly an 
increased use of Landau symbols in a basic calculus course will improve the learner’s 
understanding of the concepts of limit and derivative. 
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Table 1 

 
 
Some well-known limits 
 

 
Their formulations with Landau symbols 

 

1.
0

Sin xlim 1
xx→

=  

2. 20

Cos xlim 1
x1
2

x→
=

−
 

3.
n

x

xlim  0
ex→∞

= , n ε N 

4.
log xlim  0

xx→∞
=  

 
5. - xlim  e 0

x→∞
=  

 
6. | Cos x + Sin x | ≤ 2  , x ε R+ 

 

 
Sin x ~ x   as  x  0→  
 

2xCos x ~ 1-  as x  0
2

→  

 
 

n x x (e )  as x ,  o= → ∞ n ε N 
 

log x = o(x)  as x → ∞ 
 
 
e- x = o(1)  as  x → ∞ 
 
Cos x + Sin x = O(1)   as  x → ∞ 

 
 


