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ABSTRACT
This paper discusses some issuesin numerical optimisation. It illustrates graphically the rationale behind
some optimisation techniques. It shows the perils that await the unwary when extrapol ating using functions
whose parameters have been specified by choosing the values, which minimize a sum of squares of errors.

! Choose the better part. (Luke 10:42)



I ntroduction

The wisdom of the command: * choose the best part’, should be obvious to dl. Optimisation
is the branch of mathematics which dedls with the techniques for locating the maximum or the
minimum o afunction, i.e. * the best part”’.

There is the common misconception that to determine the location of the minimum of a
function of severa variables, f( X, X,,...,X,), one Smply needs to solve the systlem of non-
linear equations formed by setting to zero the partia derivativesof f :
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However, to solve such a system, usualy, one needs to use a numerical procedure. Efficient
numerical methods to do this are based on finding the minimum of
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Thus, numericad optimisation is required for solving sysems of non-linear equations and not
the other way around.

The computational methods for solving optimization problems are generdly known as hill-
climbing techniques that is because they mimic the drategy that a climber may use in trying to
reach the summit of a mountain. Different strategies are open to the climber to reach the summit
and we shdl illugtrate the rationale behind some of them.

Optimisation is frequently used to fit modds to data with the intention of summarizing,
interpolating or extrapolating from the observations. Extrapolation carries the implication that the
edimated parameters are physcaly meaningful. However, it is very possble that parameters
which produce a very good fit to the data lead to disastroudy unsuitable extrgpolations. Then,
when isit safe to extrgpolate? The paper discusses, through examples, the issues involved.

Finding the best part

Let us consder the amplest strategy for locating the optimum of a non-linear function using a
hill dimbing technique. Consider tha a climber is trying to reach the summit (maximisation) of a
hill, or the bottom of the hill (minimisation), without a magp and in dense fog. The climber can
rely on an dtimeter to measure dtitude and a compass, which alows him to maintain a fixed
direction. Measuring is time consuming, but movement itsdf is easy. The climber wishes to move
asfast as possible. What is the best strategy?

It seems that the smplest gpproach would be to move dong an arbitrary direction, such asthe
north-south line making regular measurements of the dtitude until the highest point on the line is
reached. Starting from this new point the same operation can be carried out dong the east-west
direction. This process of dternating searching aong fixed directions ultimately will teke the
climber to the summit.



The dgorithmic implementation of such smple procedure is known as the univariate search.
To illugtrate it we consider a problem presented by Box et d [1]. We wish to specify a function
that relates the concentration h of achemica substance with time. The function is of the form:

h = b1 (e- byt _ e-blt)
(bl - bz)
where, b, and b, are parameters which need to be estimated. Given a set of observed vaues for
h and t, a common procedure is to estimate the b s by the method of least squares. That is:

minimise the sum of the squared differences between the observed vaues and the predicted ones.
That is, we want the location of the minimum of

F(4,%) =8 (¥ - h(x,x,))?

i=1
where x, and x, stand for the possible values that we can, respectively, assgnto p,and b, ; v,
correspond to the observed concentration at time t,. A set of observationsis listed in Table 1.
Let us consder finding values for the betas by minimizing f using only the first six pairs of
values of the data st.

Table 1. Observed concentration values y, attimes t. .

t, 0.0625 0125 025 0.50 1.00 200 4.00 5.00 6.00 7.00

Yi 0.01 0.02 0.08 015 022 051 048 0.29 0.20 012

The shape of the function f isillustrated by its contours, shown in Figure 1(a). The picture
also gives the path to the minimum using the univariate srategy. It is obvious from the graph that
the path to the optimum requires alarge number of short steps. However, the short steps could be
used to define a genera direction and a more efficient method would be to move dong such a
direction. The Davey, Swann and Campey (DSC) [2] dgorithm does this. In contrast to the
univariate search the DSC agorithm takes advantage of the accumulating information about the
function. Starting a the point  x© one cycle d the univariate search determines the point x¥.
The next search is dong the line joining x© and x® which determines the point x? , and then
we search at right angles to the previous search direction to determine x® . The next search
direction is dong the line joining x® and x® , and so on. Figure 1(b) shows the iterations using
the DSC agorithm. In this case far fewer steps and function evaluations are required.



Figure 1. (8 The univariate search, locates the optimum, using 581 function evauations, at
(0.2442,-0.2402), with f =0.002.
(b) The DSC dgorithm uses 142 function evauations to find the optimum &
(0.2433, -0.2431). Both methods gtart at the point (0.5,0.39).

However, if our intrepid climber was dlowed dso to carry a spirit level, then he could use it
to measure the lay of the land, and this extra information might lead him to choose his direction
of search to be adong the steepest descent. He might well find that such a strategy might produce a
succession of large number of short steps similar to those of the univariate search. But being a
smart climber he would redlise that information about the gradients could be used, as in the DSC
method, to determine a more efficient direction. This will lead him, no doubt, to discover the
conjugate gradients method. Furthermore, having information about the gradients, he might
condder gathering information about the curvature of the land, and using it might well develop
Newton's type methods. It may well be that the terrain over which he is moving is very rocky - a
noisy function - and therefore he may decide that he is much better off using the DSC drategy
than the more elaorate methods which involve mideading gradient measurements.

All these drategies for numerica optimisation can readily be illustrated using graphs like
those in Figure 1 and generdize to problems in more dimensions because the principles on which
the methods are based are the same for two as for higher dimensions. The illustrations can easily
be done using the software from McKeown et d. [2].

The function, specified with valuesfor b, and b, which minimise f , fits the first six points
of the data very well. There may be the temptation of assigning physica meaning to the estimated
betas. However, when the rest of the observations are viewed, the fitted function is in complete
disagreement with them. Any extrapolation using the fitted function, or a physica interpretation
given to the parameters would have been unwise. On the other hand, it is Smple to see that a set
of values for x, and x,contained in the lowest contour of the sum of squares function are
possible candidates for sdlection as values for the betas. For such a set there is not much change
inthe vdlue of f . In particular, the pair of values at the start of the iteration fit the deta dmost as
well as the ones that optimise f , and they happen to specify a function that gives rdiable
predictions for the extra data points. Figure 2 illustrates this.



Best fit models for the concentration data
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Figure 2 (8) Fitted function. (b) 3D Plot of (X, X,) .

So, what is going on here?

The answer to the question lies in the fact that the function we are minimizing isinsengtive to
changesin x and x,. Thisis particulaly visble in Figure 2 (b), which gives a 3D plot of f .
The plot shows thet f is practicaly constant dong the line joining the initid and optimal vaues
of x, and x,. Though we found aloca minimum, its location is insensitive to changes along the
ridge of f shown in the figure. The problem is sad to be ill-conditioned, and in such cases the
fitted curve is only suitable for interpolation and no physica sgnificance should be assigned to
the estimated parameters. The data has forced us into a curve fitting problem and not a parameter
extraction one.

By contrast when using the last six observed vaues to estimate the parameters we get the
optima vaues a x, = 05153, x, =0.3475 and f = 0.0363 . The contours of the new least
sguares function are given in Figure 3(a), they show that changes around the minimum leed to
significant changesin f . The corresponding 3D picture confirms thet in this case thereisnoill-
conditioning.

I(xl B4

@ (b)
Figure 3. (@) Contours of the sum of squares function for the last Six data points. The steps of
the univariate search are d<o illustrated from the starting point (0.5,0.39).
(b) The 3-D picture of the sum of squares function.



The plot of concentration againg time in Figure 4 (&) shows that extrapolation is a lot less
problematic when there is no ill-conditioning. Furthermore, a well-conditioned problem makes
for afaster path to the optimum asillustrated in Figure 3 (8), showing the sequence of stepsto the
optimum when using the univariate search.

Concentration function
The parameters estimated with the last six points
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Figure 4. (a) Concentration against time fitted using the last Six points.
(b) Orbits for Neptune - calculated and actua. The numbers on Uranus correspond
to the year when its location was used to determine Neptune' s orbit.

A classical story of ill-conditioning

Recently the fascinating story of the discovery of the planet Neptune was published in a
popularized form [3]. The gtory in the book contains a fair dose of human drama. It is exciting
aso because it is an example of a successful theoretical astronomica prediction. Using the
discrepancies observed in the orbit of Uranus two mathematicians warking independently, one
French, Urbain Jean-Joseph Le Verier, the other English, John Couch Adams, accounted for the
discrepancies by predicting the existence of anew planet - Neptune—

These two mathematicians were bresking new ground. Newton's theory d gravitation had
been used to caculate the effects of bodies on one another, but this was the first time that the
theory was used to predict the position of a body from observations of the effects of its gravity on
other bodies. However, not everyone was using the new planet explanation to try to account for
the problems in Uranus orbit. The Astronomer Roya George Airy supported the hypothesis that
Newton's inverse square law did not apply over large distances. The perseverance of the two
young mathematicians on the validity of their assumptions, against the pressures from a famous
and established scientist are only part of the intricate drama that led to the discovery of Neptune.
Their work not only helped in the discovery but it confirmed the universaity of the gravitation
law, and produced a mode of work for the interaction between mathematicians and
experimentaigs.

Adams and Le Verrier were able to point out were in the sky to look for the planet. The
astronomers duly found it in 1846. However, it is interesting that both mathematicians failed in
determining with any accuracy the orbit of the planet for the region where there were no
observations. Figure 4 (b) shows the theoreticaly proposed orbits and the actua one. Note that
the maximum error in the predicted orbits is about half the radius of Uranus orbit. This is



interesting to us, because it is an example of the consequences of ill-conditioning. To specify the
orbit the mathematicians used the observations on the discrepancies observed in Uranus's orbit
occurring during the first half of the 19th century. They were used to determine both, the position
and the mass of Neptune. The mathematicians obtained a good fit to the data by overestimating
the mass of the planet and the radius of the orbit. The errors compensated to give afit acceptable
in the region were the data was availdble but the calculated orbits were not suitable for
extrapolation. The calculated orbits diverged more and more from Neptune's. Had the search for
the planet taken place afew years earlier or later it would not have been found anywhere near the
predicted location.

Optimisation and mathematical education

Optimization is a decison-meking problem: how to maximize or minimize the value of some
guantity. In many cases this amounts to assgning vaues to certain quantities caled the decision
varigbles. We showed that optimization problems are common in science and engineering and
that they usually cannot be solved by andyticd methods and that computational methods must be
used. There are two educationd issues here, the first one is how to present a rationale for the
numerical procedures for optimization. The second issue is to identify the applicability of the
results of the optimization.

The andogy of ‘hill-dimbing' can be used as a powerful teaching tool to illuminate the ideas
behind many of the numerica optimization methods. This is so because the adgorithms for
optimization can be illustrated with twodimensond functions. We looked in particular a the
idea behind the Davies Swann and Campey agorithm. From a smple description of the ides, the
specification of the method — for any number of dimensions — seems atrivid generdization of the
‘hill dimbing’ anadlogy. For example, we can state the DSC procedure for optimising a function
of nvariablesas.

Setk =1 Sdect an arhitrary starting point x©
Carry out one cycle of the univariate search agorithm to producex®
Select g = x® - x*? asanew search direction.
Generate n — 1 orthogond directions and orthogond to g.
5 Search dong g and each of the other n — 1 orthogona directions to determine the
new point xX*? . Each search begins at the end of the previous one.
6 If sopping criteria satisfied stop, else set k = k+1 and repeat from 3.

A WNPE

We used bold face to denote an n-dimensond vector. The dgorithm dbove is a
sraightforward generdisation, to n dimensond functions, of the basic idea illustrated in Figurel
(b).

Further exploitation of the hill-dimbing andogy might lead us to question the efficiency of
obtaining exact determinations for the x s. It may be better not to find the optimum dong a
search direction but smply a better point from which to continue the search aong a different
direction. This policy may take more cycles, but overdl, may require less use of the dtimeter, and
as changing direction involves no effort, a method with inexact line searches might be a more



efficient one. The educationa possibilities when using sensible, imaginative idees derived from
the hill-climber andlogy are boundless.

Optimisation is aso taught as a procedure to fit equations to data. The objective, of course is
to model a physical dtuation. However, the applicability of the fitted modd is highly dependent
on the conditioning of the problem. We illustrated that for two-dimensond problems ill
conditioning implies a flatness, about the optimum, of the function we wish to optimize. Thus, the
effect of ill-conditioning is to provide many possble, near optimd, but possbly dramaticaly
different solutions. When this occurs, the only sensble use for the fitted mode is for
interpolation, which is not an unimportant outcome as the history of the location of Neptune
testifies.

Though a mathematicad trestment of ill-conditioning is an advance topic, the idess and
consequences of ill-conditioned problems can and should, as we have shown, be presented in
more eementary courses in data andysis and optimization.

Findly, we fed tha the teaching of numerica optimization should not be congrained by the
use of ‘andogies. Ther vaue is smply to provide another point of view, which might help to
make the topic more interesting. We do not think that there is a unique solution to the teaching of
the subject. It may well be that the problem of optimizing the teaching of mathematics is ill-
conditioned, in the sense that there are many equdly satisfactory solutions, and hence one should
be careful to extrapolate from any of them.

Concluding remarks

The andogy of hill-dimbing has been shown to be useful for providing a motivetion for
numerica optimisation methods. The fundamenta problem of using modds, which are fitted to
data, has been discussed. In particular we concentrated on the important distinction between data
fitting and parameter extraction. We showed that when the problem is ill-conditioned, ‘ choosing
the best part’ can only be used for summarising the data and that no physical meaning should be
associated to the parameters of the modd. The discovery of the planet Neptune, during the middle
of the 19th century, and the failure to specify its orbit was offered as an example of the effects of
ill-conditioning. 1t would be an exciting project to investigate the conditioning of the problem
usng forma methods of analysis. There are, of course, such forma methods, McKeown and
Sprevak [4] show how to use them in an application. It is not, however, the objective of this paper
to ded with such forma methods but to offer a pictorid representation of ill-conditioning and of
its consequences. We believe that everybody could profit by being aware that when fitting models
to data, usng optimization methods, the ussfulness of the fitted modd depends greetly on the
conditioning of the problem. The mora of the lesson is. *Optimam partem degit’, but be aware of
itslimitations.
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