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ABSTRACT 
Most software packages for the teaching of mathematics contain only a limited set of tools, utilities, and 

procedures. Therefore we often have to use more than one computer program to teach different subjects. 
This situation makes teaching very inefficient: We need to teach our students how to use each tool, we need 
to teach different, environment-dependent strategies for solving problems, and sometimes we even need to 
adapt to completely different computing philosophies. An ideal teaching package, on the other hand, would 
allow teachers and students to customize the program by modifying the resources within the program, 
adding their own procedures, functions and operations, and might even allow them to build their own 
mathematical libraries. In this paper, we show that MuPAD, a computer algebra system from SciFace 
Software and the University of Paderborn in Germany, is gradually becoming such an ideal electronic 
teaching environment in this sense since it already meets several of the mentioned requirements. We will 
show how teachers can build their own libraries, add and integrate them with MuPAD resources, and use 
them in their teaching with both a standalone and an online version of MuPAD. Finally, we will discuss 
some of the advantages of this open and flexible environment. 



Desiderata 
Let us begin by quoting from a letter by Carlos Fleitas, a teacher of mathematics from Spain, 

who mentions that he uses Cabri and CarbiWeb to make interactive geometry, uses Derive to 
study functions and graphs, tries to present the elementary ideas of probability with the help of 
Excel, and has recently begun to investigate MuPAD as a tool for generating L-systems.  We know 
of other teachers of mathematics who are using even more expanded sets of tools in their 
classroom. Such approaches are difficult to follow.  

In all of these cases, both the teachers and the students need to master several computing tools 
in addition to having to learn the mathematical concepts involved.  There is a good reason for 
using such nonintegrated sets of tools in the classroom. Not one of these packages can be used to 
teach all or almost all topics in undergraduate mathematics. However, recent advances in the 
development of the MuPAD computer algebra system, for example, are giving us hope that the 
situation might change in the near future. Before we begin to analyze some of the promising aspect 
of MuPAD, we will identify some of the features we expect a computer package to have to be 
suitable for the teaching of undergraduate mathematics.  

The package should have a broad and easily expandable mathematical base, be easy to learn 
and use, and fit naturally into most modern teaching and learning environments. By this we mean 
the following: 

1. The package should provide an environment for the teaching of the widest possible range 
of topics in undergraduate mathematics: abstract algebra, linear algebra, geometry, 
calculus, differential equations, probability and statistics, as well other standard topics. 

2. The package should provide means for teachers to enrich and expand the functionality of 
the package through customized libraries and software extensions.  

3. The package should be easy to maintain and update by teachers and their assistants, even 
in schools with modest computer facilities, and should be portable across computer 
platforms such as the Windows, Linux and the Macintosh environments.  

4. The package should be easy to use. In particular, it should be compatible with mainstream 
electronic course management systems such as WebCT. It should have a natural and easily 
learned interface and help facility. Moreover, it should be easy to learn by average 
students with relatively little supervision. 

5. The package should provide for both command-line programming as well as for the menu-
driven manipulation of mathematical objects, especially graphs and surfaces. Its 
programming language should be easy to learn and have as natural a syntax as possible.  

This list can certainly be expanded and does not encompass all relevant features. Some of 
them were discussed in detail in our earlier paper (see [2]). Here we will concentrate mainly on 
the problem of developing MuPAD customized libraries and using them as teaching tools. 
 

The Role of Libraries in Computer Algebra Systems 
Libraries for computer algebra systems are sets of mathematical procedures usually grouped by 

topic. For example, a library may consist of procedures for teaching calculus, number theory, 
probability and statistics, and so on. The procedures defined in a library may range from simple 
tools for solving quadratic  equations or calculating greatest common divisors to sophisticated 
methods for finding shortest paths in oriented graphs.  

Computer algebra systems that allow teachers to build their own libraries are invaluable tools 
for advancing the teaching of mathematics. Using such systems, teachers and students can 



collaboratively build a wide range of toolboxes for their courses, modify them as needed, and 
improve and expand them over time. This provides a live environment for experimenting with 
mathematics. Teachers can exchange libraries with their colleagues and build extensive 
educational systems. Moreover, the ability to customize libraries may inspire enterprising students 
to solve mathematical problems that are often beyond of their school curriculum. The paper on L-
systems mentioned below (see [1]), is one such example of a student project that went 
considerably beyond the standard undergraduate curriculum. Its author, Michelle Raimbert, began 
with an undergraduate paper on L-systems, written under the supervision of the second author, an 
introduction to L-systems by the first author, and created a MuPAD notebook on L-systems 
containing a beautiful collection of programs for generating fractals and other branching 
structures.  The main objective of this paper was to investigate the suitability of MuPAD for the 
representation of such algorithms and techniques and to illustrate this suitability by creating some 
of the most famous fractal curves. One of them is a well-known Harter-Heightway Dragon curve, 

 
generated by the MuPAD code 

L:=plot::Lsys(90, "BL",  
   "L" = "L+R+",  
   "R" = "-L-R",  
   "L" = Line, "R" = Line, 
   "B" = RGB::Black  
): 
L::generations:=11: 
plot(L,Axes=None) 
 

It is pedagogically valuable that the rule to generate the Harter-Heightway Dragon curve is 
conceptually quite simple. Start with a single segment of the length L. In each of the subsequent 
steps, replace any obtained segment by a semi-triangle, i.e. the figure that contains two equal 
segments separated by the right angle. This construction can be mimicked physically to some 
extent, by folding a piece of paper. However, for larger numbers of steps the use of computer is 
necessary. In most of the known cases, the creation of the Harter-Heightway Dragon curve 
requires a good knowledge of a programming language and programs creating this curve are 



usually not simple. With MuPAD, however, we can create this curve by typing eight lines of 
simple code without losing sight of the algorithm involved. 

Another interesting example of a fractal structure from the same student’s project is a 
beautiful tree like shape where she experimented with multiple colors, here for printing purposes 
presented as a black-and-white picture, 

 
generated by the code 

• L:=plot::Lsys (20, "L", 
   "L"="BR[++YL][+OL][--YL][-OL]+", 
   "R"=Line, "L"=Line, 
   "Y"=RGB::OrangeRed, 
   "O"=RGB::Pink,  
   "B"=RGB::CadmiumRedDeep 
): 
L::generations:=6: 

plot(L,Axes=None) 

Again, the creation of this type of fractal shape requires a good knowledge of a programming 
language and recursive programming techniques. With MuPAD nine lines of code suffice and only 
two lines require a bit more explanation.  

The two above examples show that computer algebra systems provide us with entirely new 
tools for visualization of intriguing mathematical objects: elaborate curves and surfaces, and 
representations of biological phenomena such as the growth of algae, the veins in leaves, and the 
bronchi in the lungs. As such, they help us to instill a new physical meaning into mathematical 
objects.  

As the above code shows, many of these objects are generated easily and intuitively. The 
MuPAD project on L-systems [1], for example, provides an enjoyable starting point in one such 
direction. We know of many other examples where students have discovered interesting 
mathematical facts by experimenting with mathematical concept by using a computer program.  

From an experimental student’s project or classroom works there is one step to organizing the 
most interesting pieces of work and saving them later as reusable library of procedures.  

For example, with a very basic knowledge of MuPAD programming student or teacher can 
convert the code presented in [1] into a library of new L-system procedures. Here we show how it 
can be done for the mentioned above dragon curve and the tree like shape.  



 
dragon := proc(angle, steps) 
begin 

L:=plot::Lsys(angle, "BL",  
    "L" = "L+R+",  
    "R" = "-L-R",  

"L" = Line, "R" = Line, 
"B" = RGB::Black  

   ): 
L::generations:=steps: 
plot(L,Axes=None); 

end; 
 
tree := proc(angle, steps) 
begin 

L:=plot::Lsys (angle, "L", 
"L"="BR[++YL][+OL][--YL][-OL]+", 
"R"=Line, "L"=Line, 
"Y"=RGB::OrangeRed, 
"O"=RGB::Pink,  
"B"=RGB::CadmiumRedDeep 

): 
L::generations:=steps: 
plot(L,Axes=None) 

end 

 
Later such procedures can be used in the classroom to experiment with dragon curves using 

various input parameters.  For example,  
• dragon(100,10) 

 

 



• tree(35,6)  

 

 

Developing Libraries for MuPAD 
As our simple examples in this paper show, MuPAD is a command-line-based computer 

algebra system. It has a programming language similar in many aspects to Pascal. The package is 
highly universal. It can be used for almost any undergraduate mathematical topic, from logic to 
sophisticated problems in linear and abstract algebra. We would now like to discuss how the 
openness and flexibility of MuPAD make this system a promising environment for the teaching of 
mathematics.  

There are many ways of developing a customized library for MuPAD. Teachers can easily write 
a set of procedures, test them on appropriate input data, and save them as reusable files on their 
computers. Here is a simple example that illustrates this process. Suppose we would like to create 
a library for basic statistical routines. We could start by writing a procedure for calculating the 
average of n numbers and save this procedure in a new library. The following steps accomplish 
this task. 

average:=proc() 
local n, i, result; 
begin 
   n:=args(0); result:=0; 
   for i from 1 to n do result:=result+args(i) end; 
   result:=result/n; 
   return (result) 
end: 
 
WRITEPATH := "userlib"; 
write("mylibrary.mb", average) 
 



We could then assign our students the task of extending this library1 by writing simple 
procedures for other familiar statistical routines. Files such as mylibrary.mb can be saved in 
folders such as userlib in the MuPAD directory. To use this library, all a student has to do is to 
load the file into MuPAD when required. This can be as simple as invoking the following two 
commands: 

READPATH := “userlib”; 
read("mylibrary.mb") 
 

The maintenance of a computer lab in a school can be a time-consuming process. By specifying 
a location on the school network for MuPAD libraries, we can reduce this task to the maintenance 
of a single folder on a network server. This can be done by adding to each local installation of 
MuPAD a small configuration file with both READPATH and WRITEPATH commands that point 
to a network folder. From that moment on, all a teacher needs to do is to update and maintain a 
single folder on a network server. Recent innovations in the design of MuPAD lead us to believe 
that in the future, the development of customized libraries will be even simpler than in the given 
example. For more information on using and developing MuPAD libraries, we refer to chapter 5 of 
[2], where the benefits of these features of MuPAD are discussed in detail. 

 

MuPAD Computing on the Web 
In addition to making it easy to create customized libraries, the MuPAD Computing Server is a 

feature that may completely change how we use computer algebra systems in schools in the future. 
The MuPAD Computing Server is a special server application consisting of the MuPAD computing 
engine and MuPAD libraries. Users access the MuPAD Computing Server through a web page 
using standard browsers and perform calculations and solve problems directly on the Web. From 
the perspective of students and teachers, this tool is completely platform-independent. It can be 
accessed from a Macintosh, Windows-based PC, or even from a Linux-driven computer. Since all 
calculations are performed remotely on the server, the needs for specific hardware configurations 
at the user end are now redundant. Anyone connected to the Internet with any browser will be able 
to work with MuPAD.  In order to maintain the MuPAD Computing Server, all teachers need to do 
is to update and load their libraries on the server. In addition, they can post on web pages all 
management aspects of working with their libraries: a listing of available topics and procedures, 
instructions on how to use them, tutorials, quizzes, glossaries, and so on.  Students can use such 
MuPAD installations in the classroom as well as at home. They do not need to have MuPAD 
installed on their computers.  

 

Conclusion 
We have illustrated with simple examples how teachers and students can use the intuitive 

programming language of MuPAD to build mathematical libraries and use them in their teaching 
and research by integrating them with existing MuPAD resources. In our own teaching, we have 
incorporated such libraries in WebCT, where students can explore and experiment on the Web 
using several computing platform. At this point, our libraries encompass various fields of 

                                                 
1 The statistical procedures in the basic MuPAD library are quite well developed. However, we will undoubtedly always 
need new additional routines for specific applications.  



mathematics and some applications to other sciences. We have also shown how student projects 
can be used to expand our repertoire of libraries. Competing environments, based on other 
computer algebra systems with other features, are being developed elsewhere. What distinguishes 
the MuPAD system from most, if not all, of the other systems, is that it is open, flexible, user-
friendly, portable across most computing platforms, and very affordable. We therefore already 
have here a tool that meets many of our listed needs. The era of device-independent, Web-based 
teaching and learning of mathematics and science has begun. Let us embrace it and use it for the 
betterment of global education. 
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