90 years School of Mathematics A.U.Th. 203

Sub-Riemannian geometry:
a brief review

Ioannis D. Platis

Department of Mathematics and Applied Mathematics, University of Crete,
University Campus, 70013 Voutes Heraklion Crete, Greece
jplatis@math.uoc.gr

Abstract. We revise the basics of sub-Riemannian geometry. This is the bulk
of a talk given for the 90 years of the Department of Mathematics of the Aris-
totle University of Thessaloniki.

1 Introduction

Riemannian geometry is quite familiar to most of us. It is produced out of a
model space, i.e., a differentiable manifold endowed with an inner product at
its tangent bundle. In the sub-Riemannian geometry, we have again a manifold
as a model space, but this time we assume that there is a distribution with a
fibre inner product. Recall that a distribution is a family of k-planes, i.e.,
a linear subbundle of the tangent bundle of the manifold. The distribution
shall be called the horizontal tangent space and objects tangent to it shall be
called horizontal. In a sub-Riemannian world, the distance traveled between
two points is defined as in Riemannian geometry but here, we are allowed to
travel along horizontal curves which join the two points. These curves are that
which their velocity vector is always lying in the horizontal tangent space.
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We can trace the awakening of sub-Riemannian geometry in a theorem
of C. Carathéodory; this theorem is related to Carnot’s Thermodynamic laws.
The reasoning behind calling sub-Riemannian geometry as Carnot-Carathéo-
dory geometry by Gromov and others, lies exactly in that fact. Carathéodory’s
theorem is about codimension one distributions. Such a distribution is de-
fined by a single Plaffian equation @ = 0, where ® is a nowhere vanishing
I-form. Recall that this distribution is integrable if through each point there
passes a hypersurface which is everywhere tangent to the distribution. By the
celebrated Frobenius’ Theorem, an integrable distribution is involutive: for
codimension one distributions, this means that locally there exists functions A
and f such that ® = Adf. In this case, any horizontal path passing through
a point pg must lie in § = f(po). Consequently, pairs of points py and p;,
that lie in different hypersurfaces cannot be connected by a horizontal path.
Carathéodory’s theorem is the converse of this statement.

Theorem 1. (C. Carathéodory) Let M be a connected manifold endowed with
a real analytic codimension one distribution. If there exist two points that
cannot be connected by a horizontal path then the distribution is integrable.

Carathéodory was asked to prove this theorem by the German physicist
Max Born; Born’s problem was to prove the second law of Thermodynamics
and the existence of the entropy function S. From the work of Carnot, Joules
and others it was known that there exist thermodynamic states A = pg and
B = p;, that cannot be connected to each other by adiabatic processes; these
are slow processes where no heat is exchanged. So to Carathéodory, and thus
to sub-Riemannian geometry, an adiabatic process is a horizontal curve and
the horizontal constraint is the Plaffian equation w = 0. The integral of w over
a curve is the net heat exchange undergone by the process represented by the
curve. So eventually, Carathéodory’s theorem implies the existence of inte-
grating factors A = T and s = f so that @ = T'dS (here, T is the temperature
and S is the entropy).

Carathéodory’s theorem also can be stated as follows: if a codimension
one distribution is not integrable, then any two points can be connected with
a horizontal path. In distributions of arbitary codimension, this generalises to
what is known as Chow’s thorem, see Section 2.3 for details. We shall only
make some comments now about Chow’s Theorem which is considered as the
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cornerstone of sub-Riemannian geometry. First, let us review Frobenius’ in-
tegrability theorem in its full force. Let M be an n-dimensional manifold and
2 be a distribution of codimension n > k > 1. Then ¥ is called integrable if
through each point p lying on a plane of &, there is k-dimensional subman-
ifold tangent to that plane. It is called involutive if for every X and Y vector
fields of &, the Lie bracket [X,Y] € 2.

Theorem 2. (Frobenius) Let M and & as above. Then & is integrable if and
only if is involutive.

In sub-Riemannian geometry we find ourselves in the opposite extreme of
integrability In a bracket generating or completely non integrable distribution
any tangent vector field may be written as the sum of iterated Lie Brackets
(X1, [[X2,[X3,...]]] of horizontal vector fields. Chow’s theorem simply says
that for a completely non integrable distribution on a connected manifold,any
two points can be connected by a horizontal path. It follows that on a con-
nected sub-Riemannian manifold whose underlying distribution is non inte-
grable, the distance between any two points is finite, since there exists at least
one horizontal curve joining these two points. Summing up, sub-Riemannian
geometry is a riemannian geometry together with a constraint on admissible
directions of movements. In Riemannian geometry any smoothly embedded
curve has locally finite length. In sub-Riemannian geometry, a curve failing
to satisfy the obligation of the constraint has necessarily infinite length.

Not very surprisingly eventually, sub-Riemannian geometry is connected
to the Isoperimetric Problem (Dido’s problem, or Pappu’s problem). Dido’s
problem is formulated in the Aeneid, Virgil’s epos glorifying the beginning of
Rome:

Given a length, maximise the area of domains whose perimeter is this
length.

Dido, a princess of Phoenicia, fled across the Mediterranean sea with a
few servants and friends due to her entirely dysfunctional family: Her brother,
Pygmalion, murdered her husband and took all her possessions. Arriving pen-
niless in a part of a coast line of Africa ruled by king Jarbas, she persuaded
him to give her as much land as she could enclose with an oxide. Dido then
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smartly enclosed the simicircular city of Carthage. This is the solution to the
isoperimetric problem.

We shall now formulate this problem in mathematical terms. In R? the
volume form is dvol = dx A dy which is the differential da of the one form

1
a= E(xdy — ydx).

Using Stokes’ theorem we get that if a closed smooth positively oriented curve
y in R? encloses a domain Dy = int('y), then the area <7 (D) is given by

%(Dy):/D dx/\dy:/ya.
Y

Therefore, Dido’s problem is:
Maximize [, a under the condition [(y) = [,ds = fcb |7(2)]|-

If we start from a curve y(¢) = (x(t),y(¢)) in R? such as y(0) = (0,0), we
can lift it into a curve in R? where the third coordinate z(¢) is the signed area
enclosed to y[0,¢] and the segment from the origin to y(z). That is,

1
z(# :/ a:—/ xdy — ydx.
) vod 2y

Differentiating with respect to r we get

£(1) = 5 (KO (0) — 3(0)x(0)).
Set @ = dz— 3 (xdy — ydx) and consider curves
7=rn) 7:0.1] =R, ¥0)=/(0,0,0).
Then lifted curves are exactly those which satisfy
Y € Kero <= o(7(t)) =0, t€]0,1].

The form |
®=dz— E(xdy—ydx),
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is called the standard contact form. Recall that a contact form in a (2n+1)-
dimensional manifold is a 1-form @ satisfying

AMd®)" # 0.

In the case of the standard contact form, ® A (d®) = dx A dy A\ dz and the
distribution & determined by ® at each point p = (x,,z) is

1
P, = Ket(wp) = {(v1,02,03) €ER? : 03 = 5 (o2 = yvi)}.
Consider the following linear product in Z,,: For v,w € 2,

< V,W >=D1W1 + Dryws. (1)

Observe that < v, v >= 0 if and only if v; = v, = 0, that is if the z-axis is
included in &, ; this can never happen, therefore < Zot, Yot > is positively
defined. We now fix a frame {X,Y,Z} where

Jd yoad Jd xd Z:i )

aTiw TTa T T

and we declare it orthonormal. Since

d y_ o X
7 _x4+27,. 2 vz
ox +2 dy 2

we have on each &, that

v ()]
L= le+sz+(71y— EZX—I— D3)Z= VX + Y

In this manner, a Riemannian metric is given by the linear product above.
In contact geometry, a curve Y is called Legendrian if

(0('}’) =0 <— }/(t) S .@7(,)

for all ¢ in the domain of y. Given a Legendrian curve ¥, we define its length
[(7) as the integral of the norm of ¥ with respect to the linear product. In other
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words, /() is exactly the Euclidean length of pr(7), the projection of ¥ into
the plane. We may now introduce a new distance in R?: For p,q € R3,

dec(p,q) = inf{l(7y) : ¥ Legendrian joining p and q}.

Do Legendrian joining curves exist? To connect, say (0,0,0) and (x,y,z),
take a curve ¥ in R? from (0,0) to (x,y) with the property that the signed area
engulfed by 7y and the line segment from (0,0) to (x,y) is exactly z. Then, the
lifted curve ¥ will connect (0,0,0) and (x,y,z). Now the Riemannian length
of ¥ equals the Euclidean length of y. Thus there is a correspondence between
d.. geodesic (i.e.. a curve realising the infimum) and solutions of the dual
Dido’s problem: Fix a value for the area and minimize the perimetre.

One of the most standard examples of sub-Riemannian objects is the Hei-
senberg group. Perhaps the most crucial property of its geometry that we are
about to define is that it is isometrically homogeneous. We may endow R3
with a group structure different from the standard Euclidean one in a way that
all previous constructions are preserved by the action of the group onto itself.
Consider the group law

1
(x,3,2) % (X)), ) = (x+x",y+y 2+ + E(xy’ —yx'). (3)

It can be shown that left translations L, ,,) defined by Ly, ) (x,,2) = (s,1,u) *
(x,y,z) preserve the distribution & and the orthonormal basis {X,Y,Z} as in

(2).

Proposition 1. Heisenberg geometry is isometrically homogeneous. The Hei-
senberg group has a Lie group structure so that left translations are isometries
with respect to the contact distance d...

The Heisenberg group has also a (nilpotent, non Abelian) matrix group
model. This is described by the subgroup G < GL(3,R), where

1
G=<10
0

S = Q

c
b| :a,b,ceR
1
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Its Lie Algebra is

0 a c
g= 0 0 b|:ab,ceR
0 0 0

and a basis for g is

0 a ¢ 0 a ¢
Vape)t) =exp(t [0 0 bl)=Y"yt"|0 0 b| =
0 0 O 0 0 O
()
0 a c 0 0 ab 1 ar act+abt* (Why?)
=14+t|0 0 b|+22(0 0 O|=1|0 1 bt
0 0O 0 0 O 0 O 1
The map
1 x Z+%xy
¢:(xyz)— (0 1y
0 O 1

is a Lie group isomorphism from the Lie group R*® with product (3) to the
Lie group G with the usual matrix product. Straightforward calculations show
that ¢ is a group homomorhpishm and that its differential at the identity is
the identity matrix. More than this is true. Heisenberg group is a two-step
nilpotent 3 dimensional Lie group and there are only two simply connected
nilpotent Lie groups of dimension 3: The Heisenberg group and the Euclidean

group.
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2 Elements of the general theory of sub-Riemannian
geometry

2.1 Basics

We shall denote a metric space by (X,d), where X # 0 is a set and d is a
distance. A path (or curve) ¥ is continuous map ¥ : / — X where I is an
interval |a,b] of R. The length of 7 is defined by

I(y) = sup{id(}/(ti),}/(til)) neNja=n<n<..<t, b}.
i=1

A rectifiable curve is a curve of finite length. A curve Y is called a geodesic
if for all t1,1, € [a,b],
I(ylt,12]) = 2 — 1]

The metric space (X,d) is said to be a path metric space if for all x,y € X,

d(x,y) = inf{I(y),y joins x,}.

If the above infimum is attained by a geodesic then (X,d) is called a
geodesic metric space. A criterion for a path metric space to be geodesic
is the following:

Theorem 3. (Hopf-Rinow-Cohn Vossen) A path metric space (X,d) which is
complete and locally compact is geodesic.

A function f : (X,dx) — (Y,dy) is called Lipschitz if
K >0: dy(f(x1),f(x2)) < Kdx (x1,x2)

for all x1,xp € X. Itis locally Lipschitz if for every x € X there exists a neigh-
bourhood U, such that f|y, is Lipschitz. If there exists a K > 1 such that

%dx(xl,m) < dy(f(x1), f(x2)) < Kdx (x1,%2),
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for all x1,x; € X , then f is called bi-Lipschitz (or, more accurately, K-bi-
Lipschitz). A K-bi-Lipschitz map is a homeomorphism onto its image. Isome-
tries are 1-bi-Lipschitz maps.

Let S C X and m > 0. Define for 8 > 0 the sets

Hg'(S) = inf{Zdiam(Ui)m : U U; C S, diam(U;)™ < 5} :
i=1 i=1
Then,
H"(S) = supHyg (S) = lim Hy'(S),
§>0 6—0

is the m-dimensional 1Hausdorff measure on S. The Hausdorff dimension of S
is then

dimpays(S) =1inf{d > 0: 7™ (S) =0} = sup{{d > 0: "™ (S) =0} U{0}}.

Let now M be a differentiable manifold of dimension n. For p € M, the
fibre 7,,(M) of the tangent bundle 7'M is a derivation of germs of 4" functions
at p, i.e. ,an R-linear map from ¢ (p) to R satisfying the Leibniz rule. Sup-
pose that F' : M — N is a smooth mapping between manifolds and p € M. Then
the differential (F}). : T,(M) + Tg(,)(N) is defined as follows: If X € T,(M),

F.p(X)(f) = X,(f o F) , forall f € €= (F(p)).

Let I'(TM) be the linear space of smooth vector fields, that is, smooth sections
of TM. For X,Y € T'(TM), their Lie Bracket [X,Y] is defined by

X Yf=X(Y[)-Y(X[), feE M)

The set I'(TM) together with [-,-] is a Lie algebra. If F : M — N is a smooth
and invertible, then for X € I'(TM) the push-forward vector field is defined
by

(F*X)F(p) = (Fep)(Xp), PEM.

The push forward commutes with the Lie Bracket:

[FX,F.Y]=F[X.Y], XY e(TM).
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If F: M — N and 7y is a smooth curve, then

d(Fovy)

(Fein)(10) = =22,

where ¥(t) € Ty;\M and d(l;jc) € Tr(o())(N). If f € €(M), by identifying
Tr(p)(R) with R, we may write

dfp(X) =X,(f), Xel(TM)
A Riemannian metric on M is a family of positive definite inner products
g T,(M)xT,(M) >R, peM,
such that for all X,Y € I'(TM) the function
p— gp(X,,Y,) is differentiable.

In a local coordinate system {U), X1, ...,x, }, the vector fields

9 9
ox;’ U ox, |’

form a basis for the tangent vectors at U,. The components of the metric
tensor with respect to the coordinate system are

d 0
wn-sn((2),(2),)

g= Zg,-jdx,-@)dxj.
i,j

or, equivalently,

The pair (M, g) is called a Riemanniann manifold.
A Finsler structure on a differentiable manifold M is given by a function

|-]]:TM — R

which is smooth on the complement of the zero section of TM and its re-
striction to each fiber 7,(M) is a symmetric norm. A Riemannian manifold
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has a naturally induced Finsler structure: ||X|| = g'/?(X,X). Connected Rie-
mannian and Finsler manifolds carry the structure of path metric spaces. If
(M, ||-||) is a connected Finsler manifold and y : [a,b] — M is a parametrised
curve in M which is differentiable with velocity vector ¥, then the length of y
is defined by

1= [ 170y

Since we may always parametrise y by its arc length, /() does not depend on
the parametrisation. The distance function d : M x M — [0, +o0) is given by

d(p,q) = inf{l(y), v differentiable, joining p,q}.

The distance d satisfies all the properties of a distance function in a metric
space. To prove the property d(p,q) = 0 = p = ¢ on a Riemannian manifold
M, we use normal coordinates which also show as that the manifold M and
the metric space (M,d) have the same topology. If M is Finsler, one shows
that any Finsler structure is locally bi-Lipschitz, equivalently to a Riemannian
structure.

2.2 Carnot-Carathéodory distance

Let (M,||-||) be a Finsler manifold and suppose that & is a distribution on
M. Then the triple (M, Z2,||-||) is called a subFinsler manifold; if the Finsler
structure is Riemannian than we are in the case of sub-Riemannian manifold.
An absolutely continuous curve ¥ in M is said to be horizontal with respect to
2 if y(t) € & for almost all . The length of y is

1
W = | 170)d.
We consider the metric on M induced by 2 and || - ||. For p,q € M,
dec(p,q) = inf{l,(y) : v horizontal from p to q}.

This is the (Finsler) Carnot-Carathéodory distance.
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2.3 Hormander’s condition-statement of Chow’s Theorem

A distribution & C TM is called bracket generating if any local frame {X;, ..., X}
for & together with all of its iterated Lie brackets

[XivXj]v [Xia [Xjaxk]]v )

spans TM. If 9,(,j ) is the span of all contents of order < j, then the above is
exctly Hormander’s condition:

T,(M)=92Y, jeN.
The metric or Hausdorff dimension is

) j(dim 2] —dim2]™").
J

A bracket generating distribution (that is, a distribution that satisfies Hor-
mander’s condition) lies on the extreme opposite of an integrable distribution.
We now state Chow’ Theorem:

Theorem 4. (Chow 1959, Rashevskyi 1938) If & is a bracket generating dis-
tribution on a connected manifold M, then any two points of M can be con-
nected by a horizontal path.

In the case of Heisenberg group .77, equations [X,Y]| =Z,[X,Z] =Y, Z] =
0 and Chow’s theorem guarantee that we can connect any two points by a
horizontal path.

The next two theorems are essentially equivalent versions of Chow’s The-
orem.

Theorem 5. If 7 is bracket generating on M, than the topology of M induced
by the cc-distance is the manifold topology.

The endpoint map associated to & and which is based at a point pg € M is
the map that takes each horizontal curve with starting point pg to its endpoint.

Theorem 6. If & is bracket generating, then the endpoint map is open.
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For any distribution & on M and for any point py € M, the accessible set
A(po) is the image of the endpoint map associated to Z with starting point
Po-

Below we shall present a sketch of the proof of Chow’s Theorem; prior to
this we remark that its converse fails. There are distributions which are not
bracket generating but still are horizontally path connected.

2.4 Proof of Chow’s Theorem-sub-Riemannian Hopf-Rinow

We fix a point p and let X € ¥. Consider the curve 7y solving the d.e.

Y(0)=p 7(t) =Xy

Then 7 is a horizontal curve and X), is tangent to 2A(p). Therefore, the whole
9, is tangent to the accessible set 2(p). We assume for the moment that (p)
is an embedded submanifold of M. Then its tangent space T,2((p) is closed
under the Lie bracket. That is, the Lie span of €),(M) is tangent to A(p).
Therefore, dim(M) = dim(2((p)) and 2((p) is the whole of M.

Note that the crucial step for the proof of Chow’s Theorem is the asser-
tion that A(p) is an embedded submanifold. This holds true by a theorem of
Sussmann (1973).

Theorem 7. (Sub-Riemannian Hopf-Rinow) If & is bracket generating then
sufficiently neighbouring points can be joined by a d.. geodesic. Moreover,
if M is connected and (M,d..) is complete, then any two points of M can be
joined by a d.. geodesic.

Proof. By Theorem 5, the topology induced by the d.. metric is the mani-
fold topology. In particular, the space is locally compact. Applying Arzela-
Ascoli’s Theorem in a compact ball we obtain the existence of geodesics at a
small scale. Applying the Hopf-Rinow Theorem for complete, locally com-
pact length spaces, we obtain the existence of global geodesics. 0

2.5 Ball-box theorem and Hausdorff dimension

Let ¥ C TM a distribution. We shall make the following assumptions:
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1° There exist Xi, ..., X, € ['(TM) such that for all p € M,

{X17"'7XK}p7

is a basis for &, and
{Xla"'aXn}[ﬂ

is a basis for T),(M).

2° Forall j = 1,...,n there exists a d; € N, (the degree of X;), such that
(X)) €A\ A vpem,
where Al4] is the space of commutators of Xi,...,X; of order d;.

The latter condition is a regularity assumption for &; endowed with this
condition ¥ is called equiregular.

We shall parametrise M using flows of linear sums of vector fields in Z.
Recall that, for p € M and X € I'(TM), the exponential map

exp,(X) = ¥(1),

the value at time 1 of the integral curve Y of the vector field starting at p, i.e.,
the solution of

y(t) = Xy(t) , ¥(0) = p.
For fixed p € M, exponential coordinates are defined by ® : R"” — M, where

D(t1,...,1n) = exp, (1 X1 + ... +1,Xy).

This map is in general only local, that is, defined around a neighbourhood of
0eR™
The box with respect to X1, ..., X, is

BOX(}") = {(t177tn) € R™: |t]| S rdj}.

The following theorem, which isdue to Mitchell, Gershkovic, Nagel-Stein-
Wainger, etal., compares boxes Box(r) in R” with cc balls B..(p, r):
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Theorem 8. (Ball-box theorem) Let (M, 7, || - ||) be a sub-Finsler manifold
with an equiregular distribution 9. Let ® be an exponential coordinate map
from a point p € M constructed with respect to some regular basis X, ..., X,,.
there exist ¢ > 1 and p > 0 such that

®(Box(c™'r)) C B(p,r) € ®(Box(cr)), Vr € (0,p).

We note the following open question:

Are all (sufficiently-small) Finsler balls and spheres homeomorphic to the
usual Euclidean balls and spheres?

An almost direct corollary to the Ball-Box Theorem is that locally, each
sub-Finsler manifold is Holder equivalent to a Riemannian manifold. To see
this, let (M, 2, || - ||) be the manifold in question. Let g be a Riemannian tensor
whose norm is smaller than || - || and denote by dg the Riemannian distance.
The identity map id : M — M is 1-Lipschitz with respect to d,., d, and thus it
is Holder. Let now Alpha = max jd; be the maximum of the degrees d; of the
vector fields of some equiregular basis {X;}. Since for p € (0,1), we have

fll[—r“, r‘] C Box(r)

and since the exponential maps have surjective differentials at the origin, from
the second inclusion of the Ball-Box theorem we obtain that id : (M,dg) —
(M,d..) is a-Holder.

We shall denote by Q the homogeneous (Hausdorff) dimension
=Y d;= Z (dimAY) —dimAU~Y),
~ =

If a sub-Finsler manifold (M, Z, || - ||) has equiregular distribution then
dimHaus(Ma dcc) =0.

Moreover,the Q-Hausdorff measure of (M,d..) is locally equivalent (up to
multiplication by a function) to the Finsler volume form.
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It is natural to ask how to compute Hausdorff dimension and Hausdorft
measure of submanifolds of sub-Finsler manifolds with respect to the cc dis-
tance. These questions were answered by Gromov and Magnani, the first in
full, the second only partially.

Theorem 9. (Gromov) Let (M, 2,|| - ||) be a sub-Finsler manifold with an
equiregular distribution & and cc distaance d... Let ¥ C M be a smooth
submanifold. Then

dimgaus (X, dec) = max { )3

] jdim [(T,(M) N &/ (p)) \ (T,(M) NAV=D(p))] : p € Z}-

1

The question of finding the Hausdorff dimension of smooth submanifolds
is yet to be answered in full.

3 Carnot groups

3.1 Review of Lie groups and Lie algebras

A Lie group G is a differentiable manifold with a group structure such that the
map

GxG—G
(x,y) = x 1y,

is smooth. We shall denote by e the identity element. R,(h) = hg and Ly(h) =
gh are right and left translations by g in G, respectively. The set of vector
fields I'(TG) from a Lie algebra; the bilinear operation is the Lie bracket:
[-,-] : g X g~ g such that for all X,Y,Z € g,

1° [X,Y] = —Y,X]and
2° [X,[Y,.Z])+[Y,]Z,X]]+[Z,[X,Y]] = 0.

There is a special Lie algebra associated to a Lie group G, that is, the tan-
gent space T,(G). In brief, each element of 7,(G) is extended to an element
of ['(TG) by left translations to produce vector fields X € I'(TG) such that
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(Lg)«X = X for all p € G. Then (L, ,)X = X (,) and we have an isomor-
phism

T,(G) — g (=left invariant vector fields)
Vi— X, = (L).V.

A Lie group homomorhpism F : G — H is a € group homomorphism. A
map @ : g — h is a Lie algebra homomorhism if it is linear and preserves
brackets: ®([X,Y]) = [®(X),D(Y)] for all X,Y € g. A Lie group homomor-
phism induces a Lie algebra homomorphism: We have F(e) = e and the dif-
ferential:

(F.)e : T.(G) = T,(H)

preserves brackets. For the converse we have the following:

Proposition 2. Let G and H be two Lie groups with Lie algebras g andb,
respectively. Assume that G is simply connected. If 0 : g — b is a Lie algebra
homomorhpism, then there exists a unique Lie group homomorphism F : G —
H such that F, = 0.

The above implies that if Lie groups G and H have isomorphic Lie alge-
bras and both are simply connected, then G and H are isomorphic.

By a theorem of Ado, every Lie algebra has a faithful representation in
gl(n,R) for some n € N. Hence, if g is a Lie algebra, then there exists a simply
connected group G with Lie algebra g. Therefore, isomorphism classes of
Lie algebras are into 1-1 correspondence with isomorphism classes of simply
connected Lie groups.

Recall the definition of the exponential map is an arbitary manifold M. Let
X € I'(M) be a vector field and fix a point p € M of the manifold. Then there is
a unique curve ¥(¢) such that y(0) = p and ¥(¢) = Xy ;). Then exp,(X) = y(1).
In general exp,, is locally defined: It only takes a small neighbourhood of the
zero section of TM to a neighbourhood U, of M. In Lie groups though, exp is
amap g +— G and g C ['(TG) with the definition making sense for p = e, and
is also defined globally. The following holds:

Theorem 10. Let X € g be an element of the Lie algebra g of a Lie group G.
Then
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1° exp((s+1)X) =exp(sX) -exp(tX), s,t € R.
2° exp(—X) = (exp(X)) .

3% exp: g+ G and (exp). = idy : g — g. Therefore there exists a diffeo-
morhpism of a neighbourhood of 0 in g onto a neighbourhood of e in
G.

4° The curve y(t) = exp(tX) is the flow of X at time t starting from e. More
generally, the curve g(exp(tX)) = Ly(y(¢)) is the flow starting at g.

5% The flow of X at time t is the right translation Rexp(tX)
We also have
Theorem 11. If F : G — H is a Lie group homomorphism, then
F oexp = expoF..

Note that in case where G is compact, it also has a Riemannian metric
invariant under left and right translations. Then the Lie group exponential
map is the Riemannian exponential map of this Riemannian metric.

3.2 Nilpotent Lie groups and nilpotent Lie algebras

Let g be a Lie algebra over R. The central series of g are

g =g, ¢ =1g,g".

The Lie algebra g is called nilpotent if there is an integer s such that
g+ = 0. The minimal s for which gi*!) = {0} is called the step of g.
A nilpotent Lie group G is a Lie group whose Lie algebra is nilpotent. If g is
s-step nilpotent, then we have the following for the centre 3(g*):

3(g") ={X eg¥:[X,Y] =0, forallY € g®} =g,

that is, g(s) (and all g(k) ,k <) are central. It is worth to remark here that a Lie
algebra g has always non-trivial centre. In fact, the centre

3(G)={ge€G:gh=hgVhe G}

is a closed subgroup with Lie algebra 3(g) if G is connected.
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Remark 10. The Heisenberg group is a 2-step nilpotent Lie group.

3.3 Simply connected nilpotent Lie groups

Recall that if two simply connected Lie groups have isomorphic Lie algebras
then they are isomorphic. In the case of nilpotent connected and simply con-
nected Lie groups we have the following:

Theorem 12. Let G be a connected, simply connected nilpotent Lie group
with Lie algebra g. Then:

1° The exponential map exp : g — G is an analytic diffeomorphism.
2° The Baker-Campbell-Hausdorff (BCH) formula holds for all X .Y € g.

The BCH formula (which is quite complicated to be written down here)
allows us to locally reconstruct any Lie group G with its multiplication law,
by only knowing the structure of its Lie algebra g. It expresses the inverse of
the exponential (which quite naturally we shall denote by Log) of the product
of two Lie group elements as a lie algebra elements, that is

Log(e*-eY) = an element of g.

Below we state various consequences of this theorem:

* Every Lie subgroup H of a connected, simply connected nilpotent Lie
group G is closed and simply connected.

* Every connected, simply connected Lie group which is nilpotent has
a faithful embedding as a closed subgroup of the group N, whose Lie
algebra are the strictly upper triangular matrices.

* With the aid of the exponetial map, we may identify G and g when G is
a simply connected, connected nilpotent Lie group. In this manner, we
may transfer coordinates from g to G.
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3.4 Carnot groups

A Carnot group with step s > 1 is a connected, simply connected nilpotent
Lie group whose Lie algebra admits a unique up to isomorphism step s strati-
fication. That is,

g=Vi&..8V, with
ViVi] = Vi1, 1 < j <s—1,V; # {0}

We remark that there exist simply connected nilpotent Lie groups which are
not Carnot groups: For instance, there exist 6-dimensional nilpotent Lie alge-
bras that cannot be stratified.

The topological dimension of a Carnot group G is n = Y ;dimV; whereas
its homogeneous dimension is

S
Q=) idimV;.
i=1

In fact, each Carnot group may be equipped with a sub-Riemannian structure
which is unique up to bi-Lipschitz equivalence and has an additional property
which we shall explain later. Fix a stratification for G and let Z be a left
invariant subbundle of TG which is such that 7, = V. Let || - || be any left
invariant Finsler norm on G. The triple (M, &, || -||) is a sub-Finsler manifold,
since
() _ ,
A =V EBEBVI

satisfies Hormander’s condition. Thus one may consider the cc distance d,.
associated to this sub-Finsler structure. Another choice of the norm does not
effect the bi-Lipschitz equivalence class of the sub-Finsler manifold. If || - ||,
is another left invariant Finsler norm then

id: (Gydee ) = (Gidee )

is globally bi-Lipschitz. For that reason, we may assume that || - || is coming
from the usual scalar product.

It is quite clear that the value of the scalar product in V; is important for
the definition of the d.. metric. If m = dimV, we fix Xi,...,X,, at V. Then,

dcc(xay) = inf{/ol \/ iilyl(t)‘zdt : Y(O) =X, Y(l) :y} )
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where the infinum is taken over all absolutely continuous curves such that
y:[0,1] — G and

) = Y 5O Xy £ € 0,1].

i=1

We conclude this section by presenting an additional structure of Carnot
groups, that is, their dilation structure. Let g =V, @...®V;, and A > 0. Dila-

tions &, are defined by the homogeneity conditions
X =AX, VX eV, 1<k<s.

These are self maps of g and we may equivalently write

N

(Y V)= YA,

i=1 i=1

whenever X = Y7 Vi withv; €V, 1 <i<s.
Using the fact that exp : fg — G is a diffeomorphism, we may define
05 : G— G byexpo 8, = 0, oexp. Below we list some properties of dilations:

* Oy (xy) =08, (x)- 0 (y), for alix,y € G. This follows from BCH formula.

61 OSIJ = 5)41.

(8,).X = 8, X.

8. ([X,Y]) = [1X, 8, 7).

* dec(0yx,0,y) = Adec(x,y), for allx,y € G.

Nilpotentation

Nilpotentation is the procedure where a Carnot group appears as tangent to
an equiregular distribution. Let & be a bracket generating and equiregular
distribution in a manifold M ,i.e.,

2=90cg9®c. .. c9¥=TM,
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is a sequence of subbundles of TM where
20U = 9U) 419, 90)).
The sum is not necessarily direct. The crucial fact here is
(20, 2] c g0+,

This relation is obvious for k = 1. The above relation may be proved by
induction using Jacobi’s identity.

We now define H = Z and H; = PI\UN j=2 .. ,n. H are bundles
but not subbundles of TM for j > 1. It is clear that

A
™™ ~ PH;.
=1

The following holds:

Theorem 13. For each p € M, T,M inherits the structure of a Carnot group
with respect to the stratification H;(p) .This Carnot group is the nilpotentation
of T,(M) with respect to 9.

Proof. LetV; = H;(p). Then
T,(M)=Vi®...0V;.

We need to define a Lie algebra product and then show that [V;,Vi] = V4.
Letx,y € T,(M) withx € V; and y € V.
Since
. -
Vi=H(p) =7\ 7 ",

there exista X € 2U) and a Y € 2 such that
x=X,+ 20V y=v,+ 27"

We then define '
x,y] = [X.Y],+ 2.
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This bracket is well defined: If u € 25", then [X +u,¥] = [X, Y]+ [u,Y],
with
[u,Y] € [@(j—1)7@(l)] c glUt=1)
Therefore, X +u,Y], = [X, Y]p mod 9(j+l_1)
Now, if y € V1, [x,y] € & G \9 Vi1 and thus [V;,Vi] C V. To

show the reverse inclusion, let z € 9(“1 such that z = Z,, + 9( J) By defi-
nition ,2U+Y) = 9U) 4 (9, 2] so there exista W € 2U) X, .@(’ Y, e9
such that Z =W + Y, [X;,Y)]. Take

X = (Xl)p mod 2V~ 1 » VI = (Yl)p-

One then shows that ), [X;,Y;] =Z, mod @},f ) and therefore Vig €[V, Wi
O

3.5 Mitchell’s theorem

We start with Gromov’s notion of tangent space to a metric space. Given a
metric space (X,d), consider the dilated metric space (X,Ad), A > 0. The
distance Ad is given by

(Ad)(p,q) = Ad(p,q), p,q<X.

A metric space (Z,p) is tangent to (X,d) at p € X if there exists a p € Z and
a sequence A; — oo such that

liEH(vavljd) = (Zapap)'

We may understand this definition in terms of Gromov-Hausdoff distance.
Let By, B be compact metric spaces. Then

GH(Bl,Bz) = ‘I—‘ln‘g H(\PlBl,lszz)
1,12

over all isometric embeddings ¥1,%¥; of By, B;, respectively, into the same
metric space C of the Hausdorff distance H(WB;,¥,B;) of their images as
subsets of C. In this way the definition of tangent to a metric space implies
that for each r > 0, there exists a sequence €; — 0 such that the ball of radius
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r+¢€;j in (X,A;d) about the point p converges to a ball of radius r about p.
Namely,the infinum of the GH distance between those compact abstract metric
spaces tends to 0 as A; — oo.

A distribution Z is called generic, if for each j, dim @l(,j ) is independent
of pe M.

Theorem 14. (Mitchell) For a generic distribution & on M, the tangent cone
of a sub-Riemannian manifold (M,d,.) at p € M is isometric to (G,d.) where
G is a Carnot group with a left-invariant cc metric. In fact, G is the nilpoten-
tation of T,(M) with respect to 9.

We remark the following:

* The tangent(or the tangent cone) to a Carnot group G is G itself. G
admits dilations d, which provide isometries between (G,d,.) and (G,

Ade).

* In contrast to the Riemannian case where the exponential map is a
locally biLipschitz map between the tangent cone and the manifold,
Mitchell’s map is not in general locally biLipschitz.

Pansu in 1985 and later Margulis and Mostow in 1995 explained why the latter
happens, as we shall see in the following section.

3.6 Pansu’s Rademacher theorem

Theorem 15. (Pansu,Margulis-Mostow) For the typical sub-Riemannian man-
ifold there is no bi-Lipschitz map between a neighbourhood of a point of the
manifold and its nilpotentiation at this point.

The classical Rademacher theorem in real analysis asserts that a Lips-
chitz map between Euclidean spaces is a.e. differentiable. Pansu(1989) ex-
tended the theorem to the setting of Carnot groups endowed with their sub-
Riemannian distance function. Let F' : G| — G; be a map between two Carnot
groups with dilations &, : G; — G; , i = 1,2. For g,h € Gy, the pansu derivative
is defined by

D,F(g)(k) = lim(8,")(F(g)F (g81)).

t—0
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Note that if the G;’s are Abelian Carnot groups (that is, vector spaces with
vector addition as the multiplication),the Pansu’s derivative D, F is the usual
derivative. In general, if the Pansu derivative exists and is continuous then it
is a group homomorphism from G to Gj.

Theorem 16. (Pansu’s Rademacher theorem) At almost all points, the tangent
map of a Lipschitz map between sub-Riemannian manifolds exists, it is unique,
and is a group homomorphism of the tangent and equivariant with respect to
dilations.

We have seen above that in the Carnot group setting, the tangent map
is just Pansu’s differential. Let us clarify what we mean by a tangent map
between tangent cones. Each map f: (X,d) — (X’,d’) induces a map f; :
(X,Ad) — (X',Ad") for each A > 0. Setwise,this is the map f; (x). For fixed
x € X,assume that (Z,p) and (Z',p’) are tangent cones to (X,d) at x and to
(X',d") at f(x),respectively then Df : (Z,p) — (Z',p’) is a tangent map of f
at x if for some sequence A; — oo, /2, converges to D f uniformly at compact
sets.

* With this definition, the tangent map can not be unique or even linear.
But for Lipschitz maps between sub-Riemannian manifolds, Pansu’s-
Rademacher theorem states that not only a tangent map exists at almost
every point, but also that outside a small set the limit is a Lie group ho-
momorphism between Carnot groups which commutes with dilations.

* Any sub-Riemannian manifold is a differentiable manifold, therefore
we always have the notion of the differential of a smooth map. But this
does not coincide with the notion of tangent map which on the other
hand takes place on horizontal spaces and on the other one is defined in
geometric terms.

* There can be no bi-Lipschitz map between Carnot groups which are not

isomorphic.
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