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Chapter 1

Introduction

The purpose of this master thesis is to present a brief but self-contained
survey of the theory of quasiconformal mappings on the Heisenberg group H
and then describe, in a more detailed and geometric manner, quasiconformal
mappings of H that preserve V = {0} × R. The main part of this thesis
is the study of the Roto-Affine group and the proof of the Lifting theorem
(6.13). This is an unpublished result of my advisor, Ioannis D. Platis (see
[23]). We should also note that Robin Timsit has obtained the same result
with different methods in [24].

The classical theory of quasiconformal mappings was developed first in the
Euclidean space Rn and produced a variety of results, most of them closely
connected to topics in Analysis. The theory of quasiconformal mappings
on the Heisenberg group emerged after the pioneering articles of Koranyi-
Reimann ([18] and [21]). These works constituted a complete framework
for the theory of quasiconformal mappings on the Heisenberg group H. In
latter developments of that theory, quasiconformal mappings that preserve
V = {0} × R have appeared as generalizations to H of classical mappings of
the complex plane. Such mappings may be considered as self mappings of
(C × R)\V, so it is natural to search for any particular structures present.
This leads to the definition and study of the Roto-Affine group RA. This
project culminates with the proof of the Lifting Theorem (6.13) in Chapter
6.
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Chapter 1. Introduction 8

Our work is organized as follows: Chapters 2,3 and 4 are preparatory. In
Chapter 2 we review some basic definitions from the theory of complex man-
ifolds and describe the complexified tangent and cotangent spaces of a mani-
fold. Chapter 3 provides a quick introduction to the theory of CR manifolds.
At first we examine the case of embedded CR manifolds and then provide
the definition of abstract CR manifolds. This way we proceed from familiar
examples to a more abstract setting and our definitions are better motivated.
In Chapter 4 we briefly examine the notions of contact, symplectic, kahler
and sub-riemannian manifolds. The purpose of this chapter is to provide a
reference for terminology that is later used. In the final section, we define
the Levi form and describe the relation of contact and sub-riemannian struc-
tures on a manifold. Chapter 5 provides a quick survey of the theory of
quasiconformal mappings on the Heisenberg group. After defining the Heis-
enberg group, we describe its contact and sub-riemannian structure. We
close this chapter with the definition of quasiconformal mappings and the
theorem about the Beltrami equation. Chapter 6, which can be considered
as the main part of this work, introduces and studies the Roto-Affine group.



Chapter 2

Complex Manifolds

In this chapter we quickly review the theory of complex and almost complex
manifolds. In section 2.1 we define the notions of a complex and almost
complex structure and in section 2.2 we describe the tangent and cotangent
space of a complex manifold. The main reference is [1].

2.1 Complex and almost complex structures

Definition 2.1. (Holomorphic functions in Cn) Let U be an open subset of
Cn. A function f : U → Cn is called differentiable at z0 if

lim
h→0

1

h

{
f(z10 , ..., z

i
0 + h, ..., zn0 )− f(z10 , ..., z

i
0, ..., z

n
0 )
}

exists for every i = 1, ..., n. f is called holomorphic on U if f is differentiable
at any point on U .

Definition 2.2. (Complex Manifold) A Hausdorff space M is called a com-
plex manifold of complex dimension n, ifM satisfies the following properties:

(i) There exists an open covering {Ua}a∈A of M and for each a, there exists
a homeomorphism

ψa : Ua → ψ(Ua) ⊂ Cn.

9



Chapter 2. Complex Manifolds 10

(ii) For any two open sets Ua and Ub with nonempty intersections, maps

fba = ψb ◦ ψ−1
a : ψa(Ua ∩ Ub) → ψb(Ua ∩ ub),

fab = ψa ◦ ψ−1
b : ψb(Ua ∩ Ub) → ψa(Ua ∩ ub),

are holomorphic.

The set {(Ua, ψa)}a∈A is called a system of holomorphic coordinate neigh-
bourhoods.

Definition 2.3. Let (U,ψ) be a holomorphic coordinate neighborhood of a
complex manifold M . A function f : U → C is holomorphic if the function
f ◦ ψ−1 is holomorphic.

Definition 2.4. Let M,N be complex manifolds and (U,ψ) a holomorphic
coordinate neighborhood of x ∈ M . A continuous map ϕ : M → N is holo-
morphic if for any x ∈M and for any holomorphic coordinate neighborhood
(V, ψ′) of N such that ϕ(X) ∈ V and ϕ(U) ⊂ V, ψ′ ◦ ϕ ◦ψ−1 : ψ(U) → ψ′(V )
is holomorphic.

Now we recall the definition of an almost complex structure. First we
identify a complex number z = x + iy with the element z = xe1 + ye2 of a
real two dimensional vector space V , where (e1, e2) denotes the basis of V .
Let J : V → V be the enomorphism defined by

Jz = iz = −y + ix.

Then we conclude

xJe1 + yJe2 = J(xe1 + ye2) = Jz = −ye1 + x2.

Therefore, the endomorphism J is determined by

Je1 = e2, Je2 = −e1.

Keeping this in mind, we introduce the endomorphism J of the tangent space
Tp(M) of a complex manifoldM at p ∈M . LetM be an n-dimensional com-
plex manifold. Identifying the local coordinates (z1, ..., zn) with (x1, ..., xn, y1, ..., yn),
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we regard M as a 2n-dimensional differentiable manifold. The tangent space
Tp(M) of M at a point p ∈M has a natural basis{

(
∂

∂x1
)p, (

∂

∂y1
)p, ..., (

∂

∂xn
)p, (

∂

∂yn
)p

}
.

For i = 1, ..., n we put

Jp

(
∂

∂xi

)
p

=

(
∂

∂yi

)
p

, Jp

(
∂

∂yi

)
p

=

(
∂

∂xi

)
p

Then Jp defines an isomorphism Jp : Tp(M) → Tp(M). Jp is independent of
the choice of holomorphic coordinates and is well defined. Regarding J as
a map of the tangent bundle T (M) =

∪
p∈M Tp(M), we call J the (natural)

almost complex structure of M .

Theorem 2.5. Let M and M ′ be complex manifolds with almost complex
structures J and J ′ respectively. Then the map f : M → M ′ is holomorphic
if and only if f∗ ◦ J = J ′ ◦ f∗ where f∗ denotes the differential of the map of
f .

Proof. We identify holomorphic coordinates z = (z1, ..., zn) ofM with (x,y) =
(x1, ..., xn, y1, ..., yn) and holomorphic coordinates w = (w1, ..., wn) of M ′

with (u,v) = (u1, ..., un, v1, ..., vn). Then

f(z) = (w1(z), ..., wm(z))

is expressed by
f(x,y) = (u(x,y),v(x,y))

in terms of the real coordinates. Thus we have

J ′◦f∗
(
∂

∂xi

)
=

m∑
j=1

(
∂uj

∂xi
J ′

(
∂

∂uj

)
+
∂vj

∂xi
J ′

(
∂

∂vj

))
=

m∑
j=1

(
∂uj

∂xi

∂

∂vj
− ∂vj

∂xi

∂

∂uj

)
,

(2.1)

J ′◦f∗
(
∂

∂yi

)
=

m∑
j=1

(
∂uj

∂yi
J ′

(
∂

∂uj

)
+
∂vj

∂yi
J ′

(
∂

∂vj

))
=

m∑
j=1

(
∂uj

∂yi

∂

∂vj
− ∂vj

∂yi

∂

∂uj

)
.

(2.2)
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On the other hand

f∗ ◦ J
(
∂

∂xi

)
= f∗

(
∂

∂yi

)
=

m∑
j=1

(
∂uj

∂yi

∂

∂uj
+
∂vj

∂yi

∂

∂vj

)
, (2.3)

f∗ ◦ J
(
∂

∂yi

)
= −f∗

(
∂

∂xi

)
=

m∑
j=1

(
∂uj

∂xi

∂

∂uj
+
∂vj

∂xi

∂

∂vj

)
. (2.4)

Comparing (2.1),(2.2) with (2.3),(2.4) yields the Cauchy-Riemann equations

∂uj

∂xi
=
∂vj

∂yi
,

∂uj
∂yi

= −∂vj
∂xi

Consequently, f is holomorphic if and only if f∗ ◦ J = J ′ ◦ f∗

Definition 2.6. A differentiable manifoldM is said to be an almost complex
manifold if there exists a linear map J : T (M) → T (M) satisfying J2 = −id
and J is said to be an almost complex structure of M .

As we have shown, a complex manifold M admits a naturally induced
almost complex structure, given by (1.8), and consequantly M is an almost
complex manifold.

Theorem 2.7. An almost complex manifold M is even-dimensional.

Proof. Since J2 = −id, for suitable basis of the tangent bundle we have

J2 =


−1 0 ... 0
0 −1 ... 0

......
0 ... ... −1


Hence, (−1)n = det(J2) = (det(J))2 ≥ 0. Thus, n is even.

Remark 2.8. We note that an even dimensional differentiable manifold does
not necessarily admit an almost complex structure J . It is known, for ex-
ample that S4 does not possess an almost complex structure, (see [15], p.217).
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The Nijenhuis tensor N of an almost complex structure J is defined by

N(X,Y ) = J [X,Y ]− [JX, Y ]− [X, JY ]− J [JX, JY ],

for any X, Y ∈ T (M).

Theorem 2.9 (Newlander-Nirenberg). LetM be an almost complex manifold
with an almost complex structure J . There exists a complex structure on M
and J is the almost complex structure which is induced from the complex
structure on M if and only if the Nijenhuis tensor N vanishes identically.

For the proof of this theorem see [16]

2.2 Complex vector spaces and complexifica-

tion

In this section we recall some results on complex vector spaces applied to
tangent and cotangent spaces of complex manifolds. For the tangent space
Tp(M) at p ∈M , we put

TC
p (M) = {Xp + iYp : Xp, Yp ∈ Tp(M)}

and TC
p (M) is called the complexification of Tp(M). In this way, TC

p (M)
becomes a complex vector space and we can identify Tp(M) with

{Xp + i0p : Xp ∈ Tp(M)}.

Now let (M,J) be an almost complex manifold with almost complex struc-
ture J . Then Jp can be extended as an isomorphism of TC

p (M). We define

T
(0,1)
p (M) and T

(1,0)
p (M) ,respectively, by

T (0,1)
p (M) = {Xp + iJpXp : Xp ∈ Tp(M)},

T (1,0)
p (M) = {Xp − iJpXp : Xp ∈ Tp(M)}.

Proposition 2.10. Under the above assumptions,

TC
p (M) = T (0,1)

p (M)⊕ T (1,0)
p (M)

where ⊕ denotes the direct sum.
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Let

TC(M) =
∪
p∈M

TC
p (M),

T (0,1)(M) =
∪
p∈M

T (0,1)
p (M),

T (1,0)(M) =
∪
p∈M

T (1,0)
p (M)

Definition 2.11. Let D be a distribution onM . We say that D is involutive
if [D,D] ⊂ D.

Theorem 2.12. T (0,1)(M) and T (1,0) are involutive if and only if the Nijen-
huis tensor N vanishes identically

Proof. First we note that for Z ∈ T (0,1)(M),W ∈ T (1,0)(M), it follows

JZ = −iZ, JW = iW

and therefore

N(Z,W ) = J [Z,W ]− [JZ,W ]− [Z, JW ]− J [JZ, JW ]

= J [Z,W ] + i[Z,W ]− i[Z,W ]− J [Z,W ] = 0.

Let Z,W ∈ T (0,1)(M). Then

N(Z,W ) = J [Z,W ]− [−iZ,W ]− [Z,−iW ]− J [−iZ,−iW ]

= J [Z,W ] + i[Z,W ] + i[Z,W ] + J [Z,W ]

= 2(J [Z,W ] + i[Z,W ]).

Thus N(Z,W ) = 0 if and only if J [Z,W ] = −i[Z,W ], that is, [Z,W ] ∈
T (0,1)(M). In a similar way we can prove the case of T (1,0)(M) which com-
pletes the proof.

Let M be an n-dimensional complex manifold and let (z1, ..., zn) be com-
plex coordinates in a neighborhood U of a point p. We regard M as a 2n-
dimensional differentiable manifold with local coordinates (x1, y1, ..., xn, yn).
Then {

(
∂

∂x1
)p, (

∂

∂y1
)p, ..., (

∂

∂xn
)p, (

∂

∂yn
)p

}
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is a basis of Tp(M). If we put

∂

∂zi
=

1

2
(
∂

∂xi
+ i

∂

∂yi
),

∂

∂zi
=

1

2
(
∂

∂xi
− i

∂

∂yi
)

then {
(
∂

∂z1
)p, ..., (

∂

∂zn
)p, (

∂

∂z1
)p, (

∂

∂zn
)p

}
forms a basis of TC

p (M). For a natural basis of a tangent space Tp(M) at
p ∈M we consider its dual basis{

(dx1)p, (dy
1)p, ..., (dx

n)p, (dy
n)p

}
in the cotangent space Tp(M)∗ and we put

(dzi)p) = (dxi)p + i(dyi)p

,
(dzi)p) = (dxi)p − i(dyi)p

Then
{(dz1)p, (dz1)p, ..., (dzn)p, (dzn)p}

is the dual basis of {
(
∂

∂z1
)p, (

∂

∂z1
)p, ..., (

∂

∂zn
)p, (

∂

∂zn
)p

}
Now, if f is a C∞ we have

dfp =
n∑
i=1

(
∂f

∂zi p
dz1p +

∂f

∂zi p
dzip).

Definition 2.13. Let r be a positive integer such that r = p + q where
p, q are nonnegative integrs. Let ω be an r-form on M spanned by the set{
dzi1 ∧ ... ∧ dzip ∧ dzj1 ∧ ... ∧ dzjp

}
where i1, ..., ip and j1, ..., jq run over the

set of all increasing multi-indices of length p and q. Then ω is called a
complex differential form of type (p, q).

Proposition 2.14. Let ω and η be complex differential forms.

(1) If ω is of type (p, q), then ω is of type (q, p).
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(2) If ω is of type (p, q) and η is of type (p′, q′), then ω ∧ η is of type (p +
p′, q + q′).

Next we can use (1.30) to compute dω. This computation expresses dω
as a sum of (r + 1)-forms of type (p + 1, q) and of type (p, q + 1), denoted
respectively by ∂ω and ∂ω. Thus we obtain two differential operators ∂ and
∂ and we can write

dω = ∂ω + ∂ω, d = ∂ + ∂.

Proposition 2.15. (1) Let ω, η be r forms on M and a ∈ C. Then we have

∂(ω + η) = ∂ω + ∂η,

∂(ω + η) = ∂ω + ∂η,

∂(aω) = a∂ω,

∂(aω) = a∂ω.

.

(2) For the differential operators ∂, ∂ and r-form ω, we have

∂2ω = 0,

(∂∂ + ∂∂)ω = 0,

∂
2
ω = 0,

∂ω = ∂ω,

∂ω = ∂ω.



Chapter 3

CR geometry

This chapter provides a quick introduction to the theory of CR manifolds.
We start with the simplest case of embedded CR manifolds in section 3.1
and then provide the abstract definition in section 3.2. In the last section
we define CR maps and prove a theorem that shows the analogy with holo-
morphic mappings of complex manifolds. Our references are [2], [10], [11]
and [12].

3.1 Embedded CR manifolds

We start this chapter with the definition of an embedded CR manifold, which
is the simplest class of CR manifolds. In the next section we will present the
definition of an abstract CR manifold. For a smooth submanifold M of Cn,
we recall that Tp(M) is the real tangent space of M at a point p ∈ M . In
general Tp(M) is not invariant under the complex structure map J for Tp(Cn).
Therefore we give special designation to the largest J-invariant subspace of
Tp(M).

Definition 3.1. For a point p ∈M , the complex tangent space of M at p is
the vector space

Hp(M) = Tp(M) ∩ J(Tp(M))

.

17
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The space Hp(M) must be an even dimensional real vector space. We also
give special designation to the ”other directions” in Tp(M) which do not lie
in Hp(M).

Definition 3.2. The totally real part of the tangent space of M is the quo-
tient space

Xp(M) = Tp(M)/Hp(M)

.

Using the Euclidean inner product on Tp(R2n), we can identifyXp(M) with
the orthogonal complement of Hp(M). With this identification J(Xp(M)) ∩
Xp(M) = {0}, because Hp(M) is the largest J-invariant subspace of Tp(M).
We have Tp(M) = Hp(M)⊕Xp(M) and J(Xp(M)) is orthogonal to Hp(M).
The dimensions Hp(M) and Xp(M) are of crucial importance.

Lemma 3.3. SupposeM is a real submanifold of Cn of real dimension 2n−d.
Then

2n− 2d ≤ dimRHp(M) ≤ 2n− d

0 ≤ dimRXp(M) ≤ d

The real dimension of Xp(M) is called the CR codimension of M . The
lemma states that dimRHp(M) is an even number between 2n − 2d and
2n− d. If M is a real hypersurface, then d = 1 and so the only possibility is
dimRHp(M) = 2n− 2. In particular the dimension of Hp(M) never changes.
If d > 1 then there are more possibilities as in the following example:

Example 3.4. Let M = {z ∈ Cn : |z| = 1 and Imz1 = 0}. M is just the
equator of the unit sphere in Cn. Here d = 2 and so

2n− 4 ≤ dimRHp(M) ≤ 2n− 2

for p ∈M . At the point p1 = (0, 1, ..., 0) ∈M , Tp(M) is spanned over R by

{∂/∂x1, ∂/∂y2, ∂/∂x3.∂/∂y3, ..., ∂/∂xn, ∂/∂yn}.

The vectors J(∂/∂x1) = ∂/∂y1 and J(∂/∂y2) = −∂/∂x2 are orthogonal to
Tp1(M) and therefore ∂/∂x1, ∂/∂y2 span Xp1(M).
The vectors {∂/∂x3, ∂/∂y3, ..., ∂/∂xn, ∂/∂yn} span the J-invariant subspace
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Hp1(M). So in this case dimRHp1(M) = 2n− 4 and dimRXp1(M) = 2. Now
consider the point p2 = (1, 0, ..., 0) ∈M . Here Tp(M) is spanned (over R) by

{∂/∂x2, ∂/∂y2, ..., ∂/∂xn, ∂/∂yn}

which is J-invariant. Therefore Hp2(M) = Tx2(M) and Xp2(M) = {0}. In
this case dimRHp2(M) = 2n− 2 and dimXp2(M) = 0.

In the above example the dimension of Hp(M) varies with p. The basic
requirement of a CR manifold is that dimRHp(M) is independent of p ∈M .

Definition 3.5. A submanifoldM of Cn is called an embedded CR manifold
or a CR submanifold of Cn if dimRHp(M) is independent of p ∈M .

Example 3.6. • Any real hypersurface in Cn is a CR submanifold of
Cn.

• Another class of CR submanifolds is the class of complex submanifolds
of Cn. For a complex submanifold M , the real tangent space is already
J-invariant and so Tp(M) = Hp(M).

• Another example of a CR submanifold is a totally real submanifold,
which is on the opposite end of the spectrum from a complex manifold.

Definition 3.7. A submanifold M of Cn is said to be totlly real if Hp(M) =
{0}, for each p ∈M .

Lemma 3.8. Suppose that M is a CR submanifold of Cn. Then

1. H
(0,1)
p ∩H(1,0)

p = {0} for each p ∈M ,

2. The subbundles H(0,1) and H(1,0) are involutive.

Proof. The proof of the first part follows from the fact that the intersection
of eigenspaces of any linear map corresponding to different eigenvalues is
always trivial. For the second part we first note that

H(1,0)(M) = TC(M) ∩ {T (1,0)(Cn)|M}.

The bundle T (1,0)(Cn) is involutive because the Lie bracket of any two vector
fields spanned by { ∂

∂z1
, ..., ∂

∂zn
} is again spanned by { ∂

∂z1
, ..., ∂

∂zn
}. In addition
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TC is involutive beacause the tangent bundle of any manifold is involutive.
So, H(1,0)(M) is involutive as desired. Finally as H(0,1)(M) = H(1,0)(M),
H(0,1)(M) is also involutive.

The above lemma is important because Properties 1 and 2 will be used to
define an abstract CR manifold in the next section.

3.2 Abstract CR Manifolds

So far we have been dealing with CR submanifolds of Cn. In this section we
define the concept of an abstract CR manifold which requires no mention
of an ambient Cn or complex manifold. Properties 1 and 2 of Lemma 2.7
make no mention of a complex stucture on Cn other than to define the space
H(1,0)(M). Therefore we define an abstract CR manifold to be a manifold
together with a subbundle of TC(M) which satisfies the above two properties.

Definition 3.9 (Complex CR structure). Let M be a (2p + s)-dimensional
real manifold and let TC(M) be its complexified tangent bundle. A CR struc-
ture of codimension s in M is a complex p-dimensional smooth subbundle H
of TC(M) such that:

(i) H ∩ H̄ = 0.

(ii) H is involutive, that is for any vector fields Z and W in H we have
[Z,W ] ∈ H.

Another way to define an abstract CR structure based on Theorem 1.11
is the following:

Definition 3.10 (Real CR structure). Suppose thatM is a (2p+s)-dimensional
real manifold. A CR structure of codimension s in M is a pair (D, J) where
D is a 2p-dimensional smooth subbundle of T (M) and J is a bundle auto-
morphism of D such that:

(i) J2 = −id and
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(ii) if X and Y are sections of D then the same holds for

[X, Y ]− [JX, JY ], [JX, Y ] + [X, JY ] (3.1)

and moreover

J([X,Y ]− [JX, JY ]) = [JX, Y ] + [X, JY ]. (3.2)

The following theorem shows that these two definitions are actually equi-
valent.

Theorem 3.11. A differentiable manifold has a real CR structure if and
only if it has a complex CR structure.

Proof. Suppose M has a real CR structure (D, J). Then we define

H = {X − iJX;X ∈ X (D)}. (3.3)

Of course we have H ∩ H̄ = 0. Moreover, if we take U = X − iJX and
V = Y − iJY from H we obtain

[U, V ] = [X, Y ]− [JX, JY ]− i{[X, JY ] + [JX, Y ]}. (3.4)

Taking account of (3.2) , (3.4) becomes

[U, V ] = [X, Y ]− [JX, JY ]− iJ{[X, Y ]− [JX, JY ]}. (3.5)

Thus by using (3.1) and (3.3) we obtain that [U, V ] belongs to H. Con-
sequently M has a complex CR structure. Conversely, suppose M has a
complex CR structure. Then we define the distribution D by

D = {X = Re(U);U ∈ H} and J : D → D (3.6)

given by
JX = Re(iU),where X = Re(U) and U ∈ H. (3.7)

Then it is easy to check that we have J2 = −id. On the other hand by using
(3.6) and (3.7) we get

[JX, JY ]− [X, Y ] = −Re([U, V ]) ∈ X (D). (3.8)
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where X = Re(U) and Y = Re(V ), that is, condition 3.1 is satisfied. Substi-
tuting Y by JY in (3.8) we obtain

[JX, Y ] + [X, JY ] = Re(i[U, V ]) ∈ X (D). (3.9)

The condition (3.2) follows from (3.8) and (3.9). The proof is complete.

By this theorem we can say that we have a CR structure on M either
whenM has a real CR structure or a complex CR structure. A manifold with
a CR-structure is called a CR manifold. A special class of CR manifolds
are generic submanifolds of complex manifolds.

Definition 3.12. Let M be a complex manifold of complex dimension m
and let N be a submanifold of M of real dimension n. Then, denoting by J
the almost complex structure onM we have [JX, JY ]− [X, Y ]−J([X, JY ]+
[JX, Y ]) = 0 for any X,Y ∈ T (M). Now let Dp = Tp(N) ∩ J(Tp(N)), p ∈ N
so that Dp is the maximal invariant subspace of Tp(N) under the action of J .
Then we say that N is a generic submanifold of M if D : p → Dp ⊂ Tp(N)
is a distribution on N .

Theorem 3.13. Each generic submanifold of a complex manifold is a CR-
manifold.

Proof. Let J ′ be the restriction of J to the distribution D. We will show that
(D, J ′) is a CR structure on N . First, we consider a coordinate neighborhood
U on N and take a complementary distribution D′ to D on U . Denote by P
and P ′ the projection morphisms of T (N) to D and respectively D′. Then

X = PX + P ′X, for any X ∈ X (T (N)). (3.10)

Next we see that JPX = J ′PX ∈ X (D) and JP ′X is not tangent to N ,
otherwise D is not the maximal holomorphic distribution on N . Using the
fact that [JX, JY ]− [X, Y ]−J([X, JY ]+ [JX, Y ]) = 0 for any X, Y ∈ T (M)
and 3.10, we obtain

[JX, JY ]− [X, Y ]− JP [JX, Y ] + [X, JY ] = 0 (3.11)
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and
P ′[JX, Y ] + [X, JY ] = 0 for any X, Y ∈ X (D). (3.12)

Replacing X by JX in (3.12) we obtain (3.1) and then (3.2) is a consequence
of (3.11) taking account of (3.10) and (3.12).

3.3 CR Maps

Definition 3.14. Suppose (M,H) and (N,H ′) are CR structures. A C1

map F :M → N is called a CR map if f∗{H} ⊂ H ′.

Theorem 3.15. Suppose (M,H) and (N,H ′) are CR structures. Let JM :
H(M) → H(M) and JN : H(N) → H(N) be the associated complex structure
maps. A C1 map f : M → N is a CR map if and only if for each x ∈ m,
f∗{Hp(M)} ⊂ Hf(p)(N) and JN ◦ f∗(p) = f∗(p) ◦ JM on Hp(M).

Proof. Assume first that f is a CR map as in Definition 2.13. For X ∈ H

f∗(X +X) = f∗(X) + f∗(X).

Since f∗(X) ∈ H ′, f∗(X + X) is an element of H(N). Moreover, H and H
are the i and −i eigenspaces for JM . Therefore

f∗(JM(X +X)) = f∗(iX − iX) = i(f∗(X)− f∗(X)).

Since f∗(X) is an element of H ′, which is is the i eigenspace of JN the above
equation becomes

f∗(JM(X +X)) = JN(f∗(X +X).

Thus, JN ◦ f∗(p) = f∗(p) ◦ JM , as desired. For the converse: Each element X
in H can be written as

X = Y − iJMY,

where Y = 1
2
(X +X) ∈ H(M). We also have

f∗(X) = f∗(X)− if∗(JMX) = f∗(X)− iJNf∗(X).

H ′ is generated by vectors of the form Y − iJNY for Y ∈ H(N). Since f∗(X)
belongs to H(N) the above equation shows that f∗(X) belongs to H ′, as
desired.
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One of the characterizations of holomorphic mappings between two com-
plex manifolds is that the derivative commutes with the complex structures.
The point of the above theorem is that the analogous characterization holds
for CR maps between CR manifolds.

We now make some brief comments concerning the embeddability of ab-
stract CR manifolds. The Newlander-Nirenberg theorem states that a man-
ifold with an involutive almost complex structure is a complex manifold and
complex manifolds can locally be embedded into Cn by definition. The
analogous question for CR manifolds is then the following: if (M,H) is
an abstract CR structure, does there exist a locally defined diffeomorph-
ism F : M → Cn so that F (M) is a CR submanifold of Cn with F∗H =
H(1,0)(F (M))? In the case that M is real analytic, the answer to this ques-
tion is positive. However, in the case that M is only smooth this is not
always possible as shown by a counterexample by Nirenberg. CR manifolds
that can be realized as real hypersurfaces of a certain complex manifold are
called realizable. The interested reader can look in [2],[3].



Chapter 4

Contact, Symplectic and
Sub-riemannian manifolds

This chapter provides a quick review of basic definitions and results of the
theory of contact, symplectic and sub-riemannian manifolds. In the last
section we describe how the notions of CR, contact and sub-riemannian
structures are related. The main reference for sections 4.1-4.3 is [14]. For
section 4.4 our main reference is [8].

4.1 Symplectic manifolds

Let V be an m−dimensional vector space over R and Ω : V × V → R be
a bilinear map. The map Ω is skew symmetric if Ω(u, v) = −Ω(v, u) for all
u, v ∈ V .

Definition 4.1. A skew symmetric bilinear map Ω is symplectic or nonde-
generate if the linear map Ω̃ : V → V ∗ defined by Ω̃(v)(u) = Ω(v, u) is
bijective.

Definition 4.2. The 2-form ω is symplectic if ω is closed and ωp is symplectic
for all p ∈M .

25
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Definition 4.3. A symplectic manifold is a pair (M,ω) where M is a man-
ifold and ω is a symplectic form.

Example 4.4. Let M = Rn with coordinates x1, ..., xn, y1, ..., yn. The form

ω =
n∑
i=1

dxi ∧ dyi

is symplectic

Definition 4.5. Let (M1, ω1) and (M2, ω2) be 2n-dimensional symplectic
manifolds, and let g : M1 → M2 be a diffeomorphism. Then g is a symplec-
tomorphism if g∗ω2 = ω1

The following theorem locally classifies symplectic manifolds up to sym-
plectomorphism:

Theorem 4.6. (Darboux) Let (M,ω) be a 2m-dimensional symplectic man-
ifold, and let p be any point in M . Then there is a coordinate chart

(U, x1, ..., xn, y1, ..., yn, p)

centered at p such that on U

ω =
n∑
i=1

dxi ∧ dyi

4.2 Contact Manifolds

Definition 4.7. A contact element on a manifoldM is a point p ∈M , called
the contact point, together with a tangent hyperplane at p, Hp ⊂ TpM .

If (p,Hp) is a contact element then Hp = kerωp with ωp : TpM → R linear.

Definition 4.8. A contact structure on M is a smooth field of tangent hy-
perplanes H ⊂ TM , such that for any locally defining 1-form ω, we have
dω|H nondegenerate. The pair (M,H) is then called a contact manifold and
ω is called a local contact form.
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At each p ∈ M , TpM = kerωp ⊕ ker dωp. It follows that any contact
manifold is odd dimensional.

Proposition 4.9. LetH be a field of tangent hyperplanes onM and dimM =
2n+ 1. Then H is a contact structure if and only if ω ∧ (dω)n ̸= 0 for every
locally defining 1-form ω.

Example 4.10. On R3 with coordinates (x, y, z), consider ω = xdy + dz.
Then

ω ∧ (dω) = (xdy + dz) ∧ (dx ∧ dy) = dx ∧ dy ∧ dz ̸= 0

, hence ω is a contact form on R3. The corresponding field of hyperplanes
H = kerω at (x, y, z) ∈ R3 is

H(x,y,z) =

{
v = a

∂

∂x
+ b

∂

∂y
+ c

∂

∂z
|ω(v) = bx+ c = 0

}

The following theorem is analogous to the Darboux theorem for symplectic
manifolds:

Theorem 4.11. Let (M,H) be a contact manifold and p ∈ M . Then there
exists a coordinate system (U, x1, ..., xn, y1, ..., yn, z) centered at p such that
on U ω =

∑
xidyi + dz is a local contact form for H.

Let (M,H) be a contact manifold with a contact form ω. There exists a
unique vector field R on M such that iRdω = 0, iRω = 1. The vector field R
is called the Reeb vector field determined by ω.

Definition 4.12. A contactomorphism is a diffeomorphism f of a contact
manifold (M,H) which preserves the contact structure, that is f∗H = H.

4.3 Kahler manifolds

Definition 4.13. Let (M,ω) be a symplectic manifold. An almost complex
structure J on M is called compatible with ω if the assignement

x 7→ gx : TxM × TxM → R

gx(u, v) = ωx(u, Jv)

is a riemannian metric on M .
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Definition 4.14. An almost complex structure J on a manifold M is called
integrable if and only if J is induced by a complex manifold structure on M .

Definition 4.15. AKahler manifold is a symplectic manifold (M,ω) equipped
with an integrable compatible almost complex structure. The symplectic
form ω is then called a Kahler form.

Proposition 4.16. Let M be a complex manifold and ρ ∈ C∞(M ;R) be

strictly plurisubharmonic (on each complex chart, the matrix
(

∂2ρ
∂zj∂zk

(p)
)
is

positive-definite at all p ∈M). Then

ω =
i

2
∂∂ρ

is Kahler.

4.4 Sub-Riemannian manifolds

A sub-Riemannian manifold is a manifold that has measuring restrictions,
that is we are allowed to measure the magnitude of vectors only for a distin-
guished subset of vectors called horizontal vectors. The precise definition is
the following:

Definition 4.17. A sub-Riemannian manifold is a real manifoldM of dimen-
sion n together with a nonintegrable distribution D of rank k < n endowed
with a sub-Riemannian metric g (i.e. an assignement gp : Dp ×Dp → R for
all p ∈M , which is a positive definite, nondegenerate, inner product).

D is called the horizontal distribution and the vectors v ∈ Dp are called
horizontal vectors at p. A curve γ : [a, b] → M is called a horizontal curve
if it is absolutely continuous and γ̇(s) ∈ Dγ(s) for all s ∈ [a, b] ,that is the
velocity vector of the curve belongs to the horizontal distribution. The metric
g is called the sub-riemannian metric and ca be used to define the length of
horizontal curves by

l(γ) =

∫ b

a

g(γ̇(s), γ̇(s))1/2ds.
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Definition 4.18. Let p and q be two points on the manifold M . If there is
a horizontal curve joining them, γ : [a, b] → M ,γ(a) = p, γ(b) = q then the
sub-Riemannian distance between p and q is defined by

dc(p, q) = inf {l(γ) : γ horizontal curve joining p and q} .

dc is also called the Carnot-Caratheodory distance of the sub-Riemannian
manifold. In general there is no assurance that there is a horizontal curve
joining any two given points. This is the subject of the famous Chow-
Rashevskii theorem that deals with horizontal connectivity. Let TpM be
the tangent space of the manifold M at p. Consider the following sequence
of subspaces of the space TpM :

D1
p = Dp,

D2
p = D1

p + [Dp, D
1
p],

...

Dn+1
p = Dn

p + [Dp, D
n
p ].

Definition 4.19. The distribution D is said to be bracket generating at the
point p ∈ M if there is an integer r ⩾ 1 such that Dr

p = TpM . The integer
r is called the step of the sub-riemannian manifold (M,D, g) at the point p.
(See [8], page 41 and [7], page 47.)

Theorem 4.20. (Chow-Rashevskii) If D is a bracket generating distribution
on a connected manifoldM , then any two points can be joined by a horizontal
piecewise curve.

4.5 Levi form

In this section we study how the notions of CR, contact and sub-riemannian
structures are related. We concentrate on domains of C2. Let us start with
a definition:

Definition 4.21. Let Ω be a connected open set in Cn with boundary ∂Ω.
The domain Ω is said to have Ck boundary, if there exists a k times continu-
ously differentiable function ρ defined on a neighborhood U of the boundary
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of Ω such that:
Ω ∩ U = {z ∈ U : ρ(z) < 0}

,
∇ρ ̸= 0 on the boundary of Ω.

We call the function ρ a Ck defining function for Ω.

Now let Ω be a domain in C2 with C2 boundary and let ρ be its defining
function. Then

Ω =
{
(z1, z2) ∈ C2 : ρ(z1, z2) < 0

}
.

and
∂Ω =

{
(z1, z2) ∈ C2 : ρ(z1, z2) = 0

}
.

Let H = ker ∂ρ =< Z >, Z ∈ T
(1,0)
∂Ω (C2) where ∂ρ =

(
∂ρ
∂z1
, ∂ρ
∂z2

)
. If [Z,Z] =

0, then H is a formally integrable CR-structure.

The Levi form of Ω is equal to i∂∂ρ and its matrix is:

L =

[
∂2ρ

∂z1∂z1

∂2ρ
∂z1∂z2

∂2ρ
∂z2∂z1

∂2ρ
∂z2∂z2

]
.

If Z ·L ·ZT
< 0 the CR-structure H is totally non-integrable. Equivalently,

if Z = 1
2
(X−iY ) with X,Y ∈ T∂Ω(C2) then [X,Y ] ̸∈ H. Therefore we define

a sub-riemannian metric in ∂Ω as follows:

< X,X >=< Y, Y >= 1, < X, Y >= 0.

We also define the horizontal length of a curve γ : [a, b] → ∂Ω as follows:

lh(γ) =

∫ b

a

< γ̇(t), γ̇(t) >
1
2 dt.

The Carnot-Caratheodory distance is defined as dcc(p, q) = infγ lh(γ) where
the infimum is taken over all horizontal absolutely continuous curves γ joining
p to q. Finnaly, we define a contact form for Ω as:

ω = Im∂ρ =
∂ρ− ∂ρ

2i

Then, ω(X) = ω(Y ) = 0 and there is a unique T ∈ T∂Ω(C2), T ̸∈ H, T ∈
ker ∂∂ρ such that ω(T ) = 1.
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Quasiconformal mappings in
the Heisenberg Group

In this chapter we study the Heisenberg group. In section 5.1 we define the
Heisenberg group. We also define the Koranyi-Cygan metric and explain
why it cannot be derived from a Riemannian metric. In section 5.2 we apply
the results of section 4.5 in the case of the Heisenberg group and we study
its contact, CR and sub-riemannian structure. Finally, sections 5.3 and 5.4
provide a quick introduction to the definitions and main results for the theory
of quasiconformal mappings in the Heisenberg group. For more details and
proofs see [18], [19], [20], [21] and [22].

5.1 The Heisenberg group

Definition 5.1. The Heisenberg group H is the analytic, nilpotent Lie group
whose underlying manifold is R3 and whose Lie algebra h is graded as h =
V1 ⊕ V2 where V1 has dimension 2 and V1 has dimension 1. Also following
commutator relations hold: [V1, V1] = V2 and [V1, V2] = [V2, V2] = 0.

In what follows we are going to use a specific model for the Heisenberg
group, that is we will consider H as the set C×R with multiplication ∗ given
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by
(z, t) ∗ (w, s) = (z + w, t+ s+ 2Im(w̄z))

Let:

X =
∂

∂x
+ 2y

∂

∂t
, Y =

∂

∂y
− 2x

∂

∂t
, T =

∂

∂t
.

The vector fields X, Y, T form a basis for the Lie algebra of left-invariant
vector fields and the grading of h is the following:

V1 = spanR{X, Y } and V2 = spanR{T}

The Koranyi-Cygan metric dh is defined by the relation:

dh((z1, t1), (z2, t2) = |(z1, t1)−1 ∗ (z2, t2)|.

The metric dh is invariant under left translations, conjugation and rotations
around the vertical axis V = {0} × R. Left translations are defined by:

T(ζ,s)(z, t) = (ζ, s) ∗ (z, t),

conjugation j is defined by:

j(z, t) = (z̄,−t),

and rotations are defined by

Rθ(z, t) = (zeiθ, t).

Left translations, conjugations and rotations form the group of Heisenberg
isometries. We consider two other kinds of transformations, dilations defined
by:

Dδ(z, t) = (δz, δ2t),

and inversion defined by:

I(z, t) = (z(a(z, t))−1,−t|a(z, t)|−2).

where a(z, t) = −|z|2 + it. Composites of Heisenberg isometries, dilations
and inversion form the similarity group of h.

The Koranyi-Cygan metric cannot be derived from a Riemannian metric as
dh(0, t) = |t| 12 and the limit limt→0

dh(0,t)
|t| does not exist. This is what makes

the theory of quasiconformal mappings on the Heisenberg group different
from the classical theory of quasiconformal mappings.
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5.2 Contact, CR and Sub-Riemannian struc-

ture

In this section we are going to identify the Heisenberg group with the bound-
ary of the Siegel domain. The defining function for the Siegel domain S is
ρ = 2Rez1 + |z2|2. Hence we have that

S =
{
(z1, z2) ∈ C2 : 2Rez1 + |z2|2 < 0

}
and

∂S =
{
(z1, z2) ∈ C2 : 2Rez1 + |z2|2 = 0

}
.

Straightforward calculations show that:

∂ρ = dz1 + z2dz2,

∂ρ = dz1 + z2dz2,

∂∂ρ = dz2 ∧ dz2.

We also set H =< z2
∂
∂z1

− ∂
∂z2

> . Now the Levi form for the Siegel domain
is:

L =

[
0 0
0 1

]
and

Z · L · ZT
=

[
z2 −1

] [ 0 0
0 1

] [
z2
−1

]
=

[
0 −1

] [ z2
−1

]
> 0.

This means that H is a totally non integrable CR-structure.

Let us now describe the contact form of the Heisenberg group. First,
consider the following two mappings:

ϕ : H 7→ ∂S, ϕ(ζ, t) = (−|ζ|2 + it,
√
2ζ),

ψ : ∂S 7→ H, ψ(z1, z2) = (
z2√
2
, Imz1) ∈ H.

One verifies that

ϕ ◦ ψ = id.
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We now have:

ω = Im∂ρ = dy1 + Im(z2dz2)

= dt+ 2Im(ζdζ)

= dt+ 2xdx− 2ydy.

Then, it follows that Z = ∂
∂ζ

+ iζ ∂
∂t

and for the corresponding real vector
fields

X =
∂

∂x
+ 2y

∂

∂t
, Y =

∂

∂y
− 2x

∂

∂t
, T =

∂

∂t
.

where [X,Y ] = T . Notice also that ω(T ) = 1. As before we define a sub-
riemannian metric using

< X,X >=< Y, Y >= 1, < X, Y >= 0.

For a curve γ : [a, b] → ∂S we have

γ̇(s) = ẋ(s)
∂

∂x
+ ẏ(s)

∂

∂y
+ ż(s)

∂

∂z

= ẋ(s)(X + 2y(s)T ) + ẏ(s)(Y − 2x(s)T ) + ṫ(s)T

= ẋ(s)X + ẏ(s)Y + (ṫ(s)− 2x(s)ẏ(s) + 2y(s)ẋ(s))T

It follows that for horizontal curves we have:

< γ̇, γ̇ >= (ẋ)2 + (ẏ)2

and for such curves the horizontal length is given by:

lh(γ) =

∫ b

1

√
(ẋ)2 + (ẏ)2ds.

The Carnot-Caratheodory distance is defined as before, that is, dcc(p, q) =
infγ lh(γ) where the infimum is taken over all horizontal absolutely continuous
curves γ joining p to q. The Carnot-Caratheodory metric is left invariant and
homogeneous with respect to dilations. Moreover the Carnot-Caratheodory
metric and the Heisenberg metric are equivalent in the sense that there exists
positive constants C1, C2 such that:

C1dh(ξ, η) ⩽ dcc(ξ, η) ⩽ C2dh(ξ, η).

(See [4]).
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5.3 Quasiconformal mappings

Let f : G → H be a homeomorphism where G is an open connected set in
H. We consider the following functions

Lf (p, r) = sup
d(p,q)=r

d(f(p), f(q))

lf (p, r) = inf
d(p,q)=r

d(f(p), f(q))

which are defined when d(p, ∂G) > r. Also let’s set

Hf (p) = lim sup
r→0

Lf (p, r)

lf (p, r)

Jf (p) = lim sup
r→0

|f(br,p)|
Br,p

where Br,p is the Heisenberg ball {q ∈ H : d(p, q) < r}.

Definition 5.2. A homeomorphism f : G→ H is a quasiconformal mapping
if Hf is uniformly bounded in the domain G. If in addition

ess sup
p∈G

|Hf (p)| = ||Hf ||∞ ≤ K

then f is called a K-quasiconformal mapping.

It is proved in [21] that for smooth mappings of the Heisenberg group the
following definition is equivalent to 5.2. The smoothness requirement can
also be relaxed considerably.

Definition 5.3. A smooth K-quasiconformal mapping f :M →M ′ between
strictly pseudocnvex CR manifolds is a C2-contact transformation such that
f ∗θ′ = λθ with λ > 0 and

λK−1L(X,X) ≤ L′(f∗X, f∗X) ≤ λKL(X,X)

for all X ∈ HM.
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5.4 The Beltrami equation

Theorem 5.4. The C2-diffeomorphism f is a K-quasiconformal mapping if
and only if there exists a complex valued function µ with |µ| ≤ K−1

K+1
such that

fI = f1 + if2 and fII = f3 + i|fI |2 satisfy the equations

ZfI = µZfI (5.1)

ZfII = µZfII . (5.2)

Moreover, if f is a contact quasiconformal mapping then (5.1) implies (5.2).



Chapter 6

Quasiconformal mappings in
the Roto-affine Group

This chapter contains the main result of the thesis. We start with the defin-
ition of the Roto-affine group and the description of the left invariant vector
fields in section 6.1. Then, we define a riemannian structure on the Roto-
affine group which gives a riemannian isometry between the Roto-affine group
and L × S1. Section 6.1 ends with the description of the contact structure
of the Roto-affine group. In section 6.2 we define an alternative rieman-
nian structure on the Roto-affine group which makes the Koranyi map a
riemannian submersion from the Roto-affine group to the hyperbolic plane.
In section 6.3 we describe the relation between horizontal curves of the hy-
perbolic plane and horizontal curves on the Roto-affine group. We proceed
with the proofs of some propositions regarding contact transformations in
sections 6.4 and 6.5. The last section is devoted to the statement and proof
of the Lifting theorem.

6.1 The Roto-affine group

Definition 6.1. We denote by RA the set C∗ × R, with group law

(z, t) ⋆ (z′, t′) = (zz′, t+ t′|z|2), (6.1)
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and we call RA the roto-affine group.

RA is a non Abelian group, its neutral element is (1, 0) and the inverse of
(z, t) is (1/z,−t/|z|2). It is also a Lie group with underlying manifold C∗×R.
Indeed the map

RA× RA → RA,
(p, q) 7→ p−1 ⋆ q.

can be written in coordinate form as

(z, t, w, s) 7→ (
w

z
,
s− t

|z|2
),

which is clearly smooth. To detect the left-nvariant vector fields of RA, we
fix a left translation

F (z, t) = L(w,s)(z, t) = (wz, s+ t|w|2),

and we consider the complex matrix DF of the differential F∗:

DF =

 w 0 0
0 w̄ 0
0 0 |w|2

 .
Now we can check that the vector fields

Z∗ = z
∂

∂z
, Z̄∗ = z̄

∂

∂z̄
, T ∗ = |z|2 ∂

∂t
,

are all left-invariant for RA. Indeed, for the vector field Z∗ we have

F∗(Z) = wz
∂

∂z
= Z ◦ F.

The verification for Z̄∗ and T ∗ is similar. The vector field Z∗, Z̄∗, T ∗ form a
basis for the tangent space of RA which satisfy the following bracket relations:

[Z∗, Z̄∗] = 0, [Z∗, T ∗] = [Z̄∗, T ∗] = T ∗.

The corresponding real basis is

X∗ = x
∂

∂x
+ y

∂

∂y
, Y ∗ = x

∂

∂y
− y

∂

∂x
, T ∗ = (x2 + y2)

∂

∂t
,
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so that

Z∗ =
1

2
(X∗ − iY ∗), Z̄∗ =

1

2
(X∗ + iY ∗),

The bracket relations for X∗, Y ∗ and T ∗ are:

[X∗, T ∗] = 2T ∗, [X∗, Y ∗] = [Y ∗, T ∗] = 0.

Also, since det(DF ) = |w|4 we have that the Haar measure of RA is:

dm =
dx ∧ dy ∧ dt
(x2 + y2)2

=
i

2

dz ∧ dz̄ ∧ dt
|z|2

.

6.1.1 First Riemannian structure

By declaring that the vector fields X∗, Y ∗, T ∗ form an orthonormal basis we
obtain a left-invariant Riemannian metric g∗ for RA:

g∗(X∗, X∗) = g∗(Y ∗, Y ∗) = g∗(T ∗, T ∗) = 1,

g∗(X∗, Y ∗) = g∗(X∗, T ∗) = g∗(Y ∗, T ∗) = 0.

Using

X∗ = x∂x + y∂y,

Y ∗ = −y∂x + x∂y,

T ∗ = |z|2∂t,

we find that

∂x =
xX∗ − yY ∗

|z|2
,

∂y =
xY ∗ + yX∗

|z|2
,

∂t =
1

|z|2
T ∗.
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We may now write the metric tensor g∗ as:

g∗ =
dx2 + dy2

|z|2
+
dt2

|z|4
.

Now let L = {z ∈ C | Re(z) < 0} be the left half plane and S1 the unit
circle. Consider the map A : RA → L× S1 given by

A(z, t) = (−|z|2 + it, arg(z))

with inverse
A−1(ζ, ϕ) = (

√
−Re(ζ)eiϕ, Im(ζ)).

This map identifies RA with the cylinder L× S1 and we have the following
proposition:

Proposition 6.2. If g = ds2 = ds2h + dϕ2 is the Riemannian product metric

in L× S1, where dsh = |dζ|
−2Re(ζ)

is the hyperbolic metric in L and |dϕ| is the
intrinsic Riemannian metric in S1 the map A is an isometry between (RA, g∗)
and (L× S1, g).

Proof. Consider the Jacobian matrix DA of the differential A∗:

DA =

 −2x −2y 0
0 0 1
y

|z|2 − x
|z|2 0

 .
This gives A∗X

∗ = 2ξ∂ξ, A∗Y
∗ = −∂ϕ, A∗(2T

∗) = −2ξ∂η. Since the above
vector fields are orthonormal for g we obtain A∗g = g∗ and the proof is
complete.

6.1.2 Contact Structure

Now we will study the contact structure of the roto-affine group. We will
consider the follwing 1-form

ω∗ =
ω

2|z|2
,

which arises naturally from the contact form ω of the Heisenberg group. The
following proposition describes this form.
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Proposition 6.3. The manifold (RA, ω∗) is contact. Explicitely:

1. The form ω∗ is left invariant.

2. If dm is the Haar measure for RA then dm = ω∗ ∧ dω∗.

3. The kernel ω∗ is generated by the left invariant vector fields

X = X∗ = x
∂

∂x
+ y

∂

∂y

Y = Y ∗ − 2T ∗ = x
∂

∂y
− y

∂

∂x
− 2|z|2 ∂

∂t
.

where X∗, Y ∗, T ∗ are the basis of T (RA).

4. The Reeb vector field for ω∗ is

T = Y ∗ = x
∂

∂y
− y

∂

∂x
.

5. The only non trivial bracket relation between X,Y,T is

[X,Y] = 2(Y−T).

Proof. To prove (1) fix a (w, s) ∈ RA and consider a left translation

f(z, t) = T(w,s)(z, t) = (wz, s+ t|w|2),

Then

f ∗(ω∗) =
d(s+ t|w|2) + 2Im(w̄zd(wz)

2|w|2|z|2

=
|w|2(dt+ 2Im(z̄dz))

2|w|2|z|2
= ω∗.

To prove (2) we observe first that

ω∗ =
dt

2|z|2
+ d(Im(Logz)).
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Therefore

dω∗ = d(
dt

2|z|2
) = −i z̄dz + zdz̄

2|z|4
∧ dt = −xdx+ ydy

|z|4
∧ dt.

It follows that

ω∗ ∧ dω∗ = −idz ∧ dz̄ ∧ dt
2|z|4

=
dx ∧ dy ∧ dt

|z|4
= dm.

Now (3) is clear. X,Y,T are left invariant, linearly independent and

ω∗(X) = ω∗(Y) = 0.

As for (4) we have that ω∗(T) = 1 and we can verify that dω∗(T, X∗) =
dω∗(T, Y ∗) = dω∗(T, T ∗) = 0. Therefore dω∗(T, X) = 0 for all X ∈ T (RA).
To conclude the proof we show the bracket relation:

[X,Y] = [X∗, Y ∗ − 2T ∗] = −2[X∗, T ∗] = −4T ∗ = 2(Y−T).

6.2 Second Riemannian Structure

From the contact form ω∗ of RA we will define a second Riemannian structure
on RA which turns it into a contact Riemannian manifold with a significant
property. We will denote this metric tensor by g and define it by declaring
the left-invariant vector fields X,Y,T an orthonormal basis:

g(X,X) = g(Y,Y) = g(T,T) = 1, g(X,Y) = g(X,T) = g(Y,T) = 0.

The horizontal bundle H(RA) is generated by the vector fields X,Y ∈
ker(ω∗). Define an almost complex operator J in H(RA) by the relations

JX = Y, JY = −X.

For arbitrary U,V ∈ H(RA) we define a Riemannian tensor g by the relation

g(JU,V) =
1

2
dω∗(U,V)
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For the basis X,Y of H(RA) we thus have

g(X,X) = g(Y,Y) = 1, g(X,Y) = g(Y,X) = 0.

We may extend this product to the whole tangent bundle T (RA) by the
relation

ω∗(U) = g(U,T).

In this way we obtain

g(X,T) = g(Y,T) = 0, g(T,T) = 1.

On the other hand, by setting JT = 0 we obtain

g(T,X) = g(T,Y) = 0.

Solving the system

x∂x + y∂y = X,

−y∂x + x∂y − 2|z|2∂t = Y,

−y∂x + x∂y = T,

we have

∂x =
1

|z|2
(xX− yT), ∂y =

1

|z|2
(xT+ yX), ∂t =

1

2|z|2
(T−Y).

Consequently the metric tensor is given in terms of coordinates

ds2 =
dx2 + dy2

|z|2
+
dt2 + 2xdydt− 2ydxdt

2|z|4
=
dx2 + dy2 + ω∗dt

|z|2
.

If ∇ is a Riemannian connection on a 3-manifold and X1, X2, X3 is an or-
thonormal basis of vector fields, then Koszul’s formula for ∇ is

−2g(Z,∇YX) = g([X,Z], Y ) + g([Y, Z], X) + g([X,Y ], Z),

where X, Y, Z run through X1, X2, X3. Using this and the equation

∇XY −∇YX = [X, Y ],
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we calculate straightforwardly:

∇XX = 0,∇YX− 2Y+T,∇TX = Y,

∇XY = −T,∇YY = 2X,∇TY = −X,

∇XT = Y,∇YT = −X,∇TT = 0.

Denote by R the curvature tensor:

R(X, Y )Z = ∇Y∇XZ −∇X∇YZ +∇[X,Y ]Z.

We have

R(X,Y)X = −7Y,

R(X,T)X = T− 2Y,

R(Y.T)Y = 2Y+T.

The sectional curvature of the planes spanned byX,Y is thus

K(X,Y,X,Y) = g(R(X,Y)X,Y) = −7,

the sectional curvature of the planes spanned byX,T is

K(X,T,X,T) = g(R(X,T)X,T) = 1,

and the same holds for the sectional curvature of the planes spanned byY,T:

K(Y,T,Y,T) = g(R(Y,T)Y,T) = 1.

6.2.1 Riemannian submersion from RA to L

We now show that the second Riemannian metric of RA is exactly the one
that for which the Korányi map is a Riemannian submersion.

Proposition 6.4. Let α : RA → L be the Koranyi map, α(z, t) = −|z|2+ it.
We consider RA endowed with the metric g and L with the usual hyperbolic
metric gh. Then

α : RA → L

is a Riemannian submersion.
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Proof. Let ζ = ξ + iη be the complex coordinate on L. Then

gh = ds2 =
dξ2 + dη2

4ξ2
,

and the vector fields
Ξ = −2ξ∂ξ, H = −2ξ∂η,

is an orthonormal frame for T (L). The matrix Dα of the differential α∗ :
T (RA) → T (L) is

Dα =

[
−2x −2y 0
0 0 1

]
.

Straightforward calculations then show that X,Y,T are α-related to Ξ,H.
In particular we have

α∗(X) = Ξ, α∗(Y) = H, α∗(T) = 0.

Therefore ker(α∗) =< T > . Hence

ker⊥(α∗) =< X,Y >

It follows immediately that

α∗ : ker
⊥(α∗) → T (L),

is a linear isometry, that is, α is a Riemannian submersion.

6.3 Horizontal curves and Ehresmann com-

pleteness of α

Let γ : [a, b] → C∗×R be an absolutely continuous curve. If γ̇ is the tangent
vector field along γ we may write

γ̇(s) = ẋ(s)∂x + ẏ(s)∂y + ṫ(s)∂t

=
ẋ(s)

|z(s)|2
(x(s)X− y(s)T) +

ẏ(s)

|z(s)|2
(x(s)T+ y(s)X) +

ṫ(s)

2|z(s)|2
(T−Y)

=
x(s)ẋ(s) + y(s)ẏ(s)

|z(s)|2
X− ṫ(s)

2|z(s)|2
Y+

ṫ(s) + 2(x(s)ẏ(s)− y(s)ẋ(s))

2|z(s)|2
T.



Chapter 6. Quasiconformal mappings in the Roto-affine Group 46

Therefore

< γ̇,X >γ(s) = Re(
ż(s)

z(s)
),

< γ̇,Y >γ(s) = Im(
ż(s)

z(s)
)− ṫ(s) + 2Im(z(s)ż(s))

2|z(s)|2
,

< γ̇,T >γ(s) =
ṫ(s) + 2Im(z(s), ż(s))

2|z(s)|2

and the length of γ with respect to the metric g is defined by

lRA(γ) =

∫ b

a

√
< γ̇,X >2

γ(s) + < γ̇,Y >2
γ(s) + < γ̇,T >2

γ(s).

Now the following proposition is straightforward

Proposition 6.5. If γ(s) = (z(s), t(s)), z(s) = x(s) + iy(s) then γ is hori-
zontal if and only if

< γ̇,T >γ(s)= 0,

for a.e s. In this case

lRA(γ) =

∫ b

a

ż(s)

z(s)
.

If γ is horizontal, let γ∗ : [a, b] → L defined by γ∗ = α ◦ γ where α is the
Koranyi map. Then for the hyperbolic length of γ∗ we have:

lh(γ
∗) =

∫ b

a

|γ∗(s)|
2Re(γ∗(s))

ds

=

∫ b

a

|2Re(z(s)ż(s))− 2iIm(z(s)ż(s))|
2|z(s)|2

=

∫ b

a

|z(s)ż(s)|
|z(s)|2

= lRA(γ).

Let π :M → B be a submersion andH a distribution onM supplementary
to V = ker(π∗). The distribution H is Ehresmann complete if for any path
γ∗ in B with starting point p∗, and any p ∈ π−1(p∗) there exists a horizontal
lift γ of γ∗ inM (π◦γ = γ∗) starting from p. The following proposition shows
that the horizontal distribution H =< X,Y > is Ehresmann complete.
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Proposition 6.6. Suppose that γ∗ : [a, b] → L is an absolutely continuous
curve starting from p∗ ∈ L = γ∗(a). Then for every p ∈ α−1(p∗) there exists
a horizontal γ : [a, b] → RA starting from p and such that α ◦ γ = γ∗ and
lRA(γ) = lh(γ

∗). Here, α is the Koranyi map.

Proof. Set γ∗(s) = ζ(s), γ∗(a) = ζ0. Then

α−1(ζ0) = {((Re1/2(−ζ0)eiθ, Im(ζ0))|θ ∈ R}.

Pick a θ0 ∈ R and define γ : [a, b] → RA from the relation

γ(s) = (z(s), t(s)) = (Re1/2(ζ(s))eiθ(s), Im(ζ(s))),

where

θ(s)− θ0 =

∫ s

a

Im(ζ̇(u))

2Re(ζ(u))
du.

It is clear that γ starts from ((Re1/2(−ζ0)eiθ, Im(ζ0)) and we show that γ is
horizontal:

ṫ(s)

2|z(s)|2
=

Im( ˙ζ(s))

2Re(ζ(s))

= −θ̇(s) = − arg(ż(s)).

If γ∗ is closed γ∗(a) = γ∗(b) = ζ0 ∈ L then by setting ζ = ξ + iη we have

θ(b)− θ(a) = θ(b)− θ0 =

∫ b

a

Im(ζ̇(s))

2Re(ζ(s))
=

∫
γ∗

dη

2ξ
.

Applying Stokes’ Theorem we get

θ(b) = −
∫ ∫

int(γ∗)

dξ ∧ dη
2ξ2

= −2Areah(int(γ
∗)).

Thus

γ(a) = (Re1/2(−ζ0)eiθ0 , Im(ζ0)),

γ(b) = (Re1/2(−ζ0)ei(θ0−2Areah(int(γ
∗)), Im(ζ0)).

The last statement of the proposition is obvious.
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6.4 Contact transformations

Let F = (fI , f3) be an orientation preserving diffeomorphism of RA which is
a contact transformation, that is F ∗ω∗ = λ∗ω∗ for some positive function λ∗.
In other words:

d arg(fI) +
df3

2|fI |2
= λ∗ω∗.

We set fII = −|fI |2 + if3. We observe that a basis for the cotangent space
comprises the forms

ϕ, ϕ and ω∗,

where

ϕ = −dα(z, t)
2|z|2

and α is the Korányi map. Now, the Jacobian matrix of the differential F∗
may be expressed as follows: < ϕ, F∗Z > < ϕ, F∗Z > < ϕ, F∗T >

< ϕ, F∗Z > < ϕ, F∗Z > < ϕ, F∗T >
< ω∗, F∗Z > < ω∗, F∗Z > < ω∗, F∗T >

 =

 − ZfII
2|fI |2

− ZfII
2|fI |2

− TfII
2|fI |2

− ZfII
2|fI |2

− ZfII
2|fI |2

− TfII
2|fI |2

0 0 λ∗

 .
We prove the above equality. In the first place

< ϕ, F∗Z >= (F ∗(
d|z|2 − idt

2|z|2
))(Z) = − dfII

2|fI |2
(Z) = − ZfII

2|fI |2
.

and analogously for the other coefficients of the first two rows. For the third
row:

< ω∗, F∗Z >= (F ∗ω∗)(Z) = λ∗ω(Z) = 0,

< ω∗, F∗Z >= (F ∗ω∗)(Z) = λ∗ω(Z) = 0,

< ω∗, F∗T >= (F ∗ω∗)(T) = λ∗ω(T) = λ∗,

since F is contact. These equalities induce the contact conditions:

Zf3
2|fI |2

+ Z arg(fI) = 0,

Zf3
2|fI |2

+ Z arg(fI) = 0,

Tf3
2|fI |2

+T arg(fI) = λ∗.
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From the contact conditions we immediately obtain that the Jacobian matrix
of the differential F∗ may also be written as: ZLog(fI) ZLog(fI) TLog(fI)− iλ∗

ZLog(fI) ZLog(fI) TLog(fI)− iλ∗

0 0 λ∗

 .
Proposition 6.7. The Jacobian determinant JF satisfies JF = (λ∗)2. Moreover

λ∗ = |ZLog(fI)|2 − |ZLog(fI)|2

= 2Im(ZLog(|fI |)Z arg(fI))

= −Im(Z log(|fI |)Zf3
|fI |2

.

Proof. We prove the first equality. The middle equality follows from straight-
forward calculations and the last equality follows from the contact conditions.
We have

|ZLog(fI)|2 − |ZLog(fI)|2 = det

(
< ϕ, F∗Z > < ϕ, F∗Z >

< ϕ, F∗Z > < ϕ, F∗Z >

)
= < ϕ, F∗Z >< ϕ, F∗Z > − < ϕ, F∗Z >< ϕ, F∗Z >

= (ϕ ∧ ϕ)(F∗Z, F∗Z)

= F ∗(ϕ ∧ ϕ)(Z,Z)
= F ∗(−idω∗)(Z,Z)

= −i(dλ∗ ∧ ω∗ + λ∗dω∗)(Z,Z)

= −iλ∗dω∗((Z,Z) = λ∗.

6.5 Contact diffeomorphisms with constant

determinant

Lemma 6.8. Let h : RA → C be a C1 function. Then if h = h(ζ) we have
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1. Zh = 2Re(ζ)hζ ,Zh = 2Re(ζ)hζ and Th = 0.

2. h = h(ζ) if and only if Th = 0.

Proposition 6.9. Suppose that F = (fI , f3) is an orientation preserving,
C2 contact diffeomorphism of RA. Then λ∗ is constant if and only if the
function fII : RA → L, fII = −|fI |2 + if3 depends only on ζ = |z|2 + it.
Moreover, in that case we have arg(fI) = arg(z)+ϕ(ζ), for some C2 function
ϕ : RA → R.

Proof. Suppose first that F = (fI , f3) is an orientation preserving, C1 contact
diffeomorphism of RA with constant λ∗. Then the mapping(

fI√
λ∗
,
f3
λ∗

)
,

is also contact and has determinant one. Thus we may always normalize and
in what follows we suppose that λ∗ = 1. Taking differentials at both sides of
the relation (6.1) we obtain

d|fI |2 ∧ df3
2|fI |4

= dω∗

which can also be written as

d log(|fI |) ∧ df3 = |fI |2dω∗.

Taking differentials at both sides we get

d|fI |2 ∧ dω∗ = 0.

Using
d|fI |2 = Z(|fI |2)ϕ+ Z(|fI |2)ϕ+T(|fI |2)ω∗

and
dω∗ = iϕ ∧ ϕ∗,

we get
0 = iT(|fI |2)dm.

Using the previous lemma we conclude that |fI | depends only on ζ. On the
other hand, we have

0 = idω∗((Z),T) = i(F ∗dω∗)(Z,T) = idω∗(F∗Z, F∗T) = iϕ ∧ ϕ(F∗Z.F∗T).
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Thus

0 = ϕ ∧ ϕ(F∗Z, F∗T)

= < ϕ, F∗Z >< ϕ, F∗T > − < ϕ, F∗T >< ϕ, F∗Z >

=
1

4|fI |2
(ZfIITfII − ZfIITfII).

But
TfII = iTf3, TfII = −iTf3.

Thus

− iTf3
4|fI |2

(ZfII + ZfII) = 0.

Now ZfII + ZfII ̸= 0 because if that was the case at some point then λ∗

would vanish at this point. Therefore Tf3 = 0 which proves our first claim.
We now prove that fII depends only on ζ that is TfII = 0 and λ∗ is constant.
For this we consider the differential of λ∗:

dλ∗ = Zλ∗ϕ+ Zλ∗ϕ+Tλ∗ω∗

and we will show that this is equal to zero. We have

F ∗dω∗ = d(F ∗ω∗) = d(λ∗ω∗) = dλ∗ ∧ ω∗ + λ∗dω∗,

= Zλ∗ϕ ∧ ω∗ + Zλ∗ϕ ∧ ω∗ + iλ∗ϕ ∧ ϕ∗.

Now in the first place:

F ∗dω∗(Z,T) = Zλ∗ϕ ∧ ω∗(Z,T) = Zλ∗.

On the other hand

F ∗dω∗(Z,T) = dω∗(F∗Z, F∗T)

= iϕ ∧ ϕ∗(F∗Z, F∗T)

=
i

4|fI |2
(ZfIITfII − ZfIITfII)

= 0.

Thus Zλ∗ = 0 and similarly Zλ∗ = 0. Finally we have

λ∗ =
|ZfII |2 − |ZfII |2

4|fI |2
.
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It suffices to prove that TZfII = 0. Indeed

TZfII = −ZTfII = 0.

and the proof is complete.

Definition 6.10. A bijection F : RA → RA is called circles-preserving if for
every ζ ∈ L there exists an η ∈ L such that

F (a−1(ζ)) = a−1(η).

That is, a circles preserving mapping F = (fI , f3) preserves the fibers of
the Koranyi map a. Such a mapping defines a bijection F : L → L by the
rule

f ◦ a = a ◦ F = fII .

We immediately have the following:

Corollary 6.11. An orientation preserving C2 contact diffeomorphism F =
(fI , f3) of RA has constant λ∗ if and only if F is circles preserving.

6.6 Lifting Theorem

In this section we are going to prove that if a smooth diffeomorphism of
L is symplectic with respect to the Kahler form of L then it can be lifted
to a smooth contact circles-preserving diffeomorphism of RA with Jacobian
determinant λ∗ = 1. As a corollary we will obtain that a symplectic quasicon-
formal mapping of L can be lifted to a circles-preserving quasiconformal map
of RA. We start with the following lemma:

Lemma 6.12. Let f : L → L be a smooth symplectic diffeomorphism. Then
there exists a function ψ : L → R such that

ψζ =
i

4Re(ζ)
+

(Im(f))ζ
2Re(f)

.
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Proof. Since f is symplectic we have

Re2(f)(ζ) = Re2(ζ)Jf (ζ). (6.2)

We have

Jf = |fζ |2 − |fζ |2

= |(Re(f))ζ + i(Im(f))ζ |2 − |(Re(f))ζ + i(Im(f))ζ |2

= (Re(f))ζ + i(Im(f))ζ |2 − (Re(f))ζ − i(Im(f))ζ |2

= −4Im((Re(f))ζ(Im(f))ζ)

= 2i((Re(f))ζ(Im(f))ζ)− (Re(f))ζ(Im(f))ζ).

Therefore we write (6.2) again as

Re2(f)(ζ) = 2iRe2(ζ)((Re(f))ζ(Im(f))ζ)− (Re(f))ζ(Im(f))ζ). (6.3)

We next set

g(ζ) =
i

4Re(ζ)
+

(Im(f))ζ
2Re(f)

.

Then

gζ = − i

8Re2(ζ)
+

(Im(f))ζζRe(f)− (Re(f))ζ(Im(f))ζ

8Re2(f)

and

gζ =
i

8Re2(ζ)
+

(Im(f))ζζRe(f)− (Re(f))ζ(Im(f))ζ

8Re2(f)
.

Using (6.3) we find that
gζ − g(ζ) = 0.

We next consider the real 1-form

β = g(ζ)dζ + g(ζ)dζ.

By the previous equation we have that β is closed and hence exact by Pon-
care’s Lemma. It follows that β = dψ for some real function ψ and the proof
is complete

Theorem 6.13. Let F : L× S1 → L× S1, F = (f,Θ)

f = f(ζ),Θ(ζ, θ) = θ + ψ(ζ)
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be an orientation preserving bundle diffeomorphism. Then the map G :
RA → RA, G = (gI , g3),

gI(z, t) = |z|J
1
4
f (−|z|2 + it)ei(arg(z)+ψ(−|z|2+it)), g3(z, t) = Im(f(−|z|2 + it)),

is an orientation preserving, circles preserving contactomorphism of RA if f
is symplectic with respect to the Kahler form of L.

Proof. In the first place, gII(z, t) = −|z|2J
1
4
f (ζ)+iIm(f)(ζ) = f(ζ).Moreover:

λ∗ =
JfII
4|fI |4

=
4Re2(ζ)Jf

4Re2(ζ)Jf
= 1.

Now

Zf3
2|fI |2

+ Z arg(fI) =
2Re(ζ)(Im(f(ζ)))ζ

−2Re(ζ)J
1
2
f

+
1

2i
+ 2Re(ζ)ψζ

= −Re(ζ)
(Im(f(ζ)))ζ

Re(f)
+

1

2i
+ 2Re(ζ)ψζ

= 0.

Here we used (6.12).Similarly

Zf3
2|fI |2

+ Z arg(fI) = 0

and finally
Tf3
2|fI |2

+T arg(fI) = T arg(z) = 1.

Corollary 6.14. A symplectic quasiconformal self-map of L with Beltrami
differential µf may be lifted to a contact circles-preserving quasiconformal
map G of RA such that

µG(z, t) = −z
z
· µf (α(z, t)),

where α is the Korányi map.
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Proof. If f : L → L is quasiconformal, then its Beltrami differential

µf =
fζ
fζ

is essentially bounded by a constant k ∈ [0, 1). For such an f which is also
symplectic, we consider its lift G from Theorem 6.13. Since

gI(z, t) =
1

2i
(f(α(z, t))− f(α(z, t))),

we have by chain rule:

ZgI(z, t) =
1

2i

(
fζ(α(z, t))Zα + fζ(α(z, t))Zα

)
= izfζ(α(z, t)),

ZgI(z, t) =
1

2i

(
fζ(α(z, t))Zα + fζ(α(z, t))Zα

)
= izfζ(α(z, t).

Therefore

µG(z, t) =
ZgI(z, t)

ZgI(z, t)
= −z

z
·
fζ(α(z, t))

fζ(α(z, t))
= −z

z
· µf (α(z, t)).

The proof is thus concluded
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