
ESI The Erwin Schr�odinger International Pasteurgasse 6/7Institute for Mathematical Physics A-1090 Wien, Austria
Boltzmann's Ergodic Hypothesis,a Conjecture for Centuries?Domokos Szasz

Lecture given at the international symposium in honour of Boltzmann's 150th birthday, Vienna,February 24{26, 1994.Vienna, Preprint ESI 98 (1994) May 16, 1994Supported by Federal Ministry of Science and Research, AustriaAvailable via WWW.ESI.AC.AT



Boltzmann's Ergodic Hypothesis,a Conjecture for Centuries?*Domokos Sz�asz**Mathematical Institute of the Hungarian Academy of SciencesH-1364, Budapest, P. O. B. 127, HungaryAbstract. An overview of the history of LudwigBoltzmann's more than one hundred year old ergodichypothesis is given. The existing main results, themajority of which is connected with the theory ofbilliards, are surveyed, and some perspectives of thetheory and interesting and realistic problems are alsomentioned.In 1964 Werner Heisenberg was elected a honorary doctor of Lor�and E�otv�os Uni-versity, Budapest. In his inaugural lecture he made a point that sounded somethinglike this: \A theoretical physicist feels best if there is no rigorously de�ned math-ematical object behind his considerations". Certainly, Heisenberg was having theearly years of quantum mechanics in his mind but what he said perfectly �tted thework of Ludwig Boltzmann as well. One could choose several areas of his interest toillustrate this statement, out of which the history of the ergodic hypothesis we aregoing to elaborate on is only one.#*Lecture presented on International Symposium in Honor of Boltzmann's 150th Birthday, Feb-ruary 23-26 1994, Vienna**Research supported by the Hungarian National Foundation for Scienti�c Research, grant No.1902#Another striking example, perhaps not su�ciently widely known, is the case with the Boltz-mann equation. He published it in 1872, B(1872), and the �rst mathematically satisfactory deriva-tion of the equation was only obtained more than 100 years later in 1975 by Oscar Lanford, L(1975),though the picture is still not complete. Thus needless to say that Boltzmann's original argumentwas highly intuitive. At the same time, however, it was so much challenging for the great mathe-matician, David Hilbert that he included among his celebrated collection of 23 problems presentedat the International Mathematical Congress held at Paris in 1900 the sixth one with the title \Math-ematical Treatment of the Axioms of Physics" (see H(1900)). In its formulation, besides requiringan axiomatic approach to the theory of probabilities, Hilbert also says: \it is therefore very desir-able that the discussion of the foundations of mechanics be taken up by mathematicians also. ThusBoltzmann's work on the principles of mechanics suggests the problem of developing mathematicallyTypeset by AMS-TEX1



2 As it was so nicely explained in Professor Gallavotti's illuminating lecture at thisconference, G[1994], though the rigorously de�nedmathematical object behind Boltz-mann's considerations around the ergodic hypothesis was indeed missing, Boltzmannwas ingenious in inventing mathematical paradigmas and in mastering mathematicalcalculations on them to �nd out the truth and to obtain convincing power, and evenwithout having the mathematical object he understood many things better than wedo now. 1. Boltzmann's ergodic hypothesis.During the 1870s and 1880s, various forms of the ergodic hypothesis were used byBoltzmann in his works on the foundations of statistical mechanics (see e. g. B(1871)and B(1884); for a historic account also F(1989)). An advanced formulation of thehypothesis would sound as follows:Boltzmann's Ergodic Hypothesis. For large systems of interacting particles inequilibrium time averages are close to the ensemble, or equilibrium average.( Remark: In this paper | with the exception of section 10 | equilibrium averagesalways mean microcanonical ones, i. e. the Liouville measure on the submanifold ofthe phase space speci�ed by the trivial invariants of the motion.)More precisely, if f is a measurement (i.e. a function on the phase space of thesystem), then as N , the size of the system (for instance, the number of particles)tends to in�nity, then(1) 1T Z T0 f(Stx)dt! Z f(x)d�(x)where � is the equilibrium measure, and Stx is the time evolution of the phase pointx. We immediately note that ifN varies, then f and � also depend onN , and thus, fora mathematically strict statement one ought to specify the sense of the convergencein (1), too. Let us look at the main steps of the history of Boltzmann's hypothesis |without intending to provide a complete account though I think such a study shouldbe done. One major incompleteness of our survey is that it does not go into thehistory of the quasi-ergodic hypothesis at all; as to some recent results about it seeH(1991) and Y(1992).the limiting processes, there merely indicated, which lead from the atomistic view to laws of motionof continua". Boltzmann's law of motion of continua is, of course, his equation.



32. Finding a mathematical object, a notion and a problem(from Boltzmann to von Neumann, i.e. from 1870 until 1931).It took quite a time until the mathematical object of the ergodic hypothesis wasfound. Indeed, only in 1929, Koopman, K(1931), began to investigate groups ofmeasure-preserving transformations of a measure space or in other language, groupsof unitary operators in a Hilbert space*. Koopman's idea was apparently in the air,and several mathematicians, including among other G. Birkho�, M. S. Stone and A.Weil, contributed to the birth of ergodic theory; for a historic account see M(1990).More precisely, let M be an abstract space, the phase space of the system and �be a probability measure on (a �-algebra of) M . The dynamics is a one-parametergroup SR = fSt : �1 < t < 1g of measure preserving transformations, i.e. forevery measurable subset A �M , and for every t 2 R �(S�tA) = �(A).Here, of course, � is the equilibriummeasure of the system. Let �nally, f :M ! Rbe a measurement such that f 2 L2(�). Thus the object [i. e. (M;SR ; d�) with thefunctions f ] is de�ned.In 1931, von Neumann proved the �rst ergodic theorem, the so calledMean Ergodic Theorem (N(1932)). As T !1,1T Z T0 f(Stx)dt! �f (x)in the L2-sense.(The exact story of the �rst ergodic theorems is explained in the note of Birkho�and Koopman, B-K(1932).)**The proof of the mean ergodic theorem is not di�cult but it is worth notingthat | even more than 20 years later | Neumann very highly appreciated exactlythis achievement among his various �ndings in the vast territory of his interest. In1954, when answering a questionnaire of the American Mathematical Society, hisworks on the ergodic theorems were named by himself among his most importantdiscoveries (the other two were the mathematicial foundations of quantummechanics,and further operator-algebras, called today Neumann-algebras).*This progress was preceded by the success of Lebesgue's theory of measure which, on anotherpath, also led, in 1933, Kolmogorov to the laying down the axiomatic foundations of probabilitytheory.**Though his name is not explicitly mentioned, Boltzmann's in
uence on von Neumann is alsoseen in the title of his earlier work on quantum ergodic theory, N[1929]: \Beweis des Ergodensatzesund des H-Theorems in der neuen Mechanik".



4 The limiting function �f(x) sati�es two further important properties:(i) �f (x) = E(f=I)where I is the �-algebra of the invariant sets, or in other words �f is theprojection of f onto the subspace of functions invariant with respect to thedynamics SR ;(ii) RM fd� = RM �f� whenever f 2 L2.An extremely important consequence is the following: if the only invariant func-tions are the constants or, in other words, there are only trivial invariant sets (i.e.��(S�tA n A) [ (A n S�tA)� = 0 implies �(A) = 0 or 1), then, �rst of all, �f is aconstant for every f and, moreover, by (ii); �f = R fd�. Consequently, the ergodictheorem says that, then as T !1,(2) 1T Z T0 f(Stx)dt! ZM fd�in the L2-sense.This statement is much reminiscent to Boltzmann's hypothesis but here we stillhave just one �xed system and not various ones for di�erent values of N . Anyway,de�ne the system to be ergodic, if the only invariant functions are the constants.Then we know that, for ergodic systems, the relation (2), i.e. a version of the ergodichypothesis holds.Summarizing: we have a mathematical model (groups of measure preserving trans-formations), the notion of ergodicity and, �nally, the problem of establishing theergodicity of a system we are interested in from the mechanical point of view.We note that, a bit later in 1931, Birkho�, B(1931) (and also Khintchine) could,moreover, prove that the convergence in (2) holds almost everywhere as well.This progress led to the birth of an independent branch of mathematics: ergodictheory. This theory then began his autonomous evolution within mathematics andseveral sub-branches were also born. Just to mention some, one of them studiesvarious forms and generalizations of the ergodic theorems, another one stronger formsof stochasticity, a special branch | quite interesting for our present discussion |investigates the ergodicity of particular systems, among them those arising frommechanics, a further one the isomorphism problem of various dynamical systems,etc.



53. Proving the first relevant theorem (fromNeumann to Sinai, from 1931 until 1970)The methods for establishing the ergodicity of mechanical systems came from adi�erent though related domain, from the theory of dynamical system. In 1938-39,Hedlund, He(1939) and Hopf, Ho(1939) found a method for demonstrating the er-godicity of geodesic 
ows on compact manifolds of negative curvature. Their mainconceptual discovery was that the so called hyperbolic behaviour of dynamical sys-tems could imply and, in fact, did imply ergodicity in the aforementioned models.Hyperbolicity means, in other words, instability, i.e. the exponential divergenceof trajectories starting arbitrarily close to each other, or else sensitivity to the initialconditions. The simplest example of a hyperbolic system is Arnold's famous cat, thelinear automorphism of the torus (cat stands for a Continuous Automorphism of theTorus) . Indeed, if we consider the map TA of the 2-torus R2 jZ2 onto itself de�nedby the (hyperbolic) matrix A = � 2 11 1�, then we see that the image of the cat getsexpanded in one direction and contracted in a transversal one, with the expansion(contraction) being the strongest in the eigendirection of the matrix correspondingto the eigenvalue �u > 1(�s < 1).In 1942, very soon after Hedlund's and Hopf's fundamental results, the Russianphysicist, N. S. Krylov discovered that systems of elastic hard balls show an instabilitysimilar to the one observed at geodesic 
ows on manifolds with negative curvature, cf.K[1942]. This �nding and the progress of the ideas of Hedlund and Hopf in the theoryof hyperbolic dynamical systems justi�ed Sinai's stronger version of Boltzmann'sergodic hypothesis formulated in 1963 for the particular system of elastic hard balls.The Boltzmann-Sinai Ergodic Hypothesis (S(1963)). The system of N hardballs given on T2 or T3 is ergodic for any N � 2.Since mechanical systems also have conserved quantities, this conjecture is un-derstood so that ergodicity is expected to hold on (connected components of) thesubmanifold of the phase space speci�ed by the invariants of motion.The conceptual surprise of this conjecture compared to Boltzmann's original for-mulation was that no large N was assumed. In fact, ergodicity (and further strongermixing properties, like the K-property) was expected to hold for any �xed N � 2!In 1970, Sinai, S(1970) was able to verify this conjecture in the case of N = 22-dimensional discs moving on the 2-torus T2.



6 Before giving an insight into Sinai's approach, let us mention the limitations ofthis nice ergodic behaviour for systems with a �xed number of degrees of freedom.4. Appearance of non-ergodic behaviour(cosequences of the KAM-theory, 1954-1974)In nature, we have important examples of systems of interacting particles (orbodies) that are stable and not unstable like systems of hard balls.The most striking example is | fortunately | the solar system. The fact that itconsists of bodies of di�erent masses is not of great importance, more signi�cant isthe fact that here the interaction is di�erent.The year 1954 brought two important discoveries. Kolmogorov's 1954 work,K(1954) and its later evolution | thanks �rst of all to the achievements of Arnoldand Moser (in particular, A(1963) and M(1962)) in the 60's | indicated that we maywell have a situation when invariant tori with dimension half of that of the phasespace can �ll a set of positive measure (we note that in completely integrable systemssuch invariant tori do foliate the whole phase space). Another, not so explicit, warn-ing came from the numerial work of Fermi-Pasta-Ulam, F-P-U(1955) demonstratingthat the asymptotic equipartition of the energy of modes may fail. As to a detailedexposition of this experiment and its e�ects we refer to the survey H(1983).In the 1974 work of Markus-Meyer, M-M(1974) summarizing the previous progressthere were two important statements out of which the �rst one is more remarkablefor our discussion.Theorem. In the space of smooth Hamiltonians(1) The nonergodic ones form a dense open subset;(2) The nonintegrable ones form a dense open subset.Without going into technical details we note that the statements are formulatedin the C1-topology and a Hamiltonian is called ergodic if, for almost every valuesof the energy, the system is ergodic on the corresponding submanifold of the phasespace.Thus, for generic Hamiltonians, we cannot expect ergodicity, and in the �nalsections of the paper we will return to the question of what kind of ergodic behaviourcan then be expected for them. The forthcoming discussion will be focused on thecomparatively simple case of hard ball systems.



75. Sinai's setup. Billiards (1970)We start with a simple trick traditional both in mathematics and physics: insteadof treating N particles we consider just one particle in a high dimensional phasespace. More concretely: Let us assume, in general, that a system of N(� 2) ballsof unit mass and radii r > 0 are given on T�, the �-dimensional unit torus (� � 2).Denote the phase point of the i'th ball by (qi; vi) 2 T��R�. The con�guration space~Q of the N balls is a subset of TN ��: from TN�� we cut out �N2 � cylindric scatterers:~Ci;j = �Q = (q1; : : : ; qN ) 2 TN�� :j qi � qj j< 2r	 ;1 � i < j � N . The energy H = 12 PN1 v2i and the total momentum P =PN1 vi are�rst integrals of the motion. Thus, without loss of generality, we can assume thatH = 12 and P = 0 and, moreover, that the sum of spatial componentsB =PN1 qi = 0(if P 6= 0, then the center of mass has an additional conditionally periodic or periodicmotion). For these values of H;P and B, the phase space of the system reduces toM := Q� SN �����1 whereQ := (Q 2 ~Q n [1�i<j�N ~Ci;j : NX1 qi = 0)with d := dimQ = N � � � �, and where Sk denotes, in general, the k-dimensionalunit sphere. It is easy to see that the dynamics of the N balls, determined by theiruniform motion with elastic collisions on one hand, and the billiard 
ow fSt : t 2 Rgon Q with specular re
ections on @Q on the other hand, are isomorphic and theyconserve the Liouville measure d� = const � dq � dv.We recall that a billiard is a dynamical system describing the motion of a pointparticle in a connected, compact domain Q � Rd or Q � Td = Tord; d � 2 with apiecewise C2-smooth boundary. Inside Q the motion is uniform while the re
ectionat the boundary @Q is elastic (the angle of re
ection equals the angle of incidence,cf. Figure 1). Since the absolute value of the velocity is a �rst integral of motion,the phase space of our system can be identi�ed with the unit tangent bundle over Q:Namely, the con�guration space is Q while the phase space is M = Q� Sd�1 whereSd�1 is the surface of the unit d-ball. In other words, every phase point x is of theform (q; v) where q 2 Q and v 2 Sd�1: The natural projections � : M ! Q andp :M ! Sd�1 are de�ned by �(q; v) = q and by p(q; v) = v; respectively.



8 Figure 1Suppose that @Q = [k1@Qi where @Qi are the smooth components of the bound-ary. Denote @M = @Q�Sd�1 and let n(q) be the unit normal vector of the boundarycomponent @Qi at q 2 @Qi directed inwards Q. In billiards, isomorphic to hard ballsystems, the scatterers are convex cylinders if N � 3, and are (strictly convex) ballsif N = 2. The observation of Krylov and Sinai was that a billiard with strictly convexscatterers behaves like a hyperbolic dynamical system, whereas in one with just con-vex scatterers there is some partial hyperbolicity. We will illustrate this observationafter some de�nitions.We say that a billiard is dispersing (a Sinai-billiard) if each @Qi is strictly convex,and we say it is semi-dispersing if each @Qi is convex. The billiards on Figures 2 and3 are dispersing. Indeed, they correspond to the system of two discs on T2; the �rstone to the case R < 1=4 and the second one to the case 1=4 < R < 1=2.Figures 2, 3, 4The third one is a semi-dispersing billiard given on T3 with two cylindric scatter-ers. This paradigm was the �rst semi-dispersing but not dispersing billiard whoseergodicity was established (cf. K-S-Sz(1989)).Figure 5The mechanism producing hyperbolicity in a dispersing billiard can be seen thebest on Figure 5 borrowing the illustration from optics. Assume we have a strictlyconvex scatterer on Td and imagine it is a mirror. Take, x = (Q;V ) 2 M , and thecodimension one hyperplane � through Q in the con�guration space perpendicularto the velocity V . By attaching to points of � velocities identical to V we obtain awavefront ~� in the phase spaceM . After one re
ection from the mirror scatterer, ourwavefront gets strictly convex while the linear distances measured on � get uniformlyexpanded. This mechanism is exactly the one providing the (uniform) hyperbolicityof a dispersing billiard.Sinai's 1970 work used the theory of uniformly hyperbolic smooth dynamical sys-tems which had had an intensive progress in the 60s and culminated in the 1967paper of Anosov and Sinai, A-S(1967). The serious di�culty Sinai had to cope withwas that billiards were not smooth dynamical systems. Indeed, if a smooth wave-front gets re
ected from a scatterer and it contains a tangency, then though there
ected wavefront will be continuous, its second derivative will have a jump at thetangency. This circumstance causes serious technical di�culties: in smooth uniformly



9hyperbolic dynamical systems the stable and unstable invariant manifolds, the fun-damental tools of the theory are smooth and unbounded, whereas in billiards theirsmooth components can be arbitrarily small.6. N = 2 balls (1970-1987). Localergodicity of semi-dispersing billiards.As mentioned earlier, Sinai, in 1970, in his celebrated paper obtained the �rstrigorous result in relation to the Boltzmann-Sinai ergodic hypothesis: he could showthat N = 2 discs on the 2-torus T2 was a K-system.In fact, his result was formulated for 2�D dispersing billiards (Sinai-billiards) witha �nite horizon. A billiard has �nite horizon if there is no collision-free trajectoryin it. This condition is ful�lled by a two-billiard if R > 14 (cf. Figure 3). In thiscase the con�guration space consists of four connected components, and, of course,ergodicity is claimed on each of them. For the case of R < 14 (cf. Figure 2), a 2�Dbilliard with in�nite horizon, the corresponding result was proved by Bunimovichand Sinai in 1973, B-S(1973). On the basis of their work it was understood that a2�D dispersing billiard was ergodic.A multidimensional generalization of their theorem was only obtained in 1987.Indeed, Chernov and Sinai, S-Ch(1987) were, in general, investigating semi-dispersingbilliards and introduced the basic notion of su�ciency of an orbit or equivalently ofa phase point. The main consequence of su�ciency is that, in a suitably smallneighbourhood of a su�cient point, the system is hyperbolic, though not uniformly.Next we present this notion in its minimal form as suggested in K-S-Sz (1990).Figure 6Our starting point is Figure 6, similar to Figure 5. It shows that, if a scattereris not strictly convex but just convex, like e. g. a cylinder, then the image of thehyperplanar wavefront � with parallel velocities will not be curved in the directionsparallel with the constituent subspace of the cylinder, but in the transversal direc-tions, only. However, the uncurved neutral directions can still die out after severalre
ections on di�erently oriented cylindric (or, in general, convex) scatterers.Now for the de�nition of su�ciency. Assume that S[a;b]x is a �nite trajectorysegment, which is regular, i.e. it avoids singularities.Let Sax = (Q;V ) 2M and consider the hyperplanar wavefront ~�(Sax) := f(Q +dQ; V ) : dQ small 2 Rd and hdQ; V i = 0g (by denoting �(x) = Q for x = (Q;V ) we



10see that, indeed, �(~
) is part of a hyperplane).We say that the trajectory segment S[a;b]x is su�cient if �(Sb~�) is strictly convex(see Figure 7). (To obtain a geometric or optical feeling of this notion, the readeris again suggested to imagine mirror-surfaced scatterers.) A phase point x 2 M issu�cient if its trajectory is su�cient (i.e. it contains a su�cient trajectory segment).In physical terms, su�ciency of a trajectory segment means that, during the timeinterval [a; b], the trajectory of x encounters all degrees of freedom of the system.Figure 7If a trajectory segment is not su�cient, then the curvature of �(Sb~�) at �(Sbx) nec-essarily vanishes in certain directions forming the so-called neutral subspace. Simplegeometric considerations (cf.K-S-Sz(1990)) show that a su�cient trajectory segmentgenerates an expansion rate uniformly larger than 1 in some neighbourhood of thepoint Sax. Then, by Poincar�e recurrence and the ergodic theorem, it is not hardto see that, in some neighbourhood of Sax, the relevant Lyapunov exponents of thesystem are not zero. In other words, in this neighbourhood, the system is hyperbolic.This observation should motivate the non-trivialFundametal theorem for semi-dispersing billiards (S-Ch(1987)). Assumethat a semi-dispersing billiard satis�es some geometric conditions and the Chernov| Sinai ansatz, a condition strongly connected with the singularities of the system.If x 2 M is a su�cient point, the it has an open neighbourhood U in the phasespace belonging to one ergonent (i.e. ergodic component).(A simpli�ed and suitably generalized version of this theorem, the so-called 'transver-sal fundamental theorem' was given in K-S-Sz(1990). Moreover, a version of the fun-damental theorem formulated for symplectic maps with singularities can be found inL-W(1994).) The property expressed in the statement is usually called local ergod-icity. If almost every phase point of a semi-dispersing billiard is su�cient, then, ofcourse, it may have at most a countable number of ergonents. In some cases it isnot hard then to derive the global ergodicity of the system, i.e. to show that thereis just one ergonent in the phase space. Note that it also follows from the generaltheory that, on each ergonent, the system is Kolmogorov mixing. A much importantconsequence is thus the followingCorollary (S-Ch(1987)). Every dispersing billiard is ergodic, and, moreover, is aK-
ow. In particular, the system of N = 2 balls on the �-torus is a K-
ow if r < 12 .



11(For details, see K-S-Sz(1990).)7. N � 3 balls (1989- ). Globalergodicity of semi-dispersing billiards.With the fundamental theorem for semi-dispersing billiards in mind, the proof oftheir global ergodicity boils down to(1) �rst demonstrating the Chernov-Sinai ansatz, an important condition of thefundamental theorem, and(2) to then showing that the subset of non-su�cient points is a topologically smallset of measure zero; for instance, its topological codimension is not smallerthan two.In Sz(1993), we gave a sketch of the strategy worked out in our papers with A. Kr�amliand N. Sim�anyi for the core part, and here we will just list the main results obtainedso far.*(1) in 1991, Kr�amli, Sim�anyi and the present author, [KSSz-91] demonstratedthe K-property of N = 3 balls on the ��torus whenever � � 2;(2) in 1992, again the previous authors, [KSSz-92] improved their methods to getthe ergodicity of N = 4 balls on the ��torus whenever � � 3;(3) in 1992, Sim�anyi, S(1992) was able to establish the so far strongest resultfor hard ball systems: the system of N � 2 balls is ergodic on the ��toruswhenever � � N ; his method is based on his Connecting Path Formula char-acterizing the neutral subspace of a trajectory segment.The con�guration of the cylindric scatterers of a billiard isomorphic to a hardball system inherits the permutation symmetry of the balls. A natural generalizationof hard ball systems is to investigate cylindric billiards in general, i. e. billiardswith solely cylinders as scatterers. To this end consider compact a�ne subspacesLi : 1 � i � N , N � 1 in the d-torus Td (with dim Li � d � 2), and denoteCi := fQ := (q1; : : : ; qd) : dist(Q;Li) � rig; 1 � i � N where each ri is positive.The billiard in Q := Td n ([Ni=1Ci) is a billiard with cylindric scatterers.For cylindric billiards the following results have been obtained:(1) in 1989, Kr�amli, Sim�anyi and the present author, K-S-Sz(1989) considered a3-dimensional orthogonal cylindric billiard (cf. Figure 4); they obtained its*Most recently, in the Summer of 1994, Sim�anyi and Sz�asz, were able to prove Sinai's hypothesisin the general case N;� � 2.



12 K-property and thus this was the �rst semi-dispersing | but not dispersing| billiard whose ergodicity was shown.(2) in 1993, motivated by a question of John Mather, the present author starteda systematic study of cylindric billiards and found a su�cient and necessarycondition for the ergodicity of a class of them: for orthogonal cylindric bil-liards, cf. Sz(1993), Sz(1994). These are characterized by the property thatthe constituent subspace of any cylindric scatterer is spanned by some of thecoordinate vectors adapted to the orthogonal coordinate system where Td isgiven;(3) in 1994, Sim�anyi and the present author, S-Sz(1994) found necessary andsu�cient conditions for the K-property of a toric billiard with two arbitrarycylindric scatterers.Since the class of cylindric billiards is relatively simple, one can hope for gen-eral necessary and su�cient conditions for the ergodicity (and the K-property) ofthese systems. Indeed, we next formulate a conjecture containing a general su�cinetcondition.Conjecture (Sz�asz, 1992). Assume that the con�guration domain of a cylindricbilliard is connected, and no pairs of the scatterers are tangent. If there is at leastone su�cient point, then the billiard is K.8. The Boltzmann-Sinai ergodic hypothesis in pencase type models.In order to resolve some di�culties on the way to establishing the Boltzmann-Sinai ergodic hypothesis, Chernov and Sinai, S-Ch(1985) suggested the study of aquasi-one-dimensional model of hard balls. It is given on an elongated torus of thetype (LT1)�T��1 where L is a su�ciently large number compared to R (see Figure8). The main assumption is p� � 14 < R < 12ensuring that the order of balls (in the direction of LT1) is invariant under thedynamics. Thus the model, which was called by Chernov and Sinai a pencase, isrealizable if 2 � � � 4. If we number the balls in their order: 1; 2; � � � ;N , thena particular feature of the model is that only the pairs of consecutive balls (i.e.f1; 2g; f2; 3g; � � � ; fN; 1g) can interact.Figure 8



13The �rst result for a pencase type model was reached in 1992 by Bunimovich-Liverani-Pellegrinotti- Sukhov. Instead of a torus their model lives in a domain withdispersing boundaries (see Figure 9) and the sizes of the domain ensure thatFigure 9(1) each ball is restricted to a fundamental domain of the \pencase" (the throatsbetween them are smaller than 2R);(2) between consecutive collisions of a particular ball, it should always hit adispersing boundary;(3) the pairs of balls in neighbouring domains can, indeed, interact.A billiard of this type is realizable in arbitrary dimension and the results of theaforementioned authors was that the system was K. This particular model was, infact, the �rst one where the Boltzmann-Sinai ergodic hypothesis got settled for anyN and � � 2.Theorem (B-L-P-S(1992)). The B-L-P-S pencase is a K-system for any N; � � 2.For some time it seemed so that the proof of ergodicity for the original Chernov-Sinai pencase was not easier than that for general hard ball systems. Nevertheless,| with N�andor Sim�anyi | we could recently demonstrate the followingTheorem (S-Sz (1994-B)). The Chernov-Sinai pencase is a K-system for anyN � 2; � = 4. If � = 3, then the system has open ergodic components.The restriction � 6= 2 seems, at present, important whereas that of � < 5 onlyarises since the model, as invented by its authors, does not exist for � � 5. Onecould, however, introduce less realistic models that do exist for � � 5, too, and forthem our proof would also work but we do not want to stay on them.There is, however, another, more natural way to introduce models with a pencase-type interaction in any dimension. Consider, namely, N balls, numbered 1; 2; : : : ;Non the unit torus T�. The restriction is that only pairs of balls with neighbouringnumbers, i.e. again only the pairs f1; 2g; f2; 3g; : : : ; fN � 1;Ng; fN; 1g interact whileother pairs can go through each other. This billiard is, of course, again a cylindricone.Theorem (S-Sz (1994-B)). The system with pencase-type interaction is a K-system whenever N � 2; � �. If � = 3, then the system has open ergodic components.



14 (Froeschl�e(1978) (cf. H(1983)) introduced the notion of connectivity as the ratioof the number of particles a given particle can interact with and of the number ofall particles. His experiments suggested that this ratio can be related to the goodergodic properties of a system; in particular, below a critical value of the connectivity,a signi�cant fraction of the phase space is occupied with invariant tori. Our theoremshows, however, that, for hard ball systems, the ergodic behaviour already appearsat a connectivity arbitrarity close to zero.)9. Ergodicity of systems with a fixed number of degrees of freedom.>From the work of Markus-Meyer mentioned in section 4 we know that ergodicHamiltonians are in a sense exceptional. Nevertheless, it makes sense to look forpossibly more of them since the mechanisms occurring in these can also help tounderstand the onset of chaotic behavior, for instance, the appearance of a largeergodic component in nonergodic systems.In sections 5-7 we discussed billiard systems. Here we mention three classes ofHamiltonians, for which Donnay and Liverani, D-L(1991) could, in 1991, demonstrateergodicity. These are systems of N = 2 particles on T2 interacting via a rotation-invariant pair potential V (r). These system have the same conserved quantities asthe system of two hard discs and we assume that v21+v22 = 1; v1+v2 = 0; q1+q2 = 0:We do not give here all the conditions since we are mainly interested in the qualitativedescription of these interactions.Assume in all cases that for some R > 0(1) V (r) = 0 if r � R;(2) V (r) 2 C2(O;R);(3) limr!0 r2V (r) = 0;(4) for h(r) = r2(1� 2V (r)), and for except one value of r 2 (O;R) h0(r) > 0:Potentials in the �rst class are repelling ones (see Figure 10). The additional conditionbesides (1) | (4) is now Figure 10(5) V (R�) = 0 and V 0(R�) < 0:Then, under some more conditions, the system is K. As it is evident from theconditions, V is, though continuous, not C1 at r = R (see Figure 11). Indeed, thejump of V 0 in R as required by (5) plays the same role as the e�ect of a re
ection in adispersing billiard. This phenomenon was �rst observed by Kubo in 1976 (K(1976)),



15and he, and later he and Murata, K-M(1981) could already establish the K- and theB-property of such systems under more restrictive conditions than those of Donnayand Liverani. It is a natural question whether the Kubo-type singularity can alsolead to ergodicity in the case of several particles. In fact, we recall the followingFigure 11Problem (Liverani-Sz�asz, 1990). Let N = 3; � = 2. Is it possible to �nd a Kubo-type interaction (i.e. one satisfying the conditions (1) | (5) formulated before) suchthat the system is ergodic?A simpler problem could be the generalization of the Kubo-Donnay-Liverani resultfor the case N = 2; � � 3 though, as observed by Wojtkowski, W(1990-C), in themultidimensional case new, unpleasant phenomena may arise.The second class investigated by Donnay and Liverani contains attracting poten-tials. In 1987, Knauf, K(1987) showed that for attracting interactions with singular-ities at r = 0 of the type � 1r2(1� 1n ) , n = 2; 3; 4; : : : , the system was ergodic. Donnayand Liverani's main achievement was that they could get rid of the assumption thatn was an integer (see Figure 10). Their main condition besides (1) | (4) is(6) V 0(r) � 0 if � 2 (0; R) and V (R) = V 0(R) = 0:>From the conceptual point of view the most remarkable is their third class sincehere the potential is everywhere smooth. The basic feature of interactions in thethird class is that, for some rc < R, the circle of radius rc is a closed orbit (see Figure12). Interestingly enough this orbit plays the role of a singularity.In all cases, the existence of potentials satisfying the aforelisted conditions isproved. For a given potential satisfying the appropriate requirements then ergod-icity is ful�lled at su�ciently high energy. It is worth noting that having proved �rstthat the Lyapunov exponent is non-zero, the proof of ergodicity can be obtained bya suitable adaptation of the fundamental theorem for semi-dispersing billiards (cf.section 6). Figure 12An interesting class of models was introduced and studied byWojtkowski, W(1990-A) and W(1990-B). Here a one-dimensional system of N particles of di�erent massesmoves in an external �eld, and the interaction is elastic collision. The non-vanishingof Lyapunov exponents has been proved in several cases, but establishing globalergodicity still seems to be di�cult.



16 10. Ergodicity of systems with anincreasing number of degrees of freedom.The situation when the number of particles increases exactly corresponds to Boltz-mann's original question which | in modern terminology | could sound as follows:�nd, for a generic Hamiltonian, the asymptotic behaviour in the thermodynamiclimit. This question is still not formulated precisely. From the various possible ways,the right one should, of course, be selected as dictated by the main applications. Atpresent, as it seems to me, a very important application should be in the �eld of thederivation of hydrodynamic equation from microscopic, Hamiltonian principles. It isclear that, the so far strongest method worked out in the last decade by Varadhanand his coworkers, O-V-Y(1993) would require a form related to Boltzmann's hy-pothesis but we can still not select the right form (we note that the results obtaineduntil now are valid for stochastic systems and not for purely Hamiltonian ones).The conceptually simplest and widemost known form of a hypothesis is the follow-ing: denote as before the number of particles by N , and by p(N) the relative measureof the phase space occupied by invariant tori. For simplicity, the interaction is �xedand VN = const (for de�niteness, we assume that the system lives on the torus V 1�T�).Then the �rst conjecture is that p(N) ! 0 as N !1. A stronger conjecture wouldthen require that the complement to the set of invariant tori contains a large ergodiccomponent whose measure gets close to one.H�enon (1983) and Galgani (1985) discussed in detail the situation and the connec-tion of these conjectures to the one on the limiting equipartiton of energy between themodes of the system . The conclusion is that the picture is not clear at all. There are,on one hand, interactions when numerical work of Froeschl�e and Scheidecker (1975)indicates that p(N) ! 0 as expected. They investigated a one-dimensional modelwith the Hamiltonian H = 12� NX1 p2i + 2�G�2Xi<j j qi � qj jOn the other hand, the famous Fermi | Pasta | Ulam (1955) experiment supporteddoubts about the conjectures by detecting the failure of the limiting equipartition ofenergy. This was also a one-dimensional model with the HamiltonianH = 12 NX1 p2i + N�1X1 V (qi+1 � qi)



17where V (q) = 12q2 + �q3.These works generated a vivid interest in the problem. For the contradictory viewsabout it, the reader is suggested to consult the aforementioned papers of H�enon andGalgani and for a more recent review that of Galgani- Giorgili-Martinolli-Vanzini(1993).As I learnt from Gregory Eyink, for establishing hydrodynamic equations in thesense of the approach of Varadhan's method, a weaker form of the conjecture wouldalso be su�cient. It is not necessary to have one large ergodic component. It seemsthat a weakly increasing upper bound for the number of ergodic components and, ofcourse, a good upper bound on p(N) could be su�cient. The picture here, however,needs more elaboration and the problems seem very di�cult.11. Ergodicity of systems with aninfinite number of degrees of freedom.Since the situation with large but �nite systems is so complicated, I expect thatthe solution of equilibrium statistical physics should be borrowed. Whereas even arigorous de�nition of a phase transition in a �nite system | not speaking about itsdemonstration | is not an easy task, the question gets much simpler for in�nitesystems. In my view, �rst the ergodicity of in�nite systems should be understood.The very �rst result for an in�nite system was obtained in 1971 by Sinai andVolkovysky for the ideal gas: it was shown to be a K-system (V-S(1971)). (A weakerresult was obtained by Dobrushin already in 1956, see D(1956).) For the �rst glancethis sounds as a surprise since in the ideal gas there is no velocity mixing at all. In-deed, in the formulation of ergodicity one should be a bit cautious. By denoting thephase space by M = ff(qi; vi) : i 2 Zg : fqig is locally �nite g, the equilibrium mea-sure is P�(fqi : i 2Zg)
QF (dvi) where P� is a Poisson measure with density � andF (dv) is an arbitrary non-degenerate probability distribution in R�, and ergodicityholds with respect to this invariant measure. The proof reveals an apparently newmechanism of ergodicity : mixing | understood, of course, in time | is the resultof the initial spatial mixing. In other words: the equilibrium measure is Poisson, i.e.a measure with independent increments. Now as time proceeds, in a �xed box ofour observation, particles starting from more and more distant intervals appear andtheir numbers are, roughly speaking, independent. This phenomenon can be provedto provide mixing in time.



18 The same observation was used, in more delicate arguments, for showing the K-property for di�erent variants of the Rayleigh-gas, among others, by Goldstein-Lebo-witz-Ravishankar (1982), Boldrighini-Pellegrinotti-Presutti-Sinai- Soloveychik (1984)and L. Erd}os-Tuyen (1991). In these models only one particle interacts with all theother ones and the equilibrium measure is still Poisson. A related model is theLorentz gas where | similarly to the ideal one | there is no interaction between theparticles, but the dynamics of each particle obeys a strong mixing in space. Basedupon this mixing, Sinai demonstrated the K-property in S(1979).Now a problem which I �nd very interesting and quite realistic is the followingone:Problem (Sz�asz, 1990). Consider an in�nite pencase obtained as N !1 of the�nite ones was introduced in section 8. Prove that the natural Gibbs measure isergodic. (Here, of course, the possible values of the dimension are � = 2; 3; 4.)(In�nite models also raise the question of existence of the dynamics, but for thismodel it was answered a�rmatively by Alexander, A(1976).) In the proof of ergodic-ity two mechanisms can be exploited: the hyperbolic behaviour of the interaction asdone for the �nite pencase or the spatial mixing of the equilibrium distribution as incases of the ideal gas or the Rayleigh one. At present, however, I do not see an easyway for any of these possibilities, in particular, for the second one. For the �rst one itis a natural idea to start building up the hyperbolic theory of in�nite-dimensional dy-namical systems and trying to de�ne, for instance, the stable and unstable invariantmanifolds �rst, and then to prove their existence.In section 10 we already mentioned the problem of the derivation of hydrodynamictype equations. A su�cient condition in some cases for the method of O-V-Y(1993)to work is the following ergodicity type condition: every "regular" state, invariantwith respect to both translations in the space and the dynamics, is a mixture of canon-ical Gibbs measures. This property is apparently stronger than ergodicity, but, asremarked in F-F-L(1994), to prove such an ergodicity for deterministic Hamiltoniansystems is still a formiddable unsolved problem. (In fact, Fritz, Funaki and Lebowitzverify this property for a random Hamiltonian system, and their paper is, moreover,also recommended for further reference.) We add that regularity above means thatthe state has �nite relative entropy (per unit volume) with respect to the Gibbsmeasure. This assumption implies, in particular, that the conditional distribution inany �nite volume �, given the con�guration outside �, is absolutely continuous with



19respect to the Lebesgue measure.12. Concluding remarksIn this lecture I have been concentrating on the history of Boltzmann's ergodichypothesis. I think that the second half of the title of the talk is already justi�ed ifwe focus our interest to just the question of ergodicity. After more than one hundredyears, ergodicity is still not established in the simplest mechanical model, in thesystem of elastic hard balls though I expect we are not far from a solution. But asto generic interactions, even the questions are not clearly posed and it might wellbe that there will not be a �nal understanding after the next hundred years either.And we have not touched upon more delicate, physically fundamental properties forwhose proofs one should re�ne the methods used in studying ergodicity of the systeminvolved. Without aiming at completeness we just mention the problems(1) of the decay of correlations (cf. Ch(1994); here and in the forthcoming casesonly the last reference, I am aware of, will be provided, where further onescan also be found),(2) of the convergence to equilibrium, K-Sz(1983),(3) of the calculation of and bounds on the entropy of mechanical systems,Ch(1991),(4) and, �nally, of the recurrence properties of such systems, K-Sz(1985).Acknowledgements. Thanks are due to G. Eyink and J. Fritz for their remarksabout the relation of ergodicity and the hydrodynamic limit transition. I am alsomuch grateful to M. Herman and B. Weiss for their helpful remarks on the historyof the ergodic hypothesis and some references.References[A(1976)] R. Alexander,Time Evolution of In�nitely Many Hard Spheres, Commun.Math.Phys. 49, 217-232 (1976).[A-S(1967)] D. S. Anosov, Ya. G. Sinai, Some Smooth Dynamical Systems, Uspehi Mat.Nauk 22, 107-172 (1967).[A(1963)] V. I. Arnold, Proof of Kolmogorov's Theorem on the Invariance of Quasi-Per-iodic Motions under Small Perturbations of the Hamiltonian (in Russian), Usp.Mat. Nauk. 18, 9-36 (1963).[Bi(1931)] G. D. Birkho�, Proof of the Ergodic Theorem, Proc. Nat. Acad. Sci. USA 17,656-660 (1931).[Bi-K(1932)] G. D. Birkho�, B. O. Koopman, Recent Contributions to Ergodic Theory, Proc.Nat. Acad. Sci. USA 18, 279-282 (1932).[B-P-P-S-S(1985)] C. Boldrighini, A. Pellegrinotti, E. Presutti, Ya. G. Sinai, M. R. Soloveychik,Ergodic Properties of a Semi-In�nite One-Dimensional System of StatisticalMechanics, Commun. Math. Phys. 101, 363-382 (1985).
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