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Boltzmann’s Ergodic Hypothesis,
a Conjecture for Centuries?*

Domokos Szasz**

Mathematical Institute of the Hungarian Academy of Sciences

H-1364, Budapest, P. O. B. 127, Hungary

Abstract. An overview of the history of Ludwig
Boltzmann’s more than one hundred year old ergodic
hypothesis is given. The existing main results, the
majority of which is connected with the theory of
billiards, are surveyed, and some perspectives of the
theory and interesting and realistic problems are also

mentioned.

In 1964 Werner Heisenberg was elected a honorary doctor of Lorand Eotvos Uni-
versity, Budapest. In his inaugural lecture he made a point that sounded something
like this: “A theoretical physicist feels best if there is no rigorously defined math-
ematical object behind his considerations”. Certainly, Heisenberg was having the
early years of quantum mechanics in his mind but what he said perfectly fitted the
work of Ludwig Boltzmann as well. One could choose several areas of his interest to
illustrate this statement, out of which the history of the ergodic hypothesis we are

going to elaborate on is only one.#

*Lecture presented on International Symposium in Honor of Boltzmann’s 150th Birthday, Feb-
ruary 23-26 1994, Vienna

**Research supported by the Hungarian National Foundation for Scientific Research, grant No.
1902

# Another striking example, perhaps not sufficiently widely known, is the case with the Boltz-
mann equation. He published it in 1872, B(1872), and the first mathematically satisfactory deriva-
tion of the equation was only obtained more than 100 years later in 1975 by Oscar Lanford, L(1975),
though the picture is still not complete. Thus needless to say that Boltzmann’s original argument
was highly intuitive. At the same time, however, it was so much challenging for the great mathe-
matician, David Hilbert that he included among his celebrated collection of 23 problems presented
at the International Mathematical Congress held at Paris in 1900 the sixth one with the title “Math-
ematical Treatment of the Axioms of Physics” (see H(1900)). In its formulation, besides requiring
an axiomatic approach to the theory of probabilities, Hilbert also says: “it is therefore very desir-
able that the discussion of the foundations of mechanics be taken up by mathematicians also. Thus
Boltzmann’s work on the principles of mechanics suggests the problem of developing mathematically
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As it was so nicely explained in Professor Gallavotti’s illuminating lecture at this
conference, G[1994], though the rigorously defined mathematical object behind Boltz-
mann’s considerations around the ergodic hypothesis was indeed missing, Boltzmann
was ingenious in inventing mathematical paradigmas and in mastering mathematical
calculations on them to find out the truth and to obtain convincing power, and even
without having the mathematical object he understood many things better than we

do now.

1. BOLTZMANN’S ERGODIC HYPOTHESIS.

During the 1870s and 1880s, various forms of the ergodic hypothesis were used by
Boltzmann in his works on the foundations of statistical mechanics (see e. g. B(1871)

and B(1884); for a historic account also F(1989)). An advanced formulation of the

hypothesis would sound as follows:

Boltzmann’s Ergodic Hypothesis. For large systems of interacting particles in

equilibrium time averages are close to the ensemble, or equilibrium average.

( Remark: In this paper — with the exception of section 10 — equilibrium averages
always mean microcanonical ones, 1. e. the Liouville measure on the submanifold of
the phase space specified by the trivial invariants of the motion.)

More precisely, if f is a measurement (i.e. a function on the phase space of the
system), then as N, the size of the system (for instance, the number of particles)

tends to infinity, then

1) 7 st = [ fedute)

where 1 is the equilibrium measure, and S*z is the time evolution of the phase point
x.

We immediately note that if NV varies, then f and p also depend on N, and thus, for
a mathematically strict statement one ought to specify the sense of the convergence
in (1), too. Let us look at the main steps of the history of Boltzmann’s hypothesis —
without intending to provide a complete account though I think such a study should
be done. One major incompleteness of our survey is that it does not go into the

history of the quasi-ergodic hypothesis at all; as to some recent results about it see

H(1991) and Y(1992).

the limiting processes, there merely indicated, which lead from the atomistic view to laws of motion
of continua”. Boltzmann’s law of motion of continua is, of course, his equation.



2. FINDING A MATHEMATICAL OBJECT, A NOTION AND A PROBLEM

(FROM BOLTZMANN TO VON NEUMANN, I.E. FROM 1870 UNTIL 1931).

It took quite a time until the mathematical object of the ergodic hypothesis was
found. Indeed, only in 1929, Koopman, K(1931), began to investigate groups of
measure-preserving transformations of a measure space or in other language, groups
of unitary operators in a Hilbert space*. Koopman’s idea was apparently in the air,
and several mathematicians, including among other G. Birkhoff, M. S. Stone and A.
Weil, contributed to the birth of ergodic theory; for a historic account see M(1990).

More precisely, let M be an abstract space, the phase space of the system and pu
be a probability measure on (a o-algebra of ) M. The dynamics is a one-parameter
group SE — {8": —c0 < t < oo} of measure preserving transformations, i.e. for
every measurable subset A C M, and for every t € R pu(S71A) = u(A).

Here, of course, y is the equilibrium measure of the system. Let finally, f : M — R
be a measurement such that f € Ly(u). Thus the object [i. e. (M, SE du) with the
functions f] is defined.

In 1931, von Neumann proved the first ergodic theorem, the so called

Mean Ergodic Theorem (N(1932)). As T — oo,

1 (7 _
7 [ st = g
T J

wn the Lay-sense.

(The exact story of the first ergodic theorems is explained in the note of Birkhoff
and Koopman, B-K(1932).)**

The proof of the mean ergodic theorem is not difficult but it is worth noting
that — even more than 20 years later — Neumann very highly appreciated exactly
this achievement among his various findings in the vast territory of his interest. In
1954, when answering a questionnaire of the American Mathematical Society, his
works on the ergodic theorems were named by himself among his most important
discoveries (the other two were the mathematicial foundations of quantum mechanics,

and further operator-algebras, called today Neumann-algebras).

*This progress was preceded by the success of Lebesgue’s theory of measure which, on another
path, also led, in 1933, Kolmogorov to the laying down the axiomatic foundations of probability
theory.

**Though his name is not explicitly mentioned, Boltzmann’s influence on von Neumann is also
seen in the title of his earlier work on quantum ergodic theory, N[1929]: “Beweis des Ergodensatzes
und des H-Theorems in der neuen Mechanik”.



The limiting function f(z) satifies two further important properties:
(i)
fla)=Hf/T)

where 7 is the o-algebra of the invariant sets, or in other words f is the
projection of f onto the subspace of functions invariant with respect to the
dynamics SR;

(1) [y fdp =y fu whenever f € L.

An extremely important consequence is the following: if the only invariant func-
tions are the constants or, in other words, there are only trivial invariant sets (i.e.
M((S_tA \VA)U (AN S_tA)> = 0 implies u(A) = 0 or 1), then, first of all, f is a
constant for every f and, moreover, by (i1), f = J fdp. Consequently, the ergodic

theorem says that, then as T — oo,

(2) 7/ " At | s

in the Lo-sense.

This statement is much reminiscent to Boltzmann’s hypothesis but here we still
have just one fixed system and not various ones for different values of N. Anyway,
define the system to be ergodic, if the only invariant functions are the constants.
Then we know that, for ergodic systems, the relation (2), i.e. a version of the ergodic
hypothesis holds.

Summarizing: we have a mathematical model (groups of measure preserving trans-
formations), the notion of ergodicity and, finally, the problem of establishing the
ergodicity of a system we are interested in from the mechanical point of view.

We note that, a bit later in 1931, Birkhoff, B(1931) (and also Khintchine) could,
moreover, prove that the convergence in (2) holds almost everywhere as well.

This progress led to the birth of an independent branch of mathematics: ergodic
theory. This theory then began his autonomous evolution within mathematics and
several sub-branches were also born. Just to mention some, one of them studies
various forms and generalizations of the ergodic theorems, another one stronger forms
of stochasticity, a special branch — quite interesting for our present discussion —
investigates the ergodicity of particular systems, among them those arising from

mechanics, a further one the isomorphism problem of various dynamical systems,etc.



3. PROVING THE FIRST RELEVANT THEOREM (FROM

NEUMANN TO SINAI, FROM 1931 UNTIL 1970)

The methods for establishing the ergodicity of mechanical systems came from a
different though related domain, from the theory of dynamical system. In 1938-39,
Hedlund, He(1939) and Hopf, Ho(1939) found a method for demonstrating the er-
godicity of geodesic flows on compact manifolds of negative curvature. Their main
conceptual discovery was that the so called hyperbolic behaviour of dynamical sys-
tems could imply and, in fact, did imply ergodicity in the aforementioned models.

Hyperbolicity means, in other words, instability, i.e. the exponential divergence
of trajectories starting arbitrarily close to each other, or else sensitivity to the initial
conditions. The simplest example of a hyperbolic system is Arnold’s famous cat, the
linear automorphism of the torus (cat stands for a Continuous Automorphism of the

Torus) . Indeed, if we consider the map T4 of the 2-torus R? | Z? onto itself defined
2 1
11

expanded in one direction and contracted in a transversal one, with the expansion

by the (hyperbolic) matrix A = ( , then we see that the image of the cat gets
(contraction) being the strongest in the eigendirection of the matrix corresponding
to the eigenvalue A\, > 1(As < 1).

In 1942, very soon after Hedlund’s and Hopf’s fundamental results, the Russian
physicist, N. S. Krylov discovered that systems of elastic hard balls show an instability
similar to the one observed at geodesic flows on manifolds with negative curvature, cf.
K[1942]. This finding and the progress of the ideas of Hedlund and Hopf in the theory
of hyperbolic dynamical systems justified Sinai’s stronger version of Boltzmann’s

ergodic hypothesis formulated in 1963 for the particular system of elastic hard balls.

The Boltzmann-Sinai Ergodic Hypothesis (S(1963)). The system of N hard
balls given on T2 or T2 is ergodic for any N > 2.

Since mechanical systems also have conserved quantities, this conjecture is un-
derstood so that ergodicity is expected to hold on (connected components of) the
submanifold of the phase space specified by the invariants of motion.

The conceptual surprise of this conjecture compared to Boltzmann’s original for-
mulation was that no large N was assumed. In fact, ergodicity (and further stronger
mixing properties, like the K-property) was expected to hold for any fixed N > 2!

In 1970, Sinai, S(1970) was able to verify this conjecture in the case of N = 2

2-dimensional discs moving on the 2-torus T>2.



Before giving an insight into Sinai’s approach, let us mention the limitations of

this nice ergodic behaviour for systems with a fixed number of degrees of freedom.

4. APPEARANCE OF NON-ERGODIC BEHAVIOUR

(COSEQUENCES OF THE KAM-THEORY, 1954-1974)

In nature, we have important examples of systems of interacting particles (or
bodies) that are stable and not unstable like systems of hard balls.

The most striking example is — fortunately — the solar system. The fact that it
consists of bodies of different masses is not of great importance, more significant is
the fact that here the interaction is different.

The year 1954 brought two important discoveries. Kolmogorov’s 1954 work,
K(1954) and its later evolution — thanks first of all to the achievements of Arnold
and Moser (in particular, A(1963) and M(1962)) in the 60’s — indicated that we may
well have a situation when invariant tori with dimension half of that of the phase
space can fill a set of positive measure (we note that in completely integrable systems
such invariant tori do foliate the whole phase space). Another, not so explicit, warn-
ing came from the numerial work of Fermi-Pasta-Ulam, F-P-U(1955) demonstrating
that the asymptotic equipartition of the energy of modes may fail. As to a detailed
exposition of this experiment and its effects we refer to the survey H(1983).

In the 1974 work of Markus-Meyer, M-M(1974) summarizing the previous progress
there were two important statements out of which the first one is more remarkable

for our discussion.

Theorem. In the space of smooth Hamiltonians

(1) The nonergodic ones form a dense open subset;

(2) The nonintegrable ones form a dense open subset.

Without going into technical details we note that the statements are formulated
in the C'"*-topology and a Hamiltonian is called ergodic if, for almost every values
of the energy, the system is ergodic on the corresponding submanifold of the phase
space.

Thus, for generic Hamiltonians, we cannot expect ergodicity, and in the final
sections of the paper we will return to the question of what kind of ergodic behaviour
can then be expected for them. The forthcoming discussion will be focused on the

comparatively simple case of hard ball systems.



5. SINAI'S SETUP. BILLIARDS (1970)

We start with a simple trick traditional both in mathematics and physics: instead
of treating N particles we consider just one particle in a high dimensional phase
space. More concretely: Let us assume, in general, that a system of N(> 2) balls
of unit mass and radii r > 0 are given on T, the v-dimensional unit torus (v > 2).
Denote the phase point of the i’th ball by (¢;,v;) € T" x R”. The configuration space
Q of the N balls is a subset of TV *: from TV * we cut out <]2V> cylindric scatterers:

éi,]‘ = {Q:(qh,QN) ETNV|qZ—q] |< 27“}7

1<i<j <N. The energy H = % Ei\f v? and the total momentum P = Ei\f v; are
first integrals of the motion. Thus, without loss of generality, we can assume that
H = % and P = 0 and, moreover, that the sum of spatial components B = Ei\f ¢ =10
(if P # 0, then the center of mass has an additional conditionally periodic or periodic

motion). For these values of H, P and B, the phase space of the system reduces to

M :=Q X Sy.y—p—1 where

N
Q:= {Q € Q\ Ui<icjcnCij qu‘ = 0}
1

with d := dimQ = N - v — v, and where S denotes, in general, the k-dimensional
unit sphere. It is easy to see that the dynamics of the N balls, determined by their
uniform motion with elastic collisions on one hand, and the billiard flow {S?: ¢ ¢ R}
on Q with specular reflections on dQ on the other hand, are isomorphic and they
conserve the Liouville measure du = const - dg - dv.

We recall that a billiard is a dynamical system describing the motion of a point
particle in a connected, compact domain Q € R? or Q ¢ T% = Tor?, d > 2 with a
piecewise C'?-smooth boundary. Inside Q the motion is uniform while the reflection
at the boundary 0Q is elastic (the angle of reflection equals the angle of incidence,
cf. Figure 1). Since the absolute value of the velocity is a first integral of motion,
the phase space of our system can be identified with the unit tangent bundle over Q.
Namely, the configuration space is Q while the phase space is M = Q x S4_1 where
Sa—1 1s the surface of the unit d-ball. In other words, every phase point z is of the
form (¢,v) where ¢ € Q and v € S;—1. The natural projections = : M — Q and
p: M — Sq_q are defined by 7(¢,v) = ¢ and by p(q,v) = v, respectively.



Figure 1

Suppose that 9Q = U¥9Q; where 0Q; are the smooth components of the bound-
ary. Denote M = 0Q x Sq—1 and let n(¢) be the unit normal vector of the boundary
component 0Q; at ¢ € 0Q; directed inwards Q. In billiards, isomorphic to hard ball
systems, the scatterers are convex cylinders if N > 3, and are (strictly convex) balls
if N = 2. The observation of Krylov and Sinai was that a billiard with strictly convex
scatterers behaves like a hyperbolic dynamical system, whereas in one with just con-
vex scatterers there is some partial hyperbolicity. We will illustrate this observation

after some definitions.

We say that a billiard is dispersing (a Sinai-billiard) if each 0Q); is strictly convex,
and we say it is semai-dispersing if each 0Q; is convex. The billiards on Figures 2 and
3 are dispersing. Indeed, they correspond to the system of two dises on T?; the first
one to the case R < 1/4 and the second one to the case 1/4 < R < 1/2.

Figures 2, 3, 4

The third one is a semi-dispersing billiard given on T° with two cylindric scatter-
ers. This paradigm was the first semi-dispersing but not dispersing billiard whose
ergodicity was established (cf. K-S-Sz(1989)).

Figure 5

The mechanism producing hyperbolicity in a dispersing billiard can be seen the
best on Figure 5 borrowing the illustration from optics. Assume we have a strictly
convex scatterer on T¢ and imagine it is a mirror. Take, + = (Q,V) € M, and the
codimension one hyperplane ? through @) in the configuration space perpendicular
to the velocity V. By attaching to points of 7 velocities identical to V we obtain a
wavefront ? in the phase space M. After one reflection from the mirror scatterer, our
wavefront gets strictly convex while the linear distances measured on 7 get uniformly
expanded. This mechanism is exactly the one providing the (uniform) hyperbolicity

of a dispersing billiard.
Sinai’s 1970 work used the theory of uniformly hyperbolic smooth dynamical sys-

tems which had had an intensive progress in the 60s and culminated in the 1967
paper of Anosov and Sinai, A-S(1967). The serious difficulty Sinai had to cope with
was that billiards were not smooth dynamical systems. Indeed, if a smooth wave-
front gets reflected from a scatterer and it contains a tangency, then though the
reflected wavefront will be continuous, its second derivative will have a jump at the

tangency. This circumstance causes serious technical difficulties: in smooth uniformly



hyperbolic dynamical systems the stable and unstable invariant manifolds, the fun-
damental tools of the theory are smooth and unbounded, whereas in billiards their

smooth components can be arbitrarily small.

6. N = 2 BALLS (1970-1987). LocAL

ERGODICITY OF SEMI-DISPERSING BILLIARDS.

As mentioned earlier, Sinai, in 1970, in his celebrated paper obtained the first
rigorous result in relation to the Boltzmann-Sinai ergodic hypothesis: he could show
that N = 2 discs on the 2-torus T? was a K-system.

In fact, his result was formulated for 2— D dispersing billiards (Sinai-billiards) with
a finite horizon. A billiard has finite horizon if there is no collision-free trajectory
in it. This condition is fulfilled by a two-billiard if R > i (cf. Figure 3). In this
case the configuration space consists of four connected components, and, of course,
ergodicity is claimed on each of them. For the case of R < i (cf. Figure 2), a2 —D
billiard with infinite horizon, the corresponding result was proved by Bunimovich
and Sinai in 1973, B-S(1973). On the basis of their work it was understood that a
2 — D dispersing billiard was ergodic.

A multidimensional generalization of their theorem was only obtained in 1987.
Indeed, Chernov and Sinai, S-Ch(1987) were, in general, investigating semi-dispersing
billiards and introduced the basic notion of sufficiency of an orbit or equivalently of
a phase point. The main consequence of sufficiency is that, in a suitably small
neighbourhood of a sufficient point, the system is hyperbolic, though not uniformly.
Next we present this notion in its minimal form as suggested in K-S-Sz (1990).

Figure 6

Our starting point is Figure 6, similar to Figure 5. It shows that, if a scatterer
is not strictly convex but just convex, like e. g. a cylinder, then the image of the
hyperplanar wavefront ? with parallel velocities will not be curved in the directions
parallel with the constituent subspace of the cylinder, but in the transversal direc-
tions, only. However, the uncurved neutral directions can still die out after several
reflections on differently oriented cylindric (or, in general, convex) scatterers.

[@:t]2 is a finite trajectory

Now for the definition of sufficiency. Assume that S
segment, which is regular, i.e. it avoids singularities.

Let S®z = (Q,V) € M and consider the hyperplanar wavefront 7 (S%z) := {(Q +
dQ,V) : dQ small € R? and (dQ,V) = 0} (by denoting 7(z) = Q for x = (Q, V) we
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see that, indeed, 7(%) is part of a hyperplane).

We say that the trajectory segment Sl is sufficient if F(Sb{?) is strictly convex
(see Figure 7). (To obtain a geometric or optical feeling of this notion, the reader
is again suggested to imagine mirror-surfaced scatterers.) A phase point @ € M is
sufficient if its trajectory is sufficient (i.e. it contains a sufficient trajectory segment).
In physical terms, sufficiency of a trajectory segment means that, during the time
interval [a, b], the trajectory of x encounters all degrees of freedom of the system.

Figure 7

If a trajectory segment is not sufficient, then the curvature of F(Sb{?) at 7(S%x) nec-
essarily vanishes in certain directions forming the so-called neutral subspace. Simple
geometric considerations (cf.K-S-Sz(1990)) show that a sufficient trajectory segment
generates an expansion rate uniformly larger than 1 in some neighbourhood of the
point S%z. Then, by Poincaré recurrence and the ergodic theorem, it is not hard
to see that, in some neighbourhood of S%z, the relevant Lyapunov exponents of the
system are not zero. In other words, in this neighbourhood, the system is hyperbolic.

This observation should motivate the non-trivial

Fundametal theorem for semi-dispersing billiards (S-Ch(1987)). Assume
that o sema-dispersing billiard satisfies some geometric conditions and the Chernov
— Swnat ansatz, a condition strongly connected with the singularities of the system.

If x € M s a sufficient point, the it has an open neighbourhood U in the phase

space belonging to one ergonent (i.e. ergodic component).

(A simplified and suitably generalized version of this theorem, the so-called transver-
sal fundamental theorem’ was given in K-S-5z(1990). Moreover, a version of the fun-
damental theorem formulated for symplectic maps with singularities can be found in
L-W(1994).) The property expressed in the statement is usually called local ergod-
terty. If almost every phase point of a semi-dispersing billiard is sufficient, then, of
course, 1t may have at most a countable number of ergonents. In some cases it is
not hard then to derive the global ergodicity of the system, i.e. to show that there
is just one ergonent in the phase space. Note that it also follows from the general
theory that, on each ergonent, the system is Kolmogorov mixing. A much important

consequence is thus the following

Corollary (S-Ch(1987)). Every dispersing billiard is ergodic, and, moreover, is a
K-flow. In particular, the system of N = 2 balls on the v-torus 1s a K-flow if r < %
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(For details, see K-S-S7(1990).)

7. N > 3 BALLS (1989- ). GLOBAL

ERGODICITY OF SEMI-DISPERSING BILLIARDS.

With the fundamental theorem for semi-dispersing billiards in mind, the proof of

their global ergodicity boils down to

(1) first demonstrating the Chernov-Sinai ansatz, an important condition of the
fundamental theorem, and

(2) to then showing that the subset of non-sufficient points is a topologically small
set of measure zero; for instance, its topological codimension is not smaller

than two.

In Sz(1993), we gave a sketch of the strategy worked out in our papers with A. Kramli
and N. Siményi for the core part, and here we will just list the main results obtained

so far.*

(1) in 1991, Kréamli, Simanyi and the present author, [KSSz-91] demonstrated
the K-property of N = 3 balls on the v—torus whenever v > 2;

(2) in 1992, again the previous authors, [IKSSz-92] improved their methods to get
the ergodicity of N = 4 balls on the v—torus whenever v > 3;

(3) in 1992, Simanyi, S(1992) was able to establish the so far strongest result
for hard ball systems: the system of N > 2 balls is ergodic on the v—torus
whenever v > N; his method is based on his Connecting Path Formula char-

acterizing the neutral subspace of a trajectory segment.

The configuration of the cylindric scatterers of a billiard isomorphic to a hard
ball system inherits the permutation symmetry of the balls. A natural generalization
of hard ball systems is to investigate cylindric billiards in general, 1. e. billiards
with solely cylinders as scatterers. To this end consider compact affine subspaces
L' :1 < i< N, N >1in the d-torus T? (with dim L' < d — 2), and denote
C':={Q = (q1,...,qq) : dist(Q,L") < r'}, 1 <47 < N where each r’ is positive.
The billiard in Q := T\ (UX.,C") is a billiard with cylindric scatterers.

For cylindric billiards the following results have been obtained:

(1) in 1989, Kramli, Simanyi and the present author, K-S-Sz(1989) considered a

3-dimensional orthogonal cylindric billiard (cf. Figure 4); they obtained its

*Most recently, in the Summer of 1994, Simdnyi and Szész, were able to prove Sinai’s hypothesis
in the general case N,v > 2.
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K-property and thus this was the first semi-dispersing — but not dispersing
— billiard whose ergodicity was shown.

(2) in 1993, motivated by a question of John Mather, the present author started
a systematic study of cylindric billiards and found a sufficient and necessary
condition for the ergodicity of a class of them: for orthogonal cylindric bil-
liards, cf. Sz(1993), Sz(1994). These are characterized by the property that
the constituent subspace of any cylindric scatterer is spanned by some of the
coordinate vectors adapted to the orthogonal coordinate system where T? is
given;

(3) in 1994, Siméanyi and the present author, S-Sz(1994) found necessary and
sufficient conditions for the K-property of a toric billiard with two arbitrary

cylindric scatterers.

Since the class of cylindric billiards is relatively simple, one can hope for gen-
eral necessary and sufficient conditions for the ergodicity (and the K-property) of
these systems. Indeed, we next formulate a conjecture containing a general sufficinet

condition.

Conjecture (Szasz, 1992). Assume that the configuration domain of a cylindric
billiard 1s connected, and no pairs of the scatterers are tangent. If there 1s at least

one sufficrent point, then the billiard 1s K.

8. THE BOLTZMANN-SINAI ERGODIC HYPOTHESIS IN PENCASE TYPE MODELS.

In order to resolve some difficulties on the way to establishing the Boltzmann-
Sinai ergodic hypothesis, Chernov and Sinai, S-Ch(1985) suggested the study of a
quasi-one-dimensional model of hard balls. It is given on an elongated torus of the
type (LT') x T"~! where L is a sufficiently large number compared to R (see Figure

8). The main assumption is

Vi —1 1
V4 <R<§

ensuring that the order of balls (in the direction of LT') is invariant under the
dynamics. Thus the model, which was called by Chernov and Sinai a pencase, is
realizable if 2 < v < 4. If we number the balls in their order: 1,2,--- , N, then
a particular feature of the model is that only the pairs of consecutive balls (i.e.
{1,2},{2,3},--- ,{N,1}) can interact.

Figure 8
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The first result for a pencase type model was reached in 1992 by Bunimovich-
Liverani-Pellegrinotti- Sukhov. Instead of a torus their model lives in a domain with

dispersing boundaries (see Figure 9) and the sizes of the domain ensure that

Figure 9

(1) each ball is restricted to a fundamental domain of the “pencase” (the throats
between them are smaller than 2R);

(2) between consecutive collisions of a particular ball, it should always hit a
dispersing boundary;

(3) the pairs of balls in neighbouring domains can, indeed, interact.

A hilliard of this type is realizable in arbitrary dimension and the results of the
aforementioned authors was that the system was K. This particular model was, in
fact, the first one where the Boltzmann-Sinai ergodic hypothesis got settled for any
N and v > 2.

Theorem (B-L-P-S(1992)). The B-L-P-§ pencase is a K-system for any N,v > 2.

For some time it seemed so that the proof of ergodicity for the original Chernov-
Sinai pencase was not easier than that for general hard ball systems. Nevertheless,

— with Nandor Simanyi — we could recently demonstrate the following

Theorem (S-Sz (1994-B)). The Chernov-Sinai pencase is a K-system for any
N >2,v=4. If v =3, then the system has open ergodic components.

The restriction v # 2 seems, at present, important whereas that of v < 5 only
arises since the model, as invented by its authors, does not exist for v > 5. One
could, however, introduce less realistic models that do exist for v > 5, too, and for
them our proof would also work but we do not want to stay on them.

There is, however, another, more natural way to introduce models with a pencase-
type interaction in any dimension. Consider, namely, N balls, numbered 1,2,... . N
on the unit torus T%. The restriction is that only pairs of balls with neighbouring
numbers, i.e. again only the pairs {1,2},{2,3},...,{N —1, N}, {N, 1} interact while
other pairs can go through each other. This billiard is, of course, again a cylindric

one.

Theorem (S-Sz (1994-B)). The system with pencase-type interaction is a K-

system whenever N > 2. v >. If v = 3, then the system has open ergodic components.
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(Froeschlé(1978) (cf. H(1983)) introduced the notion of connectivity as the ratio
of the number of particles a given particle can interact with and of the number of
all particles. His experiments suggested that this ratio can be related to the good
ergodic properties of a system; in particular, below a critical value of the connectivity,
a significant fraction of the phase space is occupied with invariant tori. Our theorem
shows, however, that, for hard ball systems, the ergodic behaviour already appears

at a connectivity arbitrarity close to zero.)

9. ERGODICITY OF SYSTEMS WITH A FIXED NUMBER OF DEGREES OF FREEDOM.

JFrom the work of Markus-Meyer mentioned in section 4 we know that ergodic
Hamiltonians are in a sense exceptional. Nevertheless, it makes sense to look for
possibly more of them since the mechanisms occurring in these can also help to
understand the onset of chaotic behavior, for instance, the appearance of a large
ergodic component in nonergodic systems.

In sections 5-7 we discussed billiard systems. Here we mention three classes of
Hamiltonians, for which Donnay and Liverani, D-L(1991) could, in 1991, demonstrate
ergodicity. These are systems of N = 2 particles on 1? interacting via a rotation-
invariant pair potential V(r). These system have the same conserved quantities as
the system of two hard discs and we assume that v +v3 = 1, vy +vy =0, ¢1 +¢2 = 0.
We do not give here all the conditions since we are mainly interested in the qualitative
description of these interactions.

Assume in all cases that for some R > 0

(1) V(r)=0 if r > R;

(2) V(r) € C*(O,R);

(3) lim,—or?V(r) = 0;

(4) for h(r) = r*(1 — 2V(r)), and for except one value of r € (O, R) h/(r) > 0.
Potentials in the first class are repelling ones (see Figure 10). The additional condition
besides (1) — (4) is now

Figure 10

(5) V(R—)=0and V' (R—) < 0.

Then, under some more conditions, the system is K. As it is evident from the
conditions, V is, though continuous, not C! at r = R (see Figure 11). Indeed, the
jump of V'in R as required by (5) plays the same role as the effect of a reflection in a
dispersing billiard. This phenomenon was first observed by Kubo in 1976 (K(1976)),
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and he, and later he and Murata, K-M(1981) could already establish the K- and the
B-property of such systems under more restrictive conditions than those of Donnay
and Liverani. It is a natural question whether the Kubo-type singularity can also
lead to ergodicity in the case of several particles. In fact, we recall the following

Figure 11

Problem (Liverani-Szasz, 1990). Let N = 3,v = 2. Is it possible to find o Kubo-
type interaction (i.e. one satisfying the conditions (1) — (5) formulated before) such
that the system 1s ergodic?

A simpler problem could be the generalization of the Kubo-Donnay-Liverani result
for the case N = 2,v > 3 though, as observed by Wojtkowski, W(1990-C), in the
multidimensional case new, unpleasant phenomena may arise.

The second class investigated by Donnay and Liverani contains attracting poten-
tials. In 1987, Knauf, K(1987) showed that for attracting interactions with singular-

ities at r = 0 of the type — n =2,3,4,..., the system was ergodic. Donnay

1
and Liverani’s main achievement was that they could get rid of the assumption that

n was an integer (see Figure 10). Their main condition besides (1) — (4) is

(6) V'(r) >0if v e (0,R) and V(R) =V (R) = 0.

. From the conceptual point of view the most remarkable is their third class since
here the potential is everywhere smooth. The basic feature of interactions in the
third class is that, for some r. < R, the circle of radius r. is a closed orbit (see Figure
12). Interestingly enough this orbit plays the role of a singularity.

In all cases, the existence of potentials satisfying the aforelisted conditions is
proved. For a given potential satisfying the appropriate requirements then ergod-
icity is fulfilled at sufficiently high energy. It is worth noting that having proved first
that the Lyapunov exponent is non-zero, the proof of ergodicity can be obtained by
a suitable adaptation of the fundamental theorem for semi-dispersing billiards (cf.
section 6).

Figure 12

An interesting class of models was introduced and studied by Wojtkowski, W(1990-
A) and W(1990-B). Here a one-dimensional system of N particles of different masses
moves in an external field, and the interaction is elastic collision. The non-vanishing
of Lyapunov exponents has been proved in several cases, but establishing global

ergodicity still seems to be difficult.
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10. ERGODICITY OF SYSTEMS WITH AN

INCREASING NUMBER OF DEGREES OF FREEDOM.

The situation when the number of particles increases exactly corresponds to Boltz-
mann’s original question which — in modern terminology — could sound as follows:
find, for a generic Hamiltonian, the asymptotic behaviour in the thermodynamic
limit. This question is still not formulated precisely. From the various possible ways,
the right one should, of course, be selected as dictated by the main applications. At
present, as it seems to me, a very important application should be in the field of the
derivation of hydrodynamic equation from microscopic, Hamiltonian principles. It is
clear that, the so far strongest method worked out in the last decade by Varadhan
and his coworkers, O-V-Y(1993) would require a form related to Boltzmann’s hy-
pothesis but we can still not select the right form (we note that the results obtained
until now are valid for stochastic systems and not for purely Hamiltonian ones).

The conceptually simplest and widemost known form of a hypothesis is the follow-
ing: denote as before the number of particles by N, and by p(N) the relative measure
of the phase space occupied by invariant tori. For simplicity, the interaction is fixed
and % = const (for definiteness, we assume that the system lives on the torus V%T”).
Then the first conjecture is that p(N) — 0 as N — oo. A stronger conjecture would
then require that the complement to the set of invariant tori contains a large ergodic
component whose measure gets close to one.

Hénon (1983) and Galgani (1985) discussed in detail the situation and the connec-
tion of these conjectures to the one on the limiting equipartiton of energy between the
modes of the system . The conclusion is that the picture is not clear at all. There are,
on one hand, interactions when numerical work of Froeschlé and Scheidecker (1975)
indicates that p(N) — 0 as expected. They investigated a one-dimensional model

with the Hamiltonian

N
1 2 2
H = %Zpi + 27Go Z|qi—Qj |
1 (A]
On the other hand, the famous Fermi — Pasta — Ulam (1955) experiment supported
doubts about the conjectures by detecting the failure of the limiting equipartition of

energy. This was also a one-dimensional model with the Hamiltonian

N N—-1

H = %ZP? + ) Vg — q)

1 1



i

where V(q) = %qz + ag?.

These works generated a vivid interest in the problem. For the contradictory views
about it, the reader is suggested to consult the aforementioned papers of Hénon and
Galgani and for a more recent review that of Galgani- Giorgili-Martinolli-Vanzini
(1993).

As T learnt from Gregory Eyink, for establishing hydrodynamic equations in the
sense of the approach of Varadhan’s method, a weaker form of the conjecture would
also be sufficient. It is not necessary to have one large ergodic component. It seems
that a weakly increasing upper bound for the number of ergodic components and, of

course, a good upper bound on p(N) could be sufficient. The picture here, however,

needs more elaboration and the problems seem very difficult.

11. ERGODICITY OF SYSTEMS WITH AN

INFINITE NUMBER OF DEGREES OF FREEDOM.

Since the situation with large but finite systems is so complicated, I expect that
the solution of equilibrium statistical physics should be borrowed. Whereas even a
rigorous definition of a phase transition in a finite system — not speaking about its
demonstration — is not an easy task, the question gets much simpler for infinite
systems. In my view, first the ergodicity of infinite systems should be understood.

The very first result for an infinite system was obtained in 1971 by Sinai and
Volkovysky for the ideal gas: it was shown to be a K-system (V-S(1971)). (A weaker
result was obtained by Dobrushin already in 1956, see D(1956).) For the first glance
this sounds as a surprise since in the ideal gas there is no velocity mixing at all. In-
deed, in the formulation of ergodicity one should be a bit cautious. By denoting the
phase space by M = {{(¢i,vi) : ¢ € Z} : {¢;} is locally finite }, the equilibrium mea-
sure is Px({q; : 1 € Z}) @[] F(dv;) where Py is a Poisson measure with density A and
F(dv) is an arbitrary non-degenerate probability distribution in R”, and ergodicity
holds with respect to this invariant measure. The proof reveals an apparently new
mechanism of ergodicity : mixing — understood, of course, in time — is the result
of the initial spatial mixing. In other words: the equilibrium measure is Poisson, i.e.
a measure with independent increments. Now as time proceeds, in a fixed box of
our observation, particles starting from more and more distant intervals appear and
their numbers are, roughly speaking, independent. This phenomenon can be proved

to provide mixing in time.
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The same observation was used, in more delicate arguments, for showing the K-
property for different variants of the Rayleigh-gas, among others, by Goldstein-Lebo-
witz-Ravishankar (1982), Boldrighini-Pellegrinotti-Presutti-Sinai- Soloveychik (1984)
and L. Erdés-Tuyen (1991). In these models only one particle interacts with all the
other ones and the equilibrium measure is still Poisson. A related model is the
Lorentz gas where — similarly to the ideal one — there is no interaction between the
particles, but the dynamics of each particle obeys a strong mixing in space. Based
upon this mixing, Sinai demonstrated the K-property in S(1979).

Now a problem which I find very interesting and quite realistic is the following

one:

Problem (Szasz, 1990). Consider an infinite pencase obtained as N — oo of the
finite ones was introduced in section 8. Prove that the natural Gibbs measure s

ergodic. (Here, of course, the possible values of the dimension are v =2,3,4.)

(Infinite models also raise the question of existence of the dynamics, but for this
model it was answered affirmatively by Alexander, A(1976).) In the proof of ergodic-
ity two mechanisms can be exploited: the hyperbolic behaviour of the interaction as
done for the finite pencase or the spatial mixing of the equilibrium distribution as in
cases of the ideal gas or the Rayleigh one. At present, however, I do not see an easy
way for any of these possibilities, in particular, for the second one. For the first one it
is a natural idea to start building up the hyperbolic theory of infinite-dimensional dy-
namical systems and trying to define, for instance, the stable and unstable invariant
manifolds first, and then to prove their existence.

In section 10 we already mentioned the problem of the derivation of hydrodynamic
type equations. A sufficient condition in some cases for the method of O-V-Y(1993)
to work is the following ergodicity type condition: every “regular” state, invariant
with respect to both translations in the space and the dynamaics, 18 a mixture of canon-
tcal Gibbs measures. This property is apparently stronger than ergodicity, but, as
remarked in F-F-L(1994), to prove such an ergodicity for deterministic Hamiltonian
systems is still a formiddable unsolved problem. (In fact, Fritz, Funaki and Lebowitz
verify this property for a random Hamiltonian system, and their paper is, moreover,
also recommended for further reference.) We add that regularity above means that
the state has finite relative entropy (per unit volume) with respect to the Gibbs
measure. This assumption implies, in particular, that the conditional distribution in

any finite volume A, given the configuration outside A, is absolutely continuous with
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respect to the Lebesgue measure.

12. CONCLUDING REMARKS

In this lecture I have been concentrating on the history of Boltzmann’s ergodic
hypothesis. T think that the second half of the title of the talk is already justified if
we focus our interest to just the question of ergodicity. After more than one hundred
years, ergodicity is still not established in the simplest mechanical model, in the
system of elastic hard balls though I expect we are not far from a solution. But as
to generic interactions, even the questions are not clearly posed and it might well
be that there will not be a final understanding after the next hundred years either.
And we have not touched upon more delicate, physically fundamental properties for
whose proofs one should refine the methods used in studying ergodicity of the system

involved. Without aiming at completeness we just mention the problems

(1) of the decay of correlations (cf. Ch(1994); here and in the forthcoming cases
only the last reference, I am aware of, will be provided, where further ones
can also be found),

(2) of the convergence to equilibrium, K-Sz(1983),

(3) of the calculation of and bounds on the entropy of mechanical systems,
Ch(1991),

(4) and, finally, of the recurrence properties of such systems, K-Sz(1985).

Acknowledgements. Thanks are due to G. Eyink and J. Fritz for their remarks
about the relation of ergodicity and the hydrodynamic limit transition. I am also
much grateful to M. Herman and B. Weiss for their helpful remarks on the history

of the ergodic hypothesis and some references.
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