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Abstract

The main result of this paper is an inequality relating the lattice point
enumerator of a 3-dimensional, 0-symmetric convex body and its succes-
sive minima. This is an example of generalization of Minkowski’s theorems
on successive minima, where the volume is replaced by the discrete ana-
logue, the lattice point enumerator. This problem is still open in higher
dimensions, however, we introduce a stronger conjecture that shows a
possibility of proof by induction on the dimension.

1 Introduction

A subset K of Rd is called a convex body if it is convex, compact, with nonempty
interior (sometimes the technical condition K ⊂ int(K) is required, but we will
not need it here). The set of all convex bodies of Rd will be denoted as Kd, and
the subset of the 0-symmetric elements will be denoted as Kd0. Furthermore,
Ld will denote the set of all lattices in Rd. We will denote the ith successive
minimum of K ∈ Kd0 with respect to Λ ∈ Ld by λi(K,Λ), i.e.,

λi = inf{λ > 0|dim(λK ∩ Λ) > i},

where dim(A) for A ⊂ Rd is the dimension of the vector space spanned by all
vectors of the set A.

Minkowski proved the following two inequalities relating the volume of K ∈
Kd0, i.e., its d-dimensional Lebesgue measure, with its successive minima, with
respect to a lattice Λ:

vol(K)
det(Λ)

6

(
2

λ1(K,Λ)

)d
(1)
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d!

d∏
i=1

2
λi(K,Λ)
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6
d∏
i=1

2
λi(K,Λ)

(2)

which is an improvement of (1). The above are known as the first and second
theorem on successive minima, respectively. About a century later, in 1993,
Betke, Henk, and Wills [BHW] stated discrete analogues of these theorems,
where the volume is replaced by the lattice point point enumerator, G(K,Λ) :=
#(K ∩ Λ). They proved the analogue for the first theorem, which predicts the
following inequality:

Theorem 1.1. Let K ∈ Kd0 and Λ ∈ Ld. Then

G(K,Λ) 6

[
2

λ1(K,Λ)
+ 1
]d
. (3)

As for the second theorem, they stated a conjecture, which they verified in
the planar case.

Conjecture 1.2. Let K ∈ Kd0 and Λ ∈ Ld. Then

G(K,Λ) 6
d∏
i=1

[
2

λi(K,Λ)
+ 1
]
. (4)

In Section 3.2 we shall see a proof for the 3-dimensional case of the above
conjecture. There is a notion of induction in the proof; we need statements about
intersections of a given convex body by hyperplanes passing through lattice
points. The resulting convex bodies, whose dimension is d−1, are not centrally
symmetric, in general. Therefore, it is necessary to extend the definition of the
successive minima, as well as the results referred to them, to the class of all
convex bodies, not necessarily 0-symmetric, namely

λi(K,Λ) := λi( 1
2DK,Λ),

where DK stands for the difference body of K, i.e.,

DK = K −K = {x− y|x, y ∈ K}.

Under this definition, Minkowski’s theorems still hold; this is a simple conse-
quence of the Brunn-Minkowski theorem ([GL], pp. 12 and 32), which predicts
that

vol(K) 6 vol( 1
2DK).

In Section 3.1, we will extend Theorem 1.1 to the non 0-symmetric case, as
follows:
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Theorem 1.3. Let K ∈ Kd, Λ ∈ Ld. Then

G(K,Λ) 6

[
2

λ1(K,Λ)
+ 1
]d
.

We conjecture that inequality (4) still holds when K is not 0-symmetric, and
we will prove it in Section 3.2 for d 6 3, which is the main result of this paper:

Theorem 1.4. Let K ∈ Kd, Λ ∈ Ld, where d 6 3. Then

G(K,Λ) 6
d∏
i=1

[
2

λi(K,Λ)
+ 1
]

We will also prove some weaker estimates, exactly as in [M].

Theorem 1.5. Let K ∈ Kd, Λ ∈ Ld. Then

G(K,Λ) 6
4
e

(
√

3)d−1
d∏
i=1

qi(K,Λ).

If K ∈ Kd0, then

G(K,Λ) 6
4
e

(
3

√
40
9

)d−1 d∏
i=1

qi(K,Λ).

2 Some auxiliary lemmata

We will first need the following standard convention; remember that the suc-
cessive minima of K ∈ Kd with respect to a lattice Λ are those of 1

2DK. By
definition of the successive minima λi(K,Λ), there are d linearly independent
lattice vectors ai = ai(K,Λ) such that

ai(K,Λ) ∈ λi(K,Λ)
2 DK ∩ Λ.

Then we construct a basis of Λ denoted by ei = ei(K,Λ), 1 6 i 6 d, such that

lin(a1, . . . , ai) = lin(e1, . . . , ei)

for all i, 1 6 i 6 d. Furthermore, we define the following subgroups of Λ:

Λi(K) := Ze1 ⊕ · · · ⊕ Zei
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We will usually abbreviate the notation to Λi. It should be noted that there is
an abuse of notation here; it is evident that the choice of the ai’s and the ei’s,
as well as the Λi’s, is not always unique. However, by this notation we shall
always mean a choice of vectors or subgroups with the above properties. The
main property that will be used later is

int(λi

2 DK) ∩ Λ ⊂ Λi−1 (5)

Lemma 2.1. Let K ∈ Kd, Λ ∈ Ld. For each real ni, satisfying ni > 2/λi, we
have

DK ∩ ni(Λ \ Λi−1) = ∅
In particular,

int(DK) ∩ 2
λi

(Λ \ Λi−1) = ∅

Proof. Assume otherwise; then the intersection
1
ni

DK ∩ (Λ \ Λi−1)

would be nonempty. The left part of this intersection is a subset of

int(λi

2 DK),

since ni > 2/λi. Therefore, the intersection

int(λi

2 DK) ∩ (Λ \ Λi−1)

is nonempty, contradicting (5) above, as was to be shown.

The following is an adaptation of Lemma 2.1 in [H], for the case of all
convex bodies, not necessarily 0-symmetric. Even though the proof is identical,
we provide it here for convenience.

Lemma 2.2. Let K ∈ Kd and Λ, Λ̃ ∈ Ld, with Λ̃ ⊂ Λ. Then

G(K,Λ) 6
det(Λ̃)
det(Λ)

G(DK, Λ̃). (6)

Proof. Let m = G(DK, Λ̃) and suppose there exist at least m+1 different lattice
points v1, . . . , vm+1 ∈ K ∩ Λ such that vi ≡ v1 mod Λ̃, 1 6 i 6 m + 1. Then
we have

vi − v1 ∈ DK ∩ Λ̃, 1 6 i 6 m+ 1,

which contradicts the assumption m = G(DK, Λ̃). Thus we have shown that
every residue class of Λ with respect to Λ̃ does not contain more than m points
of K ∩ Λ. Since there are precisely det(Λ̃)/det(Λ) different residue classes, we
obtain the desired bound.
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The following two lemmata will be used for the proof of Conjecture 1.2 in
the 3-dimensional case. Notice that they are statements in d dimensions.

Lemma 2.3. Let K ⊂ Rd be a convex body, Λ ∈ Ld, such that K ∩ Λ = ∅.
Then there is some v ∈ Λ such that for any real t > 1,

K ∩ (v + tΛ) = ∅.

Proof. Take v ∈ Λ such that #(conv(v,K) ∩ Λ) is minimal. If this number is
greater than 1, then there is some w ∈ Λ, w 6= v, such that w ∈ conv(v,K).
Hence, conv(w,K) ⊂ conv(v,K), and v /∈ conv(w,K), contradicting the min-
imality of #(conv(v,K) ∩ Λ). Thus, conv(v,K) ∩ Λ = {v}. We claim that
K ∩ (v + tΛ) = ∅, for all t > 1. Suppose not; then there is some u ∈ Λ such
that v + tu ∈ K, for some t > 1. By convexity, and the fact that t > 1, we
get v + u ∈ conv(v,K), which implies u = 0, so v ∈ K, a contradiction, since
K ∩ Λ = ∅. This concludes the proof.

The next lemma generalizes the above:

Lemma 2.4. Let K ⊂ Rd be a convex body, and Λ ∈ Ld. Let S ⊂ Λ be finite,
and r be a positive integer, such that

(1) (K − S) ∩ rΛ = ∅.

(2) DS ∩ r(Λ \ {0}) = ∅.

Now, let t > r be an integer. There is a set S′ ⊂ Λ, obtained by translating each
v ∈ S by some vector r · w(v), where w(v) ∈ Λ, such that

(1)′ (K − S′) ∩ tΛ = ∅.

(2)′ DS′ ∩ t(Λ \ {0}) = ∅.

Proof. The proof proceeds by induction on #(S). If #(S) = 1; i.e., S = {v},
we use Lemma 2.3 for K − v and the lattice rΛ. Since t > r, there is some
w(v) ∈ Λ, such that (K − v)∩ (r ·w(v) + tΛ) = ∅. Put S′ = {v+ r ·w(v)}, and
we see that (1)′ is satisfied. It should be noted that when #(S) = 1, conditions
(2) and (2)′ hold vacuously.

Now, assume that #(S) > 1. Take v ∈ S + rΛ, such that #(conv(v,K) ∩
(S + rΛ)) is minimal. Again, as in the proof of Lemma 2.3, we must have
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conv(v,K) ∩ (S + rΛ) = {v}. Apply induction for K̃ = conv(v,K) and S̃ =
S\(S∩(v+rΛ)); we have #(S̃) = #(S)−1. Let’s see why (1) and (2) are satisfied
for K̃, S̃ (same r,Λ); (2) is obviously satisfied, as S̃ ⊂ S. If (1) were not satisfied,
then there would be some w ∈ S̃ and u ∈ Λ such that w+ ru ∈ conv(v,K). By
the minimality assumption, w+ru = v. But v /∈ S̃+rΛ, a contradiction. Thus,
(1) and (2) hold for K̃, S̃, and by induction there is some S ⊂ Λ, obtained from
S̃ by translating each u ∈ S̃ by r · w(u), w(u) ∈ Λ, such that

(K̃ − S) ∩ tΛ = ∅, (7)

and
DS ∩ t(Λ \ {0}) = ∅. (8)

Now, set S′ = S ∪{v}. (2)′ is satisfied for S′; if x, y ∈ S, then x−y /∈ t(Λ\{0})
from (8). If x ∈ S and y = v, then again from above, v − x /∈ tΛ, since v ∈ K̃.
If x = y = v, we have nothing to prove, so

DS′ ∩ t(Λ \ {0}) = ∅.

(1)′ is also satisfied for K,S′; suppose not. Then, there is some w ∈ S′, u ∈
Λ such that w + tu ∈ K. If w ∈ S, then w + tu ∈ K̃, which contradicts
(K̃ − S) ∩ tΛ = ∅. If w = v, then v + tu ∈ K, and by convexity, v + ru ∈ K,
hence u = 0, by minimality assumption, and v ∈ K, a contradiction. This
concludes the proof.

3 Inequalities for G(K, Λ)

Throughout the rest of the paper we will use the notation

qi(K,Λ) =
[

2
λi(K,Λ)

+ 1
]
.

When no confusion arises, we will simply write qi instead of qi(K,Λ). Also,
when Λ is the standard lattice Zd, we write G(K) instead of G(K,Zd).

3.1 The general case

The method of the following proof is similar to the proof of Theorem 1.5 in [H],
from a slightly different viewpoint.

Theorem 3.1. Let K ∈ Kd, Λ ∈ Ld. Let also n1, . . . , nd be a sequence of
integers satisfying
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• ni+1 divides ni, 1 6 i 6 d− 1.

• qi(K,Λ) 6 ni, 1 6 i 6 d.

Then,

G(K,Λ) 6
d∏
i=1

ni.

Proof. Let ei = ei(K,Λ) and define

Λ̃ = Zn1e
1 ⊕ · · · ⊕ Znded.

By Lemma 2.2,

G(K,Λ) 6
det(Λ̃)
det(Λ)

G(DK, Λ̃) = G(DK, Λ̃)
d∏
i=1

ni.

It suffices to prove that G(DK, Λ̃) = 1, or equivalently

DK ∩ (Λ̃ \ {0}) = ∅.

This follows from Lemma 2.1 and the fact that

Λ̃ \ {0} ⊂
d⋃
i=1

ni(Λ \ Λi−1)

(recall that ni > qi(K,Λ) > 2/λi(K,Λ)). Indeed, let g ∈ Λ̃ \ {0} be arbitrary,
and let k be minimal such that

g ∈ Zn1e
1 ⊕ · · · ⊕ Znkek.

Since nk divides all n1, . . . , nk−1 by assumption, we have g ∈ nkΛ. By minimal-
ity of k, we also have g /∈ Λk−1, hence g ∈ nk(Λ \ Λk−1) as desired.

As a simple consequence we can extend Theorem 1.1 to the non-symmetric
case, and thus obtain Theorem 1.3, as follows:

Proof of Theorem 1.3. The numbers n1 = · · · = nd = q1(K,Λ) satisfy the hy-
potheses of Theorem 3.1.

We remind the following definition, given in [M]:
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Definition. Let Cd denote the least positive constant, such that for any se-
quence of d integers, 0 < x1 6 x2 6 · · · 6 xd, there exists a sequence of integers
y1, y2, . . . , yd satisfying:

a. xi 6 yi, for all i, 1 6 i 6 d

b. yi divides yi+1, for all i, 1 6 i 6 d− 1

c.
y1y2 · · · yd
x1x2 · · ·xd

6 Cd.

We can always choose n1, . . . , nd with the properties given in Theorem 3.1,
such that

d∏
i=1

ni 6 Cd

d∏
i=1

qi(K,Λ).

The estimates for Cd in [M], yield Theorem 1.5.

Notice that when K is not 0-symmetric, we cannot disregard all qi(K,Λ)
that are less than or equal to 2, as it was done in [M]; the reason is that we
may have q1(K,Λ) = · · · = qd(K,Λ) = 2, and K ∩ Λ have full affine dimension
(while if K was 0-symmetric, this would mean that K ∩ Λ = {0}). Consider,
for example, the d-dimensional cube [0, 1]d. So, in the non 0-symmetric case we
cannot reduce the base to ( 3

√
40/9)d−1, using this argument.

3.2 The case d = 3

We will introduce an inductive method in order to prove Conjecture 1.2; this
method works up to dimension 3, thus obtaining Theorem 1.4, but it is in-
adequate for higher dimensions. As we will see in the next section, stronger
versions of Lemmata 2.3 and 2.4 might be needed for this method to work in
all dimensions.

Let K ∈ Kd0, Λ ∈ Ld. Fix a basis ei = ei(K,Λ) of Λ, that satisfies the
properties given in Section 2. We will write each vector x of Rd with coordinates
with respect to this basis:

x = (x1, . . . , xd)
= x1e

1 + · · ·+ xde
d.

Define
K[t] := {x ∈ K|xd = t};
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i.e., the subset of K whose elements have fixed height, or the intersection of K
with a hyperplane parallel to the vector subspace spanned by e1, . . . , ed−1. We
can write G(K,Λ) in terms of lattice point enumerators of convex bodies whose
dimension is d− 1; this is the point where induction could be used. Namely,

G(K,Λ) =
∑
t∈Z

G(K[t]− ted,Λd−1).

The bodies K[t]−ted are projections of the intersections K[t] on the vector sub-
space spanned by e1, . . . , ed−1 along the lattice vector ed. As before, Λd−1 is the
Z-span of e1, . . . , ed−1. Apart from K[0] which is 0-symmetric, the other pro-
jections are not necessarily 0-symmetric. This is the main reason for extending
Theorem 1.1 and Conjecture 1.2 to the non-symmetric case.

Next, observe that
1
2D(K[t]− ted) ⊂ 1

2DK,

therefore, for 1 6 i 6 d− 1

λi(K[t]− ted,Λd−1) > λi(K,Λ),

which implies
qi(K[t]− ted,Λd−1) 6 qi(K,Λ),

for 1 6 i 6 d− 1. Assuming that Conjecture 1.2 holds for d− 1, we have

G(K[t]− ted,Λd−1) 6
d−1∏
i=1

qi(K,Λ),

for all t ∈ Z. Only the factor qd(K,Λ) is missing; we could normally expect that
the number of the nonempty “slices”, K[t], is less than qd(K,Λ). But it is not
always the case that this number is less than qd(K,Λ).

From now on, we will write qi instead of qi(K,Λ). The next step is to group
all intersections whose heights are congruent modulo qd. Doing so, the above
sum becomes

G(K,Λ) =
qd−1∑
r=0

∑
t≡r(mod qd)

G(K[t]− ted,Λd−1).

It suffices to prove that for each fixed r, we have

∑
t≡r(mod qd)

G(K[t]− ted,Λd−1) 6
d−1∏
i=1

qi.

Of course, we could have more than one convex body in the above sum, however,
the above collection of convex bodies K[t] − ted, t ≡ r(mod qd) satisfies some
restrictive conditions, namely:
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(1) D(K[t]− ted)∩ qi(Λd−1 \Λi−1) = ∅ for all t ≡ r(mod qd) and 1 6 i 6 d−1.

(2) ((K[t]− ted)− (K[t′]− t′ed)) ∩ qdΛd−1 = ∅ for all t, t′ ≡ r(mod qd), t 6= t′.

The two statements above are consequences of Lemma 2.1. Indeed, for (1) we
observe that

D(K[t]− ted) ∩ qi(Λd−1 \ Λi−1) ⊂ DK ∩ qi(Λ \ Λi−1),

and the latter is empty since qi > 2/λi. As for (2), if

((K[t]− ted)− (K[t′]− t′ed)) ∩ qdΛd−1 6= ∅,

then there would exist some v ∈ Λd−1 such that qdv+(t− t′)ed ∈ K[t]−K[t′] ⊂
DK. However, since qd|t− t′, and t 6= t′, the intersection

DK ∩ qd(Λ \ Λd−1)

is nonempty, contradicting Lemma 2.1.

It is natural to state the following conjecture:

Conjecture 3.2. Let K1, . . . ,Kn ⊂ Rd be convex bodies and Λ ∈ Ld. Also, let
e1, . . . , ed be a basis of Λ, and denote by Λi the Z-span of 0, e1, . . . , ei, and let
q1 > q2 > · · · > qd+1 be positive integers satisfying

(C1) DKj ∩ qi(Λ \ Λi−1) = ∅ for all 1 6 j 6 n and 1 6 i 6 d.

(C2) (Kj −Kl) ∩ qd+1Λ = ∅ for all 1 6 j, l 6 n, j 6= l.

Then
n∑
j=1

G(Kj ,Λ) 6
d∏
i=1

qi.

From the above analysis, it is clear that the above conjecture implies Con-
jecture 1.2 for one dimension higher. We will verify this conjecture for d = 1, 2,
thus proving Conjecture 1.2 in all dimensions up to three, which is the main
result of this paper (Theorem 1.4). A statement in support of this conjecture is
that condition (C2) is too restrictive for the convex bodies Kj , given the fact
that qd+1 is smaller than the rest of the qi’s. This statement simply says that
no two translates of Kj and Kl, j 6= l, by vectors of qd+1Λ intersect. In the next
section, we present a more convincing reduction of Conjecture 3.2.
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Proof of Conjecture 3.2, d = 1. Without loss of generality, we assume that Λ =
Z. Let Kj = [aj , bj ], 1 6 j 6 n. Conditions (C1) and (C2) read

(C1) bj − aj < q1 for all 1 6 j 6 n.

(C2) (Kj −Kl) ∩ q2Z = ∅ for all 1 6 j, l 6 n, j 6= l.

If b1 − a1 > q2, then the union of K1 with all its translates by multiples of q2

cover all of R, so by condition (C2) we must have n = 1, therefore

n∑
j=1

G(Kj ,Λ) = G(K1) 6 q1

by (C1). If b1− a1 < q2, there is a translate of each Kj by some multiple of q2,
2 6 j 6 n, that lies in (b1, a1 + q2), again by (C2). Since they do not intersect
each other by (C2), we have

n∑
j=1

G(Kj) 6 G([a1, a1 + q2)) = q2 6 q1.

Proof of Conjecture 3.2, d = 2. Let

D = dim
(( n⋃

j=1

DKj

)
∩ q3Λ

)
.

We distinguish cases for D:

D 6 1: There exists a primitive lattice vector, say v, such that( n⋃
j=1

DKj

)
∩ q3Λ ⊂ Z(q3v)

therefore (( n⋃
j=1

DKj

)
∩ q3

(
Λ \ Zv

))
= ∅.

Find w ∈ Λ such that v, w is a basis for Λ. Then

n∑
j=1

G(Kj ,Λ) =
q3−1∑
r=0

n∑
j=1

∑
t≡r(mod q3)

G(Kj [t]− tw,Zv).
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We will prove that the above sum is less than or equal to q1q3 (which is less
than or equal to q1q2); it suffices to prove that

n∑
j=1

∑
t≡r(mod q3)

G(Kj [t]− tw,Zv) 6 q1,

for a fixed r, where the notation Kj [t] refers to the basis v, w. Naturally, we
identify Rv with R, so the collection of all sets Kj,t := Kj [t]− tw (of which only
a finite number are nonempty) is a collection of compact intervals on R. We
have

DKj,t ∩ q1(Zv \ {0}) ⊂ DKj ∩ q1(Λ \ {0}),
which is empty by assumption for all j, so condition (C1) of Conjecture 3.2 is
satisfied, for the family of convex bodies Kj,t, the lattice Zv and the positive
integers q1 > q2 > 0. Furthermore, when t 6= t′, if the intersection

(Kj,t −Kj,t′) ∩ q3(Zv)

is nonempty, then there exists u ∈ Zv such that

q3u+ (t− t′)w ∈ Kj [t]−Kj [t′] ⊂ DKj ,

implying
DKj ∩ q3(Λ \ Zv) 6= ∅,

which provides a contradiction, since D 6 1. If i 6= j, and if the intersection

(Ki,t −Kj,t′) ∩ q3(Zv)

is nonempty, then there is u ∈ Zv such that

q3u+ (t− t′)w ∈ Ki[t]−Kj [t′] ⊂ Ki −Kj ,

implying
(Ki −Kj) ∩ q3Λ 6= ∅,

which provides another contradiction. Thus, condition (C2) is satisfied, and
since the 1-dimensional case is true, we have

n∑
j=1

∑
t≡r(mod q3)

G(Kj [t]− tw,Zv) 6 q1,

as desired.

D = 2: This means that there are two primitive, linearly independent vectors
of Λ in

⋃
DKj , say v, w. We may assume that q3v ∈ DKi and q3w ∈ DKj , for

some indices i, j. We must show that i = j (if n = 1, this is vacuously true, so
we assume n > 2). We have

Ki ∩ (Ki − q3v) 6= ∅,
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so we pick an element x from this intersection. Hence, x, x+ q3v ∈ Ki and,

Kj ∩ (Kj + q3w) 6= ∅,

from which we pick an element y, hence y, y − q3w ∈ Kj . Let Λ̃ = Zv ⊕ Zw,
and consider the fundamental parallelogram of q3Λ̃ with vertices x, x+ q3v, x+
q3w, x + q3(v + w), say P. Since P is a fundamental parallelogram, there is
a translate of y by q3Λ̃ (and hence by q3Λ as well) in P. Without loss of
generality, we may assume that y ∈ P (if we translate any Ki by an element of
q3Λ, conditions (C1) and (C2) still hold). Assume that y = x+ αq3v + βq3w,
where 0 6 α, β < 1. Note that the element

y − βq3w = x+ αq3v

belongs to both conv(x, x + q3v) and conv(y, y − q3w), i.e., the intersection
Ki∩Kj is nonempty. This contradicts condition (C2) if i 6= j, so we must have
i = j.

Without loss of generality, assume that i = 1, that is, v, w ∈ DK1. Choose
v, w so that the index [Λ : Λ̃] is minimal. Assume that [Λ : Λ̃] > 1. Then
there is a point q3u ∈ q3Λ, such that q3u = µq3v + νq3w, with 0 < µ, ν <
1. It is not hard to see that any point in R2 is congruent modulo q3Λ̃ to
some point in the parallelogram conv(±q3v,±q3w). So, we may assume that
q3u ∈ conv(±q3v,±q3w), and by convexity we also have u ∈ DK1. Since 0 <
µ, ν < 1, the lattice generated by v, u has strictly smaller index in Λ than
Λ̃, contradicting the minimality assumption, therefore we must have Λ = Λ̃.
By Lemma 3.3 below, there is some x ∈ K1 such that the boundary of the
fundamental parallelogram of q3Λ with vertices x, x+q3v, x+q3w, x+q3(v+w)
(call it P again) is a subset of K1 + q3Λ. By condition (C2), all Kj , j 6= 1
avoid K1 +q3Λ, and hence the boundary of P. Since one translate of Kj by q3Λ
intersects P, as it is a fundamental parallelogram of q3Λ, this translate must lie
inside of P, by convexity since the boundary of P splits the plane R2 into two
disjoint regions. Thus, all Kj for j > 1 satisfy the additional property

DKj ∩ q3(Λ \ {0}) = ∅.

Now, let
S =

(⋃
j>1

Kj

)
∩ Λ.

From the previous identity we get

DS ∩ q3(Λ \ {0}) = ∅,

and condition (C2) implies

(K1 − S) ∩ q3Λ = ∅,

13



Therefore, K1 and S satisfy the conditions of Lemma 2.4, for r = q3, and d = 2.
So, there is a finite set S′ ⊂ Λ, obtained from S by translating each element of
S with an element of q3Λ, satisfying

DS′ ∩ q2(Λ \ {0}) = ∅

and
(K1 − S′) ∩ q2Λ = ∅,

since q2 > q3. Then,

n∑
j=1

G(Kj ,Λ) = G(K1,Λ) + #(S′) =

=
q2−1∑
r=0

∑
t≡r(mod q2)

G(K1[t]− te2,Ze1) +
q2−1∑
r=0

∑
t≡r(mod q2)

#(S′[t]− te2).

Here, the notation K[t] refers to the original basis e1, e2. It suffices to prove
that for fixed r,∑

t≡r(mod q2)

G(K1,t,Ze1) +
∑

t≡r(mod q2)

#(S′[t]− te2) 6 q1.

We identify Re1 with R. Hence, we have a finite collection of nonempty compact
intervals, K1,t, and some lattice points which come from S′[t] − te2. Assume
that S′[t]−te2 = {m1e

1, . . . ,mke
1}, where m1,m2, . . . ,mk are distinct integers.

Again, we have

DK1,t ∩ q1(Ze1 \ {0}) ⊂ DKj ∩ q1(Λ \ {0}) = ∅,

so condition (C1) is satisfied for the intervals K1,t and m1e
1, . . . ,mke

1 (it is
trivial for a point). If the intersection

(K1,t −K1,t′) ∩ q2(Ze1)

is nonempty for some t 6= t′, then there is some u ∈ Ze1, such that

q2u+ (t− t′)e2 ∈ K1[t]−K1[t′] ⊂ DK1,

which implies (since q2|t− t′)

DK1 ∩ q2(Λ \ Λ1) 6= ∅,

contradicting condition (C1). Furthermore,

(K1,t − {mie
1}) ∩ q2(Ze1) ⊂ (K1 − S′) ∩ q2Λ = ∅,

and for i 6= j,

{mie
1} − {mje

1} ∩ q2(Ze1) ⊂ DS′ ∩ q2Λ = ∅,

14



so condition (C2) holds as well for the intervals K1,t and the points m1e
1,m2e

1,
. . . ,mke

1, with respect to the lattice Ze1 and the integers q1 > q2, hence∑
t≡r(mod q2)

G(K1,t,Ze1) +
∑

t≡r(mod q2)

#(S′[t]− te1) 6 q1,

as desired, completing the proof.

This implies that Conjecture 1.2 is true for d 6 3. We observe that in order
to prove Conjecture 3.2 for d = 2, we used the result for d = 1. This is exactly
the purpose of stating a stronger conjecture than inequality (4); we might be
able to use induction on the dimension, something that did not seem possible
in this inequality. However, when d > 2, we need something more than just
induction. For d = 2, Lemma 2.4 was used, because when D = 2, all but one
of the Kj must be confined in a fundamental parallelogram. This is not true in
higher dimensions in general; perhaps we need a stronger version of Lemma 2.4.

We conclude this section with the following lemma, that was used for the
proof of Conjecture 3.2, case d = 2:

Lemma 3.3. Let K ∈ K2, and v1, v2 ∈ R2 two linearly independent vectors
such that the intersections K ∩ (K+ v1) and K ∩ (K+ v2) are nonempty. Then
there exists a point x ∈ K such that the boundary of the parallelogram with
vertices x, x+v1, x+v2, x+v1 +v2 is contained in K+Λ, where Λ is the lattice
generated by v1, v2.

Proof. From the hypothesis, there is a line parallel to v1 contained in K + Zv1,
and similarly, a line parallel to v2 contained in K + Zv2. Let y be the point of
intersection; then the lines parallel to v1, v2, passing through y are contained
in K + Λ. The same happens with any lattice translate of y. Pick one such
translate that belongs to K, say x. Considering the translates x + v1, x + v2,
x + v1 + v2, we deduce that the union of lines parallel to v1, v2 and passing
through x, x + v1, x + v2, x + v1 + v2 is a subset of K + Λ. It is clear that
this union of lines contains the boundary of the fundamental parallelogram with
vertices x, x+ v1, x+ v2, x+ v1 + v2, as desired.

4 Reductions of Conjecture 1.2

Two reductions of Conjecture 1.2 will be given; the first one is a reduction of
Conjecture 3.2, while the second one is a certain monotonicity property for the
discrete measure that is satisfied by the Lebesgue measure.
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4.1 A simultaneous translation problem

The main technique in the proof of the two-dimensional case of Conjecture 3.2
was using a projection onto a certain hyperplane and then applying induction,
i.e. the result in the one-dimensional case. Can we do this in the general case?
In particular, what happens when we consider the projections Kj,t = Kj [t]− ted
for 1 6 j 6 n, t ≡ r(mod qd), for a fixed r? Do they satisfy conditions (C1),
(C2) of the conjecture, for the lattice Λd−1, the basis e1, . . . , ed−1 and the
integers q1 > · · · > qd? Not in general. They do, however, in the special case
when qd+1 divides qd. If so, we can replace (C2) with the weaker condition

(Kj −Kl) ∩ qdΛ = ∅,

simply because qdΛ is a sublattice of qd+1Λ. Indeed,

DKj,t ∩ qi(Λd−1 \ Λi−1) ⊂ DKj ∩ qi(Λ \ Λi−1) = ∅.

For t 6= t′, t ≡ t′(mod qd), we have

(Kj,t −Kj,t′) ∩ qdΛd−1 = (Kj [t]−Kj [t′]) ∩ (qdΛd−1 + (t− t′)ed)
⊂ DKj ∩ qd(Λ \ Λd−1) = ∅,

and for j 6= l, t ≡ t′(mod qd), we have

(Kj,t −Kl,t′) ∩ qdΛd−1 = (Kj [t]−Kl[t′]) ∩ (qdΛd−1 + (t− t′)ed)
⊂ (Kj −Kl) ∩ qdΛ = ∅.

Hence, as long as qd+1 divides qd, we can apply the induction step, using the
projection technique. Given the result of Conjecture 3.2 for d = 2, we establish
the following:

Theorem 4.1. Let K1, . . . ,Kn ⊂ Rd be convex bodies and Λ ∈ Ld. Also, let
e1, . . . , ed be a basis of Λ, and denote by Λi the Z-span of 0, e1, . . . , ei, and let
q1 > q2 > · · · > qd+1 be positive integers satisfying

(C1) DKj ∩ qi(Λ \ Λi−1) = ∅ for all 1 6 j 6 n and 1 6 i 6 d.

(C2) (Kj −Kl) ∩ qd+1Λ = ∅ for all 1 6 j, l 6 n, j 6= l.

(C3) qd+1|qd| · · · |q3.

Then
n∑
j=1

G(Kj ,Λ) 6
d∏
i=1

qi.
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Our next objective is to get rid of the successive divisibility property, (C3).
What happens when qd+1 does not divide qd? We cannot use the same technique
anymore, as the projected convex bodies will not always satisfy condition (C2).
Can we somehow replace qd+1 by qd in condition (C2)? We might need to
translate the given convex bodies, but we should translate them by a lattice
vector, so that the lattice point enumerator remains invariant. We pose the
following:

Problem. Let K1,K2, . . . ,Kn be convex bodies in Rd, Λ a lattice, and r be a
positive integer, such that the following property holds:

(Ki −Kj) ∩ rΛ = ∅,

for i 6= j, 1 6 i, j 6 n. Given a positive integer t > r, is it true that
we can translate each Ki by a lattice vector, thus obtaining the convex bodies
K ′1, . . . ,K

′
n, so that the following property holds for i 6= j, 1 6 i, j 6 n

(K ′i −K ′j) ∩ tΛ = ∅?

It is obvious from the analysis at the beginning of the subsection that if
this problem is answered in the affirmative, then it implies Conjecture 3.2, and
consequently inequality (4) for all dimensions. It should be noted that Lemma
2.4 is a special case of this problem and the case n = 2 is covered as a simple
consequence of Lemma 2.3. Lastly, the one-dimensional case is trivial, or the
case where r divides t. In this case, we do not have to translate the convex
bodies at all.

Finally, we state the following corollary to Theorem 4.1, which is a slight
improvement of Theorem 3.1:

Corollary 4.2. Let K ∈ Kd, Λ ∈ Ld, qi = qi(K,Λ). Let n1, n2, . . . , nd be a
decreasing sequence of positive integers such that

• qi 6 ni, for 1 6 i 6 d.

• nd|nd−1| · · · |n3.

Then

G(K,Λ) 6
d∏
i=1

ni.
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Proof. Let ei = ei(K,Λ), Λi = Λi(K). From the analysis at the beginning of
Section 3.2, it is clear that the slices K[t]− ted, for t ≡ r(modnd), and numbers
n1 > n2 > · · · > nd satisfy conditions (C1), (C2), and (C3) of Theorem 4.1,
whence the desired inequality.

In particular, Conjecture 1.2 is verified when qd|qd−1| · · · |q3. This shows that
the verification of Conjecture 3.2 for d = 2 implies that we need not include the
first two terms in this successive divisibility property. And it is clear, that if
Conjecture 3.2 is proven for, say d = s, then Conjecture 1.2 is verified when
qd|qd−1| · · · |qs+1.

4.2 The discrete monotonicity property

In every proof of Minkowski’s second theorem, a monotonicity property for the
Lebesgue measure is proven in one form or another. For example, Bambah
[BWZ] proves that

vol(tK/L) > td−i vol(K/L),

where t > 1, K ∈ Kd, L is a discrete subgroup of Rd whose rank is equal to i,
and vol(K/L) is the Lebesgue measure of K taken modulo L; i.e., identifying
two points of K that are congruent modulo K. The above is equivalent to the
assertion that

vol(K/rL)
ri

is decreasing in r > 0. This so-called continuous monotonicity property, and
holds for all convex bodies K and discrete subgroups L of Rd, unconditionally.

We now state the discrete monotonicity property; we first replace the d-
dimensional Lebesgue measure by a discrete measure corresponding to a lattice
Λ, so that the measure of a given set A is simply the cardinality of A ∩ Λ.
Instead of discrete subgroups of Rd we consider subgroups of Λ.

Definition. Let K ∈ Kd, Λ ∈ Ld. We say that K satisfies the discrete
monotonicity property with respect to Λ, if for any subgroup of Λ, say Λ̃,
the following sequence is decreasing in r > 0, r ∈ Z:

DΛ(K, rΛ̃)
ri

,

where i is the rank of Λ̃.
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Here DΛ(K, rΛ̃) denotes the cardinality of the set K∩Λ taken modulo rΛ̃. In
this setting, we require that r be an integer, because we need rΛ̃ to be a subset
of Λ. It is clear that DΛ(K, rΛ̃) is the corresponding quantity of vol(K/rΛ)
above. Next we prove the following helpful lemma:

Lemma 4.3. Let K ∈ Kd, Λ ∈ Ld, a1, . . . , ad d linearly independent vectors of
Λ and

Li := Za1 ⊕ · · · ⊕ Zai.
Assume that DK ∩ (Ld \ Li) = ∅. Then

DΛ(K,Ld) = DΛ(K,Ld−1) = · · · = DΛ(K,Li).

Proof. The hypothesis simply implies that if two points x, y ∈ K ∩ Λ are con-
gruent modulo Ld, then they must be congruent modulo Li, and consequently
congruent modulo Lj , for i 6 j 6 d. The lemma then follows from the definition
of DΛ(K,Li).

Theorem 4.4. Assume that K ∈ Kd satisfies the discrete monotonicity property
with respect to Λ ∈ Ld. Then

G(K,Λ) 6
d∏
i=1

qi(K,Λ).

Proof. Let Λi = Λi(K), for 0 6 i 6 d, and qi = qi(K,Λ). By Lemma 2.1, we
have DK ∩ qi(Λ \ Λi−1) for all i, and by the virtue of Lemma 4.3 we have the
following series of equalities/inequalities:

qdd > DΛ(K, qdΛ) = DΛ(K, qdΛd−1)

>

(
qd
qd−1

)d−1

DΛ(K, qd−1Λd−1) =
(

qd
qd−1

)d−1

DΛ(K, qd−1Λd−2)

...

>

(
qd
qd−1

)d−1(
qd−1

qd−2

)d−2

· · · q2

q1
DΛ(K, q1Λ1)

=
(

qd
qd−1

)d−1(
qd−1

qd−2

)d−2

· · · q2

q1
DΛ(K, q1Λ0)

=
(

qd
qd−1

)d−1(
qd−1

qd−2

)d−2

· · · q2

q1
G(K,Λ)

whence

G(K,Λ) 6
d∏
i=1

qi.
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The continuous monotonicity property is proven using the homogeneity of
the Lebesgue measure. This property is not valid for the discrete measure, so
we expect that it might be very difficult to prove the discrete monotonicity
property for all convex bodies and lattices.
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