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Abstract

Let P and Q be non-zero integers. The Lucas sequence {Un(P,Q)} is
defined by U0 = 0, U1 = 1, Un = PUn−1 − QUn−2 (n ≥ 2). The
question of when Un(P, Q) can be a perfect square has generated interest
in the literature. We show that for n = 2, ..., 7, Un is a square for infinitely
many pairs (P, Q) with gcd(P,Q) = 1; further, for n = 8, ..., 12, the only
non-degenerate sequences where gcd(P,Q) = 1 and Un(P, Q) = 2, are
given by U8(1,−4) = 212, U8(4,−17) = 6202, and U12(1,−1) = 122.
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1 Introduction

Let P and Q be non-zero integers. The Lucas sequence {Un(P, Q)} is defined by

U0 = 0, U1 = 1, Un = PUn−1 −QUn−2 (n ≥ 2). (1)

The sequence {Un(1,−1)} is the familiar Fibonacci sequence, and it was proved
by Cohn [6] in 1964 that the only perfect square greater than 1 in this sequence
is U12 = 144. The question arises, for which parameters P , Q, can Un(P,Q) be
a perfect square? In what follows, we shall assume that we are not dealing with
the degenerate sequences corresponding to (P, Q) = (±1, 1), where Un is peri-
odic with period 3, and we also assume (P,Q) 6= (−2, 1) (in which case Un = 2

precisely when n is an odd square) and (P, Q) 6= (2, 1) (when Un = 2 precisely
when n is square). Ribenboim and McDaniel [10] with only elementary methods
show that when P and Q are odd, and P 2 − 4Q > 0, then Un can be square only
for n = 0, 1, 2, 3, 6 or 12; and that there are at most two indices greater than 1
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for which Un can be square. They characterize fully the instances when Un = 2,
for n = 2, 3, 6. Bremner & Tzanakis [1] extend these results by determining all
Lucas sequences {Un(P, Q)} with U12 = 2, subject only to the restriction that
gcd(P, Q) = 1 (it turns out that the Fibonacci sequence provides the only ex-
ample). Under the same hypothesis, all Lucas sequences with {Un(P, Q)} with
U9 = 2 are determined. There seems little mention in the literature of when
under general hypotheses Un(P, Q) can be a perfect square. It is straightforward
to see from Theorem 1 of Darmon and Granville [7] that for n sufficiently large
(n ≥ 11 certainly suffices), the equation Un(P,Q) = 2 can have only finitely many
solutions for coprime P,Q. Note that for n ≥ 1, Un(kP, k2Q) = kn−1Un(P, Q),
and so for fixed P , Q, and even n, appropriate choice of k gives a sequence
with Un(kP, k2Q) a perfect square. The restriction to gcd(P, Q) = 1 is there-
fore a sensible one, and we shall assume this from now on. Rather curiously, a
small computer search reveals sequences with Un(P, Q) a perfect square only for
n = 0, . . . , 8, and n = 12. In this paper, we shall dispose of this range of n.
Bremner & Tzanakis [1] have addressed the cases n = 9, 12. Section 2 of this
paper addresses the case Un(P, Q) = 2, n ≤ 7, which can be treated entirely
elementarily. Section 3 addresses the cases Un(P, Q) = 2, 8 ≤ n ≤ 11. In these
instances, we deduce a finite collection of curves, whose rational points cover all
required solutions. In turn, this reduces to a number of problems of similar type,
namely, finding all points on an elliptic curve defined over a number field K sub-
ject to a “Q-rationality” condition on the X-coordinate. Nils Bruin has powerful
techniques for addressing this type of problem, and [2], [3], [4], [5] provide de-
tails and examples. See in particular §4 of [5] for development of the underlying
mathematics. The latest release of Magma [9] now contains Bruin’s routines and
so we only set up the appropriate computation here, with details of the Magma
programs available on request.

The results of Sections 2, 3, when combined with the results of Bremner &
Tzanakis [1] give the following theorem:

Theorem 1. Let P, Q be non-zero coprime integers such that if Q = 1 then
P 6= ±1,±2 (that is, P, Q determine a non-degenerate Lucas sequence). Then (i)
for n = 2, ..., 7, Un(P, Q) is a square for infinitely many such pairs (P, Q), and (ii)
for n = 8, ..., 12, the only solutions of Un(P,Q) = 2 are given by U8(1,−4) = 212,
U8(4,−17) = 6202, and U12(1,−1) = 122.

2 Solution of Un(P,Q) = 2, n ≤ 7

Certainly U2(P, Q) = 2 if and only if P = a2, and U3(P, Q) = 2 if and only if
P 2 −Q = a2.
Now U4(P, Q) = 2 if and only if P (P 2 − 2Q) = 2, so if and only if either
P = δa2, Q = 1

2
(a4 − δb2), or P = 2δa2, Q = 2a4 − δb2, with δ = ±1 (where, in
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the first instance, ab is odd and in the second instance b is odd).
The demand that U5(P, Q) be square is that P 4 − 3P 2Q + Q2 = 2, equiva-
lently, that 1 − 3x + x2 = 2, where x = Q/P 2. Parametrizing the quadric,
Q/P 2 = (5λ2 + 6λµ + µ2)/(4λµ), where, without loss of generality, (λ, µ) = 1,
λ > 0, and µ 6≡ 0 (mod 5). Necessarily (λ, µ) = (a2,±b2), giving (P, Q) =
(2ab, 5a4 +6a2b2 + b4) or (2ab,−5a4 +6a2b2− b4) if a and b are of opposite parity,
and (P, Q) = (ab, 1

4
(5a4 + 6a2b2 + b4)) or (ab, 1

4
(−5a4 + 6a2b2− b4)), if a and b are

both odd.
The demand that U6(P, Q) be square is that P (P 2 − Q)(P 2 − 3Q) = 2, which
leads to one of seven cases: P = a2, P 2 −Q = b2, with −2a4 + 3b2 = 2; P = a2,
P 2 −Q = −2b2, with a4 + 3b2 = 2; P = −a2, P 2 −Q = 2b2, with a4 − 3b2 = 2;
and P = 3a2, P 2−Q = δb2, (δ = ±1,±2), with −6

δ
a4 + b2 = 2. So finitely many

parametrizations result (which can easily be obtained if we wish to do so).
The demand that U7(P,Q) be square is that P 6 − 5P 4Q + 6P 2Q2 − Q3 = 2,
equivalently, that 1 + 5x + 6x2 + x3 = y2, where x = −Q/P 2. This latter elliptic
curve has rank 1, with generator P0 = (−1, 1), and trivial torsion. Accordingly,
sequences with U7(P,Q) = 2 are parametrized by the multiples of P0 on the
above elliptic curve, corresponding to (±P,Q) = (1, 1), (1, 5), (2,−1), (5, 21),
(1,−104), (21, 545), (52, 415),...

3 Solution of Un(P,Q) = 2, n = 8, 10, 11

Here we shall show the following result:

Theorem. The only non-degenerate sequences where gcd(P,Q) = 1 and Un(P,Q) =
2, 8 ≤ n ≤ 11, are given by U8(1,−4) = 212 and U8(4,−17) = 6202.

For each n ∈ {8, 10, 11} we reduce the solution of our problem to a number of
questions, all having the following general shape:

Problem 1. Let

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6 (2)

be an elliptic curve defined over Q(α), where α is a root of a polynomial f(X) ∈
Z[X], irreducible over Q, of degree d ≥ 2, and let β, γ ∈ Q(α) be algebraic
integers. Find all points (X, Y ) ∈ E(Q(α)) for which βX+γ is a rational number.

As mentioned in the Introduction, problems of this type may be attacked with
the Magma routines of Nils Bruin, in particular the routine “Chabauty” using
output from “PseudoMordellWeilGroup”. It is not a priori guaranteed that these
routines will be successful, particularly over number fields of high degree, but for
our purposes and the computations encountered in this paper, no difficulties arose.
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3.1 n = 8

The demand that U8(P,Q) be square is that P (P 2−2Q)(P 4−4P 2Q+2Q2) = 2.
In the case P is odd, it follows that (P, P 2− 2Q,P 4− 4P 2Q + 2Q2) = (a2, b2, c2),
(a2,−b2,−c2), (−a2, b2,−c2), or (−a2,−b2, c2), where a, b, c are positive integers
with ab odd. The latter two possibilities are impossible modulo 4, and the first
two possibilities lead respectively to:

−a8 + 2a4b2 + b4 = 2c2 (3)

−a8 − 2a4b2 + b4 = −2c2. (4)

We shall see that the only positive solutions to the above equations are (a, b) =
(1, 1), (1, 3) and (1, 1) respectively, leading to (P, Q) = (1, 0), (1,−4) and (1, 1),
from which we reject the first one. The last gives a degenerate sequence. In the
case that P is even, then Q is odd, and 2 exactly divides both P 4 − 4P 2Q + 2Q2

and P 2 − 2Q, forcing P ≡ 0 (mod 4). Put P = 4p, so that U8 = 2 if and
only if p(8p2 − Q)(128p4 − 32p2Q + Q2) = 2, with gcd(p, Q) = 1. It follows
that (p, 8p2−Q, 128p4− 32p2Q + Q2) = (a2, b2, c2), (a2,−b2,−c2), (−a2, b2,−c2),
or (−a2,−b2, c2), where a, b, c are positive integers, (a, b) = 1 and bc is odd.
The middle two possibilities are impossible modulo 4, and the remaining two
possibilities lead respectively to:

−64a8 + 16a4b2 + b4 = c2 (5)

−64a8 − 16a4b2 + b4 = c2. (6)

We shall see that the only positive solution which leads to a desired pair (P, Q)
is from the first equation when (a, b) = (1, 5), leading to (P, Q) = (4,−17).

We shall work in the number field K = Q(φ) where φ is a root of fφ(x) =
x4 + 2x2− 1. The class number of K is 1, the maximal order O of K is Z[φ], and
fundamental units of O are η1 = φ, η2 = 2− 3φ + φ2− φ3. The factorization of 2
is 2 = η−4

1 η2
2(1 + φ)4.

3.1.1 Equation (3)

The factorization of (3) over K is

(b− φa2)(b + φa2)(b2 + (2 + φ2)a4) = 22,

and it is easy to see that each of the first two factors is exactly divisible by 1 + φ
and the third factor is exactly divisible by (1 + φ)2. Thus the gcd of any two
(ideal) terms on the left hand side is equal to (1 + φ), and

b + φa2 = ±ηi1
1 ηi2

2 (1 + φ)2, b2 + (2 + φ2)a4 = ±ηj1
1 ηj2

2 (1 + φ)22, (7)
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where the exponents of the units are 0,1. Specializing φ at the real root 0.643594...
of fφ(x), and using b > 0, then necessarily the sign on the right hand side must
be positive. Taking norms in the first equation gives 2c2 = (−1)i122, so that
i1 = 0. Applying the automorphism of K defined by φ → −φ, it follows that
b− φa2 = η−i2

2 (1− φ)2 = η−i2+1
2 (1 + φ)2. Multiplying this equation by the two

displayed equations at (7) gives ηj1
1 ηj2+1

2 2 = 2c2 = 2, so that j1 = 0, j2 = 1. We
now have

(b + φa2)(b2 + (2 + φ2)a4) = ηj
2(1 + φ)2,

with j = 0, 1. Putting b/a2 = δ−1x/(1 + φ), where δ ∈ {1, η2}, our problem
reduces to finding all K-points (x, y) on the curves

(x + φ(1 + φ)δ)(x2 + (2 + φ2)(1 + φ)2δ2) = y2,

subject to δ−1x/(1+φ) ∈ Q. For both curves, the Magma routines of Bruin show
that solutions to (3) occur only for (±a,±b) = (1, 1), (1, 3).

3.1.2 Equation (4)

As above, (4) leads to equations

b + φ−1a2 = ηi1
1 ηi2

2 (1 + φ)2, b2 + (−2 + φ−2)a4 = ηj1
1 ηj2

2 (1 + φ)22,

with exponents 0, 1. Taking norms in the first equation gives −2c2 = (−1)i122,
so that i1 = 1; and specializing φ at the real root −0.643594... of fφ(x) in the
second equation gives j1 = 0. We thus obtain

(b + φ−1a2)(b2 + (−2 + φ−2)a4) = η1η
j
2(1 + φ)2,

with j = 0, 1. Putting b/a2 = δ−1x/(1 + φ), where δ = η1η
j
2, we thus have to find

all K-points (x, y) on the curves

(x +
1 + φ

φ
δ)(x2 + (−2 +

1

φ2
)(1 + φ)2δ2) = y2,

such that δ−1 x
1+φ

∈ Q, for δ = η1, η1η2. The Magma routines show that solutions

to (4) occur only for (±a,±b) = (1, 1).

3.1.3 Equation (5)

As above, (5) leads to equations

b + 2(φ3 + φ)a2 = ηi1
1 ηi2

2 2, b2 + 8(2 + φ2)a4 = ηj1
1 ηj2

2 2,

with exponents 0, 1. Arguing just as for equation (3), we deduce i1 = 0, and
j1 = 0, j2 = 0. Thus

(b + 2(φ3 + φ)a2)(b2 + 8(2 + φ2)a4) = ηj
22,
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with j = 0, 1. For a 6= 0, put b/a2 = δ−1x, where δ = ηj
2, which leads to seeking

all K-points (x, y) on the curves

(x + 2(φ3 + φ)δ)(x2 + 8(φ2 + 2)δ2) = y2,

subject to δ−1x ∈ Q, with δ = 1, η2. Magma routines show the only solutions of
(5) are given by (±a,±b) = (0, 1), (1, 2), (1, 5), of which only the third provides
a desired pair (P,Q).

3.1.4 Equation (6)

Arguing as in previous cases, we deduce an equation

(b + 2(φ3 + 3φ)a2)(b2 + 8φ2a4) = ηj
22,

with j = 0, 1. For a 6= 0, put b/a2 = δ−1x, where δ = ηj
2. This leads to finding

all K-points (x, y) on the curves

(x + 2(φ3 + 3φ)δ)(x2 + 8φ2δ2) = 2,

with δ−1x ∈ Q, and δ = 1, η2. Magma routines show the only solution of (6)
occurs for a = 0, with no solution for (P,Q).

3.2 n = 10

The equation U10 = 2 is given by

P (P 4 − 3P 2Q + Q2)(P 4 − 5P 2Q + 5Q2) = 2. (8)

Our aim is to show that the only integer solutions are given by (P, Q) = (1, 0),
(0, 1), (−1, 1). The assumption gcd(P,Q) = 1 implies that P is coprime to the
second factor on the left at (8), and may only have the divisor 5 in common with
the third factor. Further, the second and third factors can only have common di-
visor 2, impossible for gcd(P, Q) = 1. Putting (x, y) = (P 2, Q), then factorization
over Z implies

x2 − 3xy + y2 = d1z
2, x2 − 5xy + 5y2 = d2w

2,

with d1 = ±1, d2 = ±1,±5, giving 8 curves of genus 1. Most of the possibilities
for (d1, d2) are readily eliminated, either by local consideration, or by leading to
rank 0 elliptic curves; the case (d1, d2) = (−1,−5) however resists elementary
treatment, apparently leading to a curve of genus 3 with Jacobian of rank 4. We
have found it preferable to invoke factorization of (8) over K = Q(

√
5), when (8)

becomes

P (P 2 − ε2Q)(P 2 − ε−2Q)(P 2 −
√

5εQ)(P 2 −
√

5ε−1Q) = 2, (9)
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where ε = (1 +
√

5)/2 is a fundamental unit of the ring of integers OK of K,
of class number 1. Denote with a bar conjugation under

√
5 → −√5, so that

ε̄ = −ε−1. We have two cases to consider: (1) (P, 5) = 1, and (2) (P, 5) = 5.

Case (1): (P, 5) = 1. It follows that P = ±p2, and

p4 − ε2Q = λ1α
2
1, p4 − ε

√
5Q = λ2α

2
2,

p4 − ε−2Q = λ̄1ᾱ1
2, p4 − ε−1

√
5Q = λ̄2ᾱ2

2

where λi, αi ∈ OK , with λi units. Equivalently, since p 6= 0,

1− ε2q = λ1β
2
1 , 1− ε

√
5q = λ2β

2
2 ,

1− ε−2q = λ̄1β̄1
2
, 1− ε−1

√
5q = λ̄2β̄2

2
, (10)

where q = Q/p4 ∈ Q, βi ∈ K, and without loss of generality, λi ∈ {±1,±ε}.
From the first three of these equations,

(q − ε−2)(q − ε2)(q − ε−1

√
5
) = −λ1λ̄1λ2

ε−1

√
5
2 = v

ε−1

√
5
2,

where v = −λ1λ̄1λ2 = ±λ2. Putting

x = δq, δ = vε
√

5, where δ−1x ∈ Q,

then
(x− vε−1

√
5)(x− vε3

√
5)(x− v) = 2.

If v = ±λ2 = ±1, then one of the following equations holds:

y2 = (x− (3− ε))(x− (3 + 4ε))(x− 1) (11)

y2 = (x + (3− ε))(x + (3 + 4ε))(x + 1) (12)

under the condition ε−1√
5
x ∈ Q. Equation (11) defines an elliptic curve of K-rank

0, with no corresponding value of Q; equation (12) defines an elliptic curve of
positive K-rank, and the Magma routines show that the only points satisfying
the rationality condition are (x,±y) = (0, ε

√
5), (−2 − ε, 1 + 3ε), corresponding

to Q = 0 and Q = 1.
If λ2 = ±ε, then one of the following equations holds:

y2 = (x−
√

5)(x− ε4
√

5))(x− ε)

y2 = (x +
√

5)(x + ε4
√

5))(x + ε)

under the condition ε−2√
5
x ∈ Q. Both these curves have K-rank 0, and no solution

to our problem arises.
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Case (2): (P, 5) = 5. We have P = ±5p2, and

(25p4 − ε2Q)(25p4 − ε−2Q)(5
√

5p4 − εQ)(5
√

5p4 − ε−1Q) = ±2,

so that either p = 0 (returning the solution (P,Q) = (0, 1) to (8)), or

5− ε2r = µ1γ
2
1 ,

√
5− εr = µ2γ

2
2 ,

5− ε−2r = µ̄1γ̄1
2,

√
5− ε−1r = −µ̄2γ̄2

2, (13)

where r = Q/(5p4) ∈ Q, γi ∈ K, and µi units of OK , without loss of generality
in the set {±1,±ε}. From the first three of these equations,

(r − 5ε−2)(r − 5ε2)(r −
√

5ε−1) = −µ1µ̄1µ2ε
−12 = wε−12,

where w = −µ1µ̄1µ2 = ±µ2. Putting

x = ηr, η = wε, where η−1x ∈ Q,

then
(x− 5wε−1)(x− 5wε3)(x− w

√
5) = 2.

If w = ±µ2 = ±1, then one of the following equations holds:

y2 = (x− 5ε−1)(x− 5ε3)(x−
√

5) (14)

y2 = (x + 5ε−1)(x + 5ε3)(x +
√

5) (15)

under the condition ε−1x ∈ Q.
If w = ±ε, then one of the following equations holds:

y2 = (x− 5)(x− 5ε4)(x− ε
√

5) (16)

y2 = (x + 5)(x + 5ε4)(x + ε
√

5) (17)

under the condition ε−2x ∈ Q. These last four equations define elliptic curves, the
first three of which have positive K-rank, the fourth having K-rank 0 (giving no
solution to our problem). Magma computations show that no solutions arise from
the first three curves. (Computations do disclose the point (x, y) = (−2ε, ε) on
(15) satisfying the rationality condition, but this point leads to (P, Q) = (5, 10),
disallowed for our original problem).

3.3 n = 11

The equation U11 = 2 is given by

U11(P, Q) = P 10 − 9P 8Q + 28P 6Q2 − 35P 4Q3 + 15P 2Q4 −Q5 = M2. (18)
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There is the trivial solution given by (P,Q) = (0,−1), and henceforth we assume
P 6= 0. Our aim is to show that when gcd(P, Q) = 1, the only integer solution
of (18) is given by (P 2, Q) = (1, 0). On putting x = Q/P 2, y = M/P 5, equation
(18) becomes that of a genus 2 curve

C : y2 = −x5 + 15x4 − 35x3 + 28x2 − 9x + 1,

and Magma computations show that the Jacobian J of C has rank 1, so that
a Chabauty argument can be applied to determine all rational points of C. A
generator is found to be {((3 +

√
5)/2, (11 + 5

√
5)/2

) − ∞} (where ∞ is the
unique point at infinity on C), and Magma tells us that there is at most one
pair of rational points on C, which is accordingly (0,±1) as required. Full details
of such an argument may be found in Flynn, Poonen, Schaefer [8]. For greater
transparency, we outline the method that reduces as in previous cases to finding
points on elliptic curves over a number field under a certain rationality condition.
We shall be working over a Galois field, and this approach requires only applica-
tion of the formal group of an elliptic curve, conceptually more straightforward
than invoking the formal group of a curve of genus 2. It is easy to see that

M2 = u11(P, Q) =

j=5∏
j=1

((ζj/2 + ζ−j/2)−2P 2 −Q), (19)

and thus U11(P, Q) splits completely over the real subfield of the cyclotomic field
Q(ζ) = Q(ζ11). Let θ = ζ + ζ−1, so that

fθ(θ) = θ5 + θ4 − 4θ3 − 3θ2 + 3θ + 1 = 0,

and work in the number field K = Q(θ), with ring of integers OK = Z[θ], dis-
criminant 114, and class-number 1. The unit group is of rank 4, and generators
may be taken as:

ε1 = −θ, ε2 = −θ2 + 2, ε3 = −θ4 + 4θ2 − 2, ε4 = −θ3 + 3θ,

with norms all equal +1. Rewrite (19) in the form

M2 =

j=5∏
j=1

Lj(P,Q), (20)

where Lj(P, Q) = θjP
2 − Q, with θj = (ζj/2 + ζ−j/2)−2. The Galois group of

Q(θ)/Q is cyclic, generated by the automorphism σ : θ → θ2 − 2, which acts
cyclically on the θi, and satisfies εσ

i = εi+1 for i = 1, 2, 3, εσ
4 = ε−1

1 ε−1
2 ε−1

3 ε−1
4 .

Since U11(x, 1) ≡ 0 mod 112 has no solution, M 6≡ 0 mod 11; so each factor
Lj(P,Q) is prime to 11 in OK . Further, for j 6= k, the K/Q norm of θj − θk is
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±11, and it follows that the factors Lj(P,Q) for j = 1, ..., 5 are coprime in OK .
Accordingly,

L1(P,Q) = (θ4 − θ3 − 2θ2 + θ + 1)P 2 −Q = (−1)i0εi1
1 εi2

2 εi3
3 εi4

4 2, (21)

where i0, i1, ..., i4 ∈ {0, 1}. Since the norm of L1(P,Q) equals M2, we must
have i0 = 0. Now let ∗ : Q(θ) ↪→ R be the embedding that sends θ to the
smallest real root −1.9189859... of fθ(x). It is straightforward to check that
θ∗1 > θ∗4 > θ∗5 > θ∗3 > θ∗2, whence

L∗1 > L∗4 > L∗5 > L∗3 > L∗2. (22)

Since (20) implies that the exact number of the L∗j that are negative must be even,
then (22) gives L∗1 > 0. But ε∗1 > 0, ε∗2 < 0, ε∗3 < 0, ε∗4 > 0, and so necessarily
i2 + i3 is even.
By applying σ repeatedly to (21) we obtain:

sgn(L∗2) = (−1)i1+i2 , sgn(L∗3) = (−1)i1 , sgn(L∗4) = (−1)i4 , sgn(L∗5) = (−1)i3+i4 .

Listing the 8 possibilities for (i1, i2, i3, i4), together with the corresponding signs of
the Li, the only ones that respect the linear ordering (22) are (0, 0, 0, 0), (1, 0, 0, 0),
and (1, 0, 0, 1). The conclusion is that

L1(P, Q) = θ1P
2 −Q = η2, η ∈ {1, ε1, ε1ε4}.

Certainly

L1 = η2, L2 = ησ2, L3 = ησ2

2, L4 = ησ3

2, L5 = ησ4

2,

and we have various possibilities for producing an elliptic curve cover of our
original equation. When η = 1, then

(θ1P
2 −Q)(θ2P

2 −Q)(θ3P
2 −Q) = 2,

so that x = −Q/P 2 is the x-coordinate of a K-rational point on the elliptic curve

(x + θ1)(x + θ2)(x + θ3) = y2,

with x ∈ Q. Magma computations show that the only such points on this curve
are at infinity (corresponding to P = 0), and (x, y) = (0, ε3ε4), corresponding to
(P 2, Q) = (1, 0).
When η = ε1 or ε1ε4, then

(θ1P
2 −Q)(θ2P

2 −Q)(θ3P
2 −Q) = δ2,

with δ = ε1ε2ε3 or ε1, respectively; and x = −δQ/P 2 is the x-coordinate of a
K-rational point on the elliptic curve

(x + δθ1)(x + δθ2)(x + δθ3) = y2,

10



satisfying δ−1x ∈ Q. These two curves both have positive K-rank, and by the
Magma routines lead to no non-trivial solutions for P , Q.

Acknowledgement: We thank the anonymous referee for several useful com-
ments.
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