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1. Introduction

In the classical Poincaré–Bendixson theory the object of study are the limit sets
of a continuous flow on the 2-sphere S2 and the behaviour of the orbits near them
(see [7, 9]). In [2] the second author proved that an assertion similar to the Poincaré–
Bendixson theorem is true in the wider class of the 1-dimensional invariant (inter-
nally) chain recurrent continua of flows on S2. On the other hand, it is known that
among the closed 2-manifolds, the 2-sphere S2, the projective plane RP 2 and the
Klein bottle K2 are the only ones for which the Poincaré–Bendixson theorem is true
(see [1, 8, 11]).

The motivation of the present paper was to examine to what extent the main
results of [2] carry over to flows on RP 2 and K2. A first attempt to study chain
recurrent sets of flows on closed 2-manifolds other than the 2-sphere was [3]. As one
expects, the results of [2] carry over easily to RP 2, since chain recurrence behaves
well with respect to regular covering maps of compact manifolds, as we show in
Section 3. The situation with K2 is quite different, since it is doubly covered by the
2-torus T 2, where we have no Poincaré–Bendixson theorem. Actually, the Poincaré–
Bendixson theorem for 1-dimensional invariant chain recurrent continua of flows on
K2 is not true. For example, identifying suitably the boundary periodic orbits of
a 2-dimensional Reeb flow on a closed annulus (see [7, chapter III, 2·6]) we get a
flow on K2 with a 1-dimensional invariant chain recurrent continuum consisting of
the unique periodic orbit and another orbit, which spirals against it in positive and
negative time. As we prove in Theorem 4·4, this situation, or concatenations of it,
is the only one where the Poincaré–Bendixson theorem for 1-dimensional invariant
chain recurrent continua of flows on K2 is not true. Then, we are concerned with
the topological structure of the 1-dimensional chain components of a flow on K2

with finitely many singularities. In Proposition 4·6 we find when such a set consists
of finitely many orbits and is homeomorphic to a finite graph. An example shows
that the hypothesis of Proposition 4·6 is essential. Finally, in Theorem 4·9 we give a
description of the structure of the 1-dimensional chain components of a flow on K2

with finitely many singular points.

2. Chain recurrence and flows on surfaces

Let X be a compact metrizable space, d a compatible metric and φ : R×X → X
a flow. We shall write φ(t, x) = tx and φ(I × A) = IA, if I ⊂ R and A ⊂ X. The
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orbit of the point x ∈ X will be denoted by C(x), the positive semiorbit by C+(x)
and the negative by C−(x). The positive limit set of x will be denoted by L+(x) and
the negative by L−(x).

Given ε, T > 0, an (ε, T )-chain from x to y is a pair of finite sets of points and
times, denoted by (x0, ..., xq+1|t0, ..., tq), such that x = x0, y = xq+1, tj > T and
d(tjxj , xj+1) < ε for every j = 0, 1, ..., q. If for every ε, T > 0 there is an (ε, T )-
chain from x to y, we write xPy. The binary relation P is closed, transitive, flow
invariant and depends only on the topology of X and not on the particular metric.
The set Ω+(x) = {y ∈ X: xPy} is called the positive chain limit set of x and the set
Ω−(x) = {y ∈ X: yPx} its negative chain limit set. Clearly, L±(x) ⊂ Ω±(x). A point
x ∈ X is called chain recurrent if xPx and the set R(φ) of chain recurrent points is
closed and invariant. If X = R(φ), the flow is called chain recurrent. It is known
that the connected components of R(φ) are the classes of the following equivalence
relation in R(φ) : x ∼ y if and only if xPy and yPx (see [4, theorem 3·6D]). Moreover,
the restricted flow on each connected component of R(φ) is chain recurrent. The
connected components of R(φ) are called chain components of the flow φ. It is also
known that the restricted flow on each positive or negative limit set in X is chain
recurrent (see [6, theorem 3·1]).

It follows from the representation of the complement of the chain recurrent set
given in corollary 3·6B in [4], that chain recurrence is an invariant of topological
equivalence. More precisely, let X and Y be compact metrizable spaces carrying
topologically equivalent flows φ and ψ, respectively. If h : X → Y is a topological
equivalence between φ and ψ, that is h is a homeomorphism sending orbits of φ onto
orbits of ψ preserving the time orientation, then h(R(φ)) = R(ψ).

In [2] the second author developed the Poincaré–Bendixson theory of chain re-
currence for flows on S2. The proofs of lemma 3·3 and theorem 3·4 in [2] combined
with the fact that a null homotopic simple closed curve on a 2-manifold bounds a
disc (see [5, proposition 1·7]) work to give the following:

Proposition 2·1. Let A be a 1-dimensional, invariant, chain recurrent continuum in
a flow on a closed 2-manifold X. If A contains a periodic orbit C, that is null homotopic
in X, then A = C.

3. Covering spaces and chain recurrence

In this section we shall study the behaviour of chain recurrence with respect to
regular covering maps between compact manifolds. We shall need some elementary
topological preliminaries. Let p : M̃ → M be a regular covering map of connected
compact manifolds with group of deck transformations Γ. Then Γ is finite and there
exist compatible metrics d̃ on M̃ and d on M such that every element of Γ is a
d̃-isometry and there exists δ > 0 such that p maps the open ball S(x̃, δ) in M̃
isometrically onto the open ball S(p(x̃), δ) in M , which is evenly covered, for every
x̃ ∈ M̃ .

Lemma 3·1. Let p : M̃ → M be a k-fold regular covering map of connected compact
manifolds. If A ⊂M is a connected compact set, then

(i) p(C) = A for every connected component C of p−1(A) and
(ii) p−1(A) has at most k connected components.
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Proof. We shall use the metrics d̃ and d as above. Let C be a connected component

of p−1(A) and x̃ ∈ C. Then,

C = {ỹ ∈ p−1(A) : for every ε > 0 there exists an ε-chain in p−1(A) from x̃ to ỹ}.
Let ε > 0 and z ∈ A. Since A is connected, p(x̃) can be ε-chained in A to z. If
0 < ε < δ, where δ is as in the above remarks, then x̃ is ε-chained in p−1(A) to
some point of p−1(z). Since the covering is finite, it follows from this that there exists
z̃ ∈ p−1(z) which is ε-chained in p−1(A) for every ε > 0. Hence p−1(z) w C�6 for
every z ∈ A, which means that p(C) = A. The second assertion follows directly from
this, because if Γ is the group of deck transformations, then p−1(A) =

⋃
γ∈Γ γ(C),

each γ(C) is connected and k = |Γ|.
Now let p : M̃ → M be a regular covering map of connected manifolds carrying

flows, such that p is equivariant. It is easy to see that the action of the group of the
deck transformations Γ commutes with the flow on M̃ . This means that γ(tx̃) = tγ(x̃)
for every t ∈ R, x̃ ∈ M̃ and γ ∈ Γ.

Proposition 3·2. Let p : M̃ → M be a k-fold regular covering map of connected
compact manifolds carrying flows such that p is equivariant.

(i) If x ∈M is a chain recurrent point, then every point of p−1(x) is chain recurrent.
(ii) If A ⊂M is an invariant chain recurrent continuum, then p−1(A) is an invariant

compact chain recurrent set with at most k connected components.

Proof. We consider the metrics d̃ and d as in the beginning of this section and the
corresponding number δ > 0. Let 0 < ε < δ and T > 0. It suffices to prove that
at least one point ỹ ∈ p−1(x) can be joined to itself with an (ε, T )-chain, because
Γ acts by d̃-isometries and commutes with flow on M̃ . Let (x0, ..., xq+1|t0, ..., tq) be
an (ε, T )-chain from x to x. If x̃ ∈ p−1(x), then p(t0x̃) = t0x and x1 ∈ S(t0x0, ε).
We can choose x̃1 ∈ S(t0x̃, ε) w p−1(x1). Continuing in this way we obtain an (ε, T )-
chain from x̃ to some point x̃q+1 ∈ p−1(x), with times t0, ..., tq and intermediate
points x̃j ∈ p−1(xj), j = 0, 1, ..., q + 1. There exists γ ∈ Γ such that x̃q+1 = γ(x̃) and
(γ(x̃0), ..., γ(x̃q+1)|t0, ..., tq) is an (ε, T )-chain. Thus,

(x̃0, ..., x̃q+1, γ(x̃1), ..., γ(x̃q+1)|t0, ..., tq, t0, ..., tq)
is an (ε, T )-chain from x̃0 to γ(x̃q+1). If g ∈ Γ is such that g(x̃) = γ(x̃q+1), then in the
same way we can obtain an (ε, T )-chain from x̃ to (gγ)(x̃q+1). Continuing this process,
at some step we have an (ε, T )-chain from x̃ to some ỹ ∈ p−1(x) passing through ỹ,
because the covering is finite. Therefore, ỹ is joined with itself with an (ε, T )-chain.
The same proof also works to prove (ii).

Corollary 3·3. Let p : M̃ → M be a regular covering map of connected compact
manifolds carrying flows such that p is equivariant.

(i) If R is the chain recurrent set of the flow on M , then p−1(R) is the chain recurrent
set of the flow on M̃ .

(ii) If A is a chain component in M , then the connected components of p−1(A) are
chain components in M̃ .

Proof. (i) Let R̃ be the chain recurrent set in M̃ . On the one hand we obviously
have p(R̃) ⊂ R and on the other hand p−1(R) ⊂ R̃, by Proposition 3·2(i).
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(ii) The connected components of p−1(R) are precisely the connected components

of p−1(A), where A varies in the set of chain components in M . Since R̃ = p−1(R),
the connected components of p−1(A) are chain components in M̃ for every chain
component A in M .

From the above, the main results of [2] and lemma 1 in [10], we obtain the
following.

Corollary 3·4. For every continuous flow on the projective plane RP 2 the following
are true.

(i) If x ∈ RP 2 is a non-periodic chain recurrent point, then L+(x) and L−(x) consist
of singular points.

(ii) If a 1-dimensional invariant chain recurrent continuum in RP 2 contains a
periodic orbit, then it is identical with the periodic orbit.

(iii) If a 1-dimensional invariant chain recurrent continuum in RP 2 contains no
singular point, then it is a periodic orbit.

(iv) If the flow on RP 2 has finitely many singularities, then every 1-dimensional chain
component consists of finitely many orbits and is homeomorphic to a finite graph.

4. One dimensional chain recurrent sets on the Klein bottle

Recall that π1(K2) =< α, β : αβ = βα−1 >. A simple closed curve C in K2, which
is not null homotopic, represents one of the following elements of π1(K2) : α, α−1, β2,
β−2 or β−1αn, for some n ∈ Z. If C represents α±1, then K2 \C is an open annulus.
If C represents β±2, then K2 \ C consists of two open Möbius strips. Finally, if C
represents β−1αn, n ∈ Z, then K2 \ C is an open Möbius strip (see [7, chapter IV,
section 2]).

Let φ be a flow on K2 and let A ⊂ K2 be a 1-dimensional invariant chain recurrent
continuum. If A contains no singular point, then every positive and negative limit
set in A is a periodic orbit, by the Poincaré–Bendixson theorem for K2 and propo-
sition 7·11 of chapter II in [7]. If A is not a null homotopic periodic orbit, then no
periodic orbit in A is null homotopic, by Proposition 2·1.

Lemma 4·1. If A contains a periodic orbit C such that K2 \C consists of two disjoint
open Möbius strips, then A = C.

Proof. Let Ai = AwKi, i = 1, 2, where K1 and K2 are the connected components
of K2 \ C. Then A1 is a 1-dimensional invariant compact set and it is easy to see
that it is also connected. We shall prove that it is chain recurrent. Let x ∈ A1 and
ε, T > 0. There is an (ε, T )-chain (x0, ..., xq+1|t0, ..., tq) inA from x to x, sinceA is chain
recurrent. Recall that since K2 is a manifold, there exists a compatible metric d such
that every open ball is connected. If not all the points of the chain are in A1, there
is some 1 6 k 6 q such that xj ∈ A1 for 0 6 j 6 k and xk+1 ^ A1. Since S(tkxk, ε) is
connected, we conclude that CwS(tkxk, ε)�6. Similarly, there is some k < l 6 q+1
such that xj ∈ A1 for l 6 j 6 q + 1 but xl−1 ^ A1 and C w S(xl, ε)�6. Since C is a
periodic orbit, if z ∈ C w S(tkxk, ε), there is some s > T such that sz ∈ C w S(xl, ε).
It is now obvious that (x0, ..., xk, z, xl, ..., xq+1|t0, ..., tk, s, tl, ..., tq) is an (ε, T )-chain
in A1 from x to x. So, we have a flow on the closed Möbius strip K1 and A1 is a
1-dimensional invariant chain recurrent continuum. Gluing a closed disc carrying
any flow with periodic boundary suitably oriented to K1 along their boundaries, we
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obtain a flow on RP 2 in which A1 is embedded (topologically and dynamically) and
is a 1-dimensional invariant chain recurrent continuum which contains the periodic
orbit C. Hence A1 = C, by Corollary 3·4(ii). Similarly, A2 = C and therefore A = C.

Lemma 4·2. If A contains a periodic orbit C such that K2 \C is an open Möbius strip,
then A = C.

Proof. Suppose that A�C. If there is a point x ∈ K2 \ C such that L+(x) = C,
then C is positively asymptotically stable in K2 and therefore Ω+(x) = C for x in
a neighbourhood of C by lemma 2·1 of [2], a contradiction. Similarly, there is no
point x ∈ K2 \C such that L−(x) = C. It follows that C is approximated by periodic
orbits in A \ C. Let N be a tubular neighbourhood of C in K2 which contains no
singular point of the flow. Then N is a Möbius strip and there exists a periodic orbit
C ′ ⊂ N w A. It is clear now that C ′ bounds a Möbius strip M ⊂ N and K2 \M is
also a Möbius strip. Hence K2 \ C ′ consists of two Möbius strips. This contradicts
Lemma 4·1.

If A contains a periodic orbit, which represents α or α−1, then A may not be
identical with this periodic orbit. For example, consider the flow on [1, 3]×S1 defined
by the differential equation (in polar coordinates)

r′ = (r − 1)(3− r) and θ′ = r − 2,

which has only two periodic orbits, the boundary components oppositely oriented.
We can identify them suitably to get a smooth flow on K2 with only one periodic
orbit C and such that every other orbit spirals bilateraly towards C. If x ^ C
and A = C(x) x C, then A is a 1-dimensional invariant chain recurrent continuum
without singularities. If we multiply the infinitesimal generator of the flow on K2

with a smooth non-negative function which vanishes only at one point on C, then
we get a smooth flow on K2 with non-periodic chain recurrent points whose positive
and negative limit sets do not consist of singularities. Thus, corollary 3·2 of [2] does
not carry over to flows on K2 also.

In general, if A is not a periodic orbit, but contains periodic orbits, it has a special
position in the phase portrait of the flow, as the following shows.

Lemma 4·3. If A is a 1-dimensional invariant chain recurrent continuum, that is not
a periodic orbit, but contains at least one periodic orbit, then it contains every non-null
homotopic periodic orbit of the flow on K2.

Proof. Let C be a periodic orbit in K2, which is not null homotopic. If p : T 2 → K2

is the canonical double covering map, then p−1(C) consists of at most two periodic
orbits, which are not null homotopic in T 2 and the complement of each one of them
in T 2 is an open annulus. If C is not contained in A, then p−1(A) does not intersect
p−1(C) and therefore it is contained in an invariant open annulus Y . By Proposi-
tion 3·2 and our assumptions, p−1(A) has at most two connected components and
each one of them is not a periodic orbit but is a 1-dimensional invariant chain recur-
rent continuum, which contains at least one periodic orbit. Compactifying the flow
on Y , we get a flow on S2 with repect to which the connected components of p−1(A)
are 1-dimensional invariant chain recurrent continua, which contain periodic orbits,
but are not periodic orbits. This contradicts theorem 3·4 of [2].
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From the above and the Poincaré–Bendixson theorem for the Klein bottle we have

the following.

Theorem 4·4. Let φ be a flow on the Klein bottle and A ⊂ K2 be a 1-dimensional
invariant chain recurrent continuum which contains no singular point. Then, one of the
following holds.

(i) A is a periodic orbit, or
(ii) A contains every non-null homotopic periodic orbit of the flow on K2 and the

complement in K2 of every such orbit is an open annulus.

In the sequel, we shall be concerned with the topological structure of the 1-
dimensional chain components of a flow on K2 with finitely many singular points.

Lemma 4·5. Let φ be a flow on K2 and let A be a 1-dimensional invariant chain
recurrent continuum, such that the positive and the negative limit set of every non-periodic
orbit in A consist of singular points. If A contains a periodic orbit C, then A = C.

Proof. Suppose that A�C. Then A contains every periodic orbit of the flow and
the complement in K2 of every such orbit is an open annulus, by Proposition 2·1 and
Theorem 4·4. Our assumption, that the positive and the negative limit set of every
non-periodic orbit in A consist of singular points, implies that every neighbourhood
of C contains a periodic orbit different from C. Let N be a tubular neighbourhood
of C, which contains no singular point of the flow. Since C is two-sided, N is an open
annulus. Let S ⊂ N be a local section to the flow, which passes through exactly
one point of C and is a compact arc (see [9, chapter VII, 1·6]). By the above, there
is a periodic orbit C ′ ⊂ N sufficiently close to C, such that C ′ w S is a singleton.
Obviously, C and C ′ are the boundary curves of an invariant annulus N ′ ⊂ N . Note
that A wN ′ consists entirely of periodic orbits. The interval J ⊂ S with endpoints
C w S and C ′ w S is contained in N ′. Since J \ A is an open subset of J , there is a
subinterval I ⊂ J \ A with endpoints in A. Then, RI is an open annulus in K2 \ A
with boundary two periodic orbits in A. Thus, Y = K2 \ RI is an invariant closed
annulus which containsA and its boundary curves are periodic orbits. We attach now
to the two boundary components of Y discs, each one carrying a flow with periodic
boundary suitably oriented. In this way we obtain a flow on S2, which contains A
as 1-dimensional invariant chain recurrent continuum, that is not a periodic orbit,
but contains periodic orbits. This contradicts theorem 3·4 in [2].

Proposition 4·6. Let φ be a flow on K2 with finitely many singular points and let
A ⊂ K2 be a 1-dimensional chain component. If the positive and the negative limit set of
every non-periodic orbit in A consist of singular points, then A consists of finitely many
orbits and is homeomorphic to a finite graph.

Proof. Because of Lemma 4·5 we need to consider only the case where A contains
no periodic orbit. Let p : T 2 → K2 be the canonical double covering map. The flow on
K2 can be lifted to a flow on T 2 with finitely many singular points (see [10, lemma
1]). By Corollary 3·3, p−1(A) has at most two connected components and each one
of them is a 1-dimensional chain component of the flow on T 2. It is easy to see that
the positive and the negative limit set of every non-periodic orbit in p−1(A) consist
of singular points, by our assumptions. The proof of theorem 4·1 of [2] now works to
show that p−1(A) is locally an arc at its non-singular points. Since p is an equivariant
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covering map, the same is true for A. In exactly the same way as in theorem 4·2 and
corollary 4·3 of [2] it follows that every singular point in A is an isolated invariant set
and is the positive and negative limit set of finitely many orbits in A. So A consists
of finitely many orbits and is homeomorphic to a finite graph.

If a 1-dimensional chain component A of a flow on K2 with finitely many singular
points does not satisfy the hypothesis of Proposition 4·6, then it may not be locally
an arc at its non-singular points. For example, consider the flow on the closed annulus
illustrated in Fig. 1. Identifying the two boundary components suitably we get a flow
on K2 with two singular points y and z and no periodic orbit. There is exactly one
non-singular orbit C1 such that L+(C1) = L−(C1) = {z} and exactly one orbit C2

such that L−(C2) = {z} and L+(C2) = C1. The set A = C1 x C2 is a 1-dimensional
chain component, which does not satisfy the hypothesis of Proposition 4·6, but is
not locally an arc at the points of C1.

C2

C1

y

z

Fig. 1

If a 1-dimensional chain component A of a flow on K2 with finitely many singu-
larities is not locally an arc at its non-singular points, then it has a special position
in the phase portrait of the flow. The situation is analogous to Lemma 4·3, but now
we have to consider also orbit cycles. Recall that an orbit chain is a finite sequence
C1, ..., Cn of orbits, such that L−(Ci) is a singular point zi−1 and L+(Ci) is a singular
point zi (see [3]). The singular points z0, ..., zn are the nodes of the orbit chain. If
z0 = zn, then we have an orbit cycle. If moreover the support C =

⋃n
i=1 Ci of the orbit

cycle is a simple closed curve, then we have a simple orbit cycle. Note that every orbit
cycle is a chain recurrent set and contains a simple orbit cycle.
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Lemma 4·7. If some non-null homotopic simple orbit cycle C is not contained in A,

then A consists of finitely many orbits and is homeomorphic to a finite graph.

Proof. Since A is a chain component, C must be disjoint from A. Thus, A is con-
tained in an invariant open set Y with boundary C and Y is either an open Möbius
strip or an open annulus. Compactifying the flow on Y, we get a flow on RP 2 or
S2, respectively, with finitely many singularities, with respect to which A is still a
1-dimensional chain component. This is so, because otherwise the points of A would
be chained to the points of C and vice versa, which would mean that A is not a chain
component of the flow in K2. Corollary 4·4 in [2] and Corollary 3·4 imply now that
A consists of finitely many orbits and is homeomorphic to a finite graph.

Lemma 4·8. If A contains a simple orbit cycle C such thatK2\C consists of one or two
disjoint open Möbius strips, then A consists of finitely many orbits and is homeomorphic
to a finite graph.

Proof. The proof in the case of the two Möbius strips is a simple modification of
the proof of Lemma 4·1 and is therefore omitted. Thus, we assume that K2 \C is an
open Möbius strip, which is invariant. Compactifying the flow on K2\C we get a flow
on RP 2 with finitely many singular points, the point at infinity being one. The set
A \ C (closure taken in RP 2) is a 1-dimensional chain component of the flow on RP 2,
if it is not empty. Hence, A \ C consists of finitely many orbits and is homeomorphic
to a finite graph, by Corollary 3·4(iv). Thus, there are finitely many orbits in A \ C
whose positive or negative limit set is contained in C. Note also that if the positive
(or negative) limit set of an orbit in A \ C has non-empty intersection with C, then
it is contained in C. Let x ∈ A \ C be such that L+(x) ⊂ C. Then, either L+(x) is a
singular point or L+(x) = C, because C is a simple orbit cycle and L+(x) is a chain
recurrent set. If L+(x) = C, then C is positively asymptotically stable in K2 and
therefore Ω+(x) = C, which contradicts the fact that A is a chain component. This
shows that L+(x) is a singular point for every non-periodic point x ∈ A and similarly
for L−(x). By Proposition 4·6, A is homeomorphic to a finite graph.

Summarizing, the structure of the 1-dimensional chain components can be
described as follows.

Theorem 4·9. Let φ be a flow on K2 with finitely many singular points and let
A ⊂ K2 be a 1-dimensional chain component. Then, one of the following holds.

(i) A consists of finitely many orbits and is homeomorphic to a finite graph, or
(ii) A contains every non-null homotopic periodic orbit and every non-null homotopic

simple orbit cycle and the complement in K2 of every such periodic orbit and
simple orbit cycle is an open annulus.
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