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COHOMOLOGY AND ASYMPTOTIC STABILITY OF 

CONTINUA 

Konstantin Athanassopoulos 

I-DIMENSIONAL 

We prove that a l-dimensional continuum carrying a flow without 
singular points is homeomorphic to the unit circle if its first Cech 
cohomology group with integer coefficients is isomorphic to Z . As 
an application of this we obtain that an asymptotically stable inva- 
riant l-dimensional continuum of a flow on a locally compact ANR, 
which does not contain singular points, must be a periodic orbit. 

I. Introduction 

Two of the most interesting problems in the theory of dynamical 

systems are to determine the structure of the limit sets and describe 

the behavior of the orbits near them. A serious step in this direction 

is the study of minimal sets, since every compact limit set contains 

a minimal set. 

The original motivation of this note is the problem of finding 

conditions refering to the behavior of the orbits near a compact 

minimal set of a flow under which the minimal set is a periodic orbit. 

G. Allaud and E.S. Thomas have shown in [1;Theorem 3.4] that an almost 

periodic asymptotically stable compact minimal set of a flow on a 

regular manifold is a torus. The almost periodicity assumption plays 

an important role in the proof of this result. 

It is shown in paragraph 4 of the present note that every asympto- 

tically stable invariant l-dimensional continuum A of a flow on a 

locally compact ANR, which does not contain singular points, is a 
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periodic orbit. This is based on the one hand on the observation that 
v 

the first Cech cohomology group with integer coefficients of A is 

isomorphic to • and on the other hand on the fact that a l-dimen- 

sional continuum with first ~ech cohomology group ~ , which carries 

a flow without singular points, must be homeomorphic to S I , which is 

proved in paragraph 3. 

The main part of this note was written during my stay in the 

Mathematical Institute of the Freie Universit~t Berlin as a fellow of 

the Alexander yon Humboldt Foundation to which I am grateful for its 

support. I also thank Elmar Vogt for the useful conversations we had 

and the referee whoso comments improved an earlier version of the 

paper. 

2. Preliminaries and notations 

Let (~, X, r denote a (continuous) flow on a metric space X. 

We shall use the convenient notation r = tx and r = IA, if 

Ir R and Ac X. The orbit of the point x~ X is denoted by 

C(x), the positive limit set by L+(x) and the negative by L-(x). 

Given ~,T > 0 an (E,T)-chain from x to y is a pair of 

finite sets of points {x0,...,Xp+ 1} of X and times {to,...,t p} 

such that Xo=X, Xp+ I= y, tj ~ T and d(tjxj,xj+1) < E,0~j ~p, 

where d is the metric in X. A point x is called chain recurrent 

if for every E , T > 0 there exists an (c,T)-chain from x to x 

and the flow on X is called chain rect~'rent if every point of X is 

chain recurrent. It is well known [9; Theorem 3.1] that a flow 

(~, X, r on a continuum X is chain recurrent if and only if there 

is a flow on some compact metric space Z and z ~ Z such that 

(~, X, r is topologically equivalent to the flow on L+(z) . 

A flow on a compact metric space X is called minimal if every 

orbit is dense in X. In this case X is called a minimal set and 

clearly the flow is chain recurrent. 

In the sequel we shall make use of the following representation of 

the first Cech cohomology group with integer coefficients HI(x) of 
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a compact metric space X. Let [X;S I] denote the set of homotopy 

classes of continuous maps of X into S I . The usual multiplication 

in S I induces a group operation in [X;S I] . Let e be the generator 

of HI(sI) . To every continuous map f : X + S I corresponds the 

cohomology class f*(e) in ~I(x) , which depends only on the homoto- 
# 

py class of f, where f is the induced homomorphism in ~ech coho- 

mology. The function • : [X;S I] § HI(x) defined in this way is an 

isomorphism of abelian groups [7; Theorem 8.1]. It follows easily from 

this representation that ~I(x) is torsion free [12; p. 409]. 

3. Flows on 1-dimensional continua 

Let (E, X, r be a flow on a compact metric space X such that 

not every point is singular. Let S O be a local section in X of 

extent s 0 > 0 , so that $ maps (-E0,So)XSo homeomorphically onto 

an open subset of X. Suppose that S is an open-compact subset of 

S O and 0 < s < s 0 / 2 . Then $ maps [-2E,2s]xS homeomorphically 

onto a compact neighbourhood of S. To such a local section corre- 

sponds a continuous map f : X + S I defined by 

< ~(0) , if x~ x-[o,s]S 

f(x) = w(t/s) , if x E tS and 0 ~ t ~ s 

where # : ~ + S 1 is the canonical covering projection. Clearly, the 

homotopy class of f does not depend on s but only on S. The map 

f is called the cosection map associated to S and was first defined 

by M.W. Hirsch and C.C. Pugh in [10]. The next Lemma concerning 

cosection maps is of fundamental importance for what follows. 

LEMMA 3.1 Let (~, X, r be a flow on a compact metric space X 

and S O a local section in X of extent E 0 > 0. Let P,Q be 

open-compact subsets of S O with P ~Q= ~ and 0 < s < s0/2. Let 

h, g : X + S I be the cosection maps associated to P and Q respec- 

tively, as defined above. We assume that the set S ='P • Q contains 

a chain recurrent point x 0 and that for some non-zero integers m, n 

the map hmg n : X + S I i_~s nullhomotopic. Then, m.n < O. 

Proof. Since hmg n is assumed to be nullhomotopic, there is a 
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continuous map a : X + B such that 

hm(x).gn(x) =~(a(x)) 

for every x g X [8; Ch. XVII, 5.1]. Let 6 : X + ~ be the function 

defined by 

I 0 , if x ~ X-[O,e]S 

8(x) = mt/e , if x s tP and 0 ~ t ~ e 

nt/e , if x E tQ and 0 s t ~ 

Obviously, 6 is everywhere continuous except at the points of eS 

and ~(a(x)) = ~(8(x)) for every x g X . Moreover, the restriction of 

8 to [-e,e]S is continuous. Let y : X + ~[ be defined by 

y(x) = a(x) - 8(x) �9 Since the restriction of y to [-e,e]S is 

continuous, there is a covering {WI,...,W q} of S by disjoint, 

open-closed subsets of S such that y takes the value k. on the 
1 

set [-e,e]Wi, I ~ i ~ q. We may assume that each W i is contained in 

P or in Q. On the other hand, if Xk +x where x e EW i and 

Xk~ X- [O,e]S , then ~(x k) § a(x) and therefore Y(Xk) is eventu- 

ally constant and equal to m + k.l or n + k i , depending upon whether 

W i is contained in P or in Q respectively. This means that for 

some 0 < 6 < e we have 

I k i , if x e [-e,e]W i 

y(x) = m+k i , if x e (e,e+6]W i and Wi~ P 

n+k.l ' if x6 (e,e+8]W i and W. cz Q 

for every x~ [-e,e+6]W i, I _-< i _-< q. 

Since y is continuous on X-[0,E + (6/2)]S, the family of sets 

{(-~,E+6)W i : I _<-i _-< q}~ {y-1(k) n (X-[O,E+(8/2)]S) : k~Z } 

is an open covering of X for which there is a Lebesgue number q >0 

so small that the ball of radius q centered at x 0 is contained in 

some set (-e,e)W i . By chain recurrence, there are in X points 

Xl,...,Xp+ I and times to,...,t p such that Xp+ 1=x 0 , tj_->2e and 

d(tjxj , xj+ I) < q , 0 =< j _-< p. Note that since t O _-> 2E , the orbit 

segment [O,to]X 0 crosses mS and hence Y(toXo) =Y(Xo) + ~0 ' where 

is a sum each term of which is equal to m or n. If I <_- j _-< p, 
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then y(tjxj) = y(xj) or y(xj) +~j , where ~j is a sum like ~0" 

If y(tjxj) ~ y(xj+ 1) , then both points tjxj and xj+ I belong to 

some (-s,g+6)W i and either t.x.j J ~ (-E,E]W i and xj+ 1 C (E,E+8)W i 

or xj+ 1 ~ (-~,E]W i and tjxj E (E,s +8)W i . In the first case we 

have y(xj+ I) =y(tjxj)+~, where ~ is equal to m or to n and 

therefore y(xj+ I) = y(xj) +~j , where ~j is a sum like ~0" In the 

second case we have y(xj+1) = y(tjxj)-~ and the last term of ~j 

is ~. Hence y(xj+ I) = 7(xj) +~j , where ~j is zero or a sum like 

kO" We conclude that there are integers ~O,...,Wp such that each ~j 

is zero or a sum each term of which is m or n, the later occuring 

at least for ~0' and y(xj+ I) = y(xj) +~j , 0 ~ j ~ p. Since Xo=Xp+ 1 

we have that ~0 +"" +~p 0. It follows that m.n < 0. 

Using Lemma 3.1 we may now reprove the main result of [10]. 

THEOREM 3.2 Let (R, X, r be a flow on a compact metric space X 

and S O be a local section in X. If S is an open-compact subset 

of S O which contains a chain recurrent point, then the cosection map 

associated to S defines a non-zero element of HI(x). 

Proof. Taking in Lemma 3.1 P =S,Q=~ and m=n=1 we conclude 

that the cosection map h : X + S I associated to S cannot be null- 

homotopic. Hence h defines a non-zero element of HI(x). 

THEOREM 3.3 

metric space 

in X , then 

Let (~, X, r be a flow on a 1-dimensional compact 

X. If there is a nonsingular chain recurrent point x 

~I (X) is not trivial. 

Proof. Since x is nonsingular, there exists s O > 0 and a locally 

compact local section S O containing x, so that r maps (-EO,E0)xS 0 

homeomorphically onto an open neighbourhood of x [4; Lemma I ]. It 

follows that dim S O = 0. Thus, x has an open-compact neighbourhood S 

in S O . According to Theorem 3.2 the cosection map associated to S 

defines a non-zero element of ~I (X) . 

PROPOSITION 3.4 Let (~, X, r be a chain recurrent flow on a 

l-dimensional continuum X. If ~I (X) m Z , then for every nonsingu- 

lar point x m X there exists E > 0 such that the orbit segment 
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(-c,~)x is an open neighbourhood of x in X. 

Proof. Let S O be a locally compact local section at x. Then 

dim S 0=0 �9 Let S , Q be open-compact neighbourhoods of x in S O 

such that Q is properly contained in S. If f , g and h are the 

cosection maps associated to S , Q and S-Q respectively, then 

f=g.h. By Theorem 3.2 h is not nullhomotopic. Therefore, f and g 

are not homotopic to each other and represent different elements of 

~1(x) �9 Moreover, fk is not homotopic to gk for every integer k , 

because HI(x) is torsion free. Since we assume that HI(x) ~Z , 

the cosection maps f , g correspond to integers n , m respectively. 

We shall show that 0 < I m I < I nl �9 

We first observe that n.m ~ 0 and n ~ m. From the commutativity 

of the multiplication of integers follows that fm is homotopic to 

n : X + is nullhomotopic. However, g or equivalently that fmg-n S I 

fm.g-n = (f.g-1)m. gm-n = hm.gm-n . 

It follows from Lemma 3.1 that m.(m-n) < O, that is 0 < I ml < Inl. 

Now let { ~ : k g l~} be a decreasing neighbourhood basis of x 

in S O consisting of open-compact sets�9 In order to prove the propo- 

sition, it suffices to show that this neighbourhood basis is eventu- 

ally constant. Let fk be the cosection map associated to ~ �9 Since 

~1(X) --- ~ , the homotopy class of fk corresponds to a non-zero 

integer n k . If each ~+I was properly contained in ~ , then by 

what we have shown above the sequence { I nkl : k E l~} would be 

strictly decreasing, which is impossible. 

THEOREM 3�9 Let (l~, X, r be a flow without singular points on a 

l-dimensional continuum X. I_ff HI(x)-~ • , then X is homeomorphic 

to S 1 . 

Proof. Let x �9 X and A = L+(x) . Since A is compact and there 

are no singular points, A is a l-dimensional continuum. The flow on 

A is chain recurrent and hence ~1 (A) is not trivial by Theorem 3.3. 

On the other hand, the inclusion i : A c X induces an epimorphism 

i : (X) § ~S(A) [5]. It follows that ~I(A) ~ • and therefore 

A is a periodic orbit by Proposition 3.4. Similarly, L-(x) is a 
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periodic orbit. We conclude that the orbit C(x) must be periodic, 

because otherwise we have HI(c(~) ~ ~@Z , which is impossible 

[5]. We have thus proved that every orbit in X is periodic. By 

Proposition 3.A, X must be homeomorphic to S I . 

EXAMPLES 3.6 (a) It is clear that Theorem 3.5 is not true without 

the assumption HI(x) ~ ~ . It is however noteworthy that there are 

1-dimensional continua X with HI(x) ~ Z@~ and carrying flows 

without singular points which differ drastically from each other. 

Suppose that X consists of a circle together with an orbit that 

spirals in positive and negative time against the circle or two circles 

with an orbit whose positive resp. negative limit set is the first 

resp. second circle. In both cases HI(x) g ~  . There is another 

example completely different from the above. More precisely, there is 

a flow on the torus T 2 with a nonperiodic l-dimensional minimal set 

X such that T 2-x is homeomorphic to ~2 [6]. By duality we have 

again HI(x) ~ ~ 

(b) If the assumption of the non-existence of singular points in 

Theorem 3.5 is removed, then the conclusion fails. Consider the flow 

on the closed unit disc D 2 which fixes the origin and such that 

every orbit in the interior of D 2 tends in negative time to the 

origin and in positive time spirals against the boundary which is a 

periodic orbit. If x ~ intD 2, then X = C(x) is a 1-dimensional 

continuum with HI(x) ~ ~ , which is not homeomorphic to S I and 

carries a flow with one singular point. 

4. Asymptotically stable 1-dimensional continua 

Let (~, M, ~) be a flow with M a locally compact ANR (for 

metrizable spaces) and let A = M be an asymptotically stable compact 

invariant set. The region of attraction E of A is an open invariant 

neighbourhood of A and there exists a strictly decreasing uniformly 

unbounded Lyapunov function F : E ~ ~+ for A [2; Ch. V, Theorem 2.9]. 

For any c > 0 the set B = F-1([O,cS) is a positively invariant 

compact retract of E. Since E is open in M, the set B is a 

compact ANR. Therefore, the ~ech cohomology of B coincides with the 

singular cohomology of B and is finitely generated [11; Ch. IV, 
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Section 7]. For 0 < b < c , the inclusion F-1([O,b]) ~ F-1([O,c]) 

induces an isomorphism in cohomology. From the continuity property of 

the ~ech cohomology follows that H~(A) is isomorphic to H~(B) . 

Hence H~(A) is finitely generated. 

LEMMA 4-I If A does not contain singular points, then 

Co 

~> (-1)qrank~lq(A) = 0 
q=O 

Proof. For each t > 0 the continuous map Ct : M + M defined by 

Ct(x) =tx is homotopic to the identity and sends B into B, where 

B is the above defined set. Since A is compact and does not contain 

singular points, the periods of the periodic points in A are bounded 

away from zero [2; Ch. V, Lemma 3.7]. Let t > 0 be smaller than any 

period of a periodic point in A . Then Ct has no fixed points in B. 

Since B is a compact ANR, the conclusion follows from the Lefschetz 

fixed point theorem for compact ANRs [3; Ch. III, Theorem 2]. 

THEOREM 4.2 Let (R, M, r be a flow with M a locally compact 

ANR and A c M an asymptotically stable l-dimensional invariant 

continuum. If A does not contain singular points, then A is a 

periodic orbit. 

Proof. Since A is 1-dimensional, Hq(A) = 0 , for q >I . Thus, 

from Lemma 4.1 we have rank HI(A) =I . Since HI(A) is a finitely 

generated, torsion free abelian group, it must be isomorphic to 2~ 

According now to Theorem 3.5, A is a periodic orbit. 

REFERENCES 

I. ALLAUD,G., THOMAS,E.S.: Almost periodic minimal sets. J. Differ. 
Equations. 15, 158-171 (1974) 

2. BHATIA,N.P.,SZEG~,G.P.: Stability Theory of Dynamical Systems. 
Berlin: Springer 1970 

3. BROWN,R.F.: The Lefschetz Fixed Point Theorem. lllinois: Scott- 
Foresman 1971 

4. CHEWNING,W.C., 0WEN,R.S.: Local sections of flows on manifolds. 
Proc. Amer. Math. Soc. 49, 71 -77 (1975) 

5. COHEN:H.: A cohomological definition of dimension for locally 
compact Hausdorff spaces. Duke Math. J. 21, 209- 224 (1954) 

422 



ATHANASSOPOULOS 

6. DENJOY,A.: Sur les cotLrbes d@finies par les @quations diff6ren- 
tielles ~ la surface du tore. J. Math. Pures Appl. 11, 333-375 
(1932) 

7. DOWKE,C.H.: Mapping theorems for noncompact spaces. Amer. J. 
Math. 69, 2OO - 247 (1947) 

8. DUGUNJI,J.: Topology. Boston: Allyn-Bacon 1966 

9. FRANKE,J., SELGRADE,J.: Abstract ~- limit sets, chain recurrent 
sets and basic sets for flows. Proc. Amer. Math. Soc. 60, 309- 316 
(1976) 

10.HIRSCH,M.W., PUGH,C.C.= Cohomology of  chain recur rent  sets. 
Ergodic Th. Dyn. Sys. 8, 73 - 80 (1988) 

11.HU,S.T.: Theory of Retracts. Detroit: Wayne State Univ. Press 1965 

12.KURATOWSKI,K.: Topology, vol. 2. New York/London: Academic Press 
1968 

Department of Mathematics, 

University of Crete, 

GR- 71409 Iraklion, 

Greece 

(Received January 4, 1991; 
in revised form May 15, 1991) 

423 


