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On minimal sets in 2-manifolds
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.

1. The structure of limit sets is important to understand the phase poriraits of
flows. A serious step in this direction is the study of minimal sets, at least because every
compact invariant set contains such a set. It is known that a compact minimal set of a
C*-differentiable dynamiczal system on a 2-manifold M is either a fixed point, a periodic
orbit or else all of M, in which case the system is an irrational flow on the torus, see
A J. Schwartz [17] (note that the compactness of the manifold is not necessary, see P.
Hartman [12], Ch. ¥II, 12. 1). Such a minimal set will be called simple in the sequel.
The assumption in Schwartz's theorem that the dynamical system is al leas: (a8
differentiable is essential, a5 it had been shown by A. Denjoy [8].

This paper is concerned with the question of how the qualitative behavior near a
compact minimal set of a continuous but not necessarily differentiable flow affects the
structure, of this minimal set. We intend to prove the following

Theorem. A compact minimal set of @ dynamical system on a 2-manifold is simple,
if it is either stable or a saddle set. :

This theorem follows from the Propositions in 3 and 5 below, the proof of which
are based on two constructions which make possible the use of powerful known results
about dynamical systems on compact 2-manifelds, although the manifold in the theorem
is not assumed to be compact. The one of the two constructions is based on the notion
of the end point compactification which is explained in 4,

We note that the [irst part of the assertion of the above theorem leads to a rather
complete description of the D*-stable {or of characteristic 0*} dynamical systems on 2-
manifolds given in K. Athanassopoulos [2].

The authors would like to thank the referee for his suggestions concerning the
clearer exposition of the proofs.
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2. Let (B, X, ) be a dynamical system on the metric space X. We let

@(t, x)=tx and we denote by C(x), C*(x) and C~(x) the orbit, the positive semiorbit
and the negative semiorbit of the point x € X and by

L¥(x)={ye X:t,x— y for some t,— + w},

J'(x)={ye X:1,x,— y for some x,— x and ¢, — + o0}

the positive limit set and the (first) positive prolongational limit set of this paint
respectively.

We recall that a subset of X is called invariant whenever it is a union of orbits
and positively invanant if it is a union of positive semiorbits. A minimal set is a non-
empty, closed, invariant set which does not have a proper subset with these properties.

2.1. Definition. A subset 4 of X is called stable if every neighborhood of A
contains a positively invariant neighborhood of A. A stable set is called asymptoricaily
stable if its region of attraction is an open neighborhood of it. The region of attraction

of 4 is the set of the points x & X such that to every neighborhood Vof 4 corresponds
ar>0 with Ctitx)c ¥V

2. 2. Definition. A subset 4 of X is a saddle set if there exists a neighborhood U
of A such that every neighborhood V of A contains a point x, with C*(x, )& U and
C™(xy) U (cf. N.P. Bhatia [3]).

2.3. Definition. The dynamical system ({8, X, ¢) is said to be parallelizable i
there exists a set S=X intersecling every orbit and a homeomorphism h: X — /@ x §
with h{tx)={t, x} for all t e [ and x e 5.-The set § is called global section to the flow.
Note that there is a continucus function ‘T: X — (@ such that T{x)x & § for all xe X.

2.4, We recall that for X locally cnmpacf and separable the dynamical system

(6%, X, @) is parallelizable if J¥(x)=0@ for all x € X, see N.P. Bhatia and G.P. Szegé
[4], Ch. IV, 2. 6. ;

2.5. Remark. In the sequel we shall use the concept of local dynamical system. It
is shown however in D.H. Carlson [6] that a local dynamical system on a metric space
can be reparametrized to yield a dynamical system. We shall vse this fact repeatedly.

3. In this section we prove the following

Froposition. A stable, compact, minimal set of a dynamical system (§8, M, @) on a
2-manifold M is simple.

Proaf. Let A be a non-simple stable compact and minimal subset of M. We shall
show in three steps that this leads to a contradiction.
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Step 1. Let U be a connected, relatively compact, positively invariant and open
neighborhood of A (being connected because it is minimal). To every x e U corresponds
a t,e[—o0,0) such that I.=(t., +co} is the maximal interval with the property
ltx:tel)cU. Putting

D= (Lx{x})

zall

and letting {t, x)— tx we define a local dynamical system on U which reparametrized
yields a new dynamical system (%, U, ) on U, It is casy to see that a minimal set in M
intersecting U is contained in U and it is a minimal set with respect to (4, U, u) also.

Considered as a 2-manifold U7 has finite genus, because (being relatively compact)
it contains finitely many “handles”™ of M (cf. 4). Hence we may apply the Lemmas 5 and
6 of E. Lima [14] to conclude that

(1) there are at most 2g—1 non-simple minimal sets in U, where g 1s the genus
of U, and - .

i2) A is isolated from periodic orbits.

So (the set of fixed points being closed) we may assume that A is the only minimal set
of the dynamical system (, M, @) contained in U, Assuming this z2nd denoting by
L* (x} the positive limit set with respect to the dynamical system (&, U, u) which 1s
compact and therefore contains a minimal set, we see that A< L (x) for every x e U.
Consequently for every x & U and every positively invariant neighborhood V=U of A
there exists some t >0 with C*(tx)= ¥, from which follows L"(x)= A. Thus L™ (x)= A
for all xe U, and A is asymptotically stable.

Step 2. Let J7(x) denote the positive prolongational hmit set of xe U with
respect to the dynamical system (R, U, p). By ©O.Hajek [11], Th 4, we have
B+ Jt(x)=A for all xeU—A Therefore the restricted dynamical on U—A s
parallelizable (cf. 2.3 and 2. 4). Hence it has a global section, S, which is compact,

because A is compact. By O. Hajek [10], Ch. V1L, 1. 6, the connected components of § are
simple closed curves.

Let N=Au{tx:t=0,xe 8} Let {V:ie Il be an open covering of N. Since the
cets 4 and § are compact and LT (x)=4 for all x € §, there is some 30 such that
Aulrx:rzt,xeS}is contained in the union of finitely many ¥ys. From this and the
compactness of the set {rx:re 0, t], xe §) follows that there exisls a finite subcovering
of the above covering of N, which is therefore compact.

Since the dynamical system in U —A is parallelizable and every component of Sis
a simple closed curve, N is a connected compact 2-manifold with boundary § and
contains A in its interior. Let N {0} and N x {1} be two disjoint copies of N. In their
free union we consider the equivalence relation ~ penerated by (s, 0)~(s, 1) when s € 8.
For x £ N we denote by [(x, 00], [(x. 1)] the corresponding classes. The quotient space 1s
N* According to M. Brown [5], Th. 2, N¥ is a compact 2-manifeld. On it we define 2
dynamical system, roughly speaking, by reversing the orientation of the orbits in the
copy N x {1} of N. Precisely, using the fupction T: X — [ indicated in 2.3, we define
the dynmamical system (fF, N*, [) as follows.
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For xed we let fit, [({x 0P=[(tx0] and F(t, [(x )]\=[—tx 1)]. For
xe N—A we let :

58 [6x, O0)0) = [(ex, 0)], tz T(x),

St [, 01) = [((2 T(x} —t)x, 1)], t=Tix),
f(e [l D) =R T() +t)x, 0)], tz —T(x),

Sl I6s D)=[—ex, 1], s — Tix).

Step 3. This dynamical system has exactly two minimal sets which are copies of
A and hence non-simple, while the other orbits are homeomorphic to JF. It follows that
this dynamical system has no fixed points. Therefore N* cannot be any other 2-
manifold than the torus or the Klein bottle. Because otherwise every map h: N* — N *
has a fixed point {cf W. Fram [9], 23.12). So in particular, to any sequence t,— 0
corresponds a sequence x¥, ne A, of fixed peoints of the maps defined by x* — ¢, x* for
x* e N* Bince N™ is compact, we may assume xF — y* for some y* e N* whmh is a
fixed point of the flow, by N.P. Bhatia and G.P. Szepd [4], Ch. V, 3. 7.

However a dynamical system on the Klein bottle without fixed points must have a
periadic orbit, by H. Kneser [13]. On the other hand, if N* ig the torus, then we have 2

dynamical system on the torus with two non-simple minimal sets. This contradicts to (1)
from the Step 2, and the Proposition is proved.

4. For the reader’s convenience we shall give in this section an outline of some
facts about the end point compactification of a marnifold, We shall not go into details,
because in the sequel we cnly consider the case where X is a Z-manifold with finite
genus and finitely many ends, in which case the details are easily seen.

A definition of the erd point compactification, Jf* of a manifold is as follows: let
BX be the Stone-Cech compactification of X; then X"is the guotient space of X by the
equivalence relation identifying a connected component of X — X to a point. Thus the
remainder X+ — X, ie., the space of the ends of X, is totally disconnected, and X* is
the “maximal” compactification of X with this property {of. H. Abels [17], 2 and IR,
MeCartmey [T], 3). An equivalent definition ol the end peint compactification of X is
given in F. Raymond [[3], 1. We adopt this delinition hers., Because of the Theorem in
F. Raymond [15], 1. 8, we can adopt the proof of the Satz in H. Abels [1], 2.3 1o

conclude that, given a dynamical system (&, X, @) there always exists a (conrinuous)
extension of it to a dynamical system (B, X7, ") on X*.

Especially, if X =M is a non-compact Z2-manifold, then M ™ can be described as
follows. According to I Richards [16], M can be constructed from the 2-sphere, 5%, by
removing a totally disconnected closed set, N, and the interiors of a sequence of non-
overlapping dises D, =8*—N, ne &Y, which tend to N in the sense that they are
contained in every neighborhood of N except finitely many, and then identifying the
boundaries of these discs in pairs to form “handles”, where D, with itself is a possible
pair. The number of these “handles™ is the genus of M. Adding the space N to M we
obtain a compactification, M, of M, because the discs D, tend to N in S% Since M isa

2-manifold and N is totally disconnected, M’ fulfils the assumptions of J.R, McCartney
[7], 3. 12, Therefore M'=M".
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The ends of a non-compact 2-manifoid, M, are divided in two classes: the planar
ends which have neighborhoods in M* homeomorphic to §2%, and the non-planar ones
every neighborhood of which contains “handles”. Therefore: the end point compactific-

ation of a non-compact 2-manifold, M, is @ compact 2-manifold iff M has finite genus {cf.
also F. Raymond [15], 5}

5. In this section we prove the following

Proposition. A compact, minimal, saddle set of a dynamical system on a 2-manifold,
M, is either a fixed point or a periodic orbit.

Proof. Let Ac M be a compact, minimal, saddle set, and let U be a relatively
compacl and connected neighborhood of A as in the deflinition of a saddle set in 2. 2.
Arguing as in the Step 1 of the proof of the Proposition in 3, we associate to each xe U
a maximal interval I.=(a,, b,) such that {tx:tel }=U. Morsover we can define a
dynamical system on U*, the end point compactification of U, extending the
reparametrized restriction on U of the considered dynamical system on M (el 2.5 and
4). Choosing Uf such that U, the closure of U, is a compact 2-manifold with boundary,

we may assume that the ends of U are finitely many (they correspond to the boundary
components of L)

Let x,, ne f, be a sequence of points with disjoint orbils such that x, — x; 4
and C*ix,)¢U, C (x4 U. Such a sequence exists, because of 2.2 and the fact that A
is compact. Then a,_x,, b, x,€@U, the boundary of U. Since the dynamical system
on U"' is the extension of that on U and the ends of U are finitely many, passing to a
subsequence if necessary, we may assume that there are two ends, say p and g, such that
L*(x,)=1{p} and L™ (x,)={q} for ne f/.

So the situation is reduced to a dynamical system on the compact manifold U~
(cf. 4) such that the limit sets of the points x, have the above property. For n+1 the
sets C, = Cix,)w Cl{x,)w {p, g} are simple closed curves. Assuming that A is non simple,
we can arrive at a contradiction by induction on the genus of U¥, using the curves C,
for n=1 in the same way as periodic orbits are used in the proof of the Lemma 6 in E.
Lima [147. Thus 4 is simple, and the assertion follows. '

Bemark. The method of Lemma 6 in E. Lima [147] is of a local nature, In the
above proof in order to apply Lima's method we have constructed the closed curves C,
in U*. This construction relatively to U is of a non local character. This “local-global™
combination sesms to be applicable in some other situations also. For instance, let 4 be
a not necessarily compact and minimal set of a dynamical system on a 2-manifold, M,
of finite genus and with finitely many ends. Let x,e M — A, ne i/, be a sequence with
L*{x)=L"{x,)=9 and x, — x5 € 4. Then we can prove in an analogous way as above
that 4 is a single orbit.
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