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1. Introduction 

The subject of the classical Poincare-Bendixson theory is the study of  the struc- 
ture of  the limit sets of  flows in the 2-sphere S 2 and the behavior of  the orbits 
near them. A fairly complete account of  the theory is given in [3]. A limit set 
of a flow in S 2 which contains at least one nonsingular point is 1-dimensional, 
compact, connected, invariant and the restricted flow on it is chain recurrent. The 
motivation of this note was to examine what properties of  limit sets can be ex- 
tended to the class of  1-dimensional invariant chain recurrent continua for flows 
in S 2. It seems that some basic properties do extend. For instance, an assertion 
similar to the Poincare-Bendixson theorem is true in this wider class. Precisely, 
if a 1-dimensional invariant chain recurrent continuum of  a flow in S 2 contains 
no singular point, then it is a periodic orbit (see Corollary 3.5). 

As far as the topological structure is concerned, it is well known that any 1- 
dimensional invariant chain recurrent continuum of a flow in S 2 separates S 2, if 
it contains at least one nonsingular point (see [4]). On the other hand, such a set 
may not be locally an arc at each of  its nonsingular points, as simple examples 
show, while a limit set of  a flow in S 2 always is (see [3, Ch. VIII, Lemma 
1.~]). It turns out that the additional assumptions needed are the maximality and 
the existence of finitely many singular points. Precisely, a l-dimensional chain 
component Y of a flow in S z with finitely many singularities is locally an arc 
at each of  its nonsingular points (see Theorem 4.1). Moreover, in this case Y 
consists of  finitely many orbits and is topologically a finite graph (see Corollary 
4.4). The assumption that there are finitely many singular points is essential. In 
a final remark we describe a 1-dimensional continuum in S 2 which is not locally 
an arc at some of its points and is a chain component of a flow in S 2 whose set 
of  singular points is countably infinite. The points at which this 1-dimensional 

continuum is not an arc are nonsingular. 
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2. Chain recurrence 

Let X be a compact metrisable space with a compatible metric d and v : R × X --~ 
X a continuous flow. We shall usually write v(t ,x)  = tx and v(I x A) = IA, if 
I C R and A C X. The orbit of  the point x E X will be denoted by C (x), the 
positive semiorbit by C+(x) and the negative by C-(x ) .  The positive limit set 

of x will be denoted by L+(x) and the negative by L-(x) .  
Given e, T > 0 an (e, T)-chain from x to y is a pair of finite sets of points 

{x0,... ,xp+l} and times {t0, . . . , tv)  such that x = xo, y = xp+~, tj > T and 
d(tjxj,xj+l) < e for every j = 0, 1, . . , ,p .  If  for every e, T > 0 there is an (e, T)- 
chain from x to y, we write xPy. The binary relation P is closed, transitive, flow 
invariant and depends only on the topology of  X. The set I2+(x) = {y E X : xPy} 
is called the positive chain limit set o f x  and the set O - ( x )  = (y  E X : yPx} the 
negative chain limit set of  x.  Clearly L+(x) C O÷(x). A point x E X is called 
chain recurrent if xPx and the set R(v) of all chain recurrent points is closed 
and invariant. If X = R(v), the flow v is called chain recurrent. It is well known 

(see [1, Theorem 3.6D]) that the connected components of R(v) are the classes 
of the following equivalence relation in R(v): x ~ y if and only if  xPy and 
yPx. Moreover  the restricted flow on each connected component of  R(v) is chain 
recurrent. The connected components of  R(v) will be called chain components in 
the sequel. It is also well known that the restricted flow on a positive or negative 
limit set in X is chain recurrent (see [2, Theorem 3.1]). In the next section we 

shall use the following: 

L e m m a  2.1. Let A be a nonempty, positively Lyapunov stable compact invariant 
set. Suppose that there is a neighbourhood base (Vn : n E N} of A consisting of 
open, positively invariant sets and times Tn > 0 such that Tn V n C Vn for all n E 
N. Then O+(x) C A for every x E A. 

Proof Let x E A and y E ~2+(x). It suffices to prove that y E V, for all n E 
N. Since V~ is supposed to be an open neighbourhood of  the compact  set T, V , ,  

there exists e > 0 such that S(z,  ~) C V, whenever z E X and S(z, c)nT,  V ,  ~ O, 
where S (z, e) denotes the open ball of  radius e centered at z. Now let {x0, ..., Xp÷l } 
be an (e, T)-chain from x to y with times {J0, ..., tp}. Then toxo = tox E A C Tn Vn 
and d(toxo,xl) < e. Therefore xl E Vn and tlxl E TnV,, because V, is posit ively 
invariant. Since d(tlxl,x2) < e, we have x2 E V~. Inductively, after a finite 

number of  steps we have y = xp+l E V,. 

The assumptions of  Lemma 2.1 are satisfied if A is posit ively asymptotically 

stable and in this case the conclusion is true for every point in the region of  

attraction of  A. 

3. The Poincare-Bendixson theorem for chain recurrent sets 

In this section we shall generalise the Poincare-Bendixson theorem to 1-dimen- 
sional invariant chain recurrent continua. The proofs are not independent of  the 
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classical theory. In fact we shall make extensive use of  Chapter VIII of  [3]. In 
what follows we fix a flow v in S 2. 

Proposit ion 3.1. Let x E S 2 be a nonperiodic point such that L÷(x) contains at 
least one nonsingular point, l f  D is the connected component of S 2 \ L÷(x) which 
contains x, then g2+(z) C S 2 \ D for every z E S 2 \ D. 

Proof Let y E L+(x) be a nonsingular point. There is a local section S at y of 
some extent e > 0, which can be chosen to be an open arc (see [3,Ch. VIII, The- 
orem 1.6]). There is also a sequence tn ~ +~x~ such that {t, xn : n E N} is a se- 
quence of  points of  27 which monotonically converges to y and (tn, tn+l )x N 27 = 0 
for every n E N (see [3, Ch. VII, Theorem 4.10]). If [tnx, tn+lx] denotes the closed 
interval in S with endpoints t~x and t~+lx, then the set C,=[t~x, t,+lX]U(tn, tn+l)x 
is a simple closed curve and is the common boundary of two discs D~ and E,  
such that S 2 = Dn U En, by the Jordan-Schoenflies theorem (see [5, p.71]). 
Moreover, D£ is positively invariant. En is negatively invariant, L+(x) C intD,, 
C, C D and OD = L+(x) (see [3, Ch. VIII, Proposition 1.18]). The set S 2 \ D 
is compact, invariant and positively Lyapunov stable, because {intD, : n C N} 
is a neighbourhood base of  S 2 \ D consisting of  open, positively invariant sets. 
Since (tn+l - t, + ~)D~ C intDn for every n C N, Lemma 2.1 applies and gives 
the conclusion. 

Corol lary 3.2. If  x E S 2 is a nonperiodic chain recurrent point, then L+(x) and 
L- (x )  consist of singular points. 

Proof Suppose that L+(x) contains a nonsingular point y. If  D is the connected 
component of S 2 \ L+(x) which contains x, then g2+(y) C S 2 \ D,  by Propo- 
sition 3.1. On the other hand, y is chain recurrent and belongs to the same 
chain component which contains x. This means that x E Y2+(y), and we have a 
contradiction. 

L e m m a  3.3. Let CI and Cz be two periodic orbits which bound an annulus K with 
no singular point. I f  Ci and Cz belong to an invariant chain recurrent continuum 
X, then the flow in K is periodic and K C X. 

Proof By the Jordan-Schoenflies theorem, Cl and C2 bound invariant discs O l  

and D2 respectively in S 2 such that D2 = K U DI and K N D1 = Cl. Suppose 
that x E intK were a nonperiodic point. Then, C1 = L+(x) and Cz = L- (x )  are 
periodic orbits by the Poincare-Bendixson theorem, since K contains no singular 
point. For the same reason Ci and C2 are not nullhomotopic in K and therefore 
divide K into three subannuli (some may be trivial) Kl, K2 and K3 which have no 
interior point in common and are such that either OKl = C1 U C1, OK2 = C1 U C2 
and OK3 = C2 U C2 or OK1 = C1 U C2, OK2 = C1 U C2 and 01£3 = C1 U C2. 
In the former case, K1 U D1 is a positively asymptotically stable invariant disc, 
which contains C1 but not C2. Hence no point of  C1 is chained to a point of  
C2. In the later case Kl U DI is a negatively asymptotically stable invariant disc 
and no point of  C2 is chained to a point of  C1. Thus in both cases Cl and C~ 
cannot belong to the same invariant chain recurrent continuum. This proves that 
the flow in K is periodic. The connectedness of  X implies now that K C X. 
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Theorem 3.4. Let X be a 1-dimensional invariant chain recurrent continuum in 
S 2. l f X  contains a periodic orbit C, then X = C. 

Proof  By the Jordan-Schoenflies theorem, C is the boundary of  an invariant disc 
D in S 2 and E = S 2 \ intD is also a disc. Suppose that X M intD ~ ~. If  there 
is a point x C intD such that L÷(x) = C, respectively L - ( x )  = C, then C is 
one-sided positively, respectively negatively, asymptotically stable and therefore 
X C f2+(C) C E,  respectively X C f2 - (C)  C E,  contradiction. So, according 
to [3, Ch. VIII, Theorem 3.3], E is bilateraly Lyapunov stable and there is a 
sequence of  periodic orbits {C, : n C N} in intD such that Cn together with 
C bound an annulus An c D with no singular point and {E U An : n E N} is 
a decreasing neighbourhood base of  E.  Since X is connected, X M An ¢ ~ for 
every n E N. If  z, C X MAn, then L-(zn)  is a periodic orbit in An \ C with C 
bounding an annulus Bn C An. But since L-(zn)  C X,  it follows from Lemma 
3.3 that Bn C X and hence X is not 1-dimensional.This contradiction shows that 
X fq intD = 0 and it is similarly proved that X N intE = ~. Hence X = C. 

Corol lary  3.5. Let X be a 1-dimensional invariant chain recurrent continuum o f  
a f low in S 2. I f  X contains no singular point, then X is a periodic orbit. 

4. The structure of 1-dimensional chain components 

Throughout this section we assume that v is a flow in S 2 with finitely many 
singular points. Our purpose is to examine the topological structure of  the 1- 
dimensional chain components of  v. 

Theorem 4.1. Every 1-dimensional chain component Y is locally an arc at its 
nonsingular points. 

Proof  In view of  Theorem 3.4 we consider only the case where Y contains 
no periodic point. Let x E Y be a nonsingular point. There is a local section 
S at x of  some extent e > 0, homeomorphic to an open interval, such that 
S N C(x)  = {x}. Suppose that Y is not locally an arc at x. Then there is a 
sequence {x, : n E N} of  points of  S N Y which monotonically converges 
to x on S. Since there are finitely many .singular points, by Corollary 3.2 we 
may assume that there are singular points z~, z= (possibly identical) such that 
L+(xn) = {zl} and L-(xn)  = {z2} for every n E N. We may moreover assume 
that C(xn)MC(xm) = 9, i f n  ~ m, again by Corollary 3.2. Each orbit C(xn) meets 
S in a finite number of  points. Let sn and tn be the first and last time respectively, 
the orbit C(xn) meets S. Passing to a subsequence if necessary, we may assume 
that the sequences {SnXn : n E N} and {tnxn : n E N} are monotone in S. 
For any a,b E S let [a, b] and (a ,b )  denote the closed and open interval in S, 
respectively, with endpoints a,b. From [6, Lemma 2.8] we may assume that for 
every n E N the simple closed curve [tnXn,tn+lXn+l] U C+(tnxn)U C+(tn+lXn+l) 
bounds a positively invariant disc Dn such that D~ A [ - e ,  0]S = 0. Similarly, 
the simple closed curve [SnXn,Sn+lXn+l] U C-(snxn)  U C-(sn+lxn+l) bounds a 
negatively invariant disc En such that En N [0, e]S = 0. 
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It follows now that C(xn)AintOm = C(xn)nEm = 0 for every n,m E N. For if 
C(xn)MintDm ~ 0, there is some s E R such that sxn E cODm, because xn ~_ intDm. 
If  sx~ E (t,~Xm,tm+lXm+l), then (O,+c~)(SXn) C intDm and hence s = tn, which 
contradicts the monotonicity. If sxn E C+(tmXm), then sx~ = (t + tm)xm for some 
t __ 0 and hence (s - t)x~ = tmXm. Since xn and xm do not belong to the same 
orbit unless n = m, we conclude that x. = xm and t.  = s - t = tin. Similarly, if  
SXn E C+(tm+lXm+l), then xn = xm+l and t~ = s - t = tm+l. In both cases this is a 
contradiction, because obviously C(xm) M intDm = 0 for every m E N. 

We claim that intDn N intDm = intE~ M intErn = 0 for n ¢ m .  This follows 
from the fact that intD. N intDm is an open and closed set in intD~ and intDm. 
Indeed, let {Yk : k E N} be a sequence in intD,, NintDm converging to some point 

y C intD.. Then, y E Om\ S and since C(xm) A intDn = C(Xm+l) M intDn = 0, 
it follows that y E intDm. This shows that intDn M intD.~ is open and closed 
in intDn and similarly in intDm. Thus, if it were nonempty, we would have 

Dn = Din, contradiction. 
Since there are finitely many singular points and intDn, n E N, are pairwise 

disjoint, we may assume that zl is the only singular point in Dn and similarly that 
z2 is the only singular point in En, for every n E N. It follows that D~ and E.  
contain no periodic orbit either, because they are discs. Consequently, Zl E L+(p) 
and zz E L - ( q )  for every p E Dn and q E E. .  It suffices to consider now the 

following two cases: 
(a) C(x . )  N S = {x.} for all n E N. Then, t~ = s.  = 0 and zl E L+(p), 

z2 E L - ( p ) ,  for every p E [x~,x.+l]. Hence [x . ,x .+l ]  C S?-(zl )  A S2+(z2) = Y, 

which implies that dim Y = 2. 
(b) C(x . )  f3 S ¢ {x~} for all n E N. Then, the Poincare map r is defined 

for S and s~xn belongs to the domain of some power r k, k E N, such that 
rk(snxn) = tnx.. Since S 2 is orientable, r is increasing and by continuity there is 
a (nontrivial) interval I C [s~x., s~+~xn+l] in S with one endpoint s .x .  which is 
mapped by r k to an interval in [t.x. ,  tn+lXn+l] with one endpoint t~x.. It follows 

that Zl E L+(p) for every p E I and as in case (a)  we have I C Y. Hence again 
dim Y = 2. This contradiction proves the Theorem. 

Finally, we shall investigate the structure of  a 1-dimensional chain component 

Y of  v near its nonsingular points. Note that a singular point of  Y cannot be 

positively or negatively asymptotically stable. 

T h e o r e m  4.2. I f  Y is a 1-dimensional chain component and z E Y is a singular 
point, then (z } is an isolated invariant set in S 2. 

Proof  Suppose that {z } is not isolated in S 2. Then, there are a neighbourhood 

base {V. : n E N} of z consisting of  interiors of  discs, so that V.+~ C V. and 
orbits C (x.) C In ,  where z ¢ xn, for every n E N. Since there are finitely many 
singular points, we may assume that z is the only singular point in V 1. I f  L+(xn) is 
a periodic orbit for infinitely many values of  n, then passing to a subsequence we 
may assume it is for all. In this case, L+(x.) bounds a disc Dn C Vn containing z 

in its interior and {D. : n E N} is a neighbourhood base of  z. Since Y ¢ {z }, the 
connectedness of  Y implies that L+(x~) C Y for some n ~ N and therefore Y is 
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a periodic orbit, by Theorem 3.4. This contradiction shows that we may assume 
that for every n E N the limit sets L+(x~), and similarly L-(x~), are not periodic. 
If  L+(x~) and L-(xn) consist of  singular points, then L+(xn) = L- (xn)  = {Z}. If  
L+(xn) (or L-(x , ) )  contains a nonsingular point y~, then L+(y,) = L - ( y , )  = {z} 
(see [3, Ch. VIII, Proposition 1.11]). Thus, considering the point Yn instead of  
x, if necessary, we may assume that L+(x~) = L-(xn) = {z} for every n E N. 
The simple closed curve C(x~) bounds an invariant disc E, C V~. Then intE, 
contains no singular point and hence no periodic orbit either. It follows that 
z E L+(x) N L- (x )  for every x E E,  and therefore En C Y. This contradicts 

dim Y = 1. 

Corol lary  4.3. I f  Y is a 1-dimensional chain component and z E Y is a singular 
point, then the set of orbits in Y \ {z } whose positive or negative limit set is {z } 
is nonempty and finite. 

Proof Suppose that there is a sequence {x~ : n E N} in Y \ {z } such that 
L+(x~) = {z} and C(xn) N C(Xm) = (~ for every n ~ m. Since there are finitely 
many singular points, we may assume that there is a singular point Zl E Y such 
that L- (x , )  = {zl} for every n E N, by Corollary 3.2. By Theorem 4.2 there 
exists an isolating neighbourhood V of  z in S 2. Then C(x~) ~ V and hence for 
each n E N there exists a point Yn E C(x~) fq OV. Since OV is compact, the 
sequence {yn : n E N} has a limit point y E OV. Then y is a nonsingular point 
of  Y and Y is not locally an arc at y. This contradicts Theorem 4.1. 

Corol lary  4.4. Every 1-dimensional chain component of a flow in S 2 with finitely 
many singularities consists of finitely many orbits and is homeomorphic to a finite 
graph. 

Remark. The assumption that the flow has finitely many singularities is essential 
for the validity of  the results of this section. For example let z0 = ( -1 ,0 ) ,  
zoo = (1,0), z,, = (cos(lr/(n + 1)), sin(Tr/(n + 1))), n E N and let 

oo  

Y = S 1 12 [z~,z0] U U[zn ,z0]  
n = l  

where S 1 is the unit circle in R 2 and [a, b] denotes the closed line segment with 
endpoints a, b E R 2 directed from a to b. Then Y is not an arc at any point of  
[Zoo, z0]. There is a continuous flow on S 2 = R2U {c~} whose singular points are 
c~, ( - 1 / 2 ,  0), ( - 2 / 3 ,  2/3),  z0, zoo, zn and u~ = (1 -sin(Tr/(n +2)), sin(Tr/(n +2))), 
n E N, which has the following properties: 
1. The unit disc D 2 is invariant and positively asymptotically stable and {c~} is 
negatively asymptotically stable with region of  attraction R 2 \ D 2. 
2. Every orbit in R 2 \ D 2 has positive limit set {zl } except one whose positive 

limit set is {zo}. 
3. The clockwise directed open segment on S 1 from z0 to zl and the counter- 
clockwise directed open segments on S 1 from z0 to zoo and from zn+~ to zn, n E 
N, are complete orbits. 
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4. The directed open line segments from z~  to z0, from zn to z0 and from un to 

zn+l, n E N, are complete orbits. 
5. The positive limit set of every orbit in Dn \ [un,z,+l] is {z0}, where Dn is 
the open "triangle" formed by [z,, z0], [zn+l, z0] and the segment on S 1 with 

endpoints z, and z,+l. The singular point u, is negatively asymptotically stable 

with region of attraction D,,. 
6. The singular point ( - 1 / 2 ,  0) is negatively asymptotically stable with region 

of attraction the open lower half unit disc. 
7. The singular point ( - 2 / 3 ,  2/3) is negatively asymptotically stable with region 

of attraction the open area bounded by [Zl, z0] and the segment on S 1 with 

endpoints z~ and z0. 
It follows from the above properties that Y is a 1-dimensional chain compo- 

nent of this flow. 
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