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1 Introduction

We shall consider the model problem for the homogeneous heat equation, to find u “ upx, tq for x P
Ω, t ě 0, satisfying

ut “ ∆u in Ω, u “ 0 on BΩ, for t ě 0, with up¨, 0q “ v in Ω, (1.1)

where Ω is a polygonal domain in R
2. The initial values v are thus the only data of the problem, and its

solution may be written uptq “ Eptqv, t ě 0, where Eptq “ e∆t is the solution operator. By the maximum
principle, Eptq is a nonnegative operator, so that

v ě 0 in Ω implies Eptqv ě 0 in Ω, for t ě 0. (1.2)

Our purpose here is to further investigate and extend known results from Thomée and Wahlbin
[14], Schatz, Thomée and Wahlbin [11], and Thomée [13] concerning analogues of this property for
some finite element methods, based on piecewise linear finite elements. We shall study, in particular,
the Standard Galerkin (SG) method, the Lumped Mass (LM) method, and the Finite Volume Element
(FVE) method. For general information about these methods, and especially error estimates, see, e.g.,
Thomée [12], Chou and Li [4] and Chatzipantelidis, Lazarov and Thomée [2] and [3]. We consider both
spatially semidiscrete and fully discrete methods.

The basis for the methods studied is the variational formulation of the model problem, to find
u “ up¨, tq P H1

0 “ H1
0 pΩq for t ě 0, such that

put, ϕq ` Apu, ϕq “ 0, @ϕ P H1

0 , for t ě 0, with up0q “ v, (1.3)

where
pv,wq “ pv,wqL2pΩq, Apv,wq “ p∇v,∇wq.
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The finite element methods studied are based on regular triangulations Th “ tKu of Ω, with h “
maxTh

diampKq, using the finite element spaces

Sh “ tχ P CpΩq : χ linear on each K P Th; χ “ 0 on BΩu.

Following [13], the spatially semidiscrete methods considered here are based on using analogues of (1.3)
restricted to Sh, in which the first term put, ϕq has been modified, or to find uhptq P Sh for t ě 0, such
that

ruh,t, χs ` Apuh, χq “ 0, @χ P Sh, for t ě 0, with uhp0q “ vh, (1.4)

where r¨, ¨s is an inner product in Sh, approximating p¨, ¨q. The specific choices of r¨, ¨s for the SG, LM
and FVE methods will be reviewed in Section 2.

We now formulate (1.4) in matrix form. Let tPjuN
j“1 be the interior nodes of Th, and tΦjuN

j“1 Ă Sh

the corresponding nodal basis, thus with ΦjpPiq “ δij . We may then write

uhptq “
Nÿ

j“1

αjptqΦj, with vh “
Nÿ

j“1

rvjΦj .

The semidiscrete problem (1.4) may then be expressed, with α “ pα1, . . . , αN qT , as

Mα
1 ` Sα “ 0, for t ě 0, with αp0q “ rv, (1.5)

where M “ pmijq, mij “ rΦj,Φis, S “ psijq, sij “ ApΦj,Φiq, and rv “ prv1, . . . , rvN qT . Here M is the
mass matrix and S the stiffness matrix; they are both symmetric, positive definite. The solution of (1.5)
may be written, with Eptq the solution matrix,

αptq “ Eptq rv, where Eptq “ e
´Ht

, H “ M
´1

S, for t ě 0. (1.6)

We note that the semidiscrete solution uhptq is ě 0 pą 0q if and only if, elementwise, αptq ě 0 pą 0q, and
that this holds for all rv if and only if Eptq ě 0pą 0q elementwise.

It was proved in [14] that, for the semidiscrete SG method, the discrete analogue of (1.2) is not
valid for all t ě 0, and this was generalized in [13] to methods of the form (1.4) with nondiagonal mass
matrices, including the FVE method. However, in the case of the LM method, for which the mass matrix
is diagonal, Eptq ě 0 for all t ě 0 if and only if the triangulation is of Delaunay type - for triangulations
with all angles ď 1

2
π this was shown already in Fujii [6]. When the solution matrix is not nonnegative

for all positive times, the possible nonnegativity of Eptq for larger time was also discussed in [14] and
[13], with t0 such that Eptq ě 0 for t ě t0 ą 0 referred to as a threshold of positivity.

In [11] some analogous results to those for the spatially semidiscrete SG and LM methods were
obtained for one step fully discrete schemes, with time stepping matrices of the form En

k « Eptnq, tn “ nk,
where Ek “ rpkHq, with rpξq a rational function and k a time step. Some of these were extended in [13]
to the present generality.

In this work we complement these investigations in a number of ways. After the introductory Sections
1 and 2, we will first discuss, in Section 3, the spatially semidiscrete methods, with a somewhat more
precise study of the positivity threshold than in [14] and [13]. In Section 4, we treat fully discrete
methods, starting with the Backward Euler method, and continuing with more general Ek “ rpkHq. We
discuss the existence of a positivity threshold k0 such that Ek ě 0 for k ě k0, and show that this requires
rpξq ě 0 for large ξ. This is satisfied, e.g., for the p0, 2q-Padé method, which has a positivity threshold,
but, for the θ´method, with rpξq “ p1 ´ p1 ´ θqξq{p1 ` θξq, 0 ă θ ă 1, we have rpξq ă 0 for large ξ, and
Ek ě 0 may then possibly hold in an interval k0 ď k ď k0.

In Section 5 we give concrete examples, using numerical computations in MATLAB to elucidate
our theoretical results. The first example uses uniform triangulations Th of the unit square, in which
the stiffness matrices correspond to the 5-point finite difference Laplacian. In this case, the semidiscrete
solution has a positivity threshold which decreases with h, and for the BE method, it is bounded
below by ch2, with c ą 0. The second example illustrates the case of non-Delaunay triangulations,
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and the BE method then has no positivity threshold, but the semidiscrete and p0, 2q-Padé methods
behave reasonably. We finally give some examples using unstructured triangulations based on commercial
software, namely a square, a disk and an L-shaped domain. In all cases, the positivity thresholds decrease
for the semidiscrete method and as ch2 for BE, but does not decrease for the p0, 2q-Padé. In Section 6,
for further insight, we consider the restriction of our above analysis to the case of a uniformly partition
of the one dimensional interval p0, 1q, and the analysis and computations confirm our 2D conclusions.

Our investigations indicate that positivity is preserved for the Backward Euler method in all cases
considered with Delaunay triangulations, even for the SG and FVE spatial discretizations, with all
reasonable choices of the time step. In fact, the positivity thresholds all decrease with h like ch2 with
c ą 0. The behavior is less encouraging for the semidiscrete and other fully discrete methods.

In the final Section 7, we present a simple way to find a nonnegative approximate solution when a
not necessarily nonnegative approximate solution is given, the cutoff method. If uhptq P Sh is a spatially
semidiscrete approximate solution of (1.1), i.e., the solution of (1.4), then defining u`

h ptq P Sh by using
the pointwise positive parts of the already computed approximate solution uhptq at the nodes of Th, or
u`

h pPj , tq “ max puhpPj, tq, 0q, we have at once

|u`
h pPj , tq ´ upPj , tq| ď |uhpPj, tq ´ upPj, tq|, for j “ 1, . . . , N.

We show how L2 error bounds for uhptq imply such error bounds for u`
h ptq. This procedure may also be

applied to fully discrete approximate solutions. For another approach in this case, using cutoff at each
time step of the computation, see [10].

2 The spatially semidiscrete methods

We begin our discussion of the semidiscrete problem (1.4), or (1.5), by observing that for the stiffness
matrix S “ psijq, with sij “ p∇Φi,∇Φjq, which is common to all our problems (1.4), simple calculations
show, see, e.g., [5],

sij “

$
’’&
’’%

ř
KĂΠi

h´2

K,i|K|, if i “ j,

´ 1

2
cotα ´ 1

2
cotβ “ ´ 1

2
sinpα ` βq{psinα sin βq, if Pi, Pj neighbors,

0 if Pi, Pj not neighbors,

(2.1)

where Πi “ supppΦiq, hK,i is the height of K with respect to the side opposite Pi and α and β are the
angles opposite PiPj , see Fig. 1. We shall assume throughout that S is irreducible.

β

e

Pi

Pj

α

Fig. 1. An interior edge e “ PiPj of Th.

We shall now present the three different versions of (1.4) mentioned above, defined by three different
discrete inner products r¨, ¨s on Sh.
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bK

Pj

Kj

Pj

Vj

Fig. 2. A triangle K P Th and a patch Πj “ supppΦjq around a node Pj .

For the Standard Galerkin method we use r¨, ¨s “ p¨, ¨q “ p¨, ¨qL2pΩq, and thus the mass matrix is

M “ xM “ p pmijq, where

pmij “ pΦi,Φjq “

$
’’&
’’%

1

6
|supppΦiq|, if i “ j,

1

12
|supppΦiΦjq|, if Pi, Pj neighbors,

0, if Pi, Pj not neighbors.

(2.2)

For the Lumped Mass method we employ r¨, ¨s “ p¨, ¨qh, where the latter is defined by quadrature,

pψ, χqh “
ÿ

KPTh

QK,hpψ χq, with QK,hpfq “ 1

3
|K|

3ÿ

j“1

fpPK,j q «
ż

K

f dx,

with tPK,ju3
j“1 the vertices of the triangle K. In the matrix formulation (1.5) this means that M “ D “

pdijq, with dii “ pΦi,Φiqh “ 1

3
| supppΦiq|, dij “ pΦj ,Φiqh “ 0 for j ‰ i, so that D is a diagonal matrix.

To define the Finite Volume Element method, we note that a solution of the differential equation
ut “ ∆u in (1.1) satisfies the local conservation law

ż

V

ut dx´
ż

BV

Bu
Bn ds “ 0, for t ě 0, (2.3)

for any V Ă Ω with piecewise smooth boundary BV , and n the unit exterior normal to BV . The spatially
semidiscrete FVE method is then to find ruhptq P Sh, for t ě 0, satisfying

ż

Vj

ruh,t dx´
ż

BVj

Bruh

Bn ds “ 0, for j “ 1, . . . , N, t ě 0, with ruhp0q “ vh, (2.4)

where the Vj are the so called control volumes, defined as follows, see Fig. 2. Let bK be the barycenter
of K P Th, and connect bK with the midpoints of the edges of K, thus partitioning K into three
quadrilaterals Kl, l “ j,m, n, if K has vertices Pj , Pm, Pn. The control volume Vj is then the union
of the subregions Kj , sharing the vertex Pj . The equations (2.4) then preserve (2.3) for any union of
control volumes.

To write (2.4) in weak form, we introduce the finite dimensional space

Yh “ tη P L2 : η|Vj
= constant, j “ 1, . . . , N ; η “ 0 outside

Nď

j“1

Vju.

For η P Yh, we multiply (2.4) by ηpPjq, and sum over j, to obtain the Petrov–Galerkin formulation

pruh,t, ηq ` ahpruh, ηq “ 0, @η P Yh, t ě 0, with ruhp0q “ vh, (2.5)

where

ahpχ, ηq “ ´
Nÿ

j“1

ηpPjq
ż

BVj

Bχ
Bn ds, @χ P Sh, η P Yh. (2.6)

In order to rephrase this as a Galerkin method, we shall introduce a new inner product on Sh. Let
Jh : CpΩq Ñ Yh be the interpolant defined by pJhvqpPjq “ vpPjq, j “ 1, . . . , N. The following lemma
then holds, see [4].
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Lemma 2.1. The bilinear form xχ,ψy “ pχ, Jhψq is symmetric, positive definite on Sh, and

ahpχ, Jhψq “ p∇χ,∇ψq “ Apχ,ψq, @χ,ψ P Sh.

Setting rχ,ψs “ xχ,ψy, for χ,ψ P Sh, the Petrov-Galerkin equation (2.5), (2.6) may then be written as
(1.4), and the mass matrix M in (1.5) is now ĂM “ p rmijq where

rmij “ xΦi,Φjy “

$
’’&
’’%

11

54
|supppΦiq|, if i “ j,

7

108
|supppΦiΦjq|, if Pi, Pj neighbors,

0, if Pi, Pj not neighbors.

(2.7)

We note that by (2.2) and (2.7), rmii “ 11

9
pmii, rmij “ 7

9
pmij , i ‰ j, i, j “ 1, . . . , N . Thus ĂM is more

concentrated on the diagonal than xM.

3 Positivity preservation in the spatially semidiscrete methods

In this section we consider the general spatially semidiscrete problem (1.4) in the form (1.5). We shall
first recall two results from [13] concerning the positivity of the solution matrices, and then discuss the
positivity of the solution matrices for large t. We assume that r¨, ¨s is either such that mij ą 0 for all
neighbors Pi, Pj, or such that mij “ 0 for all neighbors Pi, Pj. In the former case M is a nondiagonal
matrix, and in the latter diagonal.

We first have the following negative result, which was shown in [14] for the SG method, and gen-
eralized in [13] to the present framework. The proof depends on a technical assumption about the
triangulation Th. First, a node of Th is said to be strictly interior if all its neighbors are interior nodes,
and then Th is normal if it has a strictly interior node, Pj say, such that any neighbor of Pj has a
neighbor which is not a neighbor of Pj . This is satisfied, e.g., if all neighbors of Pj are strictly interior
and the patch Πj defined by Pj is convex.

Theorem 3.1. Assume that Th is normal, and M nondiagonal. Then the solution matrix for (1.5),
Eptq “ e´Ht, with H “ M´1S, cannot be nonnegative for all t ą 0.

This result thus covers the SG method and the FVE method, but not the LM method. We recall that
an edge e of Th is a Delaunay edge if the sum of the angles opposite e is ď π, see Fig. 1, and that
Th a Delaunay triangulation if all interior edges are Delaunay. Using (2.1) we see that an interior edge
e “ PiPj is a Delaunay edge if and only if sij ď 0, and thus the triangulation Th is of Delaunay type if and
only if sij ď 0 for all i ‰ j, i.e., if and only if the stiffness matrix is a Stieltjes matrix, i.e., a symmetric
positive definite matrix with nonpositive off diagonal elements. We may then cite the following theorem
from [14].

Theorem 3.2. The LM solution matrix Ēptq “ e´H̄t, H̄ “ D´1S, is nonnegative for all t ě 0 if and

only if Th is Delaunay.

Recall that, see e.g. [15, Corollary 3.24], if A is a Stieltjes matrix, then its inverse A´1 ě 0. Further,
if A is also irreducible, then A´1 ą 0. In particular, if Th is Delaunay, then, since S is irreducible, we
have that S´1 ą 0, and hence also G “ S´1M ą 0. However, Th Delaunay is not a necessary condition
for S´1 ą 0.

Since G “ S´1M “ H´1 is symmetric positive definite with respect to the inner product Mv ¨ w “řN
i“1

pMvqiwi, it has positive eigenvalues tκjuN
j“1 and orthonormal eigenvectors tϕjuN

j“1 with respect to
this inner product. We shall say that G is eventually positive if κj ă κ1 for j ě 2 and ϕ1 ą 0. By the
Perron-Frobenius theorem this holds if G ą 0, and more generally if Gq ą 0 for some q ě 1.
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We now return to the general semidiscrete problem (1.4) in matrix form (1.5), with solution matrix
Eptq “ e´tH, where H “ M´1S. We shall see that, if G “ H´1 is eventually positive, there exists a
positivity threshold t0 ě 0 such that Eptq ą 0 for t ą t0. Following Horváth [7] we shall discuss this here
in a somewhat more precise way than in [14] and [13].

Under the above assumptions, any V P R
N has the eigenfunction expansion

V “
Nÿ

j“1

ηjϕj , where ηj “ MV ¨ ϕj , (3.1)

and the solution of (1.5) with rv “ V is

EptqV “
Nÿ

j“1

e
´λjt

ηjϕj , where λj “ 1{κj.

We now define the convex cone

P “ tV P R
N ;

Nÿ

j“2

|ηj |σj ă η1u, where σj “ sup
l

p|ϕj,l|{ϕ1,lq, ϕj “ pϕj,1, . . . , ϕj,N qT
. (3.2)

Note that since 1 “ Mϕj ¨ϕj ď σ2
j Mϕ1 ¨ϕ1 “ σ2

j , we have σj ě 1. For V P P it is required that η1 ą 0,
and V P P implies V ą 0, since

Vl ě η1ϕ1,l ´
Nÿ

j“2

|ηj | |ϕj,l| ě η1ϕ1,l ´
Nÿ

j“2

|ηj |σj ϕ1,l “ pη1 ´
Nÿ

j“2

|ηj |σjqϕ1,l ą 0.

We now show that if the matrix G “ H´1 “ S´1M is eventually positive, then the solution matrix
of (1.5) is positive for large t. A somewhat less precise result was shown in [13].

Theorem 3.3. Let Eptq “ e´Ht be the solution matrix for (1.5), and let H´1 be eventually positive. Let

κj , σj be as above, and λj “ 1{κj . Then Eptq ą 0 if

Nÿ

j“2

e
´λjt

σ
2

j ă e
´λ1t

. (3.3)

Proof. Let V “
ř

j ηjϕj . If V ě 0, V ‰ 0, we have η1 “ MV ¨ ϕ1 ą 0, since MV ě 0 and ϕ1 ą 0.
Further,

|ηj | “ |MV ¨ ϕj | ď pMV ¨ ϕ1q σj “ η1 σj, for 2 ď j ď N. (3.4)

Hence (3.3) implies
řN

j“2
e´λjt|ηj |σj ă e´λ1tη1, and thus EptqV P P and EptqV ą 0. Hence Eptq ą 0.

The decreasing function
řN

j“2
e´pλj´λ1qtσ2

j ´ 1 has a unique zero t1, which is ą 0 since σj ě 1 impliesřN
j“2

σ2
j ě N ´ 1, and (3.3) then holds for t ą t1. Thus Eptq ą 0 for t ą t1. Clearly, t1 ě t0, the positivity

threshold.

4 Fully discrete methods

In this section we consider time discretization of the semidiscrete problem (1.4), or (1.5). We review re-
sults from [11] and [13] concerning nonnegativity for all positive k of time stepping matrices Ek “ rpkHq,
where rpξq is a bounded rational function for ξ ě 0 and H “ M´1S, and then discuss nonnegativity of
such time stepping matrices for large time steps k.

We begin with the Backward Euler method, to find Un P Sh, U
n « uhptnq, for n ě 0, such that

“Un ´ Un´1

k
, χ

‰
` ApUn

, χq “ 0, @χ P Sh, n ě 1, with U0 “ vh.
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In matrix formulation, with Un “
řN

j“1
αn

j Φj, α
n “ pαn

1 , . . . , α
n
N qT , this takes the form

pM ` kSqαn “ Mα
n´1

, or α
n “ Ekα

n´1
, for n ě 1, with α0 “ rv.

This may also be written as αn “ En
k rv, where Ek is the solution matrix defined by

Ek “ pM ` kSq´1
M “ pI ` kHq´1

, where H “ M
´1

S.

The following time discrete analogue of Theorem 3.1 was shown in [13], [14].

Theorem 4.1. Assume that Th is normal and M nondiagonal. Then Ek “ pI ` kHq´1 cannot be

nonnegative for small k ą 0.

The positivity of Ek for larger k is related to the positivity of the matrix H´1, and the following result
was shown in [13].

Theorem 4.2. If Ek “ pI ` kHq´1 ě 0 for k large, then H´1 ě 0. If H´1 ą 0, then there exists k0 ě 0
such that Ek ą 0 for k ą k0. If Ek0

ě 0, then Ek ě 0 for k ě k0.

We refer to the smallest k0 such that Ek ě 0 for k ě k0 as the threshold of positivity for Ek. In view of
the last part of the theorem, in the BE case this is the smallest k for which Ek ě 0. In [13], and [11] in
the case of SG, the following more precise result for values of k for which Ek ě 0 was derived, under a
sharper condition than H´1 ą 0.

Theorem 4.3. If sij ă 0 for all neighbors Pi, Pj , then Ek ě 0 if

k ě k1 “ max
N

pmij{|sij |q, where N “ tpi, jq;Pi, Pj neighborsu. (4.1)

Since rmij “ 7

9
pmij the bound k1 in (4.1) is smaller for FVE than for SG. For instance, if the maximal

angle of Th is α ă 1

2
π, then, for all e “ PiPj , | supppΦi,Φjq| ď h2 sinα and |sij | ě cotα by (2.1), and

hence pk1 “ maxN p pmij{|sij |q ď 1

12
h2 sin2 α{ cosα and similarly, rk1 ď 7

108
h2 sin2 α{ cosα. In both cases

Ek ě 0 for k ě ch2, with the appropriate c. When all K P Th are equilateral, we find pk1 “ 1

8
h2 and

rk1 “ 7

72
h2.

For the Backward Euler LM method we have M “ D and

Ēk “ pD ` kSq´1
D “ pI ` kHq´1

, where H̄ “ D
´1

S.

In this case we have the following result, analogous to Theorem 3.2 in the semidiscrete case, cf. [11].

Theorem 4.4. Ēk ě 0 for all k ą 0 if and only if Th Delaunay.

Note that if S´1 ą 0 it follows from Theorem 4.2 that Ēk ą 0 for large k.

We now turn to more general time stepping methods and consider a time stepping matrix Ek “
rpkHq, where rpξq is a bounded rational function for ξ ě 0, approximating e´ξ, so that rpξq “ 1´ξ`Opξ2q
as ξ Ñ 0. We define a single step time discretization En

k rvh of (1.5), by

α
n “ E

n
k rvh, for n ě 0, where Ek “ rpkHq, H “ M

´1
S.

We recall from [13] that, as in Theorem 4.1, the time stepping matrix Ek cannot be nonnegative for
small k when M is nondiagonal.

Theorem 4.5. Assume that Th is normal and M nondiagonal. Then Ek “ rpkHq cannot be nonnegative

for small k.

For the possible nonnegativity of Ek “ rpkHq for larger k, we quote the next theorem from [13].
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Theorem 4.6. Let H´1 ą 0. Then a necessary condition for Ek “ rpkHq to be nonnegative for large k

is that rpξq ě 0 for large ξ.

A typical and interesting example is the p0, 2q´Padé approximation defined by r02pξq “ 1{p1 ` ξ ` 1

2
ξ2q.

However, the Padé approximations r11pξq “ p1 ´ 1

2
ξq{p1 ` 1

2
ξq and r12pξq “ p1 ´ 1

3
ξq{p1 ` 2

3
ξ ` 1

6
ξ2q, as

well as the θ´approximation rθpξq “ p1 ´ p1 ´ θqξq{p1 ` θξq, with 0 ď θ ă 1, are negative for large ξ, and
hence the corresponding Ek cannot be nonnegative for large k.

We assume now that rp8q “ 0 and, more precisely,

rpξq “ cξ
´q ` Opξ´q´1q, as ξ Ñ 8, with q ě 1, c ą 0. (4.2)

The following result was shown in [13].

Theorem 4.7. Assume that rpξq satisfies (4.2). Then H´q ě 0 is a necessary condition for Ek “
rpkHq ě 0 for large k. If H´q ą 0, then Ek ą 0 for large k.

In particular, Ek “ r02pkHq ą 0 for large k, if H´2 ą 0. By Theorem 4.5, the positivity threshold k0 has
to be strictly positive if M is nondiagonal. However, even for the LM method, with a diagonal mass
matrix, it was shown in [13] that Ēk cannot be nonnegative for small k if Th is 4-connected in the sense
of the following definition of p-connected: There exists a path P in the set of nodes of Th consisting of p
connected edges PmPn with smn ‰ 0, and such that the endpoints of P cannot be connected by a path
with fewer than p such edges. We now show the following more general result.

Theorem 4.8. Assume that Th is Delaunay and p-connected, and that Ēk “ rpkH̄q ě 0 for small k.

Then p´1qprppqp0q ě 0.

Proof. We have, by Taylor expansion of rpξq,

Ēk “ rpkH̄q “ rp0qI ` r
1p0q kH̄ ` ¨ ¨ ¨ ` r

ppqp0q kp
H̄

p ` Opkp`1q, as k Ñ 0.

We shall show that if PiPl1
Pl2

Plp´1
Pj is a path P as above, then pĒkqij ă 0 for small k. For this we write

H̄ “ D´1S “ V ´ W , where V is a positive diagonal matrix and W has elements wmn “ ´smn{dm ą 0
when Pm, Pn are neighbors with smn ‰ 0, with the remaining elements 0. (Recall that since S is Stieltjes,
W ě 0.) It follows that pp´H̄qpqij “

ř
l1,...,lp´1

p´h̄i,l1
qp´h̄l1,l2

q . . . p´h̄lp´1,jq and, by our assumption on

the path P connecting Pi and Pj , none of the nonzero terms have factors from V . Hence pp´H̄qpqij ě
wi,l1

. . . wlp´1,j ą 0. In the same way, since Pj cannot be reached from Pi in less than p steps, pH̄lqij “ 0
for l “ 0, 1, . . . , p´ 1. Hence, for k small,

pĒkqij “ p´1qp
r

ppqp0qkppp´H̄qpqij ` Opkp`1q ě 0,

which implies our claim.

Thus, as a particular case, if Th is Delaunay and 4-connected, then r02pkH̄q cannot be nonnegative for
small k ą 0 since r02pξq “ 1 ´ξ` 1

2
ξ2 ´ 1

4
ξ4 `Opξ5q for ξ small, so rp4q

02
p0q ă 0. Note that if the conclusion

of the theorem holds for all p ě 1, rpξq is completely monotone for ξ “ 0.
We recall that Ēk “ rpkH̄q ě 0 for all k ą 0 if rpξq is of positive type, i.e., if rpzq “

ş8
0
gptq e´zt dt`

rp8q for Re z ě 0, with gptq ě 0, rp8q ě 0, since Ēptq “ e´tH ě 0 for t ě 0, cf. Bolley and Crouzeix [1]
and [11]. This holds for the Backward Euler method, but generally, since rpξq is of positive type if and
only if it is completely monotone, this cannot hold for approximations of higher order than first,

We now apply the technique of Theorem 3.3 to show a sufficient condition for the positivity of
Ek “ rpkHq.

Theorem 4.9. Let Ek “ rpkHq, where rpξq ě 0 and H´1 ą 0. Let λj and σj be as in Section 3. Then

Ek ą 0 if
Nÿ

j“2

rpkλj qσ2

j ă rpkλ1q. (4.3)
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Proof. For V of the form (3.1) we have EkV “
řN

j“1
rpkλj qηjϕj . If V ě 0, with V ‰ 0, then, since

|ηj | ď η1σj for j ě 2 by (3.4), it follows from (4.3) that

Nÿ

j“2

rpkλjq |ηj |σj ď η1

Nÿ

j“2

rpkλjq σ2

j ă rpkλ1qη1,

so that EkV P P . Hence EkV ą 0 and thus Ek ą 0.

We now use the same technique to demonstrate that, for any given k, the fully discrete solution is
positive after a finite number of steps.

Theorem 4.10. Let Ek “ rpkHq, where rpξq is positive and decreasing for ξ ě 0, and H´1 ą 0. Then,

for any k ą 0, there exists a n0pkq such that En
k ą 0 for n ě n0pkq.

Proof. Setting ρj “ rpkλjq{rpkλ1q we have ρj ď ρ2 ă 1 for j ě 2, and hence

Nÿ

j“2

rpkλj qn
σ

2

j ď rpkλ1qn
ρ

n
2

Nÿ

j“2

σ
2

j ă rpkλ1qn
, for n ě n0pkq.

Hence En
k satisfies the analogue of (4.3) for large n, and thus En

k ą 0.

We close this section with a short discussion of the θ´method, thus with the time stepping matrix

Eθ,k “ rθpkHq “ pM ` kθSq´1pM ´ kp1 ´ θqSq, 0 ă θ ă 1. (4.4)

In this case rθp8q “ ´p1 ´ θq{θ ă 0, and Eθ,k thus cannot be nonnegative for large k. We will show that
the set of k for which Eθ,k ě 0 is either and interval, possibly just a point, or empty.

Theorem 4.11. Suppose that H´1 ą 0, and let k0 be the positivity threshold for E1,k “ pI ` kHq´1.

Then δpkq :“ min1ďiďN pE1,kqii is a continuous, strictly decreasing function on r0,8q with range p0, 1s.
With 0 ă θ ă 1 we have Eθ,k ě 0 if and only if θk ě k0 and δpθkq ě 1 ´ θ. If δpk0q ě 1 ´ θ this is the

interval θ´1rk0, δ
´1p1 ´ θqs, and otherwise the empty set.

Proof. We note that for k2 ą k1, E1,k1
´ E1,k2

“ pk2 ´ k1qHpI ` k1Hq´1pI ` k2Hq´1, which is a positive
definite matrix and thus has positive diagonal elements. Hence the diagonal elements of the matrix on
the left are positive and thus those of E1,k strictly decreasing, so that δpkq is strictly decreasing.

We now note that by the identity θrθpξq “ r1pθξq ´ p1 ´ θq we have θ Eθ,k “ E1,θk ´ p1 ´ θqI. Hence
Eθ,k ě 0 if and only if E1,θk ě 0 and, in addition, the diagonal elements of E1,θk are ě 1 ´ θ. By Theorem
4.2 the first condition is equivalent to θk ě k0, and the second holds if and only if δpθkq ě 1 ´ θ, or
θk ď δ´1p1 ´ θq. where δ´1 is the inverse function to δ.

We now show the following result similar to Theorem 4.3.

Theorem 4.12. If sij ă 0 for all neighbors Pi, Pj , then Eθ,k “ rθpkHq ě 0 if k P rk1, k
1s, where

k1 “ θ
´1 max

N
pmij{|sij |q, k

1 “ p1 ´ θq´1 min
i

pmii{|sii|q, 0 ă θ ă 1.

Proof. We easily find that if k ě k1 then mij ` kθsij ď 0 for Pi, Pj neighbors and “ 0 if Pi, Pj not
neighbors, so that M ` kθS is a Stieltjes matrix and hence pM ` kθSq´1 ě 0. Also, if k ď k1, then
M ´ kp1 ´ θqS ě 0. Thus taking the product we find Ek ě 0.

Note that it could be the case that k1 ą k1 in which case the interval is empty. This could happen if θ
is small. For the LM method, M “ D, and thus k1 “ 0, so that Eθ,k ě 0 if k ď k1. When all K P Th are
equilateral, we have, sii “ 2

?
3 and sij “ ´

?
3{3 for pi, jq P N . For SG we find mij “ 1

24

?
3 h2, pi, jq P N ,

and mii “ 1

4

?
3h2, and for FVE, mij “ 7

36

?
3h2, pi, jq P N , and mii “ 11

36

?
3h2. Hence for the Crank-

Nicolson SG method, pk1 “ pk1 “ 1

4
h2, so that the interval reduces to the point k “ 1

4
h2. For the CN LM

method the interval becomes r0, 2pk1s “ r0, 1

2
h2s and for the CN FVE method r 7

9
pk1,

11

9
pk1s “ r 7

36
h2, 11

36
h2s.
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5 Numerical examples

In this section we present some numerical examples, illustrating our theoretical results. We first consider
a uniform Delaunay triangulation of standard type of the unit square, where the corresponding stiffness
matrix S and mass matrix M are such that k1 in (4.1) is not finite for the SG and FVE methods.
We then consider a non-Delaunay triangulation of the unit square, thus with a corresponding stiffness
matrix S which is not Stieltjes. Finally, we apply a software package to derive unstructured Delaunay
triangulations of the unit square, and also of two other simple domains. We investigate the positivity
of the spatially semidiscrete, the Backward Euler and p0, 2q´Padé methods, for the SG, FVE and LM
spatial discretization, and make some remarks about the θ´method.

5.1 A standard triangulation of the unit square

h0

h0

h0

h0

1

h0 xjh0h0 h0 10

h0

h0

ym

h0

ζ1

ζ6

τ1h0

h0

τ2

τ3
ζ4

τ4

τ5
ζ5

τ6

ζ0

ζ3 ζ2

h0 xj

ym

Fig. 3. Left: The unit square Ω with the symmetric triangulation Th. Right: The patch Π0 around the vertex ζ0.

In this first example we consider the unit square Ω “ p0, 1q ˆ p0, 1q and introduce a uniform trian-
gulation Th of Ω as follows. Let M be a positive integer, h0 “ 1{pM ` 1q, and set for j “ 0, . . . ,M ` 1,
xj “ yj “ jh0. This partitions Ω into squares pxj, xj`1q ˆ pym, ym`1q, and we define Th by con-
necting the nodes pxj, ymq, pxj`1, ym´1q, see Fig. 3. The number of interior nodes is N “ M2, and
h “ maxTh

diampKq “
?

2h0. We note that Th is a Delaunay triangulation, but since the sum of the
angles opposite a diagonal edge is π, the corresponding elements sij of the stiffness matrix vanish.

Let now ζ0 “ pxj , ymq be an interior node of Th and let tζju6
j“1 be the surrounding nodes, see

Fig. 3. Let Kj be the triangle with vertices ζ0, ζj, ζj`1, where ζ7 “ ζ1. We then have |Kj | “ 1

2
h2

0, for
j “ 1, . . . , 6. It is easy to form the stiffness matrix S and the mass matrices xM and ĂM, for the SG and
FVE methods. Indeed, since only the surrounding nodes to ζ0 contribute to the corresponding row of
the matrices, we get for S,

p∇Φ0,∇Φjq “

$
’’&
’’%

4, j “ 0,

´1, j “ 1, 2, 4, 5,

0, j “ 3, 6,

(5.1)
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and for xM and ĂM, using (2.2) and (2.7), and h “
?

2 h0,

pΦ0,Φjq “ 1

4
h

2

$
&
%

1, j “ 0,
1

6
, j “ 1, . . . , 6,

and xΦ0,Φjy “ 1

4
h

2

$
&
%

11

9
, j “ 0,

7

54
, j “ 1, . . . , 6.

(5.2)

Thus, with I the identity matrix and pJ qij “ 1 if Pi, Pj neighbors and 0 for other i, j,

xM “ 1

4
h

2pI ` 1

6
J q and ĂM “ 11

36
h

2pI ` 7

66
J q.

It follows that ĂM “ 1

9
h2I ` 7

9
xM. For the LM method the mass matrix is the diagonal matrix D “ 1

2
h2I.

We note that S is a Stieltjes matrix, so that S´1 ą 0, and hence the matrices H´1 “ S´1M ą 0
for the SG, FVE and LM methods. Thus the results in Section 4 concerning positivity for large t and k
apply.

In addition to our computational results, we want to study, somewhat more precisely, the Backward
Euler method, and recall that since some sij “ 0 for Pi, Pj neighbors, Theorem 4.3 does not apply. We
want to show that nevertheless Ek “ pM ` kSq´1M ě 0, for λ “ k{h2

0 bounded below appropriately.
This follows from the following lemma.

Lemma 5.1. We have p xM ` kSq´1 ě 0 for k ě pk1 « 0.46h2 and p ĂM ` kSq´1 ě 0 for k ě rk1 « 0.38h2.

Proof. We write J “ J0 ` J1 where pJ0qij “ 1 if Pi, Pj vertical or horizontal neighbors and 0 for other
i, j and pJ1qij “ 1 if Pi, Pj diagonal neighbors and 0 for other i, j. Then S “ 4I ´ J0. We note that
J 2

0 ě 2 J1, since J 2
0 has nonzero value m in the line corresponding to Pi at nodes Pj that can be reached

in m ways from Pi in two steps, vertical or horizontal, and a diagonal neighbor can be reached either
by first going vertically and then horizontally, or first horizontally and then vertically.

We want to determine k such that pM ` kSq´1 ě 0, and begin with the SG method. By (2.2) we
now have xM “ 1

2
h2p 1

2
I ` 1

12
J0 ` 1

12
J1q. Thus, with λ “ k{h2, pΛ “ 4λ ` 1

4
,

xM ` kS “ p4k ` 1

4
h

2qI ´ pk ´ 1

24
h

2qJ0 ` 1

24
h

2
J1 “ pΛh2

´
I ´

λ ´ 1

24

pΛ
J0 ` 1

24pΛ
J1

¯
(5.3)

“ pΛh2
´
I ´ 1

4
p1 ´ pδqJ0 `

pδ
10

J1

¯
, where pδ “ 5

12pΛ
.

With µ “ 1

4
p1 ´ δq and ν “ δ{10, where δ “ pδ, we would thus like to determine δ such that

pI ´ µJ0 ` ν J1q´1 ě 0. (5.4)

We shall first find δ so that pI ´ µJ0 ` 1

2
ν J 2

0 q´1 ě 0, using the following lemma, to be shown below.

Lemma 5.2. Let 0 ă 2ν ď µ2. Then the zeros x1,2 of P pxq “ 1 ´ µx` 1

2
νx2 are positive, and

1
P pxq “

8ÿ

n“0

ωnx
n
, for 0 ď x ď 1

µ
, with ωn ą 0.

Note that 2ν ď µ2 is equivalent to δ{5 ď p1´δq2{16, or δ2 ´5.2δ`1 ě 0, which is true for 0 ă δ ď 0.2.
Since }J0} “ 4 ă 4{p1 ´ δq “ 1{µ, with } ¨ } the matrix maximum–norm, it follows from Lemma 5.2 that

L “ pI ´ µJ0 ` 1

2
νJ

2

0 q´1 “
8ÿ

n“0

ωnJ
n
0 ě 0. (5.5)

Further,

}L} ď
8ÿ

n“0

ωn}J0}n ď
8ÿ

n“0

ωn4n “ 1
P p4q “ 1

1 ´ 4µ` 8ν
“ 1

1.8 δ
. (5.6)

We may write

pI ´µJ0 ` νJ1q´1 “ pI ´µJ0 ` 1

2
νJ

2

0 ´ 1

2
νpJ 2

0 ´ 2J1qq´1 “ pI ´ N q´1
L, N “ 1

2
νLpJ 2

0 ´ 2J1q. (5.7)
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Here N ě 0 since J 2
0 ´ 2J1 ě 0 and L ě 0 by (5.5), and using (5.6), ν “ δ{10, and }J 2

0 ´ 2J1} ď 16,

}N } ď 1

2
p 1

10
δq p1{1.8δq 16 “ 4

9
ă 1,

and hence pI ´ N q´1 “
ř8

j“0
N j ě 0, which shows (5.4). Since δ “ 5{p12pΛq ď 0.2 if pΛ ě 5{2.4 and hence

if λ “ ppΛ ´ 0.25q{4 ě 11{24 « 0.458, we have thus shown xM ` kS ě 0 for k ě pk1 « 0.46h2.
For the FVE method we have ĂM “ 1

2
h2p 11

18
I ` 7

108
J q, and thus, similarly to (5.3), with λ “ k{h2,

ĂM ` kS “ p4k ` 11

36
h

2qI ´ pk ´ 7

216
h

2qJ0 ` 7

216
h

2
J1

“ rΛh2
´

I ´ 1

4
p1 ´ rδqJ0 ` 7rδ

94
J1

¯
, where rΛ “ 4λ` 11

36
, rδ “ 47

108

rΛ.

This time we would like to determine δ so that (5.4) holds when µ “ 1

4
p1 ´ δq and ν “ 7δ{94, where

δ “ rδ. Note that 2ν ď µ2 now means 7δ{47 ď p1 ´ δq2{16, or δ2 ´ p206{47q δ ` 1 ě 0, which is true for
0 ď δ ď 0.2414. The positivity results (5.5) and (5.7) remain valid. Thus, since δ “ p47{108q{p4λ`33{108q,
we find that Ek is now positive for λ ě rk1 « 0.38h2.

Proof of Lemma 5.2. The zeros of P pxq are x1,2 “ µ
ν

˘
b

µ2

ν2 ´ 2

ν
, so for the smallest zero, x2 “ µ

ν
p1 ´b

1 ´ 2ν
µ2 q ą µ

ν
p1 ´ 1 ` ν

µ2 q “ 1

µ
ą 0, where we have used the inequality

?
1 ´ x ă 1 ´ 1

2
x, for 0 ă x ď 1.

Hence, for x ă x2,

1
P pxq “ 2

νpx´ x1qpx´ x2q “ 2
νx2px1 ´ x2q ¨ 1

1 ´ x{x2

´ 2
νx1px1 ´ x2q ¨ 1

1 ´ x{x1

“ 2
νpx1 ´ x2q

8ÿ

n“0

`
x

´n´1

2 ´ x
´n´1

1

˘
x

n “
8ÿ

n“0

ωn x
n
, with ωn ą 0.

But, by the above, x ď 1{µ implies x ă x2, which completes the proof.

In Table 1 we show some computed positivity thresholds t0 for Eptq, and k0 for Ek “ r01pkHq and
Ek “ r02pkHq, for the SG, FVE, and in the case of r02pkHq also for the LM methods, when M=10, 20,
and 40. The numbers indicate that for spatially semidiscrete problem the positivity thresholds diminish
with h, and are smaller for the FVE than for the SG method. For the BE method the thresholds are
smaller, and the ratio k0{h2 is approximately 0.27 for SG and 0.23 for FVE, which is better than the
above theoretical results. For the p0, 2q´Padé method the thresholds do not appear to diminish with h,
and are also independent of the choice of the finite element discretization. In Table 2 we exhibit similar
results for Em

k ,m “ 4, for Ek “ r01pkHq and Ek “ r02pkHq, respectively. Comparing with the results for
m “ 1 in Table 1 we see that, for the BE method, the improvement in using m “ 4 is moderate, but
a little better for the p0, 2q´Padé method. The thresholds for BE become smaller with h as in Table 1
whereas this is not the case for the p0, 2q´Padé.

e´tH r01pkHq r02pkHq
h0 h N pt0 rt0 pk0

rk0
pk0

rk0 k0

0.100 0.141 81 0.046 0.043 0.0053 0.0045 0.025 0.024 0.020
0.050 0.070 361 0.035 0.031 0.0013 0.0011 0.023 0.023 0.021
0.025 0.035 1521 0.021 0.019 0.0003 0.0003 0.022 0.022 0.022

Table 1. Positivity thresholds in Ex. 5.1, for Eptq “ e´tH and Ek “ r0ipkHq, with i “ 1, 2, for SG, FVE and LM.

We end with a remark about the θ´method (4.4), and consider first the SG spatial discretization.
By Lemma 5.1 we have p xM ` kθSq´1 ě 0 for kθ ě pk1 « 0.46h2 and clearly xM ´ p1 ´ θq kS ě 0 if
p1 ´ θq k sii ď pmii for all i, or, since sii “ 4 by (5.1) and pmii “ 1

24
h2 by (5.2), if p1 ´ θq k ď 0.06h2. Thus

pEθ,k ě 0 for 0.46 θ´1 h2 ď k ď 0.06 p1´θq´1 h2. Note that this interval is nonempty if 0.46 p1´θq ď 0.06 θ
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r01pkHq r02pkHq
h0 N pk0

rk0
pk0

rk0 k0

0.100 81 0.0048 0.0040 0.010 0.009 0.020
0.050 361 0.0013 0.0011 0.009 0.008 0.021
0.025 1521 0.0003 0.0003 0.008 0.008 0.022

Table 2. Positivity thresholds in Ex. 5.1, for Em
k

“ r0ipkHqm, with i “ 1, 2, m=4, for SG, FVE and LM.

or if θ ě 0.89. For the FVE method, p ĂM ` kSq´1 ě 0 for kθ ě rk1 « 0.38h2 and ĂM ´ p1 ´ θqS ě 0 for
p1 ´ θqk ď 0.07h2 so that rEθ,k ě 0 for 0.38 θ´1 h2 ď k ď 0.07 p1 ´ θq´1 h2, which interval is nonempty
if θ ě 0.85. The Crank-Nicolson method (θ “ 1

2
q is not covered in any of these cases, and numerical

calculations show that E1{2,k ě 0 does not hold for any of our three triangulations.

5.2 A non-Delaunay triangulation of the unit square

In this example we consider again the unit square Ω “ p0, 1q ˆ p0, 1q and introduce a triangulation Th

of Ω as follows. Let M be a positive integer, h0 “ 1{p2M q, and set xj “ jh0 for j “ 0, . . . , 2M , and
ym “ 2mh0 for m “ 0, . . . ,M . This partitions Ω into rectangles pxj , xj`1q ˆ pym, ym`1q, and we now
connect the nodes pxj , ymq, pxj`1, ym`1q and pxj`1, ymq, pxj , ym`1q, see Fig. 4. This introduces into Th

also the nodes pxj`1{2, ym`1{2q, with xj`1{2 “ pxj ` xj`1q{2 and ym`1{2 “ pym ` ym`1q{2. The number
of interior nodes is then N “ 2M2 ` p2M ´ 1qpM ´ 1q, and h “ maxTh

diam pKq “ 2h0. We note that
Th is not a Delaunay triangulation.

To construct the stiffness matrix S and the mass matrix M we distinguish between two kinds of
patches, Π0 and qΠ0, centered at ζ0 “ pxk, ymq and qζ0 “ pxℓ`1{2, ym`1{2q, respectively. For the patch
Π0 we denote by tζju8

j“1 the surrounding nodes, numbered counterclockwise as in the patch of the
previous subsection, starting with ζ1 “ pxk ` h0, ymq. Letting Kj be the triangle with vertices ζ0, ζj,
ζj`1, where ζ9 “ ζ1, we then have |Kj | “ 1

2
h2

0, j “ 1, . . . , 8. Similarly, for the patch qΠ0, let tqζju4
j“1

be the surrounding nodes, numbered counterclockwise, starting with qζ1 “ pxℓ ` h0, ymq. With qKj the
triangle with vertices qζ0, qζj, qζj`1, where qζ5 “ qζ1 we have | qKj | “ 1

2
h2

0, j “ 1, . . . , 4. To form S it suffices
to calculate p∇Φ0,∇Φjq, j “ 0, . . . , 8, and p∇qΦ0,∇qΦjq, j “ 0, . . . , 4, and we obtain easily, using (2.1),

p∇Φ0,∇Φjq “

$
’’’’’&
’’’’’%

5, j “ 0,

´ 3

4
, j “ 1, 5,

´ 5

4
, j “ 2, 4, 6, 8,

3

4
, j “ 3, 7,

and p∇qΦ0,∇qΦjq “

$
&
%

5, j “ 0,

´ 5

4
, j “ 1, 2, 3, 4,

Correspondingly, for the mass matrix xM, for SG,

pΦ0,Φjq “ 1

2
h

2

0

$
&
%

4

3
, j “ 0,

1

6
, j “ 1, . . . , 8,

and pqΦ0, qΦjq “ 1

2
h

2

0

$
&
%

2

3
, j “ 0,

1

6
, j “ 1, . . . , 4.

Similarly, for ĂM, for FVE, we have

xΦ0,Φjy “ 1

2
h

2

0

$
&
%

44

27
, j “ 0,

7

54
, j “ 1, . . . , 8,

and xqΦ0, qΦjy “ 1

2
h

2

0

$
&
%

22

27
, j “ 0,

7

54
, j “ 1, . . . , 4,

and for the LM diagonal matrix M̄ “ D, pΦ0,Φ0qh “ 4

3
h2

0, pqΦ0, qΦ0qh “ 2

3
h2

0.
Since Th is not Delaunay, the LM solution matrices Ēptq and Ēk cannot be nonnegative for all t ą 0

and k ą 0, respectively, by Theorems 3.2 and 4.4. Further S is not a Stieltjes matrix, and therefore H´1
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may not be nonnegative. Even if this is so, H´2 could be positive, and therefore H´1 eventually positive,
so that Ek “ r01pkHq has no threshold of positivity, but Eptq and Ek “ r02pkHq do, by Theorems 3.3
and 4.7. In Table 3 we consider the cases M=5, 10, and 20, for the SG, FVE and LM methods. In these
cases the matrices H´1 are not nonnegative but H´2 ą 0, and hence the BE matrices have no positivity
threshold, but those for Eptq and r02pkHq do, and these then diminish slowly with h.

h0

2h0

2h0

h0h0h0h0h0

2h0

xk

ym

ym`1{2

xℓ`1{2

ζ0

qζ0

Fig. 4. The non–Delaunay triangulation Th and patches Π0 and qΠ0 around ζ0 and qζ0, respectively (M “ 3).

e´tH r02pkHq
h0 h N pt0 rt0 t0 pk0

rk0 k0

0.100 0.200 86 0.050 0.046 0.028 0.037 0.029 0.026
0.050 0.100 371 0.043 0.040 0.022 0.020 0.019 0.015
0.025 0.050 1541 0.028 0.026 0.014 0.012 0.011 0.010

Table 3. Positivity thresholds for Eptq “ e´tH and Ek “ r02pkHq, for SG, FVE and LM.

5.3 Unstructured Delaunay triangulations

We consider again the unit square Ω “ p0, 1qˆp0, 1q, which is now partitioned by unstructured Delaunay
triangulations. This was done by means of the commercial software Hypermesh [8], a finite element
preprocessor used in various platforms in industry and research projects. In order to be able to compare
with our earlier computations, we applied its automatic 2D triangular mesh generator, with parameters
chosen to produce three triangulations, with maximal side lengths close to those in the computations in
Section 5.1, i.e. h « 0.14, 0.07, and 0.035. The parameters chosen included the maximum and minimum
side lengths and angles, and the resulting triangulations were then modified manually to improve their
quality. In all cases the maximal angle was less than 80.4˝. The mass and stiffness matrices corresponding
to the triangulations were then assembled using the MATLAB geometry preprocessing tool [9].

As earlier we then computed positivity thresholds for Eptq and for Ek “ r01pkHq and Ek “ r02pkHq,
for the SG, FVE, and in the case of r02pkHq also the LM methods. The results are displayed in Table 4.
In addition to the computed values k0 for the BE, we also give k1, computed according to Theorem 4.3.
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Fig. 5. An unstructured Delaunay triangulation for the unit square pN “ 295q

e´tH r01pkHq r02pkHq
h N pt0 rt0 pk0

pk1
rk0

rk1
pk0

rk0 k0

0.140 65 0.038 0.033 0.0030 0.0039 0.0024 0.0030 0.022 0.021 0.017
0.068 295 0.026 0.022 0.0007 0.0008 0.0005 0.0007 0.022 0.022 0.021
0.035 1170 0.015 0.013 0.0002 0.0002 0.0002 0.0002 0.022 0.022 0.022

Table 4. Positivity thresholds for Ehptq “ e´tH and Ek “ r0ipkHq, i “ 1, 2, for SG, FVE and LM on the unit square.

We also study in the same manner two other simple domains, namely a disk with diameter 1, and
an L-shaped domain, the unit square with the bottom right quarter deleted, see Fig. 6. The results
are exhibited in Tables 5 and 6. We see that the numerical experiments show the same behavior of the
positivity thresholds as for structured triangulations.

As in Section 5.1, the Crank-Nicolson method did not have any interval of positivity for the SG and
FVE method, for any of the domains studied.

Fig. 6. Unstructured triangulations for the disk with radius 1{2 pN “ 231q and the L-chaped domain pN “ 212q.
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e´tH r01pkHq r02pkHq
h N pt0 rt0 pk0

pk1
rk0

rk1
pk0

rk0 k0

0.138 50 0.025 0.022 0.0028 0.0029 0.0022 0.0022 0.015 0.014 0.010
0.070 231 0.018 0.015 0.0007 0.0009 0.0006 0.0007 0.015 0.014 0.013
0.034 1186 0.010 0.009 0.0002 0.0004 0.0002 0.0003 0.014 0.014 0.014

Table 5. Positivity thresholds for Ehptq “ e´tH and Ek “ r0ipkHq, i “ 1, 2, for SG, FVE and LM on disk with radius 1{2.

e´tH r01pkHq r02pkHq
h N pt0 rt0 pk0

pk1
rk0

rk1
pk0

rk0 k0

0.138 56 0.043 0.036 0.0029 0.0038 0.0023 0.0029 0.022 0.022 0.017
0.069 212 0.026 0.022 0.0008 0.0009 0.0006 0.0007 0.021 0.020 0.019
0.035 992 0.014 0.012 0.0002 0.0003 0.0002 0.0002 0.020 0.020 0.020

Table 6. Positivity thresholds for Ehptq “ e´tH and Ek “ r0ipkHq, i “ 1, 2, for SG, FVE and LM on an L-shaped domain.

6 A special case in one space dimension

In this section we consider the discretization of the initial-boundary value problem in one space dimen-
sion,

ut “ uxx, in Ω “ p0, 1q, up0, tq “ up1, tq “ 0, for t ą 0, with upx, 0q “ vpxq.

We partition Ω “ p0, 1q uniformly into subintervals Ij “ pxj´1, xjq by xj “ jh, j “ 0, . . . , N ` 1,
h “ 1{pN ` 1q, and let Sh be the continuous piecewise linear functions χ on this partition, with χ0 “
χN`1 “ 0, where χj “ χpxjq. The basis functions tΦiuN

i“1 Ă Sh are defined by Φipxjq “ δij .
We consider first the spatially semidiscrete case, and then give some results for fully discrete methods.

6.1 The spatially semidiscrete problem

With r¨, ¨s an appropriate inner product on Sh, and p¨, ¨q “ p¨, ¨qL2p0,1q, the spatially semidiscrete problem
is

ruh,t, χs ` pu1
h, χ

1q “ 0, @χ P Sh, for t ě 0, with uhp0q “ vh. (6.1)

For the Standard Galerkin method we use r¨, ¨s “ p¨, ¨q, and for the Lumped Mass method, we approximateş
Ij
fpxq dx by 1

2
hpfpxj´1q ` fpxjqq and thus employ

rψ, χs “ pψ, χqh “ 1

2
h

Nÿ

j“1

ψpxjqχpxjq.

For the Finite Volume Element method the control volumes are now the intervals Vj “ pxj´1{2, xj`1{2q, j “
1, . . . , N, where xj˘1{2 “ xj ˘ 1

2
h, and the analogue of the FVE equation (2.4) is

ż

Vj

ruh,tdx ´
`

ru1
hpxj`1{2q ´ ru1

hpxj´1{2q
˘

“ 0, j “ 1, . . . , N,

or
ż

Vj

ruh,tdx ´ h∆hruhpxjq “ 0, where ∆hχj “ h
´2

`
χj`1 ´ 2χj ` χj´1

˘
, j “ 1, . . . , N. (6.2)
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For χ P Sh, letting Jhχ be the piecewise constant function on the Vj with pJhχqpxjq “ χpxjq, we may
multiply (6.2) by Jhχpxjq and sum to obtain, with Bχj “ pχj`1 ´ χjq{h,

pruh,t, Jhχq “ h

Nÿ

j“1

∆h ruhpxjqχpxjq “ ´h
Nÿ

j“0

Bruh,j Bχj “ ´pru1
h, χ

1q, @χ P Sh,

which is (6.1), with rψ, χs “ xψ, χy “ pψ, Jhχq.
In matrix form, (6.1) may be written as

Mα
1 ` Sα “ 0, for t ě 0, with αp0q “ rv, (6.3)

with the mass matrix M “ prΦi,Φjsq and the stiffness matrix S “ ppΦ1
i,Φ

1
jqq. As in (1.6) the solution

matrix is Eptq “ e´Ht, with H “ M´1S. Here M and S take the form, with 2m1`m0 “ 1, 0 ď 2m1 ă m0,

M “ h

¨
˚̊
˚̊
˝

m0 m1 0 . . . 0
m1 m0 m1 . . . 0
...

...
. . .

0 0 . . . m0

˛
‹‹‹‹‚

and S “ h
´1

¨
˚̊
˚̊
˝

2 ´1 0 . . . 0
´1 2 ´1 . . . 0
...

...
. . .

0 0 . . . 2

˛
‹‹‹‹‚
,

where m1 “ pm1 “ 1{6 for SG, m1 “ rm1 “ 1{8 for FVE, and m1 “ m̄1 “ 0 for LM. Note that ĂM is more
concentrated on the diagonal than xM. The eigenvectors and –values of H are, for j “ 1, . . . , N,

tϕjpxlquN
l“1 “ t

?
2h sinpjπxlquN

l“1 and λj “ 2
h2

1 ´ cospπjhq
m0 ` 2m1 cospπjhq . (6.4)

Analogously to Theorem 3.1 we have the following.

Theorem 6.1. If M is nondiagonal (or m1 ą 0), then the solution matrix Eptq “ e´Ht cannot be

nonnegative for small t ą 0.

Proof. Assume Eptq ě 0 for all t ą 0. Then, as in two space dimensions,

Eptq “ e
´Ht “ I ´ H t ` Opt2q ě 0, as t Ñ 0, with H “ M

´1
S,

so that hij ď 0, j ‰ i. Here M “ hm0pI ` µJ q, and µ “ m1{m0 ă 1{2, where the elements of J are 1
in the two main bidiagonals, with all other elements 0. Thus

M
´1 “ h

´1
m

´1

0 pI ` µJ q´1 “ h
´1
m

´1

0

8ÿ

j“0

p´1qj
µ

j
J

j
,

where the series converges since, in maximum norm, }J } “ 2. Further, J j only has nonzero elements in
bidiagonals of even order when j is even, and of odd order when j is odd. It follows that the elements of
M´1 are positive in bidiagonals of even order and negative in those of odd order. Since S “ 2h´1pI´ 1

2
J q,

the same holds for H “ M´1S, in contradiction to hij ď 0 for j ‰ i.

For the LM method the situation is more positive.

Theorem 6.2. The LM solution matrix Ēptq “ e´H̄t is nonnegative for t ě 0.

Proof. Since the mass matrix for LM is M̄ “ hI, and thus H̄ “ h´1S “ 2h´2pI ´ 1

2
J q, we have

Eptq “ e
´tH̄ “ e

´2th´2

e
th´2J “ e

´2th´2
8ÿ

j“0

1
j!

pth´2qj
J

j ě 0.

Note that, since S´1 ą 0 we have H´1 “ S´1M ą 0. It therefore follows as in Theorem 3.3, since in 1D
the analogues of the σj in (3.2) are bounded by σj “ maxl | sinpjπxlq|{ sinpπxlq ď j, that Eptq ą 0 if

Nÿ

j“2

e
´λjt

j
2 ă e

´λ1t
. (6.5)
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Some values of the thresholds t0 for positivity and the infimum t1 of t such that (6.5) holds are given
in Table 7. As in Section 5 the thresholds t0 diminish with h, here almost linearly, for both the SG and
FVE methods. However, this is not true for t1, which is seen to be a very pessimistic estimate for t0.

h pt0 pt1 rt0 rt1
0.020 0.0082 0.0522 0.0067 0.0523
0.010 0.0044 0.0523 0.0036 0.0524
0.005 0.0023 0.0523 0.0019 0.0524

Table 7. Positivity thresholds and smallest t1 for (6.5) to hold for Eptq “ e´tH, for SG and FVE.

We end this section with a comment on the relation between nonnegativity and the validity of (6.5).
For the semidiscrete solution matrix Eptq “ peijptqq of (6.3) we have by eigenvector expansion

eijptq “
Nÿ

l“1

e
´tλlϕipxlqϕjpxlq “ 2h

Nÿ

l“1

e
´tλl sinpiπxlq sinpjπxlq.

In particular, since Nπxl “ lπ ´ πxl, we have sinpπxlq sinpNπxlq “ p´1ql`1 sin2pπxlq, and hence

e1N ptq “ 2h
Nÿ

l“1

p´1ql`1
e

´tλl sin2plπhq. (6.6)

There is numerical evidence that the positivity threshold t0 is the maximal zero of e1N ptq. At any rate,
positivity of e1N ptq is necessary for positivity of Eptq. In view of (6.5) and (6.6) we have

sin2pπhq
´
e

´λ1t´
Nÿ

j“2

e
´λjt

j
2
¯

ď sin2pπhqe´λ1t ´
Nÿ

j“2

e
´λjt sin2pjπhq (6.7)

“p2hq´1
e1N ptq ´ 2

rpN´1q{2sÿ

j“1

e
´λ2j`1t sin2pp2j ` 1qπhq.

This inequality shows that if (6.5) holds, then e1N ptq is positive. It also shows, through the last positive
sum in (6.7), that (6.5) is a much stronger property than nonnegativity.

6.2 Fully discrete methods.

We consider time stepping matrices Ek “ rpkHq where, as in Section 4, rpξq is a bounded rational
function for ξ ě 0 such that rpξq “ 1 ´ ξ `Opξ2q as ξ Ñ 0. In the same way as in Theorem 4.5 we have
at once the following.

Theorem 6.3. With rpξq as above and M nondiagonal, Ek “ rpkHq cannot be nonnegative for small k.

This applies, in particular, to the Backward Euler method,

Ek “ r01pkHq “ pM ` kSq´1
M, H “ M

´1
S, (6.8)

with M,S as in (6.3). It also applies to the p0, 2q´Padé method, with rpξq “ r02pξq. For the LM method
M is diagonal, but in spite of Theorem 6.2 it was shown in [11] that the matrix Ēk “ r02pkH̄q cannot
be nonnegative for small λ “ k{h2 if N ě 4.

In order to discuss positivity for larger k, we recall that H´1 ą 0. Hence, as in Theorem 4.7, we
may show the following result.
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Theorem 6.4. With rpξq as above, if Ek “ rpkHq ě 0 for large k, then rpξq ě 0 for large ξ. If rp8q “ 0
and rpξq ě 0 for large ξ, then Ek “ rpkHq ą 0 for large k.

Proof. If Ek ě 0 for large k, then Ekϕ1 “ rpkλ1qϕ1 ě 0 for large k, and since ϕ1 ą 0, we have rpkλ1q ě 0
for large k, which shows the first part of the theorem.

If rp8q “ 0 and rpξq ě 0 for large ξ, then rpξq “ cξ´q `Opξ´q´1q for large ξ, with c ą 0, q ě 1. We
then have Ek “ k´qpcH´q ` Opk´1qq, and hence, since H´q ą 0 we conclude Ek ą 0 for large k.

In particular, this shows the nonnegativity for large k of Ek “ r01pkHq and Ek “ r02pkHq. In the same
way as in Theorem 4.9 we find, more precisely, that Ek “ rpkHq ą 0 if

Nÿ

j“2

rpkλj qj2 ă rpkλ1q. (6.9)

This was used in [11] to show that for the SG method, Ek “ r02pkHq ą 0 for k ą 0.5, independently of
h. We remark that the lower bound k1 for k for (6.9) to hold is very pessimistic, as can be seen in Table
8. We also note that this condition will not be useful for the BE method. In fact, since λ1, λ2 are close
to the first two eigenvalues in the continuous case, π2 and 4π2, even for the first term in (6.9) we have
approximately 4rpk4π2q{rpkπ2q “ 4p1 ` kπ2q{p1 ` k4π2q ą 1.

We now show a precise result concerning the nonnegativity for large k for the BE method as in
(6.8). We note that, with λ “ k{h2,

M ` kS “ pm0h ` 2k{hqI ` pm1h ´ k{hqJ “ hpm0 ` 2λqpI ` εJ q, with ε “ m1 ´ λ

m0 ` 2λ
.

Theorem 6.5. For Ek defined in (6.8), we have Ek ě 0 if and only if λ ě m1.

Proof. We first show the analogue of Theorem 4.2 in this 1D case, i.e., that the set of k with Ek ě 0
is an interval rk0,8q. If this is not so, there is a largest k1 ě k0 such that Ek1

ě 0, or, equivalently, a
smallest κ1 ą 0 such that pκ1I ` Hq´1 ě 0. With κ “ κ1 ´ δ ă κ1, we may write

pκI ` Hq´1 “ pκ1I ` H ´ δIq´1 “ pκ1I ` Hq´1pI ´ Kq´1
, where K “ δpκ1I ` Hq´1

.

Here K ě 0, by assumption, and, if δ is so small that }K} “ δ}pκ0I ` Hq´1} ă 1, then pI ´ Kq´1 “ř8
j“0

Kj ě 0, and therefore pκI ` Hq´1 ě 0. Since κ ă κ1 this is in contradiction to the definition of κ1.
For λ ě m1 we have ε ď 0 and hence, since |ε| ă 1{2, I ` εJ is a Stieltjes matrix, so that

pM ` kSq´1 ě 0. Since M ě 0 it follows from (6.8) that Ek ě 0.
On the other hand, if λ ă m1, then ε ą 0 and the elements in the first bidiagonals of pI ` εJ q´1

are ´ε`Opε2q and those in the jth bidiagonals are of order Opε2q for j ą 1. Hence, the elements of the
second bidiagonal of pI ` εJ q´1M are ´m1ε ` Opε2q, and thus, by (6.8), the corresponding elements
of Ek negative for ε ą 0 small. The above therefore shows that k0 “ m1h

2 and completes the proof.

The positivity threshold is thus k0 “ m1h
2. We note that since pm1 ą rm1 ą 0, the condition in Theorem

6.5 is weaker for FVE than for SG, and that since m̄1 “ 0, the LM Backward Euler solution matrix Ēk

is nonnegative for k ě 0. This is illustrated in Table 8.
We observe the following 1D analogue of Theorem 4.10, showing the positivity of the discrete solution

operator for any k, after a finite number of steps.

Theorem 6.6. Let Ek “ rpkHq, with rpξq as above, and positive and decreasing for ξ ě 0. Then, for

any k ą 0, there exists a n0pkq such that En
k ě 0 for n ě n0pkq.

We close this section by noting that as in Theorem 4.12 one may show the following result for the
θ´method, thus with

Eθ,k “ rθpkHq “ pM ` kθSq´1pM ´ kp1 ´ θqSq, 0 ă θ ă 1.
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r01pkHq r02pkHq
h pk0

rk0
pk0

pk1
rk0

rk1 k0 k1

0.020 0.000067 0.000050 0.017 0.30 0.017 0.35 0.016 0.44
0.010 0.000017 0.000013 0.017 0.34 0.017 0.37 0.017 0.41
0.005 0.000005 0.000004 0.017 0.36 0.017 0.38 0.017 0.40

Table 8. Positivity thresholds for r01pkHq for SG, FVE and lower bound k1 for (6.9) for r02pkHq, for SG, FVE, LM.

Theorem 6.7. We have Eθ,k ě 0 if k P
“
θ

´1
m1 h

2
, p1 ´ θq´1 1

2
m0 h

2
‰
.

For the Crank-Nicolson method (θ “ 1

2
) this gives the nonnegativity interval r 1

3
h2, 2

3
h2s for SG and

r 1

4
h2, 3

4
h2s for FVE.

7 The cutoff method

Consider first the spatially semidiscrete problem (1.4), with rv ě 0. The cutoff method then defines the
approximate nonnegative solution u`

h ptq P Sh for t ě 0 by taking for its nodal values the nonnegative
parts of those of uhptq, or u`

h pPj , tq “ maxpuhpPj , tq, 0q, for j “ 1, . . . , N . Since the exact solution uptq
of (1.1) is nonnegative, we have

|u`
h pPj, tq ´ upPj, tq| ď |uhpPj, tq ´ upPj, tq|, for j “ 1, . . . , N. (7.1)

We shall see that, as a result of (7.1), an error bound in } ¨ } “ } ¨ }L2pΩq for uhptq implies an error bound
in } ¨ } for u`

h ptq.
Similarly, for a fully discrete solution Un P Sh, for n ě 0, we define the nonnegative cutoff solution

pUnq` P Sh by pUnq`pPjq “ maxpUnpPjq, 0q, for j “ 1, . . . , N , and now find

|pUnq`pPj, tq ´ upPj, tq| ď |UnpPjq ´ upPjq|, for j “ 1, . . . , N.

We first show the following lemma.

Lemma 7.1. Let χ,ψ P Sh, and |χpPjq| ď |ψpPjq| for j “ 1, . . . , N . Then }χ} ď 2}ψ}.

Proof. We have for any K P Th, with vertices PK,l, and setting χl “ χpPK,lq, l “ 1, 2, 3,

}χ}2

L2pKq “ 1
3

|K|
“`χ1 ` χ2

2

˘2 `
`χ2 ` χ3

2

˘2 `
`χ3 ` χ1

2

˘2‰
.

One easily shows

χ
2

1 ` χ
2

2 ` χ
2

3 ď pχ1 ` χ2q2 ` pχ2 ` χ3q2 ` pχ3 ` χ1q2 ď 4pχ2

1 ` χ
2

2 ` χ
2

3q.

Hence
}χ}2

L2pKq ď 1
3

|K|pχ2

1 ` χ
2

2 ` χ
2

3q ď 1
3

|K|pψ2

1 ` ψ
2

2 ` ψ
2

3q ď 4}ψ}2

L2pKq.

Summation over K P Th implies our claim.

Let Ih : CpΩq Ñ Sh be defined by IhvpPjq “ vpPjq for j “ 1, . . . , N . Application of the lemma with
χ “ u`

h ptq ´ Ihuptq, ψ “ uhptq ´ Ihuptq, together with the triangle inequality, and correspondingly for
the fully discrete solution immediately shows the following result.

Theorem 7.1. We have, for the semidiscrete and fully discrete cutoff solutions of (1.4),

}u`
h ptq ´ uptq} ď 2}uhptq ´ uptq} ` 3}Ihuptq ´ uptq}, for t ě 0,

}pUnq` ´ uptnq} ď 2}Un ´ uptnq} ` 3}Ihuptnq ´ uptnq}, for tn ě 0.
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As an application, let Un be the fully discrete p0, 2q´Padé approximation of the solution of (1.1), with
discrete initial data Phv where Ph : L2pΩq Ñ Sh is the L2´projection. Then

}Un ´ uptnq} ď C
`
h

2
t
´1

n ` k
2
t
´2

n

˘
}v}, for tn “ nk ą 0, (7.2)

see, e.g., [12], Theorem 7.7. Since

}Ihuptnq ´ uptnq} ď Ch
2}uptnq}H2pΩq ď Ch

2
t
´1

n }v}, for tn ą 0,

Theorem 7.1 shows that the error bound (7.2) holds also with Un replaced by the nonnegative cutoff
solution pUnq`.
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