Topological manifold

A topological manifold of dimension n is a set M together with a set of subsets $\{U_i \subseteq M : i \in \mathcal{A}\}$ such that

- 1. the U_i cover M, that is $M = \bigcup_{i \in \mathcal{A}} U_i$,
- 2. for every $i \in \mathcal{A}$, there is a bijection $\varphi_i : U_i \longrightarrow B^n$ from U_i to the unit ball in \mathbb{R}^n , $B^n = \{x \in \mathbb{R}^n : |x| < 1\}.$
- 3. for every $i, j \in \mathcal{A}$ with $U_i \cap U_j \neq \emptyset$, the mapping

$$\varphi_j \circ \varphi_i^{-1} : \varphi_i(U_i \cap U_j) \longrightarrow \varphi_j(U_i \cap U_j)$$

is continuous as a mapping between subsets of \mathbb{R}^n .

The mapping $\varphi_i : U_i \longrightarrow B^n$ is a **coordinate chart** for the topological manifold M. The set $\{U_i \subseteq M : i \in \mathcal{A}\}$ together with the set of coordinate charts $\{\varphi_i : U_i \longrightarrow B^n, i \in \mathcal{A}\}$ is an **atlas** for the topological manifold M. The mappings $\varphi_j \circ \varphi_i^{-1} : \varphi_i(U_i \cap U_j) \longrightarrow \varphi_j(U_i \cap U_j)$ are the **transition functions** of the atlas.

Example 1 \mathbb{R}^n itself is a topological manifold of dimension n. For every point $a \in \mathbb{R}^n$, we define $U_a = \{x \in \mathbb{R}^n : |x - a| < 1\}$, and the coordinate chart $\varphi_a : x \mapsto x - a$. The set $\{U_a : a \in \mathbb{R}^n\}$ is clearly a covering of \mathbb{R}^n , and the transition functions are continuous, $\varphi_a \circ \varphi_b^{-1}(y) = y + b - a$.

Example 2 The circle $S^1 = \{x \in \mathbb{R}^2 : |x| = 1\}$ is a topological manifold of dimension 1. We can define an atlas with two coordinate charts.

Let $g: (-1, 1) \longrightarrow S^1$ be the mapping $t \longmapsto (\cos \pi t, \sin \pi t)$. The image of g is the set $U_1 = S^1 \setminus \{(-1, 0)\}$ and g is an injection. So there is an inverse $g^{-1}: U_1 \longrightarrow (-1, 1)$. We define the coordinate chart $\varphi_1(x) = g^{-1}(x)$.

Similarly, we define $g: (-1, 1) \longrightarrow S^1$ to be the mapping $t \longmapsto (-\cos \pi t, \sin \pi t)$. The image of h is the set $U_2 = S^1 \setminus \{(1, 0)\}$ and h is an injection. So there is an inverse $h^{-1}: U_2 \longrightarrow (-1, 1)$. We define the coordinate chart $\varphi_2(x) = h^{-1}(x)$.

Check that the transition functions are continuous.

Example 3 We shall define the structure of a topological manifold of dimension 2 on the set $S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$: We define an atlas consisting of a covering by 6 subsets, $U_u, U_d, U_l, U_r, U_f, U_b$ (where the indices stand for *up*, *down*, *left*, *right*, *front* and *back*),

$$\begin{split} &U_u = \{(x, \, y, \, z) \in S^2 : z > 0\}\,, \qquad \varphi_u(x, \, y, \, z) = (x, \, y) \in \mathbb{R}^2\,, \\ &U_d = \{(x, \, y, \, z) \in S^2 : z < 0\}\,, \qquad \varphi_d(x, \, y, \, z) = (x, \, y) \in \mathbb{R}^2\,, \\ &U_l = \{(x, \, y, \, z) \in S^2 : y < 0\}\,, \qquad \varphi_l(x, \, y, \, z) = (x, \, z) \in \mathbb{R}^2\,, \end{split}$$

$$U_r = \{(x, y, z) \in S^2 : y > 0\}, \qquad \varphi_r(x, y, z) = (x, z) \in \mathbb{R}^2, U_f = \{(x, y, z) \in S^2 : x > 0\}, \qquad \varphi_f(x, y, z) = (y, z) \in \mathbb{R}^2, U_b = \{(x, y, z) \in S^2 : x < 0\}, \qquad \varphi_b(x, y, z) = (y, z) \in \mathbb{R}^2.$$

Check that for $(s, t) \in B^2$, $\varphi_u^{-1}(s, t) = (s, t, \sqrt{1 - s^2 - t^2})$, and that if t < 0, $\varphi_u^{-1}(s, t) \in U_u \cap U_l$ and the transition function is $\varphi_l \circ \varphi_u^{-1}(s, t) = (s, \sqrt{1 - s^2 - t^2})$, which is clearly a continuous mapping between subsets of \mathbb{R}^2 .