Topological manifold

A topological manifold of dimension n is a set M together with a set of subsets $\left\{U_{i} \subseteq M: i \in \mathcal{A}\right\}$ such that

1. the U_{i} cover M, that is $M=\bigcup_{i \in \mathcal{A}} U_{i}$,
2. for every $i \in \mathcal{A}$, there is a bijection $\varphi_{i}: U_{i} \longrightarrow B^{n}$ from U_{i} to the unit ball in \mathbb{R}^{n}, $B^{n}=\left\{x \in \mathbb{R}^{n}:|x|<1\right\}$.
3. for every $i, j \in \mathcal{A}$ with $U_{i} \cap U_{j} \neq \varnothing$, the mapping

$$
\varphi_{j} \circ \varphi_{i}^{-1}: \varphi_{i}\left(U_{i} \cap U_{j}\right) \longrightarrow \varphi_{j}\left(U_{i} \cap U_{j}\right)
$$

is continuous as a mapping between subsets of \mathbb{R}^{n}.
The mapping $\varphi_{i}: U_{i} \longrightarrow B^{n}$ is a coordinate chart for the topological manifold M. The set $\left\{U_{i} \subseteq M: i \in \mathcal{A}\right\}$ together with the set of coordinate charts $\left\{\varphi_{i}: U_{i} \longrightarrow B^{n}, i \in\right.$ $\mathcal{A}\}$ is an atlas for the topological manifold M. The mappings $\varphi_{j} \circ \varphi_{i}^{-1}: \varphi_{i}\left(U_{i} \cap U_{j}\right) \longrightarrow$ $\varphi_{j}\left(U_{i} \cap U_{j}\right)$ are the transition functions of the atlas.

Example $1 \mathbb{R}^{n}$ itself is a topological manifold of dimension n. For every point $a \in \mathbb{R}^{n}$, we define $U_{a}=\left\{x \in \mathbb{R}^{n}:|x-a|<1\right\}$, and the coordinate chart $\varphi_{a}: x \longmapsto x-a$. The set $\left\{U_{a}: a \in \mathbb{R}^{n}\right\}$ is clearly a covering of \mathbb{R}^{n}, and the transition functions are continuous, $\varphi_{a} \circ \varphi_{b}^{-1}(y)=y+b-a$.

Example 2 The circle $S^{1}=\left\{x \in \mathbb{R}^{2}:|x|=1\right\}$ is a topological manifold of dimension 1. We can define an atlas with two coordinate charts.

Let $g:(-1,1) \longrightarrow S^{1}$ be the mapping $t \longmapsto(\cos \pi t, \sin \pi t)$. The image of g is the set $U_{1}=S^{1} \backslash\{(-1,0)\}$ and g is an injection. So there is an inverse $g^{-1}: U_{1} \longrightarrow(-1,1)$. We define the coordinate chart $\varphi_{1}(x)=g^{-1}(x)$.

Similarly, we define $g:(-1,1) \longrightarrow S^{1}$ to be the mapping $t \longmapsto(-\cos \pi t, \sin \pi t)$. The image of h is the set $U_{2}=S^{1} \backslash\{(1,0)\}$ and h is an injection. So there is an inverse $h^{-1}: U_{2} \longrightarrow(-1,1)$. We define the coordinate chart $\varphi_{2}(x)=h^{-1}(x)$.

Check that the transition functions are continuous.
Example 3 We shall define the structure of a topological manifold of dimension 2 on the set $S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=1\right\}$: We define an atlas consisting of a covering by 6 subsets, $U_{u}, U_{d}, U_{l}, U_{r}, U_{f}, U_{b}$ (where the indices stand for up, down, left, right, front and back),

$$
\begin{array}{ll}
U_{u}=\left\{(x, y, z) \in S^{2}: z>0\right\}, & \varphi_{u}(x, y, z)=(x, y) \in \mathbb{R}^{2}, \\
U_{d}=\left\{(x, y, z) \in S^{2}: z<0\right\}, & \varphi_{d}(x, y, z)=(x, y) \in \mathbb{R}^{2}, \\
U_{l}=\left\{(x, y, z) \in S^{2}: y<0\right\}, & \varphi_{l}(x, y, z)=(x, z) \in \mathbb{R}^{2},
\end{array}
$$

$$
\begin{aligned}
& U_{r}=\left\{(x, y, z) \in S^{2}: y>0\right\}, \quad \varphi_{r}(x, y, z)=(x, z) \in \mathbb{R}^{2}, \\
& U_{f}=\left\{(x, y, z) \in S^{2}: x>0\right\}, \quad \varphi_{f}(x, y, z)=(y, z) \in \mathbb{R}^{2}, \\
& U_{b}=\left\{(x, y, z) \in S^{2}: x<0\right\}, \quad \varphi_{b}(x, y, z)=(y, z) \in \mathbb{R}^{2} .
\end{aligned}
$$

Check that for $(s, t) \in B^{2}, \varphi_{u}^{-1}(s, t)=\left(s, t, \sqrt{1-s^{2}-t^{2}}\right)$, and that if $t<0, \varphi_{u}^{-1}(s, t) \in$ $U_{u} \cap U_{l}$ and the transition function is $\varphi_{l} \circ \varphi_{u}^{-1}(s, t)=\left(s, \sqrt{1-s^{2}-t^{2}}\right)$, which is clearly a continuous mapping between subsets of \mathbb{R}^{2}.

