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Abstract

Due to a result by Mackenzie, extensions of transitive Lie groupoids are equivalent to certain Lie groupoids which admit an
action of a Lie group. This paper is a treatment of the equivariant connection theory and holonomy of such groupoids, and shows
that such connections give rise to the transition data necessary for the classification of their respective Lie algebroids.
© 2005 Elsevier B.V. All rights reserved.

MSC: primary 53C05; secondary 22A22, 53C10, 55R10

Keywords: Groupoids; Algebroids; Extensions; Connections

1. Introduction

A groupoid, in the categorical sense, is a category where every arrow is invertible. Lie groupoids are those ones
whose object and arrow spaces are manifolds, and the structure maps (source s, target t , multiplication and inversion)
are smooth, plus t and s are submersions. A Lie group can be considered as a Lie groupoid (with a single point as the
object space), but in general Lie groupoids are inherently noncommutative, hence their extensive use in differential
geometry. In the same fashion, a bundle of Lie groups is also a Lie groupoid, with its projection playing the role of
both the source and target maps. In this paper we focus on the transitive case, namely those Lie groupoids Ω ⇒ M

such that the anchor map (t, s) :Ω → M × M is a surjective submersion.
Given a transitive Lie groupoid Ω ⇒ M , an extension of this is a pair of Lie groupoid morphisms

(1)F
ι

� Ω
φ
� Φ

where Φ ⇒ M is a transitive Lie groupoid and F → M is a bundle of Lie groups. Much of the work of Mackenzie
concerns such extensions, and for a general Lie groupoid there always exists a foliation whose restriction to every leaf
is such an extension. When dealing with such an extension, it is quite difficult to keep track of the transition functions
of all the groupoids involved. Mackenzie in [5], managed to reformulate such an extension to a single (transitive)
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Lie groupoid over the total space of a principal bundle, plus a group action. These are called PBG-groupoids, and an
account of this correspondence is given in Section 1. It is therefore reasonable to expect that extensions of transitive
Lie groupoids are classified by the transition functions of their corresponding PBG-groupoids, but it is necessary to
keep track of the group action as well, and it is not certain that there exist transition functions which enjoy some kind
of equivariance.

This is where connections are necessary. The transversals of an extension of transitive Lie groupoids correspond
to connections in the respective PBG-groupoid which are suitably equivariant, and these are the connections whose
infinitesimal theory and holonomy are given in this paper. The term isometablic is used for these connections, instead
of equivariant, in order to highlight the non-standard nature of equivariance for the transition functions that they
induce.

The classification of PBG-groupoids (extensions of transitive Lie groupoids) is a problem of a different order pre-
sented in [1]. In this paper we focus on the infinitesimal level, namely the classification of transitive PBG-algebroids. It
is shown in [6] that every transitive Lie algebroid A (i.e., an extension of T M by a Lie algebra bundle L) locally can be
written as T Ui ⊕ LUi

, and in [6] it is shown that such Lie algebroids are classified by pairs (χ,α) = {(χij , αij )}i,j∈I ,
where αij :Uij → Aut(h) are the transition functions of the sections of L and χij :T Uij → Uij × h are certain differ-
ential 1-forms, and the two of them satisfy suitable compatibility conditions. Here h is the fiber type of L and {Ui}i∈I

is a simple open cover of M . This data arises from the fact that locally there exist flat connections, namely Lie alge-
broid morphisms T Ui → AUi

. In this paper we show that locally PBG-algebroids have flat isometablic connections,
and this gives rise to transition data which is suitably equivariant, modulo a simple connectivity assumption. Namely,
we prove that:

Theorem 1.1. Let P(M,G) be a principal bundle whose structure group G is simply connected and {Pi ≡ Ui ×G}i∈I

a local trivialisation of this bundle. If A is a PBG-algebroid over this bundle then there exist transition data (χ,α)

such that

(i) χij (Xg) = χij (X)g and
(ii) αij (ug) = αij (u)g

for all X ∈ T Pij , u ∈ Pij and g ∈ G.

When A is integrable though, the simple connectivity assumption is no longer necessary. It will be shown that:

Theorem 1.2. For any integrable PBG-algebroid A over a principal bundle P(M,G) there exist transition data (χ,α)

which satisfy (i) and (ii) of Theorem 1.1.

Note that the in order to prove the above result, the equivariance of the sections of the PBG-groupoid which
integrates A is investigated, and this is an important step to the classification of PBG-groupoids.

Finally, we give an account of the holonomy of isometablic connections which leads to the proof of an Ambrose–
Singer theorem for isometablic connections. The treatment of holonomy presented here follows the fashion of [6],
i.e. we use the equivariant version of deformable sections. This method provides more information for the relation of
isometablic connections of PBG-Lie algebra bundles with their sections.

The structure of this paper is as follows: Sections 2 and 3 are an account of the correspondence between extensions
and PBG structures, in both the groupoid and the algebroid level. A number of examples is included, most of which
are used in the proofs later in the paper. Section 4 gives the connection theory of PBG-groupoids and PBG-Lie
algebra bundles. In Section 5 we give the proofs of Theorems 1.1 and 1.2. Section 6 is an account of the holonomy
of isometablic connections in the fashion of [6], and Section 7 gives the proof of the Ambrose–Singer theorem for
isometablic connections.

2. PBG-groupoids

Let us fix some conventions first. All manifolds considered in the paper are C∞-differentiable, Hausdorff, para-
compact and have a countable basis for their topology. We consider the arrows in a groupoid “from right to left”, i.e.



152 I. Androulidakis / Differential Geometry and its Applications 24 (2006) 150–171
the source sξ of an element ξ in a groupoid Ω is considered to be on the right and its target tξ on the left. The object
inclusion map of a groupoid Ω over a manifold M is denoted by 1 :M → Ω , namely x �→ 1x . In [6] the expression
‘Lie groupoid’ stood for a locally trivial differentiable groupoid; here we use the expression ‘transitive Lie groupoid’
for clarity.

Definition 2.1. A PBG-groupoid is a Lie groupoid Υ ⇒ P whose base is the total space of a principal bundle P(M,G)

together with a right action of G on the manifold Υ such that for all (ξ, η) ∈ Υ × Υ such that sξ = tη and g ∈ G we
have:

(i) t (ξ · g) = t (ξ) · g and s(ξ · g) = s(ξ) · g,
(ii) 1u·g = 1u · g,

(iii) (ξη) · g = (ξ · g)(η · g),
(iv) (ξ · g)−1 = ξ−1 · g.

We denote a PBG-groupoid Υ over the principal bundle P(M,G) by Υ ⇒ P(M,G) and the right-translation in Υ

coming from the G-action by R̃g for any g ∈ G. The right-translation in P will be denoted by Rg . The properties in
the previous definition show that the group G of the base principal bundle P(M,G) acts on Υ by automorphisms,
namely R̃g is an automorphism of the Lie groupoid Υ over the diffeomorphism Rg for all g ∈ G. A morphism ϕ

of Lie groupoids between two PBG-groupoids Υ and Υ ′ over the same principal bundle is called a morphism of
PBG-groupoids, if ϕ ◦ R̃g = R̃′

g ◦ ϕ for all g ∈ G. In the same fashion, a PBG-Lie group bundle (PBG-LGB) is a
Lie group bundle F over the total space P of a principal bundle P(M,G) such that the group G acts on F by Lie
group bundle automorphisms. We denote a PBG-LGB by F → P(M,G). It is easy to see that the gauge group bundle
IΥ of a PBG-groupoid Υ ⇒ P(M,G) is a PBG-LGB. Now let us describe the correspondence of transitive PBG-
groupoids with extensions of Lie groupoids. For any given extension of Lie groupoids (1), choose a basepoint and
take its corresponding extension of principal bundles

N � Q(M,H)
π(id,π)

� P(M,G).

That is to say that π(id,π) is a surjective morphism of principal bundles and H is an extension of the Lie group G

by N . This gives rise to the principal bundle Q(P,N,π), which Mackenzie in [5] called the transverse bundle of the
previous extension. The Lie groupoid Υ = Q×Q

N
corresponding to the transverse bundle admits the following action

of G:

〈v2, v1〉g = 〈v2h,v1h〉,
for any v2, v1 ∈ Q and g ∈ G, where h ∈ H is any element with π̃ (h) = g. This action makes Υ ⇒ P(M,G) a PBG-
groupoid. On the other hand, writing a transitive PBG-groupoid as an exact sequence IΥ � Υ � P × P , the fact
that G acts by Lie groupoid automorphisms allows us to quotient the sequence over G and obtain the extension of Lie
groupoids

(2)
IΥ

G
� Υ

G
� P × P

G
.

The two processes are mutually inverse (for the details of the proof see [5]). This establishes the following result:

Proposition 2.2. Any transverse PBG-groupoid Υ ⇒ P(M,G) corresponds exactly to an extension of Lie groupoids
F � Ω � P×P

G
.

Let us give now some examples of PBG-groupoids, which will also be useful in later sections.

Example 2.3. Consider a principal bundle P(M,G) and a Lie group H . Suppose given an action by automorphisms
of G on H , say (g,h) �→ Rg(h) for all g ∈ G and h ∈ H . That is to say that Rg :H → H is an automorphism of H

for all g ∈ G. Form the trivial groupoid P × H × P ⇒ P(M,G). This is easily seen to be a transitive PBG groupoid.
We will refer to it as the trivial PBG-groupoid corresponding to the given action.
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Example 2.4. For this example, first let us recall the definition of an action groupoid. When a Lie group G acts on
a manifold M the action groupoid M ∀ G is the product manifold M × G with the following groupoid structure:
s(x, g) = x, t (x, g) = xg,1x = (x, eG). The multiplication is defined by (xg,h) · (x, g) = (x, gh) and the inverse of
(x, g) is (xg, g−1). The action groupoid is transitive if and only if the action of G on M is transitive. Now consider a
principal bundle P(M,G). There is an action of G on P ∀ G defined by R̃g(u,h) = (ug,g−1hg). This action makes
the action groupoid a PBG-groupoid P ∀ G ⇒ P(M,G).

Example 2.5. A PBG vector bundle is a vector bundle E over the total space P of a principal bundle P(M,G) such
that the structure group G acts on E by vector bundle automorphisms. We denote a PBG vector bundle by E →
P(M,G). The isomorphisms between the fibers of an arbitrary vector bundle define a transitive Lie groupoid called
the frame groupoid. This is the groupoid corresponding to the frame principal bundle induced by the vector bundle
under consideration. The frame groupoid Φ(E) of a PBG vector bundle E → P(M,G) has a canonical PBG structure
over P(M,G). Namely, for any g ∈ G, an isomorphism ξ :Eu → Ev between two fibers defines an isomorphism
R̃g(ξ) :Eug → Evg by

R̃g(ξ)(V ) = ξ(V · g−1) · g
for all V ∈ Eug . Moreover, there is a canonical morphism of PBG-groupoids ε :P ∀ G → Φ(E) over the principal
bundle P(M,G). Namely, ε(u,g) is the isomorphism R̂g :Eu → Eug induced by the action of G on E. It is straight-
forward to show that ε is indeed a morphism of Lie groupoids. It also preserves the actions because:

ε
(
(u,h) · g) = ε(u · g,g−1hg) = [

(R̂g−1hg)u·g :Eu·g → Eu·hg

]
= R̃g

[
(R̂h)u :Eu → Eu·h

] = R̃g

(
ε(u,h)

)
.

Let us now give an example of a PBG-groupoid that arises from an extension of principal bundles.

Example 2.6. We consider the principal bundles SU(2)(S2,U(1),p) and SO(3)(S2,SO(2),p′). For the first bundle,
denote a typical element

[
s t

−t̄ s̄

]
of SU(2) such that |s|2 + |t |2 = 1 by (s, t). Regard U(1) as a subgroup of SU(2) by

mapping every z ∈ U(1) to (z,0) and let p be

(s, t) �→ (−2 Re(s · t),−2 Im(s · t),1 − 2 · |t |2).
For the second bundle, regard SO(2) as a subgroup of SO(3) by A �→ [

A 0
0 1

]
and let p′ be A �→ A · e3 where (e1, e2, e3)

is the usual basis of R
3. We define a morphism between these principal bundles making use of quaternions. Consider

any q = (s, t) ∈ SU(2) as a unit quaternion and every r = (r1, r2, r3) ∈ R
3 as a vector quaternion. Then q · r · q−1 is

a vector quaternion, i.e. q · r · q−1 ∈ R
3. For every q = (s, t) ∈ SU(2) we define Aq : R3 → R

3 as Aq(r) = q · r · q−1.
This is an element in SO(3). Let ϕ :U(1) → SO(2) be the restriction of A to U(1). If we write a z ∈ U(1) as z = eιθ =
cos θ + ι sin θ . for some θ ∈ R, then it is easy to see that

ϕ(z) =
[

cos(2θ) sin(2θ)

− sin(2θ) cos(2θ)

]
∈ SO(2).

This shows both that ϕ is a surjective submersion and that its kernel is Z2. We therefore get the extension

Z2 � SU(2)
(
S2,U(1)

) R(id
S2 ,φ)

� SO(3)
(
S2,SO(2)

)
.

Its transverse bundle is SU(2)(SO(3),Z2,A) and the PBG-groupoid it induces is

SU(2) × SU(2)

Z2
⇒ SO(3)

(
S2,SO(2)

)
,

where the action of SO(2) on SU(2)×SU(2)
Z2

is:〈
(s1, t1), (s2, t2)

〉 · z = 〈
(s1z, t1z̄), (s2z, t2z̄)

〉
.
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It was shown in [6, II§7] that for any Lie group G and closed subgroup H � G the gauge groupoid G×G
H

is isomorphic
to the action groupoid G

H

∀ G, where G acts on G
H

via (g, g′H) �→ (g · g′)H . The isomorphism is

〈g1, g2〉 �→ (
g1 · g−1

2 , g2H
)
.

Therefore SU(2)×SU(2)
Z2

⇒ SO(3)(S2,SO(2)) is isomorphic to the action PBG-groupoid SU(2)
Z2

∀SU(2) ⇒ SO(3)(S2,

SO(2)). Note that SU(2)
Z2

∼= RP 3. The action of SO(2) on RP 3 ∀ SU(2) is(
(w1,w2), (s, t) · Z2

) · Rθ = (
(w1,w2), (s · z, t · z̄) · Z2

)
.

3. PBG-algebroids

This is an account of PBG structures on the algebroid level. We show that every PBG-Lie algebroid corresponds to
an extension of Lie algebroids; the account in [5] gave only a partial result of this type. Some fundamental results are
also proved, which will be useful in the study of the connection theory in later sections of this paper. Let us begin by
describing the notion of a PBG structure on the algebroid level. We start with the special case of Lie algebra bundles.

Definition 3.1. A PBG-Lie algebra bundle (PBG-LAB) is a Lie algebra bundle L over the total space P of a principal
bundle P(M,G), together with an action of G on L such that each right-translation Rg :L → L is a Lie algebra
bundle automorphism over the right translation Rg :P → P .

We denote a PBG-LAB by L → P(M,G). A morphism between two PBG-LABs over the same principal bundle
is a morphism of LABs which preserves the group actions.

Example 3.2. Let P(M,G) be a principal bundle and h a Lie algebra which admits a right action (V ,g) �→ V ·g of G

such that

[V,W ] · g = [V · g,W · g]
for all V,W ∈ h. Now the trivial LAB P × h admits the G-action Rg(u,V ) = (ug,V · g). This makes it a PBG-LAB,
the trivial PBG-LAB.

Definition 3.3. A Lie algebroid is a vector bundle A on base M together with a vector bundle map q :A → T M , called
the anchor of A, and a bracket [ ] :Γ A×Γ A → Γ A which is R-bilinear, alternating, satisfies the Jacobi identity, and
is such that

(i) q([X,Y ]) = [q(X), q(Y )],
(ii) [X,uY ] = u[X,Y ] + q(X)(u)Y

for all X,Y ∈ Γ A and u ∈ C∞(M).

Given a trivial PBG-LAB P ×h → P(M,G), recall that the Whitney sum vector bundle T P ⊕ (P ×h) has a trivial
Lie algebroid structure over P . The anchor map is the first projection and the Lie bracket on its sections is defined by
the formula

[X ⊕ V,Y ⊕ W ] = [X,Y ] ⊕ {
X(W) − Y(V ) + [V,W ]}

for all X,Y ∈ Γ T P and smooth h-valued functions on V,W on P . The G-action on P × h defines a PBG structure
on this Lie algebroid. Namely, with the notation used in the previous Example 3.2 define the following action of G on
T P ⊕ (P × h):(

X ⊕ (u,V ), g
) �→ R̂g

(
X ⊕ (u,V )

) = TuRg(X) ⊕ (ug,V · g).
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Denote by R̂Γ
g :Γ (T P ⊕ (P × h)) → Γ (T P ⊕ (P × h)) the corresponding action on the sections of T P ⊕ (P × h).

This is given by the formula

R̂Γ
g (X ⊕ V )u = Tug−1Rg(Xug−1) ⊕ (Vug−1 · g)

for all X ∈ Γ T P,V ∈ C∞(P,h) and u ∈ P . This action preserves the Lie bracket in Γ (T P ⊕(P ×h)) and is an action
by automorphisms on the trivial Lie algebroid. This construction is an example of the notion of a PBG-algebroid.

Definition 3.4. A PBG-algebroid over the principal bundle P(M,G) is a Lie algebroid A over P together with a right

action of G on A denoted by (X,g) �→ R̂g(X) for all X ∈ A,g ∈ G such that each R̂g :A → A is a Lie algebroid
automorphism over the right translation Rg in P .

We denote a PBG-algebroid A over P(M,G) by A ⇒ P(M,G). The action of G on A induces an action of G on
Γ A, namely

X · g = R̂g ◦ X ◦ Rg−1

for all g ∈ G and X ∈ Γ A. The right-translation with respect to this action is denoted by R̂Γ
g :Γ A → Γ A for all

g ∈ G. With this notation Definition 3.4 implies that

R̂Γ
g

([X,Y ]) = [
R̂Γ

g (X), R̂Γ
g (Y )

]
for all X,Y ∈ Γ A and g ∈ G. The following result strengthens 3.2 of [5], where the quotient manifold was assumed
to exist.

Proposition 3.5. Let A be a transitive PBG-Lie algebroid on P(M,G). Then the quotient manifold A/G exists and
inherits a quotient structure of transitive Lie algebroid from A; further, it is an extension

L

G
� A

G
� T P

G

of the Lie algebroid of the gauge groupoid of P(M,G) by the quotient LAB L/G.

Proof. The main requirement is to prove that the manifold A/G exists. We apply the criterion of Godement [2].
Denote the projection A → P by pA, and write

Γ ′ = {
(X,Xg) | X ∈ A, g ∈ G

};
we must show that Γ ′ is a closed submanifold of A × A. Now Γ ′ ⊆ (pA × pA)−1(Γ ) where Γ = {(u,ug) | u ∈ P,

g ∈ G}. Since Γ is a closed submanifold of P × P , and pA × pA is a surjective submersion, it suffices to prove that
Γ ′ is a closed submanifold of (pA × pA)−1(Γ ). Define

f : (pA × pA)−1(Γ ) → A, (X,Y ) �→ Xg − Y,

where pA(Y ) = pA(X)g. From the local triviality of A, it easily follows that f is a surjective submersion. The
preimage of the zero section under pA is Γ ′, and this shows that Γ ′ is a closed submanifold. Denote the quotient
projection A → A/G by �.

The vector bundle structure of A quotients to A/G in a straightforward fashion. Since the anchor q :A → T P

is G-equivariant, it quotients to a vector bundle morphism A/G → T P/G which is again a surjective submersion;
denote this by π , and define r = q̃ ◦ π where q̃ is the anchor of T P/G.

For the bracket structure of A/G, note first that Γ (A/G) can be identified with the C∞(M) module of
G-equivariant sections of A as in the case of the Atiyah sequence of a principal bundle. Since the bracket on Γ A

restricts to the G-equivariant sections by assumption, this bracket transfers to Γ (A/G). It is now straightforward to
check that this makes A/G a Lie algebroid on M with anchor r , and � :A → A/G a Lie algebroid morphism over p.
That π is a Lie algebroid morphism with kernel L/G is easily checked. �

It is a straightforward exercise to verify that PBG-groupoids differentiate to PBG-algebroids. The next result, which
appears in [5], gives a converse.
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Theorem 3.6. Let Υ be an s-simply connected locally trivial Lie groupoid with base the total space of a principal
bundle P(M,G). Suppose that for all g ∈ G there is given a Lie algebroid automorphism R̃g :AΥ → AΥ which
defines the structure of a PBG-algebroid on AΥ . Then there is a natural structure of PBG-groupoid on Υ which
induces on AΥ the given PBG-Lie algebroid structure.

The examples which follow will be useful later on.

Example 3.7. Consider a transitive Lie algebroid A over a manifold M such that π1(M) �= 0. Let M̃ be the covering
space of M and p : M̃ → M the covering projection. Then we have the principal bundle M̃(M,π1(M),p). Denote
p!!A the pullback

p!!A p∗

q ′

p∗A

p∗(q)

T M̃
T (p∗)

p∗T M

Sections of p!!A are of the form X′ ⊕ C, where X′ ∈ Γ T M̃ , C ∈ Γ (p∗A) and

T (p∗)(X′) = p∗(q)(C).

This construction is described in [4], but let us recall here the Lie algebroid structure of p!!A. If we write C =∑
ui(Xi ◦ p) with ui ∈ C(M̃) and Xi ∈ Γ A, then

p∗(q)(C) =
∑

ui

(
q(Xi ◦ p)

)
with T (p)◦X′ = ∑

ui(q(Xi ◦p)). We define a Lie algebroid structure on p!!A with q ′ as the anchor map and bracket
given by[

X′ ⊕
∑

ui(Xi ◦ p),Y ′ ⊕
∑

uj (Yj ◦ p)
]

= [X′, Y ′] ⊕
{∑

uiuj

([Xi,Yj ] ◦ p
) +

∑
X′(uj )(Yj ◦ p) −

∑
Y ′(ui)(Xi ◦ p)

}
.

Now the pullback Lie algebroid p!!A is a PBG-algebroid over M̃(M,π1(M),p).

Example 3.8. Consider the action PBG-groupoid P ∀ G ⇒ P(M,G) constructed in Example 2.4. This differentiates
to the action PBG-algebroid P ∀ g ⇒ P(M,G). Here P ∀ g is the product manifold P × g and the anchor is the map
that associates to every V ∈ g the fundamental vector field V † ∈ Γ T P . The Lie bracket is given by the formula

(3)[V,W ] = V †(W) − W †(V ) + [V,W ]•,
where [V,W ]• stands for the point-wise bracket in g. The G-action that makes it a PBG-algebroid is of course

R̂g(u,V ) = (
ug,Adg−1(V )

)
.

Example 3.9. Given a PBG-LAB L → P(M,G), let Φ[L] denote the groupoid of Lie algebra isomorphisms between
the fibers of L. This is a PBG-groupoid over P(M,G) in the same way as Φ(L) (see Example 2.5). It was shown in [6]
that Φ[L] differentiates to the Lie algebroid CDO[L] over P . The notation CDO stands for “covariant differential
operator”. It is a transitive Lie algebroid and its sections are those first or zeroth order differential operators D :Γ L →
Γ L such that:

(i) For all D ∈ Γ CDO[L] there is a vector field �(D) ∈ Γ T P such that

D(f μ) = f D(μ) + �(D)(f )μ

for every μ ∈ Γ L and f ∈ C∞(P ).
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(ii) The operators D act as derivations of the bracket, i.e.

D
([μ1,μ2]

) = [
D(μ1),μ2

] + [
μ1,D(μ2)

]
for all μ1,μ2 ∈ Γ L.

The anchor map of CDO[L] is exactly the map � established in (i). The adjoint bundle of this Lie algebroid is the
LAB of endomorphisms of L which are derivations of the bracket. We therefore have the exact sequence

Der(L) � CDO[L] �
� T P.

The action of G on Φ[L] differentiates to the action (D,g) �→ RCDO
g (D) on the sections of CDO[L] defined by[

RCDO
g (D)

]
(μ) = Rg ◦ D(Rg−1 ◦ μ ◦ Rg) ◦ Rg−1

for all g ∈ G,D ∈ Γ CDO[L] and μ ∈ Γ L. (Recall that Rg denotes the right-translation on the sections of L.) This
action makes CDO[L] a PBG-algebroid over P(M,G).

In general, CDO[L] is the analogue of the automorphism group in the Lie algebroid framework. In the PBG setting,
we have the following definition:

Definition 3.10. Let A ⇒ P(M,G) be a (transitive) PBG-algebroid and K → P(M,G) a PBG-LAB. An equivariant
representation of A on K is an equivariant Lie algebroid morphism ρ :A → CDO[L].

Proposition 3.11. Let A ⇒ P(M,G) be a transitive PBG-algebroid. Then its adjoint bundle L is a PBG-LAB and
CDO[L] a PBG-algebroid, both over the principal bundle P(M,G).

Proof. Since A is transitive we have the exact sequence of Lie algebroids

L
j

� A
�
� T P.

Let (V ,g) �→ Rg(V ) denote the action of G on Γ L defined by j (R̂Γ
g (V )) = R̂Γ

g (j (V )). The result now follows from
the fact that A is a PBG-algebroid. �

A Lie algebroid morphism ϕ :A → A′ between two PBG-algebroids over the same principal bundle P(M,G) is a
morphism of PBG-algebroids if ϕ ◦ R̂g = R̂g ◦ ϕ for all g ∈ G. It is easy to verify that morphisms of PBG-groupoids
differentiate to PBG-algebroids.

Proposition 3.12. Let Υ and Υ ′ be PBG-groupoids over the same principal bundle P(M,G) such that Υ is s-
simply connected. Then every morphism of PBG-algebroids ϕ∗ :AΥ → AΥ ′ integrates to a unique morphism of
PBG-groupoids ϕ :Υ → Υ ′.

Proof. It was shown in [8] that the Lie algebroid morphism ϕ∗ integrates uniquely to a morphism of Lie groupoids
ϕ :Υ → Υ ′. It suffices to show that ϕ respects the G-actions. For every g ∈ G let R̃g and R̃′

g be the right-translations
induced by the actions of G on Υ and Υ ′ respectively. These differentiate to the right-translations R̂g and R̂′

g

respectively on the Lie algebroid level. Since ϕ∗ is a morphism of PBG-algebroids, for every g ∈ G we have
R̂′

g ◦ϕ ◦ R̂g−1 = ϕ∗. The morphism of Lie groupoids R̂′
g ◦ϕ ◦ R̂g−1 differentiates to R̂′

g ◦ϕ∗ ◦ R̂g . The uniqueness of ϕ

yields R̃′
g ◦ ϕ ◦ R̃g−1 = ϕ for all g ∈ G. �

Example 3.13. The natural morphism of PBG-groupoids arising from a PBG-LAB L → P(M,G) differentiates to
a morphism of PBG-algebroids ε∗ :P ∀ g → CDO[L]. Such morphisms are known as “derivative representations” in
the context of Poisson geometry. We will refer to this one as the natural derivative representation induced by L.

A Lie subalgebroid A′ of a PBG-algebroid A is a PBG-subalgebroid if the inclusion A′ � A is a morphism of
PBG-algebroids.
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Proposition 3.14. If A ⇒ P(M,G) is a transitive PBG-algebroid with adjoint bundle L then ad(A) is a PBG-
subalgebroid of CDO[L].

Proof. The Lie algebroid ad(A) was shown to be a Lie subalgebroid of CDO[L] in [6]. It suffices to show that it is
closed under the G-action defined in Example 3.9. Indeed, suppose X ∈ Γ A. Then:[

RCDO
g (adX)

]
(V ) = Rg ◦ adX(Rg−1 ◦ V ◦ Rg) ◦ Rg−1

= Rg ◦ [
X,Rg−1 ◦ V ◦ Rg

] ◦ Rg−1 = [
Rg(X),V

] = adRg(X)(V )

for all V ∈ Γ L. So, RCDO
g (adX) ∈ ad(A). �

The Lie algebroid ad(L) is integrable as a subalgebroid of the integrable Lie algebroid CDO[L]. We denote the
α-connected Lie groupoid it integrates to by Int(A), following the notation of [6]. The proof of the following statement
is immediate.

Corollary 3.15. If A ⇒ P(M,G) is a transitive PBG-algebroid then IntA ⇒ P(M,G) is a PBG-subalgebroid of
Φ[L].

We can also consider ad(A) as the image of the adjoint representation ad :A → CDO[L]. In this sense, ad is a
representation of PBG algebroids, i.e. a morphism of PBG-algebroids.

Definition 3.16. Let A be a PBG-algebroid and L a PBG-LAB, both over the same principal bundle P(M,G). A rep-
resentation ρ :A → CDO[L] of A in L is a representation of PBG-algebroids if it is a morphism of PBG-algebroids.

In particular, for all g ∈ G,X ∈ Γ A and μ ∈ Γ L it is required:[
RCDO

g

(
ρ(X)

)]
(μ) = ρ

(
R̂Γ

g (X)
)
(μ).

The developed form of this formula is:

Rg ◦ ρ(X)(Rg−1 ◦ μ ◦ Rg) = ρ
(
R̂Γ

g (X)
)
(μ) ◦ Rg.

4. Infinitesimal connections for PBG structures

Lie groupoids and Lie algebroids provide a natural framework for the study of connection theory. For example,
given a principal bundle P(M,G,p), consider its corresponding Atiyah sequence, namely the exact sequence of
vector bundles

P × g

G
� T P

G

p∗� T M

(where the action of G on g implied is simply the adjoint), together with the bracket of sections of the vector bundle
T P
G

which is obtained by identifying them with G-invariant vector fields on P . This bracket is preserved by the vector
bundle morphism p∗. Thus the Atiyah sequence of a principal bundle is a transitive Lie algebroid. In this setting,
infinitesimal connections of the principal bundle P(M,G,p) correspond exactly to the right-splittings of the Atiyah
sequence. The holonomy of such connections is studied using the global object corresponding to the Atiyah sequence
and that is the transitive Lie groupoid corresponding to the principal bundle we started with, namely the quotient
manifold P×P

G
(over the diagonal action).

Consider a transitive PBG-algebroid

(4)L � A � T P

over the principal bundle P(M,G) and form the associated extension of Lie algebroids

(5)
L

G
� A

G
� T P

G
.
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We will write Φ = P×P
G

and B = A
G

, K = L
G

. As vector bundles L ∼= p∗K , A ∼= p∗B and T P ∼= p∗(AΦ). These are
actually isomorphisms of Lie algebroids with respect to the action Lie algebroid structures on the pullback bundles; see
[5] for this. A connection (or an infinitesimal connection if emphasis is required) in A is a right-inverse γ :T P → A

to (4). If γ is equivariant with respect to the G actions, that is, if

(6)γ ◦ T Rg = R̂g ◦ γ

for all g ∈ G, then γ quotients to a linear map γ G :AΦ → B which is right-inverse to (5). Conversely, given a right-
inverse σ :AΦ → B to (5), the pullback map p∗σ is a connection in A which satisfies (6). Connections in A satisfying
(6) are not equivariant in the standard sense of, for example, [3], and in order to distinguish from the standard notion
we call these connections isometablic. This is an adaptation of the Greek translation of the Latin word “equivariant”.

Definition 4.1. Let A ⇒ P(M,G,p) be a transitive PBG-algebroid. A connection γ :T P → A is called isometablic,
if it satisfies (6).

Writing a transitive PBG-algebroid as an extension of PBG-algebroids L
ι

� A
�
� T P , the curvature of any con-

nection γ in A is the 2-form Ωγ :T P × T P → L defined by

Ωγ (X,Y ) = γ
([X,Y ]) − [

γ (X), γ (Y )
]
.

If γ is isometablic then its curvature also preserves the actions, namely for all g ∈ G we have

Ωγ ◦ (T Rg × T Rg) = Rg ◦ Ωγ .

An isometablic back connection of A ⇒ P(M,G) is a morphism of vector bundles ω :A → L such that ω ◦ ι = idL

and ι ◦ ω ◦ R̂g = Rg ◦ ι ◦ ω for all g ∈ G. Isometablic connections correspond to isometablic back connections via the
formula

ι ◦ ω + γ ◦ � = idA.

Example 4.2. Consider the PBG-algebroid T P ⊕ (P × h) over a principal bundle P(M,G) constructed in Section 3.
The connection γ 0 :T P → T P ⊕ (P × h) defined by X �→ X ⊕ 0 for all X ∈ T P is isometablic and flat. This is the
standard flat connection.

If ϕ :A → A′ is a morphism of PBG-algebroids over the same principal bundle and γ is an isometablic connection
in A then ϕ ◦ γ is also an isometablic connection in A′. Any connection in a transitive PBG-algebroid A ⇒ P(M,G)

gives rise to a Koszul connection ∇ of the adjoint bundle L. Namely, define ∇γ :Γ T P × Γ L → Γ L by

∇γ

X(V ) = [
γ (X), ι(V )

]
for all X ∈ Γ T P and V ∈ Γ L. This is the adjoint connection induced by γ . If γ is an isometablic connection, then
its adjoint connection satisfies

Rg

(∇γ

X(V )
) = Rg

([
γ (X), ι(V )

]) = [
Rg

(
γ (X)

)
,Rg

(
ι(V )

)]
= [

γ
(
T Rg(X)

)
, ι

(
Rg(V )

)] = ∇γ

T Rg(X)

(
Rg(V )

)
for all X ∈ Γ T P and V ∈ Γ L. The curvature of γ satisfies:

�{∇γ

X

(
Ωγ (Y,Z)

) − Ωγ

([X,Y ],Z)} = 0

for all X,Y,Z ∈ Γ T P . Here � denotes the sum over all the permutations of X,Y and Z. This is the (second) Bianchi
identity.

Proposition 4.3. Suppose given a transitive PBG-algebroid A ⇒ P(M,G,p) and consider its corresponding ex-
tension of Lie algebroids over M . The connections of the (transitive) Lie algebroid A

G
→ M are equivalent to the

isometablic connections of A which vanish on the kernel T pP of Tp :T P → T M .
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Proof. Consider an isometablic connection γ :T P → A such that γ (X) = 0 if X ∈ T pP . This quotients to a splitting
γ /G : T P

G
→ A

G
. Given a connection δ :T M → T P

G
of the principal bundle P(M,G), define

γ̃ = γ /G ◦ δ :T M → A

G
.

The assumption that γ vanishes on the kernel of Tp makes the definition of γ̃ independent from the choice of δ. It
follows immediately from the assumption that δ is a connection of P(M,G) and γ /G is a splitting of (5) that this is a
connection of the Lie algebroid A

G
.

Conversely, given a connection θ :T M → A
G

of the Lie algebroid A
G

, compose it with the anchor map p∗ : T P
G

�
T M of the Atiyah sequence corresponding to the bundle P(M,G,p) to the vector bundle morphism

θ̄ = θ ◦ p∗ :
T P

G
→ A

G
.

Denote � :T P → T P
G

and �A :A → A
G

the natural projections. Since �A is a pullback over p :P → M , there is a unique
vector bundle morphism γ :T P → A such that

�A ◦ γ = θ̄ ◦ �.

Due to the G-invariance of � and �Athe morphism of vector bundles R̂g−1 ◦ γ ◦ T Rg also satisfies the previous
equation for every g ∈ G, therefore it follows from the uniqueness argument that γ is isometablic. It is an immediate
consequence of the previous equation that γ vanishes at T pP .

To see that it is indeed a connection of A, let us recall the fact that θ is a connection of A
G

. This gives p∗ ◦ �/G ◦ θ =
idT M . Now �/G = � ◦ � and by definition we have p∗ ◦ � = Tp, therefore Tp ◦ � ◦ θ = idT M . Now take an element
X ∈ T P . Then Tp(X) ∈ T M , and it follows from this equation that there exists an element g ∈ G such that

(� ◦ θ)
(
Tp(X)

) = X · g.

Multiplying this by g−1 and using the G-invariance of Tp we get

� ◦ (θ ◦ Tp) = idT P .

Finally, from the properties of the pullback, it follows immediately that γ is the map (π, θ̄ ◦ �), where π :T P → P

is the natural projection of the tangent bundle. It is straightforward to check that this reformulates to (π, θ ◦ Tp), and
this proves that γ is a connection. �
Corollary 4.4. Let A ⇒ P(M,G) be a transitive PBG-algebroid. A flat connection of the Lie algebroid A

G
→ M gives

rise to a unique flat connection of A which vanishes on the kernel of Tp.

Definition 4.5. An isometablic Koszul connection of the PBG-LAB L ⇒ P(M,G) is a vector bundle morphism
∇ :T P → CDO[L] such that

∇T Rg(X)

(
Rg(V )

) = Rg

(∇X(V )
)

for all g ∈ G,X ∈ Γ T P and V ∈ Γ L.

Now let us give a few examples of such connections.

Example 4.6. Suppose P × h ⇒ P(M,G) is a trivial PBG-LAB (in the sense of Example 3.2). Then the Koszul con-
nection ∇0 :Γ T P → Γ CDO[P × h] defined by ∇0

X(V ) = X(V ) for every X ∈ Γ T P,V ∈ C∞(P,h) is isometablic
and flat. To verify this, note that it is the adjoint connection of the standard flat connection γ 0 introduced in Exam-
ple 4.2.

Further examples arise when we consider the Hom functor. Now we present some of them, which are necessary for
the proof of the Ambrose–Singer theorem in Section 7.
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Suppose L → P(M,G) and L′ → P(M,G) are PBG-Lie algebra bundles. The vector bundle Homn(L,L′) → P

is a Lie algebra bundle with Lie bracket

[ϕ1, ϕ2](μ1, . . . ,μn) = [
ϕ1(μ1, . . . ,μn),ϕ2(μ1, . . . ,μn)

]
for all ϕ1, ϕ2 ∈ Homn(L,L′) and μ1, . . . ,μn ∈ Γ L. It also admits the following action of G:[

RHom
g (ϕ)

]
(μ1, . . . ,μn) = ϕ

(
Rg(μ1), . . . ,Rg(μn)

)
for all g ∈ G,ϕ ∈ Hom(L,L′) and μ1, . . . ,μn ∈ Γ L. With this bracket and this action, Hom(L,L′) becomes a PBG-
LAB. At this point, let us recall the definition of an equivariant represention of a PBG-groupoid on a PBG-vector
bundle (for the definition of a PBG-vector bundle see Example 2.5).

Definition 4.7. Let Υ ⇒ P(M,G) be a transitive PBG-groupoid and E
π→ P(M,G) be a PBG-vector bundle (both

over the same principal bundle P(M,G)). An equivariant representation of Υ on E is a smooth map Υ ∗ E → E

such that:

(i) π(ξ · v)) = t (ξ) for all (ξ, v) ∈ Υ ∗ E.
(ii) (ξ1ξ2) · v = ξ1 · (ξ2, v) for all (ξ1, ξ2) ∈ Υ ∗ Υ , (ξ2, v) ∈ Υ ∗ E.

(iii) 1π(v) · v = v for all v ∈ E.
(iv) (ξg) · (vg) = (ξ · v) · g.

The set Υ ∗ E consists of the pairs (ξ, v) ∈ Υ × E such that α(ξ) = π(v).

Consider now the following representations of Lie groupoids:

(i) Φ[L] ∗ Homn(L,P × R) → Homn(L,P × R) defined by

(ξ, ϕ) �→ ϕ ◦ (ξ−1)n

(ii) Φ[L] ∗ Homn(L,L) → Homn(L,L) defined by(
(ξ, ξ ′), ϕ

) �→ ξ ′ ◦ ϕ ◦ (ξ−1)n

(iii) (Φ[L] ×P×P Φ[L′]) ∗ Homn(L,L′) → Homn(L,L′) defined by(
(ξ, ξ ′), ϕ

) �→ ξ ′ ◦ ϕ ◦ (ξ−1)n.

Note that the elements of the Lie groupoid (Φ[L] ×P×P Φ[L]) ⇒ P(M,G) are of the form

(ξ :Eu → Ev, ξ
′ :Eu → Ev)

for u,v ∈ P . The Lie group G acts on it by

(ξ, ξ ′) · g = (
R̂g ◦ ξ ◦ R̂g−1, R̂g ◦ ξ ′ ◦ R̂g−1

)
for all g ∈ G, and under this action it is a PBG-groupoid. In [6] it is proved that these representations are smooth and
they induce the following representations of Lie algebroids respectively:

(i) CDO[L] → CDO[Homn(L,P × R)] defined by

X(ϕ)(μ1, . . . ,μn) = q(X)
(
ϕ(μ1, . . . ,μn)

) −
n∑

i=1

ϕ
(
μ1, . . . ,X(μi), . . . ,μn

)
.

(ii) CDO[L] → CDO[Hom(L,L)] defined by

X(ϕ)(μ1, . . . ,μn) = X
(
ϕ(μ1, . . . ,μn)

) −
n∑

i=1

ϕ
(
μ1, . . . ,X(μi), . . . ,μn

)
.
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(iii) CDO[L] ⊕ CDO[L′] → CDO[Homn(L,L′)] defined by[
(X ⊕ X′)(ϕ)

]
(μ) = X′(ϕ(μ)

) − ϕ
(
X(μ)

)
.

The definition of the above representations and the fact that the standard flat connection is isometablic show that
these representations are equivariant. Therefore if ∇,∇′ are isometablic Koszul connections on L,L′ respectively
then through the previous representations one gets isometablic Koszul connections on Homn(L,P ×R),Homn(L,L)

and Hom(L,L′).

5. Equivariant transition data

This section gives the proof of Theorems 1.1 and 1.2.

Proposition 5.1. Let L → P(M,G) be a PBG-LAB. If P(M,G) has a flat connection and M is simply connected,
then L ⇒ P(M,G) has a flat isometablic Koszul connection.

Proof. If P(M,G) has a flat connection and M is simply connected, then it is isomorphic to the trivial bundle
M × G(M,G,pr1). So it suffices to prove that every PBG-LAB over a trivial principal bundle has a flat isometablic
Koszul connection.

The action δ : (M × G) × G → M × G is ((x, g),h) �→ (x, gh) for all x ∈ M and g,h ∈ G. In other words,
G only acts on itself by right translations. For every (x, g) ∈ M × G, the partial map δ(x,g) :G → M × G

is δ(x,g) = (constx, �g), where �g :G → G denotes the left translation in G. Now form the action groupoid
(M × G) ∀ G ⇒ M × G. This differentiates to the Lie algebroid (M × G) × g with Lie bracket the one given by (3).
Here the fundamental vector field V † corresponding to a smooth map V :M × G → g is

V
†
(x,g) = T(x,e)δ(x,g)(V(x,g)) = T(x,e)(constx, �g)(V(x,g))

= 0 ⊕ Te�g(V(x,g)) = Te�g(V(x,g))

for all (x, g) ∈ M × G. Since the action of G on M × G leaves M unaffected, let us concentrate on the action
of G on itself by left translations. Form the action groupoid G ∀ G ⇒ G. The map ϕ :G ∀ G → G × G defined by

(g,h)
ϕ�→ (g, gh) for all g,h ∈ G makes the action groupoid isomorphic to the pair groupoid G × G ⇒ G. On the Lie

algebroid level this differentiates to the isomorphism of Lie algebroids ϕ∗ :G ∀ g → T G given by

(g,V )
ϕ∗�−→ Te�g(V )

for all g ∈ G and V :G → g. Since it is an isomorphism of Lie algebroids, its inverse maps the (usual) Lie bracket
of T G to the Lie bracket in G × g defined by (3).

Now consider the derivative representation ε∗ : (M × G) ∀ g → CDO[L] introduced in Example 3.13. Since the
action of G on M ×G does not affect M , we can consider the Lie algebroid of the action groupoid to be M × (G ∀g).
Finally, define ∇ :Γ T M × Γ T G → Γ CDO[L] to be

∇X(V ) = ε∗
(
X

(
ϕ−1∗ (V )

))
.

This is a morphism of Lie algebroids because both ϕ−1∗ and ε∗ are. Therefore it is a flat Koszul connection. Its
isometablicity is immediate. �
Proposition 5.2. If the PBG-LAB L → P(M,G) has a flat isometablic Koszul connection and P is simply connected,
then it is isomorphic to a trivial PBG-LAB (as it was introduced in Example 3.2).

Proof. Suppose ∇ :T P → CDO[L] is a flat isometablic Koszul connection. Then it is a morphism of PBG-algebroids,
and since P is simply connected it can be integrated to a morphism of PBG-groupoids ϕ :P × P → Φ[L] (see
Proposition 3.12). Choose a u0 ∈ P , define h = Lu0 and consider the following representation of G on h:

ρ∗(g)(V ) = ϕ(u0, u0 · g−1)
(
Rg−1(V )

)
,
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for all V ∈ h and g ∈ G. This map is easily shown to be a representation, to preserve the Lie bracket of h because
Rg([V,W ]) = [Rg(V ),Rg(V )] for all V,W ∈ h, and ϕ(u0, u0 · g−1) ∈ Φ[L]. Now, the product P × h becomes a
PBG-LAB with action

(u,V ) · g = (
u · g,ρ∗(g−1)(V )

)
.

Consider the map Ψ :P × h → L defined as Ψ (u,V ) = ϕ(u,u0)(V ). This is clearly an isomorphism of Lie algebra
bundles. Moreover,

it preserves the action because:

Ψ
(
(u,V ) · g) = ϕ(u · g,u0)

(
ϕ(u0, u0 · g)

(
Rg(V )

)) = ϕ(u · g,u0 · g)
(
Rg(V )

)
= [

Rg ◦ ϕ(u,u0) ◦ Rg−1 ◦ Rg

]
(V ) = ϕ(u,u0)(V ) · g = Rg

(
Ψ (u,V )

)
for all (u,V ) ∈ P × h and g ∈ G. �

The previous two propositions prove the existence of a special trivialization for a certain class of PBG-LABs
which takes into account the group action. Namely, suppose L → P(M,G) is a PBG-LAB such that the Lie group G

is simply connected. Choose a cover {Pi}i∈I by principal bundle charts. That is, for every i ∈ I there is an open subset
Ui ⊆ M such that Pi

∼= Ui × G. Without harm to the generality we may consider Ui to be contractible, therefore Pi

will be simply connected. Then, Proposition 5.1 shows that the PBG-LAB LPi
→ Pi(Ui,G) has a flat isometablic

Koszul connection. Now Proposition 5.2 shows that there are Lie algebras hi acted upon by G and isomorphisms of
PBG-LABs ψi :Pi × hi → LPi

. If we choose one of these Lie algebras h and consider the composition of ψi with a
chosen isomorphism h ∼= hi , we obtain a trivialization for L which respects the group action.

Proposition 5.3. Suppose L → P(M,G) is a PBG-LAB such that the Lie group G is simply connected and {Ui}i∈I

a simple open cover of M . Then, for any section-atlas {PUi
∼= Ui × G}i∈I there exists a section-atlas {Ψi :Pi × h →

LPi
}i∈I of the vector bundle L such that

Ψi(ug,V · g) = Ψi(u,V ) · g
for all i ∈ I , V ∈ LUi

and g ∈ G.

Let A ⇒ P(M,G) be a PBG-algebroid. We recall from [6] the construction of the transition data (χ,α). It follows
from [6, IV§4] that locally A

G
has flat connections which, due to Corollary 4.4 give rise to local flat isometablic

connections θ∗
i :T Pi → APi

. The transition data of A is defined as:

χij :T Pij → Pij × h, χij = Ψ −1
i (θ∗

i − θ∗
j )

and

αij :Pij → Aut(h), αij (u) = Ψi,u ◦ Ψ −1
j,u .

Moreover, they satisfy the following, where Δ stands for the Darboux derivative:

(i) dχij + [χij ,χij ] = 0, i.e. each χij is a Maurer–Cartan form,
(ii) χij = χik + αij (χjk) whenever Pijk �= ∅,

(iii) Δ(αij ) = ad◦χij for all i, j .

Now Theorem 1.1 follows immediately from the definition of the transition data and Proposition 5.3.
For the proof of Theorem 1.2 first let us recall first the following result from [8]:

Theorem 5.4. Let Ω,Ξ be Lie groupoids over the same manifold M and μ :AΩ → AΞ a Lie algebroid morphism. If
Ω is s-simply connected, then there exists a unique morphism of Lie groupoids ϕ :Ω → Ξ which differentiates to μ,
i.e. ϕ∗ = μ.



164 I. Androulidakis / Differential Geometry and its Applications 24 (2006) 150–171
Consider a PBG-groupoid Υ ⇒ P(M,G) and its corresponding Lie algebroid AΥ ⇒ P(M,G) with adjoint bun-
dle LΥ . The extension of Lie algebroids corresponding to that is

LΥ

G
� AΥ

G
� T P

G
.

It follows from [6, IV§4] that the Lie algebroid AΥ
G

(over M) has local flat connections θ̃∗
i :T Ui → (AΥ

G
)Ui

. Due to
Corollary 4.4 these give rise to flat isometablic connections θ∗

i :T Pi → AΥPi
. Since the connections θ̃∗

i are flat, they
can be regarded as morphisms of Lie algebroids. With the assumption that every Ui is contractible, and by force of

the previous theorem, it follows that the θ̃∗
i s integrate uniquely to morphisms of Lie groupoids θ̃i :Ui × Ui → Υ

G

Ui

Ui
.

It was shown in the proof of Proposition 4.3 that the isometablic flat connections θ∗
i corresponding to the θ̃∗

i s are in
essence the maps θ̃∗

i ◦ Tp, therefore they also integrate uniquely to morphisms of Lie groupoids

θi :Pi × Pi → Υ
Pi

Pi
.

The uniqueness argument of Theorem 5.4 yields that the θis are morphisms of PBG-groupoids. That is because
for every g ∈ G the map θ

g
i (u, v) = θi(ug, vg)g−1 is also a morphism of Lie groupoids and differentiates to θ∗

i . It
therefore follows from the uniqueness of θi that θ

g
i = θi for all g ∈ G, consequently θi is equivariant.

Just like the non-integrable case, the aim is to show that there exists an equivariant section-atlas of the PBG-LAB
LΥ . Then, the transition data (χ,α) it defines has to be equivariant. To this end, we will show that on global level
there exist equivariant section-atlases for the PBG-LGB IΥ , which differentiate to the desired atlases of LΥ .

First, let us give some notation. For a Lie groupoid Ω → M we denote Ωx = s−1({x}), Ωx = t−1({x}) and Ωx
x the

Lie group Ωx ∩ Ωx .
Now fix a basepoint u0 in P and for every i ∈ I choose a ui ∈ Pi and an arrow ξi ∈ Υ

ui
u0 . Define σi :Pi → Υu0 by

σi(u) = θi(u,ui) · ξi .

This is a section of the principal bundle Υu0(P,Υ
u0
u0 ). Consider the Lie group H = Υ

u0
u0 and define a (left) G-action

ρi :G × H → H by

ρi(g
−1)(h) = σi(uig)−1 · (ξig) · (hg) · (ξig)−1 · σi(uig).

Last, consider the sections ψi :Pi × H → IΩPi
of IΩ defined by

ψi(u,h) = σi(u) · h · σi(u)−1.

The proof of the following proposition is an immediate calculation.

Proposition 5.5. The sections ψi are equivariant in the sense that

ψi

(
ug,ρi(g

−1)(h)
) = ψi(u,h) · g.

Their transition functions α̃ij :Pij → Aut(H) are equivariant in the sense

α̃ij (ug)
(
ρjj (g

−1)(h)
) = ρi(g

−1)
(
α̃ij (u)(h)

)
.

These sections clearly differentiate to sections Ψ :Pi × h → LΥPi
of LΥ . To show that these Ψis, as well as their

transition functions α̃ij are equivariant in the sense of Proposition 5.3 (thus they give rise to equivariant transition data
for AΥ ⇒ P(M,G)), we need to show that the G-actions ρi are local expressions of the canonical G-action on the
PBG-LGB IΥ .

For every i ∈ I , consider the action groupoid Pi ∀ G ⇒ Pi(Ui, g) (recall Example 2.4) and define a map ρ̃i :Pi ∀

G ∗ IΥPi
→ IΥPi

by

ρ̃i

(
(u, g), η ∈ Υ u

u

) = ψi

(
ug,ρi(g

−1)
(
ψ−1

i,u (η)
))

.

Obviously, π(ρ̃i((u, g), η)) = ug = t (u, g) and ρ̃i ((u, eG), η) = η. It is a straightforward exercise to verify that

ρ̃i

(
(ug1, g2) · (u, g1), η

) = ρ̃i

(
(ug1, g2), ρ̃i(u, g1), η

)
.
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Also, each ρ̃i (u, g) is an automorphism of Υ u
u , therefore it is a representation of the Lie groupoid Pi ∀ G on the Lie

group bundle IΥPi
, in the sense of [7]. The following proposition allows us to “glue” the ρ̃is together to a global map.

Proposition 5.6. For all i, j ∈ I such that Pij �= ∅, u ∈ Pij , g ∈ G and η ∈ Ωu
u we have

ρ̃i

(
(u, g), η

) = ρ̃j

(
(u, g), η

)
.

Proof. The equivariance of the αij ’s gives:

ρ̃i

(
(u, g), η

) = ψi

(
ug,ρi(g

−1)
(
ψ−1

i,u (η)
)) = ψi

(
ug,ρi(g

−1)
(
α̃ij (u)

(
ψ−1

j,u(η)
)))

= ψi

(
ug, α̃ij (ug)

(
ρj (g

−1)
(
ψ−1

i,u (η)
))) = ψj

(
ug,ρj (g

−1)
(
ψ−1

i,u (η)
)) = ρ̃j

(
(u, g), η

)
. �

Now define ρ : (P ∀ G) ∗ IΩ → IΩ by ρ((u,g), η ∈ Ωu
u) = ρ̃i ((u, g), η), if u ∈ Pi . This is a representation

because each ρ̃i is. As a matter of fact, ρ is a lot simpler than it seems. Since the sections {ψi}i∈I are equivariant we
have:

ρ
(
(u, g), η

) = ψi

(
ug,ρi(g

−1)
(
ψ−1

i,u (η)
)) = ψi

(
u,ψ−1

i,u (η)
) · g = η · g.

So ρ is, in fact, just the PBG structure of IΥ .
Conversely, it is possible to retrieve the local representations {ρi}i∈I from the PBG structure of IΥ . Suppose

{σi :Pi → Υu0}i∈I is a family of sections of Υ . Consider the charts ψi :Pi ×H → IΥPi
defined as ψi,u(h) = Iσi(u)(h)

and define ρ̃i :Pi ∀ G → Aut(H) by

ρ̃i (u, g)(h) = ψ−1
i,ug

(
ψi,u(h) · g)

for all g ∈ G, h ∈ H and u ∈ Pi . This is a morphism of Lie groupoids over Pi → ·. For every i ∈ I choose ui ∈ Pi and
define

ρi(g
−1)(h) = ρ̃i (ui, g)(h) = ψ−1

i,uig

(
ψi,u(h) · g)

.

Then,

ρi(g
−1)(h) = Iσi(uig)−1

(
Iσi(ui )(h) · g) = σi(uig)−1 · (σi(ui)g

) · (hg) · (σi(ui)
−1g

) · σi(uig).

The latter is exactly the original definition of the ρi ’s. Finally, these considerations prove Theorem 1.2.

6. Holonomy

In this section we introduce isometablic path connections for PBG-groupoids and prove that they correspond to
isometablic infinitesimal connections in the transitive case. Then we use isometablic path connections to study the
holonomy of transitive PBG-groupoids. In the following we restrict to transitive PBG-groupoids Υ ⇒ P(M,G) over
a principal bundle P(M,G). Let us fix some notation first. We denote C(I,P ) the set of continuous and piecewise
smooth paths in P . Moreover, P s

0 (Υ ) denotes the set of continuous and piecewise smooth paths δ : I → Υ which
commence at an identity of Υ and s ◦ δ : I → M is constant. These sets obviously admit right actions from G.

Definition 6.1. An isometablic C∞ path connection in Υ is a map Γ :C(I,P ) → P s
0 (Υ ), usually written c �→ c̄, such

that:

(i) c̄(0) = 1c(0) and c̄(t) ∈ Υ
c(t)
c(0) for all t ∈ I .

(ii) If ϕ : [0,1] → [α,β] ⊆ [0,1] is a diffeomorphism then c ◦ ϕ(t) = c̄(ϕ(t)) · [c̄(ϕ(0))]−1.
(iii) If c ∈ C(I,P ) is differentiable at t0 ∈ I then c̄ is also differentiable at t0.
(iv) If c1, c2 ∈ C(I,P ) have dc1

dt
(t0) = dc2

dt
(t0) then dc̄1

dt
(t0) = dc̄2

dt
(t0).

(v) If c1, c2, c3 ∈ C(I,P ) are such that dc1
dt

(t0) + dc2
dt

(t0) = dc3
dt

(t0) then dc̄1
dt

(t0) + dc̄2
dt

(t0) = dc̄3
dt

(t0).
(vi) For all g ∈ G, Rg ◦ c = R̃g ◦ c̄.
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The first five properties in the above definition constitute the standard definition of a path connection in a Lie
groupoid, as it was postulated in [6, II§7]. The isometablicity is expressed by the sixth property. This definition has
the following consequences which were proved in [6, II§7].

Proposition 6.2.

(i) κ̄u = κ1u for all u ∈ P (where κu denotes the path constant at u).
(ii) c←(t) = c̄←(t) · [c̄(t)]−1 (where c← denotes the inverse path of c).

(iii) c′ · c = (Rc(1) ◦ c′) · c̄ for all composable paths c, c′ ∈ C(I,P ).

For every c ∈ C(I,P ) denote ĉ ≡ c(1).

Corollary 6.3.

(i) κ̂u = 1u.
(ii) ĉ← = (ĉ)−1.

(iii) ĉ′ · c = ĉ′ · ĉ.

Proposition 6.4. If c1, c2 ∈ C(I,P ) are such that dc1
dt

(t0) = λdc2
dt

(t0) for some t0 ∈ I , then dc̄1
dt

(t0) = λ · dc̄2
dt

(t0).

Theorem 6.5. If ϕ :PU × (−ε, ε) → P is a local 1-parameter group of local transformations for P , where PU
∼=

U × G is the image of a chart of the principal bundle P(M,G), then the map ϕ̄ :Υ PU × (−ε, ε) → Υ constructed in
[6, II§7] is a local 1-parameter group of local transformations on Υ and

(i) t ◦ ϕ̄t = ϕt ◦ t for all t ∈ (−ε, ε).
(ii) If ϕv·g = Rg ◦ ϕv for all g ∈ G,v ∈ Pu then ϕ̄ξ ·g = R̃g ◦ ϕ̄ξ for all ξ ∈ Υ PU and g ∈ G.

Proof. The first assertion was proved in [6, II§7]. For the second one we have:

(R̃g ◦ ϕ̄ξ )(t) = ϕ̄ξ (t) · g = Rg ◦ ϕξ (t) = ϕ̄ξ ·g(t). �
Theorem 6.6. There is a bijective correspondence between isometablic C∞ path connections Γ : c �→ c̄ in Υ ⇒
P(M,G) and isometablic infinitesimal connections γ :T P → AΥ such that a corresponding Γ and γ are related by

(7)
d

dt
c̄(t0) = T Rc̄(t0)

[
γ

(
d

dt
c(t0)

)]
for all c ∈ C(I,P ) and t0 ∈ I .

Proof. Suppose given an isometablic C∞ path connection Γ . For v ∈ P and X ∈ TvP take any c ∈ C(I,P ) with
c(t0) = v and dc

dt
(t0) = X for some t0 ∈ I and define γ (X) = T R(c̄(t0))

−1 [ d
dt

(c̄(t0))]. The smoothness and R-linearity
of this connection are proven exactly as in [6, III§7]. We now prove its isometablicity.

γ
(
T Rg(X)

) = T R(Rg◦c(t0))−1

[
d

dt

(
Rg ◦ c(t0)

)] = T RR̃g◦(c̄(t0))−1

[
d

dt

(
R̃g ◦ c̄(t0)

)]

= (T R(c̄(t0))
−1·g ◦ T R̃g)

[
d

dt

(
c̄(t0)

)] = T (R(c̄(t0))
−1·g ◦ R̃g)

[
d

dt

(
c̄(t0)

)]
.

For all ξ ∈ Υ we have

R(c̄(t0))
−1·g ◦ R̃g(ξ) = (ξ · g) · ((c̄(t0))−1 · g) = (

ξ · (c̄(t0))−1) · g = R̃g ◦ R(c̄(t0))
−1(ξ).

Therefore,

T (R(c̄(t0))
−1·g ◦ R̃g)

[
d (

c̄(t0)
)] = T R̃g(T R(c(t0))

−1)

[
d (

c̄(t0)
)] = T R̃g

(
γ (X)

)
.

dt dt
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Conversely, suppose given an isometablic infinitesimal connection γ :T P → AΥ . It was shown in [6, III§7] that
given a path c ∈ C(I,P ) such that c(0) = u0 the re is a unique path c̄ ∈ P s

0 (Υ ) which satisfies (7). For any g ∈ G the
path Rg ◦ c has initial data (Rg ◦ c)(0) = u0 · g. Thus there is a unique path Rg ◦ c ∈ P s

0 (Υ ) satisfying the differential
equation

d

dt
(Rg ◦ c)(t0) = T RRg◦c(t0)

[
γ

(
d

dt
(Rg ◦ c)(t0)

)]
with initial data Rg ◦ c(0) = 1u0·g . The path R̃g ◦ c̄ also has initial data R̃g ◦ c̄(0) = R̃g(1u0) = 1u0 ·g = 1u0·g . Therefore
it suffices to show that it also satisfies the differential equation (7). Indeed:

d

dt
(R̃g ◦ c̄)(t0) = T R̃g

(
d

dt
c̄(t0)

)
= (T R̃g ◦ T Rc̄(t0))

[
γ

(
d

dt
c(t0)

)]
= T (R̃g ◦ Rc̄(t0))

[
γ

(
d

dt
c(t0)

)]
.

It is easy to see that R̃g ◦ Rc̄(t0) = R(R̃g◦c̄)(t0), therefore

T (R̃g ◦ Rc̄(t0))

[
γ

(
d

dt
c(t0)

)]
= T R(R̃g◦c̄)(t0)

[
(T R̃g ◦ γ )

(
d

dt
c(t0)

)]
= T R(R̃g◦c)(t0)

[
(γ ◦ T Rg)

(
d

dt
c(t0)

)]

= T R(R̃g◦c)(t0)
[
γ

(
d

dt
(Rg ◦ c)(t0)

)]
. �

Corollary 6.7 (Of the proof). Let γ :T P → AΥ be an isometablic infinitesimal connection in Υ and Γ the corre-
sponding isometablic path connection. Then:

(i) For all X ∈ Γ T P , Exp(t · γ (X))(v) = Γ (ϕ, v)(t) where ϕt is the local flow of X near v and Γ (ϕ, v) : R → Υv

is the lift of t �→ ϕt (v).
(ii) The restriction of the exponential map on the image of γ is equivariant.

(iii) The restriction of the exponential map on γ (Γ GT P ) is equivariant.

Proof. The first was proved in [6, III§7]. For the second assertion consider {ϕt } a local flow of X ∈ Γ T P near v ∈ P .
Then {ψt = Rg ◦ ϕt ◦ Rg−1} is a local flow of T Rg(Xv). Therefore,

Exp
(
t · T R̃g

(
γ (X)

))
(v) = Exp

(
t · γ (

T Rg(X)
))

(v) = Γ (ψ,v · g)(t)

= Γ (Rg ◦ ϕt ◦ Rg−1, v · g)(t) = [
R̃Γ

g ◦ Γ (ϕ, v)
]
(t) = R̃Γ

g ◦ Exp
(
t · γ (X)

)
(v).

The third assertion is immediate because if X ∈ Γ GT P then both {ϕt } and {ψt } are flows of X at v and v · g,
respectively. �
Definition 6.8. Let Γ be an isometablic C∞ path connection in Υ . Then Ψ = Ψ (Γ ) = {c̄(1): c ∈ C(I,P )} ⊆ Υ is
called the holonomy subgroupoid of Γ . The vertex Ψ v

v is the holonomy group of Γ at v.

We know from [6] that Ψ is in general an s-connected Lie subgroupoid of Υ ⇒ P(M,G). We will finish this
section by showing that in case Γ is isometablic then it is in fact a PBG-subgroupoid of Υ .

Proposition 6.9. Let Υ,Υ ′ be PBG-groupoids over P(M,G) and ϕ :Υ → Υ ′ an (equivariant) morphism of PBG-
groupoids over P(M,G). Let γ be an isometablic infinitesimal connection in Υ and Γ its corresponding path
connection. The isometablic path connection Γ ′ corresponding to the produced connection γ ′ = ϕ∗ ◦ γ is Γ ′ = ϕ ◦Γ

and its holonomy subgroupoid is Ψ ′ = ϕ(Ψ ).

Proof. Take c ∈ C(I,P ). Then, since c̄ satisfies Eq. (7) for γ it immediately follows that ϕ ◦ c̄ satisfies Eq. (7) for
ϕ∗ ◦ γ . Thus Γ ′ = ϕ ◦ Γ . �
Definition 6.10. Let Υ,Υ ′ be PBG-groupoids over the principal bundle P(M,G). The PBG-groupoid Υ ′ is called
a PBG reduction of Υ if there is a morphism of Lie groupoids ϕ :Υ ′ → Υ which is equivariant and an injective
immersion.
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Corollary 6.11. If Υ ′ is a PBG reduction of Υ and the isometablic connection γ :T P → AΥ takes values in AΥ ′
then Ψ � Υ ′.

Theorem 6.12. Let Γ be an isometablic path connection in Υ . Then the holonomy subgroupoid Ψ of Γ is a PBG-
subgroupoid of Υ .

Proof. The fact that Ψ is a Lie subgroupoid of Υ is proved in [6, III§7]. We will only show that the action of G on Υ

can be restricted to Ψ . Let ξ = c̄(1) for some c ∈ C(I,P ). Then ξ · g = R̃g ◦ c̄(1) = Rg ◦ c(1) ∈ Ψ . �
Corollary 6.13. For each X ∈ Γ T P and all t sufficiently near 0, γ (X) ∈ Γ AΨ and Exp(t · γ (X)) ∈ Ψ .

Proof. These are reformulations of Corollary 6.7. �
7. Deformable sections

The aim of this section is to prove an Ambrose–Singer theorem for transitive PBG-groupoids. The result passes
through the study of deformable sections for representations of vector bundles on PBG-groupoids (see Definition 4.7).
Again, all groupoids regarded in this section are considered to be transitive.

Definition 7.1. Let Υ ⇒ M be a (transitive) Lie groupoid, E → M a vector bundle and ρ :Υ ∗ E → E a smooth
representation of Υ on E. A section μ ∈ Γ E is called Υ -deformable if for every x, y ∈ M there is a ξ ∈ Υ

y
x such that

ρ(ξ,μ(x)) = μ(y).

If μ ∈ Γ E is Υ -deformable then the isotropy groupoid of Υ at μ is Φ(μ) = {ξ ∈ Υ : ξ(μ(s(ξ))) = μ(t (ξ))}.
A section μ is Υ -deformable iff its value lies in a single orbit. The condition ensures that the isotropy groupoid is
transitive.

Theorem 7.2. Let Υ ⇒ P(M,G) be a (transitive) PBG-groupoid and E → P(M,G) a vector bundle on which G acts
by isomorphisms. Let ρ :Υ ∗E → E be an equivariant representation and μ ∈ Γ GE. Then the following propositions
are equivalent:

(i) The section μ is Υ -deformable.
(ii) The isotropy groupoid Φ(μ) is a PBG-subgroupoid of Υ .

(iii) The PBG-groupoid Υ has a section atlas {σi :Pi → Υu0}i∈I such that ρ(σi(u)−1)(μ(u)) is a constant map
Pi → Eu0 .

(iv) The PBG-groupoid Υ possesses an isometablic infinitesimal connection γ such that

(ρ∗ ◦ γ )(μ) = 0.

Proof. (i) ⇒ (ii) It was shown in [6, III§7] that Φ(μ) is a closed and embedded Lie subgroupoid of Υ . It remains to
show that if ξ · g ∈ Φ(μ) for all ξ ∈ Φ(μ) and g ∈ G. Indeed,

ρ
(
ξ · g,μ

(
s(ξ · g)

)) = ρ
(
ξ · g,μ

(
s(ξ)

) · g) = ρ
(
ξ,μ

(
s(ξ)

)) · g = μ
(
t (ξ)

) · g = μ
(
t (ξ · g)

)
.

(ii) ⇒ (iii) Since Φ(μ) is a Lie subgroupoid of Υ , the principal bundle (Φ(μ))u0(P, (Φ(μ))
u0
u0 , t) is a reduction of

Υu0(P,Υ
u0
u0 , t). Therefore there is a section atlas {σi :PUi

→ Υu0}i∈I of Υ such that σi(u) ∈ (Φ(μ))u0 for all u ∈ PUi
.

So σi(u)−1 ∈ (Φ(μ))u0 for all u ∈ PUi
. Equivalently, ρ(σi(u)−1,μ(u)) = μ((u0)) for all u ∈ Pi .

(iv) ⇒ (i). Suppose Ψ � Υ is the holonomy PBG-subgroupoid of γ and Ψ ′ � Φ(E) the holonomy PBG-
subgroupoid of ρ∗ ◦ γ . Then Ψ ′ = ρ(Ψ ) and from [6, III§7] we have:

(ρ∗ ◦ γ ) = 0 ⇒ ξ · μ(
s(ξ)

) = μ
(
t (ξ)

) ∀ξ ∈ Φ(E)

⇒ ρ
(
η,μ

(
s(η)

)) = μ
(
t (η)

) ∀η ∈ Υ.

Therefore μ is Υ -deformable.
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(ii) ⇒ (iv) The isotropy subgroupoid is a PBG-groupoid, therefore it has an isometablic connection γ :T P →
AΦ(μ). This is also a connection of Υ . From [6, III§4] we have that Γ AΦ(μ) = {X ∈ Γ AΥ : ρ∗(X)(μ) = 0}.
Therefore ρ∗(γ (X))(μ) = 0 for all X ∈ Γ T P . �
Proposition 7.3. Let L be a vector bundle over P(M,G) on which G acts by isomorphisms and [ ] a section of the
vector bundle Alt2(L;L). Then the following three conditions are equivalent:

(i) The fibers of L are pairwise isomorphic as Lie algebras.
(ii) L admits an isometablic connection ∇ such that

∇X[V,W ] = [∇X(V ),W
] + [

V,∇X(W)
]

for all X ∈ Γ T P and V,W ∈ Γ L.
(iii) L is a PBG-Lie algebra bundle.

Proof. Let ρ :Φ(L) ∗ Alt2(L,L) → Alt2(L,L) denote the representation defined by

ρ(ξ,ϕ) = ξ ◦ ϕ ◦ (ξ−1 × ξ−1)

for all ξ ∈ Φ(L) and ϕ ∈ Alt2(L,L). We have already discussed why this is an equivariant representation. Now, (i) is
the condition that [ ] is Φ[L]-deformable and (iii) is the condition that Φ[L] admits a section atlas {σi}i∈I such that
the corresponding charts for Alt2(L,L) via ρ map [ ] ∈ Γ Alt2(L,L) to constant maps Pi → Alt2(Lu0,Lu0). So, (i)
and (iii) are equivalent by the equivalence (i) ⇔ (iii) of Theorem 7.2.

We also have that ρ∗ : CDO(L) → CDO(Alt2(L,L)) is

ρ∗(D)(ϕ)(V,W) = D
(
ϕ(V,W)

) − ϕ
(
D(V ),W

) − ϕ
(
V,D(W)

)
.

Therefore (ii) is the condition that L admits an isometablic connection ∇ such that (ρ∗ ◦ ∇)([ ]) = 0. Hence (i) ⇔ (ii)
follows from the equivalence (i) ⇔ (iv) of Theorem 7.2. �
Proposition 7.4. Let E and E′ be vector bundles over the principal bundle P(M,G) on which G acts by isomorphisms
and let ϕ :E → E′ be an equivariant morphism over P . Then the following conditions are equivalent:

(i) The map P � u �→ rk(ϕu) ∈ Z is constant.
(ii) There exist equivariant connections ∇ and ∇′ of E and E′ respectively such that ∇′

X(ϕ(μ)) = ϕ(∇X(μ)) for all
μ ∈ Γ E and X ∈ Γ T P .

(iii) There exist atlases {ψi :Pi ×V → EPi
}i∈I and {ψ ′

i :Pi ×V ′ → E′
Pi

}i∈I for E and E′ respectively such that each
ϕ :EUi

→ E′
Ui

is of the form ϕi(x, v) = (x, fi(v)) where fi :V → V ′ is a linear map depending only on i.

Proof. This is also an application of Theorem 7.2. Consider the equivariant representation (Φ[E] ×P×P Φ[E]) ∗
Hom(E,E′) → Hom(E,E′) we discussed in Section 3. The equivariant morphism ϕ :E → E′ can be regarded as an
equivariant section of the vector bundle Hom(E,E′), namely assigning to every u ∈ P the linear map ϕu :Eu → E′

u.
The following lemma shows that (i) is the condition that ϕ is (Φ(E) ×P×P Φ(E′))-deformable:

Lemma. Let ϕ1 :V → V ′ and ϕ2 :W → W ′ be morphisms of vector spaces such that dimV = dimW , dimV ′ =
dimW ′ and rk(ϕ1) = rk(ϕ2). Then there are isomorphisms s :V → W and s′ :V ′ → W ′ such that s′ ◦ ϕ1 = ϕ2 ◦ s.

We also discussed in Section 3 that the induced representation ρ∗ : CDO(E) ⊕ CDO(E′) → CDO(Hom(E,E′)) is
(X ⊕ X′)(ϕ)(μ) = X′(ϕ(μ)) − ϕ(X(μ)). Therefore (ii) is exactly the condition that Φ(E) ×P×P Φ(E′) possesses an
isometablic infinitesimal connection γ such that (ρ∗ ◦ γ )(μ) = 0. Finally, condition (iii) is clearly condition (iii) of
Theorem 7.2. �
Definition 7.5. Let E,E′ be two vector bundles over the principal bundle P(M,G) on both of which G acts by
automorphisms. Let ϕ :E → E′ be an equivariant morphism of vector bundles over M . Then, ϕ is
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(i) of locally constant rank if u �→ rk(ϕu) :P → Z is locally constant;
(ii) a locally constant morphism if it satisfies condition (iii) of Proposition 7.4.

The proof of the following proposition is analogous to the one of Proposition 7.4.

Proposition 7.6. Let L,L′ be PBG-LABs on P(M,G) and let ϕ :L → L′ be a morphism of PBG-LABs. Then the
following conditions are equivalent:

(i) For each u,v ∈ P there are Lie algebra isomorphisms α :Lu → Lv and α′ :L′
u → L′

v such that ϕv ◦α = α′ ◦Lu.
(ii) L and L′ posses isometablic Lie connections ∇ and ∇′ respectively such that ϕ(∇X(V )) = ∇′

X(ϕ(V )) for all
V ∈ Γ L and X ∈ Γ T P .

(iii) There exist Lie algebra bundle atlases {ψi :Pi × g → LPi
}i∈I and {ψ ′

i :Pi × g′ → L′
Pi

}i∈I for L and L′ re-
spectively such that each ϕ :LPi

→ L′
Pi

is of the form ϕ(u,W) = (u,fi(W)) where fi :g → g′ is a Lie algebra
morphism depending on i.

If P is connected then fi may be chosen to be independent of i as well.

Proposition 7.7. Let L be a PBG-Lie algebra bundle on P(M,G) and let L1 and L2 be PBG-subLABs of L. Then
L1 ∩ L2 is a PBG-subLAB of L if there is a Lie connection ∇ of L such that ∇(Γ L1) ⊆ Γ L1 and ∇(Γ L2) ⊆ Γ L2.

Proof. Without the PBG condition, this was proved in [6, I II§7]. All we need to show is that the intersection of two
PBG-subLABs is PBG, i.e. the action of G on L can be restricted to L1 ∩ L2. This is immediate. �

We are now ready to proceed to the proof of the Ambrose–Singer theorem for isometablic connections. Consider a
(transitive) PBG-groupoid Υ ⇒ P(M,G) and an isometablic infinitesimal connection γ on Υ .

Proposition 7.8. Let L′ be a PBG-subLAB of LΥ such that

(i) Rγ (X,Y ) ∈ L′ for all X,Y ∈ T P .
(ii) ∇γ (Γ L′) ⊆ Γ L′.

Then there is a PBG reduction A′ � AΥ defined by

Γ A′ = {
X ∈ Γ AΥ : X − γ

(
q(X)

) ∈ Γ L
}

which has L′ as adjoint bundle and is such that γ (X) ∈ A′ for all X ∈ T P .

Proof. Again, without the PBG condition this is was proved in [6, III§7]. We only need to show that A′ is a PBG-
algebroid. Indeed, if X ∈ Γ A′ then R̂Γ

g (X) ∈ Γ A′ because:

R̂Γ
g (X) − γ

(
q
(
R̂Γ

g (X)
)) = R̂Γ

g (X)
(
X − γ

(
q(X)

)) ∈ Γ L′. �
Proposition 7.9. There is a least PBG-subLAB denoted (LΥ )γ of LΥ which has the properties (i) and (ii) of Propo-
sition 7.8.

Proof. It suffices to prove that if L1 and L2 both satisfy (i) and (ii) of Proposition 7.8 then L1 ∩ L2 does also. The
only point that is not clear is that L1 ∩ L2 is a PBG-subLAB, and since ∇γ is a Lie connection this is established by
Proposition 7.7. �
Theorem 7.10. Let Υ ⇒ P(M,G) be a PBG-groupoid and γ :T P → AΥ an isometablic infinitesimal connection.
Let Γ be its corresponding C∞ path connection and Ψ its holonomy groupoid. Then AΨ = (AΥ )γ .

Proof. We showed in Corollary 6.13 that γ takes values in AΨ . Hence LΨ satisfies the conditions of Proposition 7.8
and therefore LΨ � (LΥ )γ and AΨ � (AΥ )γ . On the other hand, γ takes values in (AΥ )γ and AΨ � (AΥ )γ . �
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