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ABSTRACT 
The impact of modern mathematics and its application in other disciplines is presented from the 20th 

century historical perspective. In the period l930's to 1970's mathematics became more inward looking, and 
the distinction between pure and applied mathematics became much more pronounced. In the 1970s, there 
was a return to more classical topics but on a new level and this resulted in a new convergence between 
mathematics and physics.  The 20th century approach to mathematics resulted in a more developed 
mathematical language, new powerful mathematical tools, and inspired new application areas that have 
resulted in tremendous discoveries in other applied sciences. Towards the end of the 20th Century, 
mathematicians were making a re-think on the need to bridge the division lines within mathematics, to open 
up more for other disciplines and to foster the line of inter-discipline research. The current cry is that this 
interaction will be further strengthened in the 21st Century. 
 



  

1. Introduction 
Mathematics has been vital to the development of civilization. From ancient to modern times 

mathematics has been fundamental to advances in science, engineering, and philosophy. 
Developments in modern mathematics have been driven by a number of motivations that can be 
categorised into the solution of a difficult problem and the creation of new theory enlarging the 
fields of applications of mathematics. Very often the solution of a concrete difficult problem is 
based on the creation of a new mathematical theory. While on the other hand creation of a new 
mathematical theory may lead to the solution of an old classical problem, (Monastyrsky, 2001). 
This paper is discussing the current role of mathematics in other disciplines. 

The presentation is in four parts. Section 2 is dealing with trends of application areas of 
mathematics at the wake of the twentieth century, Section 3 looks at the changes in mathematics 
application as a result of the modern approach to mathematics and discoveries in other scientific 
fields, section 4 addresses the current (21st century) thinking of collaborative and inter discipline 
mathematics and the section 5 gives some examples of application areas where mathematics is 
emerging as a vital component with great opportunities for inter discipline research. 

 

2. Trends of Applications in the 20th Century 
The 20th century made a rethink on the foundations of mathematics, it was characterised by a 

new approach to mathematics, fuelled by David Hilbert's (1862-1943) famous set of 
"mathematical problems" in the 1990 International Congress of Mathematicians. Hilbert's vision 
was to analyse axioms of each subject and state results in their full generality. This vision became 
concrete in the 1930's through the development of the axiomatic approach to algebra, pioneered 
by E. Artin and Edith Noether. Parallel trends took place in functional analysis with Banach 
Spaces. This spread rapidly to algebraic topology, harmonic analysis and partial differential 
equations. In addition to this axiomatic approach, the Bourbaki group introduced the idea that 
there was one universal set of definitions, which once learnt, would be the foundations of 
everything more specialised (Mumford, 1998). In the drive to seek generality, 20th century 
mathematics became more diverse, more structured and more complex.  

2.1 Divergence of Mathematics from Physics 
In the 18 th and 19th century mathematical language was vague and did not allow much 

interaction among mathematicians of different fields. In the period 1950's to 1970's 
Mathematicians concentrated around problems of algebraic topology, algebraic geometry and 
complex analysis and they developed new concepts and new methods. New powerful 
mathematical tools were developed and the language of mathematics became highly developed 
and very powerful. This has had great impact on diverse fields such as number theory, set theory, 
geometry, topology and partial differential equations. This new approach to mathematics resulted 
in greater abstraction. Mathematicians spent years of apprenticeship in a full set of abstraction 
before doing their own thinking. When the basics were clear enough there was a search for 
powerful tools that allowed for development and expansion of the geometric intuition into new 
domains. Examples are topology, homological algebra and algebraic geometry. These new 



  

developments made it possible for great breakthroughs in solving several difficult problems that 
were stuck. For example the Deligne’s proof of Weil conjectures, Faltings’ proof of Mordell 
conjecture and Wiles’ proof of Fermat’s theorem could not have been done in the 19th century just 
because mathematics was not developed enough.  Mathematics of the 20th century has started the 
path for harmonising and unifying diverse fields. The unification of mathematics started with a 
common language that has greatly simplified the interaction between mathematicians. This 
language became the basis for development of new technical tools for the solution of old 
problems and the formulation of research programmes. 

As a consequence of the new approach to mathematics, pure mathematicians drifted away 
from applications and saw no need to collaborate with other scientists, even their traditional 
neighbours, and the physicists. On the other hand, application of the highly abstract modern 
mathematics could not be easily visualised by the traditional users of mathematics. The period 
l930's to 1970's saw a divergence within mathematics itself and between mathematics and other 
applied sciences. Mathematics became more inward looking, and the distinction between pure 
and applied mathematics became much more pronounced. The diversification of mathematics was 
first of all connected with external social phenomenon, the rapid growth of the scientific 
community and the breaking discoveries in physics. 

The traditional area of application of mathematics is physics.  Within this area the deepest 
mathematics and success stories have been achieved. For example, Einstein's general theory of 
relativity was based on classical differential geometry of Riemannian spaces, the Hilbert spaces, 
the theory of linear operators, and spectral theory. In the 1930's the connection of mathematics 
and other sciences, especially physics was broken. Physicists got interested in solving more 
concrete problems that could be solved without the application of sophisticated and abstract 
modern mathematics. The developments of pure mathematics in the post World War II period 
became weakly connected with applied sciences especially physics. Mathematicians' could not 
view how physics could assist modern mathematics while physicist could not imagine the 
application of new abstract mathematical concepts such as sheaf, cohomolgy, J- functor and the 
like in their fields (Monastyrsky, 2001).  

2.2 Re-Convergence of Mathematics with Physics 
From the beginning of 1970s, there was a return to more classical topics but on a new level. 

These developments resulted in the new convergence between mathematics and physics.  Some 
modern mathematicians (e.g. S. Novikon, S.T. Yau, A. Connes, S. Donaldson and E. Witten) 
quickly saw new opportunities and challenges hidden in the new physics. Examples of 
mathematical results that got inspired by physical ideas include Donaldson's proof of the 
existence of different differential structures on simply connected 4-dimensional manifolds.  This 
has very deep consequences for quantum gravity and the gauge theory on strong and weak 
interactions and resulted in the revisit of the Yang-Mills equations of elementary particles, which 
had been developed by physicists C. N. Yang and R. Mills almost twenty years earlier in 1954. 
The Yang-Mills equations had been considered non-physical and had attracted very little attention 
of physicists. Structures in the elementary particles are described by highly nonlinear equations 
with deep topological properties. Donaldson's proof inspired physicists to do a deeper study of the 
Yang-Mills equations. In the 1970's information flow between mathematicians and physicists 



  

resumed and led to new and deeper connections between modern mathematicians and physicists. 
Basing on this new union, theoretical physicists have made substantial progress in uncovering the 
principles governing particle interaction. The new conservation laws developed in the last part of 
the 20th Century are believed to be the most fundamental in physics.  Most success stories of 
application of pure, most abstract mathematics are in physics. The application of modern abstract 
mathematics in physics has resulted in astounding discoveries of the 20th Century in the physical 
sciences, the life sciences and technology.  

The new approach to mathematics resulted in a more developed mathematical language, new 
powerful mathematical tools, and inspired new application areas that have resulted in tremendous 
discoveries in other applied sciences including computer science and computer technology. The 
new mathematical tools and the developments in computer technology, the development of 
algorithms, mathematical modelling and scientific computing have led to remarkable new 
discoveries is physics, technology, economics and other sciences in the last half of the 20th 
century. This has also enabled mathematicians to use modern mathematical tools to solve deep 
classical problems left by the previous generation of mathematicians. 

 

3. New Application Areas 
The branch of mathematics traditionally used in the applications in physics is analysis and 

differential geometry. Most of the advances in pure mathematics were propelled by problems in 
physics. In the last part of the 20th century researchers in many other sciences have come to a 
point where they need serious mathematical tools. The tools of mathematical analysis and 
differential geometry were no longer adequate. For example a biologist trying to understand the 
genetic code will need tools of graph theory than differential equations because the genetic code 
is discrete. Issues of information content, redundancy or stability of the code are more likely to 
find tools of theoretical computer science useful than those of classical mathematics are.  Even in 
physics discrete systems such as elementary particles need use of combinatorial tools and 
statistical mechanics need tools of graph theory and probability theory.  Traditionally economics 
is a heavy user of applied mathematics toolbox. Now economics utilises sophisticated 
mathematics in operations research such as linear programming, integer programming and other 
combinatorial optimisation models, (Lovasz, Laszlo, (1998)).  

3.1 Bridging the Division Lines  
Developments in computer technology have re-activated some areas in the fields of discrete 

mathematics, formal logic and probability that were otherwise dormant for a long time. Examples 
include the vast and rapid developments in the areas of algorithms, databases, formal languages, 
as well as cryptography and computer security. Just about 25 years ago questions in number 
theory that seemed to belong to the purest, most classical and completely in applicable 
mathematics now belong to the core of mathematical cryptology and computer security.  

Towards the end of the 20th Century, mathematicians were making a re-think on the need to 
bridge the division lines within mathematics, to open up more for other disciplines and to foster 
the line of inter-discipline research. The current cry is that this interaction will be further 



  

strengthened in the 21st Century. Many believe it is better to view pure and applied mathematics 
as a continuum rather than as two competing and hostile camps. 

Efforts being undertaken in other scientific communities will bring the full range of 
mathematical techniques to bear on the great scientific challenges of our time. It is quite obvious 
that in this century, the need for mathematics to enrich other scientific disciplines, and vice versa, 
is most urgent. Currently there is a sense of readiness among mathematicians to interact with the 
world around them. Currently there is a sense of readiness among mathematicians to interact with 
the world around them. This is in addition to continuing the pursuit of mathematics for internal 
motivations such as revealing its inherent beauty and understanding its coherent symmetries. 

Being the language of sciences, mathematics has a great potential to make tremendous 
contributions to the other sciences. The current move is to breakdown barriers that still exist 
between mathematicians and other scientists. For example, there is still a large gap in the 
knowledge of physics. The two main pillars of 20th century physics, quantum theory and 
Einstein's general theory of relativity are mutually incompatible. It is speculated whether string 
theory and other most abstract mathematics areas will provide the solution. Mathematicians and 
theoretical physicists are busy working to bridge this gap. 

3.2 Potential Contribution to Other Fields 
As evidenced by the discoveries of the last half of the 20th century, mathematics can enrich not 

only physics and the other physical sciences, but also medicine and the biomedical sciences and 
engineering. It can also play a role in such practical matters as how to speed the flow of traffic on 
the Internet or sharpen the transmission of digitised images, how to better understand and 
possibly predict patterns in the stock market, how to gain insights into human behaviour, and 
even how to enrich the entertainment world through contributions to digital technology. 

Through mathematical modelling, numerical experiments, analytical studies and other 
mathematical techniques, mathematics can make enormous contributions to many fields. 
Mathematics has to do with human genes, the world of finance and geometric motions. For 
example, science now has a huge body of genetic information, and researchers need mathematical 
methods and algorithms to search the data as well as clustering methods and computer models 
(among others) to interpret the data. Finance is very mathematical; it has to do with derivatives, 
risk management, portfolio management and stock options. All these are modelled 
mathematically, and consequently mathematicians are having a real impact on how those 
businesses are evolving. Motion driven by the geometry of interfaces is omnipresent in many 
areas of science from growing crystals for manufacturing semiconductors to tracking tumours in 
biomedical images. The convergence of mathematics and the life sciences, which was not 
foreseen a generation ago, is a tremendous opportunity for application.  

 

4. Inter-Discipline Mathematics 
Currently, efforts are being undertaken to facilitate collaborative research across traditional 

academic fields and to help train a new generation of interdisciplinary mathematicians and 
scientists. Also similar efforts are slowly being introduced in undergraduate and postgraduate 



  

mathematics curricula and pedagogy. Disciplines that hitherto hardly used mathematics in their 
curricula are now demanding substantial doses of knowledge of and skills in mathematics. For 
example the pre-requisites for mathematical knowledge and skills for entry in into biological and 
other life sciences as well as the mathematics content in the university curricula of these 
programmes is becoming quite substantial. Curricula for the social sciences programmes now 
include sophisticated mathematics over and above the traditional descriptive statistics. Curricula 
of some universities in the developed countries have inter-disciplinary programmes where 
mathematics students and students from other sciences (including social sciences) work jointly on 
projects. The aim is to prepare graduates for the new approaches and practices in their fields and 
careers. 

4.1 Examples of Inter-Discipline in Research 
Complexity theory is an example of inter-discipline and is the new focus on research in 

mathematics (Hoyningen-Huene, et al 1999). Certain essential details of complexity have been 
known for quite some time.  At the end of the 19th century, the first source of a general idea of 
complex systems was research in dynamical systems, in the context of classical mechanics. It is 
an interdisciplinary approach fuelled by sophisticated mathematics, mathematical modelling and 
computer simulation, inspired by observations made on complex systems in the most diverse 
fields including meteorology, climate research, ecology, economics, physics, embryology, 
computer networks and many more. Examples are systems that adapt to changes in their 
environment in an extremely surprising way. They include Economics (economy of a country), 
Biodiversity (ecosystem of a pond), Biology (the immune system of an organism) and Artificial 
Intelligence (Computer Networks). 

Probability theory seems to bridge most of the division lines within mathematics.  The 
importance of probabilistic methods in almost all areas of mathematics is exploding.  Probability 
theory is one illustration of the unity of mathematics that goes deeper than just using tools from 
other branches of mathematics.  With probability theory, many basic questions can be modelled as 
discrete or as continuous problems. 

4.2 Illustration of Current Needs Of Mathematics in University Curricula 
The role of mathematics in other disciplines has become clearer. I will illustrate this by 

making quotations from a public reaction to a decision by the Rochester University to reduce the 
size of mathematics faculty.  

Below are quotations from an article titled "Demotion of mathematics meets groundswell of 
protest" by Arthur Jaffe, Harvard University, President-elect, American Mathematical Society 
(AMS), Salah Baouendi, University of California at San Diego, Past Chair, AMS Committee on 
the Profession and Joseph Lipman, Purdue University, Chair, AMS Committee on the Profession 
presents the statements from different people. The article dated February 1, 1996, is available on 
the Internet http://www.ams.org/committee/profession/rochester.html and it appeared in Notices 
of the American Mathematical Society. "In 1996, the University of Rochester planed to 
downgrade its mathematics program by reducing faculty size and closing down some 
postgraduate programmes. University of Rochester's plan met with outright protest not only from 
mathematicians but also from well-known scientists both in universities and in business. Strong 
protest statements were made by at least six Nobel laureates, by dozens of members of the 



  

National Academy of Sciences, as well as by other leaders in science and industry. The 
outpouring came from many fields, including biology, chemistry, computer science, economics, 
geology, mathematics, philosophy, physics, and sociology".  

Below are verbatim quotations  of some of the statements: 
31 professors in the Harvard physics department (including 3 Nobel laureates) wrote: "Recent 

history confirms the interaction between fundamental mathematical concepts and advances in 
science and technology. We believe that it is impossible to have a leading university in science 
and technology without a leading department of mathematics". 

 Norman Ramsey, Nobel laureate in physics, remarked: "If you had only one science 
department at a university, it would be mathematics, and you build from there". 

All members of the Harvard chemistry department, including one Nobel laureate wrote: "For 
centuries, mathematics has rightly been termed "the queen of the sciences," and this is just as apt 
today. In particular, chemistry has benefited more and more from mathematical developments and 
concepts. A university that aims to have a worthy program in science and technology simply must 
have a genuine department of mathematics pursuing original research"  

Steven Weinberg, University of Texas, Nobel laureate in physics stated the following: "I am 
not a mathematician, but I regard mathematics as the core of any research program in the physical 
sciences. If you do not have a graduate program in mathematics, then eventually you will have no 
research mathematicians, which will make Rochester far less attractive to theoretical physicists. 
Experimental physicists may not feel the loss of the mathematics program directly, but with fewer 
first-rate theoretical physicists you will begin to lose your best experimentalists as well. You will 
also be weakened in your ability to compete for good students; both graduate and advanced 
undergraduate physics students need to take advanced courses in mathematics, which can only be 
taught well by active research mathematicians. I imagine that similar effects will eventually be 
felt in your chemistry and optics departments. I would not advise any prospective undergraduate 
or graduate student who wishes to concentrate on the physical sciences to go to a university that 
did not have a graduate program in mathematics".  

Joel Moses, a computer scientist and provost at MIT, wrote: "I for one cannot imagine 
operating a school of engineering in the absence of a strong and research-oriented mathematics 
department. The same can be said for a school of science. I am also dismayed at the prospect of 
covering a substantial portion of the teaching load in mathematics with adjunct faculty". 

George Backus, research professor of geophysics at the University of California at San Diego 
and a member of the National Academy of Sciences, wrote: "At UCSD, the Institute of 
Geophysics and the Scripps Institute of Oceanography often recommend that our Ph.D. students 
take graduate courses in the UCSD Department of Mathematics. Modern theoretical geophysics 
and physical oceanography simply cannot be done without sophisticated modern mathematics. To 
teach these [advanced mathematical subjects] with sophistication and insight requires people for 
whom they are the primary research interest".  

Neil A. Frankel, manager, Advanced Components Laboratory at the Xerox Corporation 
expressed the following industrial point of view: "It is evident that neither [Kodak nor Xerox] is 



  

well served by the elimination of two technology-related [graduate] departments [chemical 
engineering and mathematics]. To stay ahead of the very significant competition from Japan and 
elsewhere, [Kodak] will need all the quality engineering talent it can find. The availability of a 
quality university in Rochester enhances our ability to attract the very best people to our 
company. If graduate mathematics is eliminated, I really don't see how UR can support first-rate 
programs in the sciences and in engineering, and I fear that all of these will decline".  

Professor Sir Michael Atiyah, director of the Newton Institute in Cambridge, England; also the 
past president of the Royal Society wrote: "Increasingly the complex problems that scientists now 
face require more sophisticated mathematical understanding. The advent of more powerful 
computers has in no way decreased the fundamental relevance of mathematics. I can illustrate the 
scope of mathematical interaction with other fields by listing just a few of the inter-disciplinary 
programmes that we have run at the Newton Institute in the past few years: computer vision, 
epidemics, geometry and physics, cryptology, financial mathematics, and meteorology".  

Edward Dougherty, editor of the Journal of Electronic Imaging, wrote: " While at first this 
might appear to most people as simply one major research university deciding to restructure itself 
into a not-so-major university, for those of us in the imaging community there is much more at 
stake. Because it is home to both Kodak and Xerox, Rochester is one of the major imaging 
centers in the world, and therefore the future of imaging is closely tied to significant imaging 
events in Rochester. Suspension of graduate research and teaching in two key foundational 
imaging disciplines is not insignificant.  Chemical engineering plays a role in imaging materials, 
toners, and numerous other staples of digital imaging. The case for mathematics is even more 
compelling when it comes to digital imaging. Simply put, there is no scientific phenomenology 
without mathematics. The kind of mathematics graduate courses necessary for contemporary 
research in image processing might simply cease to exist in the city of Kodak and Xerox".  

Marvin L. Goldberger, dean of the Division of Natural Sciences in the University of California 
at San Diego wrote: "Not only is mathematics an exciting and vital intellectual endeavour, but 
from a number of standpoints, plays an exceptional educational role at both the undergraduate 
and graduate levels. Advanced mathematics is essential in all areas of applied science; 
economics; technological risk analysis; to an increasing extent in fundamental and applied 
biology (e.g., drug design); in national security issues involving communication, cryptanalysis, 
satellite reconnaissance--the list is endless, but one more example is particularly relevant: in 
recent years topology has played a central role in elementary particle physics where string theory 
is a candidate for "Theory of Everything." This is another case of the remarkable and mysterious 
relationship between mathematics and the physical world. Topology is one of the strengths of the 
Rochester Mathematics Department". 

These public reactions illustrate the ever-expanding interrelationship between mathematics 
and other disciplines, today and in the immediate future. 

 

 
 
 



  

5. Examples of Key fields where Mathematics is 
emerging vital  

Friedman, A., 1998, presented three examples of key fields in science and technology to the 
1998 Berlin International Congress of Mathematicians. The examples are from the disciplines of 
materials sciences, the life sciences, and digital technology. Also recently, Hu, J.J and Wang, H. 
2001, presented to a conference a brief outline of a perspective from the USA army research 
office on trends in army funding for mathematics research. Below are summaries of the four 
examples: 

5.1 Mathematics in Materials Sciences 
Materials sciences is concerned with the synthesis and manufacture of new materials, the 

modification of materials, the understanding and prediction of material properties, and the 
evolution and control of these properties over a time period.  Until recently, materials science was 
primarily an empirical study in metallurgy, ceramics, and plastics.  Today it is a vast growing 
body of knowledge based on physical sciences, engineering, and mathematics.   

For example, mathematical models are emerging quite reliable in the synthesis and 
manufacture of polymers. Some of these models are based on statistics or statistical mechanics 
and others are based on a diffusion equation in finite or infinite dimensional spaces. Simpler but 
more phenomenological models of polymers are based on Continuum Mechanics with added 
terms to account for ‘memory.’ Stability and singularity of solutions are important issues for 
materials scientists. The mathematics is still lacking even for these simpler models. 

Another example is the study of composites.  Motor companies, for example, are working with 
composites of aluminium and silicon-carbon grains, which provide lightweight alternative to 
steel.  Fluid with magnetic particles or electrically charged particles will enhance the effects of 
brake fluid and shock absorbers in the car. Over the last decade, mathematicians have developed 
new tools in functional analysis, PDE, and numerical analysis, by which they have been able to 
estimate or compute the effective properties of composites.  But the list of new composites is ever 
increasing and new materials are constantly being developed. These will continue to need 
mathematical input. 

Another example is the study of the formation of cracks in materials. When a uniform elastic 
body is subjected to high pressure, cracks will form.  Where and how the cracks initiate, how they 
evolve, and when they branch out into several cracks are questions that are still being researched. 

5.2 Mathematics in Biology 
Mathematical models are also emerging in the biological and medical sciences.  For example 

in physiology, consider the kidney.  One million tiny tubes around the kidney, called nephrons, 
have the task of absorbing salt from the blood into the kidney.  They do it through contact with 
blood vessels by a transport process in which osmotic pressure and filtration play a role.  
Biologists have identified the body tissues and substances, which are involved in this process, but 
the precise rules of the process are only barely understood.  A simple mathematical model of the 
renal process, shed some light on the formation of urine and on decisions made by the kidney on 
whether, for example, to excrete a large volume of diluted urine or a small volume of 



  

concentrated urine.  A more complete model may include PDE, stochastic equations, fluid 
dynamics, elasticity theory, filtering theory, and control theory, and perhaps other tools.  

Other topics in physiology where recent mathematical studies have already made some 
progress include heart dynamics, calcium dynamics, the auditory process, cell adhesion and 
motility (vital for physiological processes such as inflammation and wound healing) and bio-
fluids. Other areas where mathematics is poised to make important progress include the growth 
process in general and embryology in particular, cell signalling, immunology, emerging and re-
emerging infectious diseases, and ecological issues such as global phenomena in vegetation, 
modelling animal grouping and the human brain.  

5.3 Mathematics in Digital Technology 
The mathematics of multimedia encompasses a wide range of research areas, which include 

computer vision, image processing, speech recognition and language understanding, computer 
aided design, and new modes of networking. The mathematical tools in multimedia may include 
stochastic processes, Markov fields, statistical patterns, decision theory, PDE, numerical analysis, 
graph theory, graphic algorithms, image analysis and wavelets, and many others. Computer aided 
design is becoming a powerful tool in many industries. This technology is a potential area for 
research mathematicians. The future of the World Wide Web (www) will depend on the 
development of many new mathematical ideas and algorithms, and mathematicians will have to 
develop ever more secure cryptographic schemes and thus new developments from number 
theory, discrete mathematics, algebraic geometry, and dynamical systems, as well as other fields. 

5.4 Mathematics in the Army 
Recent trends in mathematics research in the USA Army have been influenced by lessons 

learnt during combat in Bosnia. The USA army could not bring heavy tanks in time and 
helicopters were not used to avoid casualty. Also there is need for lighter systems with same or 
improved requirement as before. Breakthroughs are urgently needed and mathematics research is 
being funded with a hope to get the urgently needed systems. These future automated systems are 
complex and nonlinear, they will likely be multiple units, small in size, light in weight, very 
efficient in energy utilisation and extremely fast in speed and will likely be self organised and self 
coordinated to perform special tasks.  

Research areas are many and exciting. They include: (i) Mathematics for materials (Materials 
by design - Optimisation on microstructures; Energy Source - compact power, Energy efficiency; 
Nonlinear Dynamics and Optimal Control). (ii) Security issues (needs in critical infrastructure 
protection, mathematics for Information and Communication, Mathematics for sensors, i.e. 
information/ data mining and fusion, information on the move i.e. mobile communication as well 
as network security and protection). (iii) Demands in software reliability where mathematics is 
needed for computer language, architecture, etc. (iv) Requirements for automated decision 
making (probability, stochastic analysis, mathematics of sensing, pattern analysis, and spectral 
analysis) and (v) Future systems (lighter vehicles, smaller satellites, ICBM Interceptors, Hit 
before being Hit, secured wireless communication systems, super efficient energy/ power sources, 
modelling and simulations, robotics and automation. 



  

During the last 50 years, developments in mathematics, in computing and communication 
technologies have made it possible for most of the breath taking discoveries in basic sciences, for 
the tremendous innovations and inventions in engineering sciences and technology and for the 
great achievements and breakthroughs in economics and life sciences. These have led to the 
emergency of many new areas of mathematics and enabled areas that were dormant to explode. 
Now every branch of mathematics has a potential for applicability in other fields of mathematics 
and other disciplines. All these, have posed a big challenge on the mathematics curricula at all 
levels of the education systems, teacher preparation and pedagogy. The 21st Century mathematics 
thinking is to further strengthen efforts to bridge the division lines within mathematics, to open up 
more for other disciplines and to foster the line of inter-discipline research.  
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