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ABSTRACT

Euclid presented his fundamental results about 300 B.C., but Euclidean Geometry is still
alive today. We studied the new properties of convex sets and its inscribed hexagons in a two
dimensional Euclidean space. As an application, these results solved a question in Geometry
of Banach Spaces. From my teaching experience at Community College of Philadelphia, I
think the material is reasonable and suitable to be added to the Linear Algebra course and/or
Functional Analysis course. It may encourage others to know that the tools we give our
students remain useful in modern research.



1 Introduction

In [1], we used elementary geometry to discuss the properties of the rhombi inscribed
in the unit circle C of a two dimensional normed vector space, and proved that the
well-known property from Euclidean geometry, namely that every rhombus inscribed
in unit circle C has sides of C-length

√
2, does not characterize the Euclidean space.

The result is that if the curve C of unit vectors is invariant under rotation by 45o,
then every rhombus inscribed in C has sides of C-length

√
2. In the first part of this

paper we still use elementary geometry to discuss the properties of so-called normal
hexagons inscribed in the unit circle C of a two dimensional normed vector space, and
we consider another well-known property from Euclidean geometry, namely that every
normal hexagon inscribed in an unit circle C has side-medians of C-length

√
3

2 . However,
we also prove that this property does not characterize the Euclidean space either. By
using the term side-median for a polygon inscribed in the unit circle C of a normed
vector space, we mean the median of the triangle with the origin as a vertex and a side
of the polygon as base. In the second part of this paper, which is an appendix, we
present more properties of rhombi inscribed in the unit circle C we discussed in [1].

2 Inscribed Hexagons

As we have already shown in [1]: we can use any bounded convex set which is sym-
metric with respect to the origin and contains the origin as an interior point in a two
dimensional Euclidean space to define a new norm. On the other hand, the unit disk
of any normed vector space is a bounded convex set which is symmetric with respect
to the origin and contains the origin as an interior point.

Definition: A hexagon in a normed vector space with unit circle C is called a normal
hexagon if it has six sides of same C-length, and each pair of opposite sides are parallel.
The normal hexagon is called a unit normal hexagon if it has six sides of C-length 1.

The unit circle of the standard Euclidean space E2 is a standard circle, and there
is unique regular hexagon inscribed in the standard circle with a given point on the
standard circle as the one of its vertices. From [2], for any invertible matrix A we can
define an inner product on E2 by < x, y >= Ax ·Ay, and every inner product arises in
this way. Under the linear isometry x −→ A−1x, the image of the standard Euclidean
unit circle is the unit circle C of unit vectors with respect to the inner product, which
is an ellipse, and the image of any regular hexagon inscribed in the Euclidean circle
is a normal hexagon inscribed in this ellipse C. Since the unique regular hexagon in
the standard Euclidean circle has sides of Euclidean length 1, and six side-medians of
Euclidean length

√
3

2 , it follows that the unique normal hexagon inscribed in an ellipse
C with a given point as one of its vertices has sides of C-length 1, and side-medians of
C-length

√
3

2 .
The question is: does the property above characterize the Euclidean space? That is,

if a normed vector space has the property that every normal hexagon inscribed in C of
unit vectors has side-medians of C-length

√
3

2 , does the norm arise by an inner product?
Observe that the two dimensional standard Euclidean space E2 and a two dimen-

sional normed vector space with C as its unit circle are set up in the same plane. In the
following, for a given vector x in the plane we use |x| to denote the general Euclidean



length (in the Euclidean space) and ‖x‖C to denote the C-length (in the normed vector
space). Let K and C = ∂K be the unit disk and unit circle of the two dimensional
normed vector space respectively, then both K and C are symmetric with respect to
the origin, in addition K is a convex set with the origin as an interior point. So, ge-
ometrically the question above is equivalent to the following question: if a convex set
K, which is symmetric with respect to the origin and contains the origin as an interior
point (and therefore C = ∂K could be the unit sphere of some normed vector space),
has the property that every normal hexagon inscribed in C = ∂K has side-medians of
C-length

√
3

2 , must C be an ellipse in E2 (Therefore C = ∂K should be the unit sphere
of an Euclidean space)?

To answer this question we need the following results.
Let T be a tangent line of K, then T ∩K = T ∩ C is either a single point or a line

segment with ||T ∩K||C = ||T ∩ C||C ≤ 2.
Lemma 1: Let x ∈ C, T be the tangent line parallel to the vector x, and L be a line

parallel to x too. Then when L moves parallel from the position passing through the
origin towards T , the ||L ∩ K||C is non-increasing from 2 to ||T ∩ K||C = ||T ∩ C||C .
Furthermore, for any a, where ||T ∩K||C = ||T ∩ C||C ≤ a < 2, there is unique u ∈ C
and corresponding v ∈ C such that vector u− v is parallel to x, and ||u− v||C = a.

Proof: Let L1 moves parallel to L2 towards T , and u1, v1 ∈ L1 ∩ C, u2, v2 ∈ L2 ∩ C
(see Figure 1). If ||u2 − v2||C > ||u1 − v1||C , or ||u2 − v2||C ≥ ||u1 − v1||C < 2, then at
least one of u1, v1 falls inside the trapezoid with vertices −x, x, u2, and v2.

This contradicts the convexity of K. Therefore ||u2 − v2||C ≤ ||u1 − v1||C , or when
||u1 − v1||C < 2, ||u2 − v2||C < ||u1 − v1||C .

�
�
�
�
�
��

L
L
L
L
L
L

x

T

o

u2v2
L2

u1v1
L1

−x

Figure 1:

Lemma 2: Let x ∈ C, then there exists at least one normal hexagon inscribed in C
with x as one of vertices.

Proof: Let T be the tangent line to C, and parallel to x. If ||T∩K||C = ||T∩C||C ≤ 1
(see Figure 2), from lemma 1 we can take u, v ∈ C, such that u− v is parallel to x, and
||u − v||C = 1. From parallelograms with vertices u, v, o, and x, and vertices u, v,−x,
and o, we have ||u− x||C = ||v||C = 1, and ||v − (−x)||C = ||u||C = 1. So, the hexagon
with vertices x, u, v,−x,−u, and −v is an inscribed normal hexagon.

¿From lemma 1 again there is unique u and corresponding v ∈ C such that u− v is
parallel to x, and ||u − v||C = 1. So, in this case the inscribed hexagon with x as one
of vertices is unique.

If ||T ∩ K||C = ||T ∩ C||C > 1 (see Figure 3), we can take infinite many pairs of
u, v ∈ T ∩K = T ∩ C such that u − v is parallel to x, and ||u − v||C = 1. So, in this
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case there are infinite many normal hexagons inscribed in C.
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Consider a normed vector space in a plane with a normal hexagon as the unit circle
C, then the normal hexagon itself is an inscribed normal hexagon in C. It has side-
medians of C-length 1, but it is not a inner product space.

Lemma 3: Let x be a vector in C, and x, u, v, and −x in C are counterclockwise
located, then ||v − x||C ≥ ||u− x||C , and ||v − (−x)||C ≤ ||u− (−x)||C .

Proof: Let u′ and v′ be the normalizations of u − x, and v − x respectively. Then
u′ and v′ ∈ C. If u′ = v′, then u, v, and x are colinear. So ||v − x||C ≥ ||u − x||C .
Otherwise x, u′, v′, and −x are counterclockwise located too (see Figure 4).

Case 1: If the line Lv passing through v and v′ intersects the line Lx through −x
and x at a point Q, and Q is on left side of −x, then ||v − x||C > 1 (see Figure
5). The Lu passing through u and u′ is either parallel to the line Lx (in this case
||u − x||C = 1, therefore ||v − x||C ≥ ||u − x||C = 1), or intersects Lx at a point P .
If P is on the right side of x, then ||u − x||C < 1 (therefore ||v − x||C ≥ ||u − x||C).
If P is on the left side of −x, then from the convexity of K, P must be on the left
side of Q. By considering similar triangles with vertices u, x, P and vertices u′, o, P , we
have ||u−x||C = |Px|

|Po| . Similarly from similar triangles with vertices v, x,Q and vertices

v′, o, Q, we have ||v − x||C= |Qx|
|Qo| . Since |Px||Po| ≤

|Qx|
|Qo| , we have ||v − x||C ≥ ||u− x||C .

Case 2: If line Lv is parallel to line Lx , then ||v − x||C = 1 (see Figure 6). ¿From
convexity of K, the line Lu either intersects line Lx on the right side of x, or Lu is
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parallel to Lx so ||u− x||C ≤ 1. We still have ||v − x||C ≥ ||u− x||C .
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Case 3: If the point Q, the intersection of line Lv and line Lx is on the right side
of x, then ||v − x||C ≤ 1 (see Figure 7). From convexity of K again, the point P , the
intersection of Lu and line Lx, is either on the left side of Q, or coincides with Q. Similar
to case 1, by considering the similar triangles we have ||v−x||C = |Qx|

|Qo| ≥
|Px|
|Po| = ||u−x||C .
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Figure 7:

Similarly, we can prove ||v − (−x)||C ≤ ||u − (−x)||C . The proof of lemma 3 is
completed.

Lemma 4: If the curve C of unit vectors is invariant under rotation by 30o, then C
does not contain any line segment with C-length greater then or equal to 1.

Proof: Suppose u, v′ ∈ C such that ||v′−u||C ≥ 1, and the line segment L connecting
u and v′ ⊆ C. If ∠v′ou < 30o, take a vector v such that ∠vou = 30o, and |ov| = |ou|,
then v ∈ C, and by lemma 3 ‖v − u‖C ≥ ‖v′ − u‖C ≥ 1. If ∠v′ou ≥ 30o, take v ∈ L
such that ∠vou = 30o. From the hypothesis, |ov| = |ou|, and the line segment [u, v]
connecting u and v coincides with L. So we have v′ = v and therefore ‖v − u‖C ≥ 1.
Let w = u+v

2 , then w ∈ K, and ||w||C ≤ 1 (see Figure 8). Let t = v − u, then
||t||C = ||v − u||C ≥ 1, |t| = |u − v| = 2|u| sin 15o, and the angle between t and w is
90o. Let s be the image of rotating w couterclockwise by 90o, then ||s||C ≤ 1, and
|s| = |w| = |u| cos 15o. Since cos 15o > 2 sin 15o, we have |s| > |t|. But ||t||C ≥ ||s||C .
This is a contradiction. The proof is completed.
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Theorem 1: If the curve C of unit vectors is invariant under rotation by 30o, then
every normal hexagon inscribed in C has side-medians of C-length

√
3

2 .
Proof: Let u be a vector in C. Since C is invariant under rotation by 30o, C does

not contain any line segment with C-length greater than or equal to 1. Therefore the
normal hexagon inscribed in C with u as one of its vertices is unique (lemma 2). Let
u1, u2, u3, and u4 be the vectors obtained by turning u counterclockwise by successive
steps of 30o (see Figure 9). Then the hexagon with vertices u, u2, u4,−u,−u2, and −u4

is the unique normal hexagon inscribed in C.

We have ||u+u2
2 ||C = |u+u2

2 |
|u1| = |u+u2

2 |
|u| =

√
3

2 . Similarly, we have ||u2+u4
2 ||C = ||u4+(−u)

2 ||C =

|| (−u)+(−u2)
2 ||C = || (−u2+(−u4)

2 ||C = || (−u4)+u
2 ||C =

√
3

2 . The proof is completed.
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So ellipses are not only curves C with the property that every inscribed normal
hexagon in C has side-medians of

√
3

2 . A regular polygon with 12n sides in particular a
regular twelvegon will satisfy the condition. Therefore the image of any regular polygon
with 12n sides under any invertible linear map has this property too. Equivalently we
have proved that the property that every normal hexagon inscribed in C of unit vectors
has side-medians of C-length

√
3

2 does not characterize the Euclidean space.



3 Appendix

In the second part of this paper we study more properties of inscribed normal parallel-
ograms, rhombi, in the unit circle C.

We have already proved the uniqueness of rhombus inscribed in the curve C of unit
vectors with a given point of C as a vertex in [1]. Now we prove the existence of this
kind of rhombus.

Theorem 2: There is a rhombus inscribed in C of unit vectors with a given point of
C as a vertex.

Proof: Let x ∈ C, from lemma 3 when u moves from x to −x counterclockwise,
||u− x||C continuously increases from 0 to 2, and ||u− (−x)||C continuously decreases
from 2 to 0. So there exists y ∈ C, such that ||y−x||C = ||y−(−x)||C . The Parallelogram
with vertices x, y,−x, and −y is a rhombus inscribed in C, with a given point x as a
vertex.

Finally, by combining theorem 1 of [1] and the theorem 2 above, we have the fol-
lowing theorem.

Theorem: There is one and only one rhombus inscribed in C, with a given point in
C as a vertex.

4 Discussion

In this paper, the question we posed: a conjecture about the characteristic of Eu-
clidean spaces belongs to the subject of the Geometric Functional Analysis. All figures
which appeared: hexagons, circles, ellipses, symmetric convex sets belong to Elemen-
tary Geometry, the course students studied at high schools and/or in a freshman level at
colleges. The concepts and methods which we need to prove the lemmas and main theo-
rem: linear vector spaces, norm and normed vector spaces, Euclidean spaces, and linear
transformations belong to Linear Algebra, the course we are teaching. Based on the
knowledge in Elementary Geometry, all the concepts and methods about linear spaces
and linear transformations, which make one of the most important parts of the Linear
Algebra course are needed to prove the lemmas and main theorem. After my lectures
students learned that the basic figures in Elementary Geometry have meaning in the
Geometry of Banach spaces they never imagined: different Ellipses are unit spheres of
different Euclidean spaces, and different symmetric convex sets are unit spheres of dif-
ferent normed spaces and so on. And students also learned that the concepts, methods
and results in Linear Algebra course are useful and powerful in proving results in more
advanced mathematical courses. The students told me that they understood better and
deeper what the definitions of the abstract spaces really mean, relations among topics
in the different chapters of the course, and learned how to think mathematically, and
how to use their knowledge in practice. They also told me that they were inspired by
my lectures to do research, and they recognized the tools they acquired in the classroom
remain useful in modern research.

So lectures on this subject in my Linear Algebra course help students to review
the Elementary Geometry, to enhance the understanding of the Linear Algebra course,
and encourage them to study Real and Functional Analysis in the future. I think the
material of this paper is suitable and reasonable to be added to current Linear Algebra



course and/or Functional Analysis course.
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