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THE COMPLEX SYMPLECTIC STRUCTURE OF THE SPACE OF
QUASIFUCHSIAN DEFORMATIONS
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ABSTRACT

We study the (complex) symplectic geometry of the space Q(S) of
the quasifuchsian structures of a closed Riemannian surface § of
genus g >1.We prove that this space is a flat complex symplectic
manifold and we describe the hamiltonian nature of the
quasifuchsian bending vector fields.

A quasifuchsian group T 1s a discrete subgroup of PSL(2.C), which is
quasiconformally congruent 1o 2 fuchsian group of the first kind. The limitset of T
is a Jordan curve, If Q. is the domain of discontinuity of T in the compiex plane C

and #° is the upper hyperbolic semispace, then the Kleinian 3-manifold

My =37 UQ)/ T is diffeomorphic to §x[0.1]. The space Q(5) of the quasifuchsian
strictures on a closed Riemann surface § of genus g>1 can be regarded as the space
of marked quasifuchsian manifolds, where a marking of M is a choice of
isomorphism between =, (M) and 7,(5).This work is divided in three sections:

In section | we mostly refer to previous results conceming the geometry and the
deformations of O(S). For more details about the notions of complex length and
bending along a lamination which are widely used here, the reader is referred to the
works of Kourouniotis and Epstein-Marden [K11,[K2],[(K3L[E-M].

In section 2 we construct a closed holomorphic form Q in Q(S) using the
geometry of M and the laws that describe the variations of the complex length
under bending. In this way the couple (Q(5).€) turns out to be a complex symplectic
manifold, a notion which is an extension in the complex case of the notion of the
symplectic manifold. Spaces of the form Hom(m(S) = G)/ ~ where G is a Lie group
with an invariant inner product on its Lie algebra, are already known to be
symplectic by a construction of W.Goldman based in strong algebraic topological
tools [G1]. In the case where G=PSL(2,C) the symplectic form is described
explicitely in (G2}(Theorem p.40). The interested reader can compare Goldman’s
formulas with the laws that our construction is based upon, to obtain that the two
symplectic forms are the same. Our construction also reveals the hamiltonian nature
of the bending vector fields. A duality formula is given at the end of this section.

In section 3 we use an analytic continuation method to prove that (Q(5).Q) is
globally a flat complex symplectic manifold. S.Wolpert has proved a similar result
for the Weil-Petersson form in the Teichm i ller space T(S); namely that T(S5) is a flat
real symplectic manifold W2].

AMS subject classification {1691) 30F60,30F40
This work is in final form and no version of it will be submited for publication elsewhere.
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1. The space of quasifuchsian structures

We fix a compact Riemann surface § of genus g>1 and identify its fundamental
group x;(S) with a Fuchsian group T,.The space (S) is the quotient of the set of
discrete faithful representations P € Hom(Tq — PSL(2,C)) such that T=p(T,) is
quasifuchsian, with a left action of PSL(2,C) via inner automorphisms. This space is
a 6g~6 complex dimensional complex manifold {B],-and complex coordinates for it

are provided by the following two theorems {K3I:

THEOREM A, Given a partition of the surface S by 3g-3 simple closed
geodesics y,, there exist complex length functions A Q(S)>Cand bending

functions B,:Q(S)—C i=1,..,3g-3 which form a system of global complex
coordinates for Q(S). . -

THEOREM B. Given a partition of the surface S by 3g-3 simple closed
geodesics y,, then for every pe Q(5) there exist a neighborhood Vip) and 3g-3
simple closed curves a, with y. A a;=@ if i#j such that the complex length
functions A vA ri=L..33-3 form a system of local complex coordinates for

(35).

In [K1] C.Kourouniotis defined a holomorphic transformation of 0(8) called
the bending deformation, which is a generalisation on Q) of the quakebending
deformation defined on the Teichmiller space T(S) [E-M]. We firstly recall the

notion of a measured laminarion on S,

A geodesic lamination A on S is a foliation of a closed subset of § such that
the leaves are geodesics. The leaves together with the components of §-A; are

=

called the strata of A;. A geodesic lamination on § lifts to a lamination A in the
hyperbolic plane.

-

—

A transverse measure y is a finite complex Borel measure on each closed
geodesic segment a in the hyperbolic plane, subject to certain conditions:

1) If « is entirely contained in a stratum of A, then the measure of « is zero.

i1) The measures of two geodesic segments with their respective endpoints lying
in the same strata of A are equal.

A measured lamination i A1) is a geodesic lamination equiped with a transverse
measure. From here on we shall denote a measured lamination (A,x) only with the
symbol of the measure

Let u be a measured lamination on §, and p a point of OS). Then in a
ghborhood W of 0in € we define a quasiconformal deformation of p called

21g
bend

1
1818 r
1eighbor
ding along u

B, (p)W > Q(5y:— B (0.p)

The mapping B, posseses all the properties of a (local) holomorphic flow [K1],

b
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Let « be asimple geodesic on S and 4, its complex length function. The first
variation of the complex length of a under bending along u is given by:

d
Tyhg = 5 (O Aa(By(tP))]

If v is a measured lamination on § the second variation of 4, under bending
along u and v is given by:
a?
T#TV;"B :'ﬁ(o’o}{la(ay(rvgv{svp)}j

Suppose that u, v are simple closed curves a,B respectively equipped with
iransverse measure the counting one. Then the variations of the complex length have
the following geometric interpretation:

Tak = z::oshO'{p(—ﬁ),p(fI)},
peang

TﬁT)'la =
! 1 ( : 7 . . 1.
= p3 s sinh o(p(a), p{B)) , sinha{p(a), p( Y))gcoshi=4, - Tog)+
Esiﬂh :}-.la Pfafﬁﬁqeany L 5 .

. - {
+—'1—1“— Y  ZXsinh o‘(p(a}.p(ﬁ))Psmowiﬁmm),cosh{_;_ﬁ -0,)
Zsinh—,kﬁ peaxnfrefny ;
2
where by o we denote the complex distance between geodesics p() in the upper
semispace #~ (See [K3]).
The following laws are crucial for our construction in section 3:

LToAs+Tads =0
LT Tgh, + ToTak, +T,Tgds =0

Laws I and II are the generalisation on Q(S) of S.Wolpert's laws conceming the
first and the second variation of the geodesic length under twisting in T(S) [W1].

Proposition A. [K3]. If aisa simple closed curve on S, then T, is a
holomorphic vector field on Q(S).

We shall call T, a Q-bending vector field . Let now p be a point of Q(S), « be
a simple closed curve on §, and let also

T, =~ (Fa-iB,)
2
the holomorphic tangent Q-bending vector at p. Fg,B, are real vectors and
BQ :'}—QF-’-" FG‘ ="JQBG

where J, is the almost complex structure of 0(5). Let B be another simple closed
curve on § and Ay =l5+idg 118 complex length function (/5 is the geodesic length
function and 8, is the angle function [K2], [K3]).
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Making some elementary calculations we have:

¢ =;!(Fa—-i8a)(l‘+iﬂ',)=-;—(}=a ls + B 0)+2(Fy 0, - B, 1)
and also

Tadg = Zcosholp(a).p(f)), =

peang

= zcoshd(p(a),p(ﬁ)),, cos #{p(a),p(8)), +isinh d(pla).p(B)),sin ¢(p<a),p(ﬁ}},
peanmf

where by 4 we denote the hyperbolic distance between geodesics

semispace %7, and by ¢ their angle (o=d+ig).

Equating real and imaginary parts and applying the Cauchy-Riemanp equations
we obtain:

() in the upper

Foly=B, 0= Lcoshd(p(a), p(B)), cos p(p{a).p(B)),

2€ang

Fq 85 =-B,l, = 2 sishd(p(a).p(8)), sin 8(p(a). p(8)),

peang

When p is a fuchsiap point then

a'{p{a')._p{ﬁ)}; =0 since p(a),p(8) are intersa:tmg
geodesics in 77 and therefore:

Tadg=F b= toly = zcss«éi;p(a),p{,s))p

peang
where 1, is the Fenchel-Nielsen twist vector field (See [W1] for the definition).

Lemma 1.1, L¢r Y@, be as in theorem B. The @,

G‘ i . [ M LDY rm s
T (= —_}j_; and T_ form a basis of the }ws’@morpmc tangent space 1'% (g 5.
¥ 1 ] =

H
i
|
|
-bending vector Sfields #
|

Proof: Let ¥(py) be an open neighborhood of a point p; € 0(S) with local
oordinates (A ....,A4 A A ). The Q-bending vectors T, T, are li

F1g-3 19

(]

o€ar

L 5 a g
comoinations of the vectors - o

ecifically at each pe Vipy) we have:
Fec ) PEYip

ig-3 0'1/1__‘
. & 7 a d T
complex matrix [-Z T i e
(=7 JA 7. . CAa IA &, .
! =t i ip-1
The matrix Bisa NON-Zero (3z~3

38 ~3)x(3g - 3) complex matrix with entries T, 4

or0and A is the (3¢ ~3)x(3g -3, diagonal complex matrix with diagonal entries
[T,]1=T1, Ay = Zcosh Tioty ) pla))s

The determinant of the transformation is equal to (=1) ~*(det 4)? which is different
from zero since at EVery pev

i
w2 have T A_ 20 for cvery i=|,.. 3

1/
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2. The complex symplectic structure of Q(S) and the Hamiltonian
nature of Q-bending fields.

With the aid of laws I and I we firstly define locally a closed holomorphic 2-
form in the holomorphic tangent space T4(Q(5)). Let p, be a point of O(S) and
Vip), T , T, as in the preceeding section. For indices a8 running through

vi.@, i=1,.3g-3 wesetforeach peV;

Qp(TasTp) =T, As=  Leosholp(a)p()),

peanf

By law I one obtains that Q is skew-symmetric and by the very definition that
Q is holomorphic since the quantities T4, are all holomorphic functions in V(py).

The form Q does not depend on the choice of local coordinates for V(p,) or to
be more specific on the choice of the curves a; of theorem B. One way to see this is
to consider «.8 simple closed curves on § and to establish that the above formula is
also valid in this case.

Indeed by lemma 1.1 there exist holomorphic functions f5.g; and fj.g5 ,
i=1...3g-3 defined on V(p,) such that

To=feT, +gT, and Ty=f,T, +g5T

£
i

where upper and lower indices denote summation. The calculations now are straight
forward:

Q(Ta‘Tﬁ)zﬂ(fi?Ty +g;Ta ’féTT +géT= )=
i ' ! 4
el RS P i L gl =
=fofpQUT, T )+ o T, T Wea AT, .T d+2:gQT, T, )=
SELT A, +foghT A +aufiT 4 +guglT 4 =
=T, +&,T,)4, +eh(TaT, +eoT )4, =
= Tﬂly, *géTai‘al which by law I is equal to

-} Ta 2. -ggTﬂ Ao =-Tghg =Tady

The form Q is a closed (2,0) form: Let 4’ be the holomorphic differential
operator on (S) and T,.T,.T,, Q-bending vector fields on curves a.f.y of s

respectively. Then
QTG Ty T,) =T AT, T, =TT, T+ T, QT T)-
~Q([T,. T4l T,)+ QT T,1 Ty - (T, T,1T,)

Using laws I and I we find out that this is equal to:

T Tgh, = TpToh, +T,Tokg-

: AT Tolh, +{Te. T, 1Ay +(T5. T, 14, =
TaTpd, +TgT A =T, ToAg =T Tpd, +TpTA, +

$T, T, A5 =T, Tohy =T, T Ay =TT A, +T,Tgd, =0
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We can also check that our form Q is non-degenerate in the sense that if there
exists a holomorphic vector field Z such that Q(zZ.W)=0 for all holomorphic W
then Z=0. Indeed, the equation Q(Z,W)=0 for all W is equivalent to the 6g-6
equations

QZ.T,)=0

where o is an index moving on indices y;, a;, i=1,...,3g-3
Now since Z=f' £, +¢'T_ for some holomorphic functions f',g' we have

from the equations
QZT, )=0

that g'=0since QT ,T )=0and T .T )=} cosho(p(e).p(7)),d), where &
' ! ) ’ pea Ny,

is the Kronecker delta.
Therefore Z=f T and by the same reasoning we get from the equations

Q(Z.T,)=0 that f' = 0. We conclude that Z=0.

Definition 2.1. Let M be a 2n complex manifold. We say that M carries a
complex symplectic structure if there exists a non-degenerate, closed (2,0)-form
defined on M .

A trivial example is C** with complex coordinates z,,...,2,,w;,....w, Where we
have the standard flat form
d'z, Ad'w;

Q, =

W pAs

The couple (4.Q) is called a complex S)mpa’ecnr manifold. We recall thata 2n»
real manifold M is called symplectic if it caries a real symplectic structure i.e if there
exists a non-degenerate closed
2-form defined on 4. The following is rather obvious:

Proposition 2.2. A complex symplectic manifold is also a real symplectic
manifold.

Proof: Let (M.Q)a complex symplectic manifold. Since Q is a complex form
we have Q= w+ip where w, ¢ are non-degenerate real closed forms on M defining
symplectic structures on M.

From the above discussion we obtain ;

THEOREM 2.3 The space of quasifuchsian structures is a complex
svmplectic as well as a real symplectic manifold.

We tum now to a more general d CL sion. Let (¥.Q) be a complex symplectic
nifold. The holomorphic form Q defines an isomorphism between holomorphic
gent and cotangent t\undlea‘ For ex-ery point ps M c.rd every holomorphic vector

ma
an

.—-

Z=T,"9(4). a holomorphic 1-form Q(2) is describing this isomorphism:
(2N, =Q,(Z,)=1,Q,

where i is the interior product with respect to Z.

Lick f be a holomorphic function on M. We shall call a holomorphic vector field
Hf the complex hamiltonian of f if for every holomorphic vector field = defined on
M we have:

O~

£~
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QUHS XZ) = UHE,E) = -d" {(Z) = -Ef

If g, is the (local) holomorphic flow of HE, then for every r belonging to 2
sufficiently small neighborhood of 0 in C, we have @, Q = Q. Also the complex Lie

derivative of Q along Hf is zero.
Suppose that f=u+iv where u,v are smooth functions of M satisfying the
Cauchy-Riemann equations. Consider the real symplectic manifold (M, ) where

© =ReQ. For the (real) hamiltonian vector fields H,.H, of uv respectively, we
have:

o(H,.8)= ~du(&)=-8u
o(H,.§)=—dv(§) =3
for every real vector field § on M .

We can check easily that
JHHH - ""H? aﬁd JMH;= Hi

where J,, is the almost complex operator of I, the real tangent space of M.
Indeed, since o is J,, anti-invariant being the real part of holomorphic form, we

have:

oI, H,.5)=0(H, .1y Ey=—du(Jy, §)=—(J), Su

If = “—'%(5 - i1, &) is the holomorphic vector field corresponding to ¢ then
=3+ and I, E=i(E-5)s0
(1M§)u=%(3~§){f+?‘)=%(Efnih:
= - Im(Zf) = Im{Q(H} . D)},
On the other hand
@(Ha-§)=—du(§)=—§u=%(E+§)(f—i-’)=—i—(Efﬂ-ifP—im(Ef)
therefore

Q}(}MH”,é) = w(—Hv'é}

and since  is non-degenerate we have J,H, =-H, where applying J,, again we
obtain J,H, =H,

We also note that
o(H,,&)=-u= —%—(E+§}{f+f)=—Re(Ef = Re[Q(HF.5)).

Thus
Q(HS, =) = Re[Q(HS, 5)]+i Im[Q(H{ , )] = @(H,.§) -io(yH,. &) =

Re{ﬂ(—i—(Hu — i1, H,). S +i Im[Q{—é—(Haw— i1,H,).5)]= Q(%(H, ~iJ H,).5)

Since Q is non-degenerate we have:
c |1 . 1 .
Hf =‘;(HQ—II‘HH“)=E(HH+1HV)
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Let a be a simple closed curve on § and 1, =1, +id, its complex length
function defined on S). The geodesic length funcnon I, and Lhe angle function o,
are smooth on Q(S). Applying the results of the previous discussion we obtain the

following:
Proposition 2.4. The Q-bending vector field T, =—§-(Fa— iBg) is the complex

hamiltonian of the complex length function A,:T, = Hfa. Furthermore

H,_ =F,and H, =-B,

Proposition 2.5. (Duality formula)

QT,.)=-d'A,

Observe that when we restrict ourselves in the Teichm iiller space, then formula
3.5 1s just S.Wolpert's duality formula:

C’.}“.P({a,} = _dga

where wy, is the Weil-Petersson symplectic form ( See also lemma 3.3).

3. Q(S) is a flat complex symplectic manifold.

In i‘»‘#"‘] S. Wolpert proved the following formula concerning the expression of
the Weil-Petersson symplectic form oy, of the Teichmiiller space in terms of the
global real analytic Fenchel-Nielsen coordinates (! ..‘..1'7 L T

3g-3
Wyp = ¥ 4l Adr,

where I, i=l..3g-3 are geodesic length functions of closed geodesics y,

forming a partition of S and 7, i=1.....3z- 3 are the twist functions corresponding to
these geodesics. According to this formula the form wy; is flat symplectic and the

eichm tller space is a (rea‘ ) flat nrrpfecrzc manifold. Note here that the term flat
refers only to the nnzptecrc nature of T(S) and not to the K dhlerian one (where it is
known that 7(5) has negative ‘*olomorphic curvature). In this section we establish
the natural extension of W olpert’s result in our case. Namely we prove our main:

THEOREM 3.1. (¢(5.Q) is a flar complex .S'_‘;‘?’ﬂpf ctic ma zfofa The
expression of the form in the global coordinates ’]‘r e I, of theorem A is

I,;.I

3g. 3
Q=3 A AdB Also

] i
f !

& \ . 2
J==d'A, and Q{— =d’f

(— .=
a8, ,4.

, . . s 5. O ) .
and therefore the holomorphic vector fields —, —— are complex hamiltonian for

3B, 3

the form Q.

st
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Our proof is based on an analytic continuation argument. We start with

Lemma 3.2. (Analytic continuation in several variables)
Let F:C* - C, F=F(z....2,1., = x; +y; be a holomorphic function and suppose
that F(x,.....x,,0,....,0)=0. Theri F is identically zero in C*.

Proof: Consider the function w, =w(z)=F(x.....5.y,0,...,0) which is
holomorphic in the variable z;. Now w,(x,0)=F(x,....5,,0.....0)=0 therefore by
analytic continuation we have w/(z)=0. Consider then :
wy = wy(23) = F(5. X300 40 1. ¥2:0....,0) Which is holomorphic in the variable z, (we
stabilise all the other variables). We have w,(x;,0)=F(x;.....1,,%,0,...,0) = 0 therefore
w,(z;) =0 and we continue with this procedure until we exhaust all variables.

By the duality formula 2.5 we easily see that the following hold:

Ja 4 " 3 .
—  ——)=~§; and Q——.=1=0
(38 aj,r) i (a,s 35,
J
for i.j=1,.,3g-3 and thus
Q=5 d% d et v
2 A’..A’BT.Z, {d,d. aA)d Ah
i=1 t<icys3g-3
where
d 1, d d d
A =l +id, B=1 +iy; and ——=—{(=—-1 ‘,T—=-————~ K3
v = s G g o, z‘afr 'aﬁY} ET 3{5. v ) (K3
After straightforward calculations we obtain
Jg -3
w=ReQl= }:(df Adt, —do; ady)+
1=1
+ 3 R Q———— dl dl —dd, Add)-
e . {8). By dl, ~dl, —dd;nd,)
i< j<3g-3 Y;
- s L—;[Q(—a-—,—cz-—)kdz} Adl +d’ Aade)
B 8} dA 4 )
1€i<j$3zg-3 Y
and
ig-3
p=Im{= Z(dt? AdT, *df *\dwl}-i-
a : N
+ 3 Rl 2 (dd, adi, +dl, AdB)*
e . dr_ A e Y.
1€i<j<3g-3 : i
. g :
+ s Im[Q{——,——)(dl_ Adl —df, Add})
. di_ dA . Y, !
1<icj<s3z-3 . 7,
where of course
3 d d d_d_ J
Re[Qf——, —)] = &(~— yand Im[Q(— —"'—)
e T R I
i J i I i U

When restricting ourselves on the tangent bundle of the fuchsian points of Q(5)
then the functions o,.y,, i=1,...,3g—-3 are all zero, therefore in this case:
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-3
Q= w+;¢- Zdl‘Adfi- 3 {Q(wéz—— E—)jdl Adl +
= 1S1<;83-3

)

J d

i 3T WLl adl =
| Siay spss 8.1' alr; &
5 YA IR
= z Cﬂ?', Adfr-'i'- z (—é-i—,gi—-,dlrl A ’,
f=1 [Sic;s3z-1 ¥. Y

We shall show that the holomorphic functions Q,j=Q(-af—.§;7—} are real
ooy,
valued at fuchsian points: Indeed if p is such a point then in a neighborhood of o

we have from lemma 1.1 that
3 _
QT- = f T + g‘;i Ta.'

where ] g/ are holomorphic ﬁmcmo’b defined on this nelabborhood According
to the matrix equation in lemma 1.1 we have by multiplication with the inverse
mairix that

i 47
| === =| !r}
LAl | A o |
Therefore
[ 5 7
| S i=[a-1ga-! el
Erll j_l.A B4 ! A IT]
Ly
where
ERNE S
E Ty

Recall that the eatries of t e (diagonal) matrix A are of the form T,4, or 0

F 4l

where the eniries of the matrix B are of the form T, 2, or 0. All these quamities

{and eventually the quantities £, .g;, which are entries of the matrices 4'84' and

~A‘Erespect=.l;el}) cvaluated on a fuchsian point are real, for if p is such a point then
we have
TeAs = Zcosd(p(a).p(B)),
psa~j
where o, 8 indices running through indices Yol I=homde=3.
Now it is easy to see that

- -
o 24 ol - . ; .
-;(,O Q\" ,— }:Q‘,p.‘{‘[TT =g . ,r.iT *g;T 1=

i D-]ﬁ]-., Bﬁ.r R s S X ]
=66 T A +6 i T A +g, £ T A +gl g5 T ;
0 e U S Y 'J: = G ¥y 5y TV, z, ,q*
which is clearly real when evaluated at .

Lemma 3.3. At fuchsian points o= wy,

Proof: Let «.f be simple closed curves on § and t3.15 the corresponding twist
siar

C
vector fields. Then at a fuchsian p we have by the holomorphicity of bending:

—t
\n
s ]



M A o i

T IR

d
Wwp,, (tg.lg) = Ex-(x = 0K I3 (B (x,p)) =

’ . ,
Re{d—z(z =0XAg(By(z.p)]= ReIT%)JLAs 1= Re[ﬂ(m (Ta. Tg)]= @, (t5.15)

From Lemma 3.3 and S.Wolpert's formula for wy, we have that

- d d Jd d g d . _
R w TG e e
7, Y; Y, 7, Y,
and also by the previous discussion
J a

Im{Q(—aA—',gi-?—)] =0

at fuchsians.
Now since each Q, = Q(:;-f——,a—f—) is a holomorphic function on Q(5).that is
| 7
Q, =Q(f(;‘~_{:e---Aly;’_! BireBaga3)

and also at fuchsian points

Q=@ ol T T3p2500,0.00.0) =0,

Y143

we obtain by lemma 3.2 that Q; =0 in Q(5) and thus the proof is complete.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CRETE
71409 HERAKLION CRETE GREECE

References
(B] L. BERS, Spaces of Kleinian Groups, Lecture Notes in Mathematics 155,
Springer-Yerlag, Berlin, 1870.
[E-M] D.B.A. EPSTEIN, A. MARDEN, Ccnvex hulls in hyperbolic space, In

Anahtical and geometric aspects of hvperbolic space . London Math. Soc.
Lecture notes series 111, Cambridge Un.Press, 1987.

[G1] W.GOLDMAN, The symplectic nature of fundamenta! groups of surfaces,
Adv. in Math. 54 (1984), 200-225.
(G2] W GOLDMAN, Invariant function on Lie groups and Hamiltonian flows of

surface group representations, University of Maryland, Preprint Revised
edinion , 1984,

[K1] C.KOUROUNIOTIS, Bending in the space of quasifuchsian
structares,Glasgow Mathematics Journal, 33 (1991), 41-49.

[K2] C KQUROUNIOTIS, The geomeiry of bending quasifuchsian groups. In
Discrete groups and georetry London Math. Soc. Lecture note series 173,
Cambridge Univ. Press, 1992, 143-164.

[K3] C.XOUROUNIOTIS, Complex length coordinates.for quasifuchsian groups,
Mathematila 41 (1994), 173-188.

W] S.WOLPERT, On the symplectic geometry of deformations,
Anmn of Marh. 117 (1983), 207-234.

w2] S.WOLPERT, On the Weil-Petersson geometry of the modali space
of curves, Amer. J. Math. 107 (1985), 969-997.

151



