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Abstract. Let Σ be a closed, orientable surface of genus g. It is known that the SU(2, 1) represen-

tation variety of π1(Σ) has 2g − 3 components of (real) dimension 16g − 16 and two components of

dimension 8g−6. Of special interest are the totally loxodromic, faithful (that is quasi-Fuchsian) rep-

resentations. In this paper we give global real analytic coordinates on a subset of the representation
variety that contains the quasi-Fuchsian representations. These coordinates are a natural general-
isation of Fenchel-Nielsen coordinates on the Teichmüller space of Σ and complex Fenchel-Nielsen

coordinates on the (classical) quasi-Fuchsian space of Σ.

1. Introduction

In their famous manuscript, recently published as [5], Fenchel and Nielsen gave global coordinates
for the Teichmüller space of a closed surface Σ of genus g ≥ 2. These coordinates are defined as
follows; see also Wolpert [26], [27]. First, let γj for j = 1, . . . , 3g − 3 be a maximal collection of

disjoint, simple, closed curves on Σ that are neither homotopic to each other nor homotopically
trivial. We call such a collection a curve system; it is also called a partition by some authors. The
complement of such a curve system is a collection of 2g − 2 three-holed spheres, or pairs of pants.
If Σ has a hyperbolic metric then, without loss of generality, we may choose each γj in our curve

system to be the geodesic in its homotopy class. The hyperbolic metric on each three-holed sphere
is completely determined by the hyperbolic length lj > 0 of each of its boundary geodesics. Each

γj is in the boundary of exactly two three-holed spheres (including the case where it corresponds

to two boundary curves of the same three-holed sphere). There is a twist parameter kj ∈ R that

determines how these three-holed spheres are attached to one another. This is defined as follows. On
each three-holed sphere with its hyperbolic metric, take disjoint orthogonal geodesic arcs between
each pair of boundary geodesics. On each geodesic γj, the feet of these perpendiculars on the same

side are diametrically opposite. The twist parameter kj measures the hyperbolic distance along γj

between the feet of the perpendiculars on opposite sides. As we have just defined it, the parameter
kj lies between ±lj/2. Performing a Dehn twist about γj adds ±lj to kj, the sign depending on the

direction of twist. Thus we can make the twist parameter a well defined real number with reference
to an initial homotopy class. The theorem of Fenchel and Nielsen states that each (6g − 6)-tuple

(l1, . . . , l3g−3, k1, . . . , k3g−3) ∈ R
3g−3
+ × R

3g−3

determines a unique hyperbolic metric on Σ and each hyperbolic metric arises in this way.
We will take the point of view that Teichmüller space is the collection of discrete, faithful, purely

loxodromic representations of π1(Σ) to SL(2, R), up to conjugation. In this case the discreteness of
the representation follows from the fact that it is totally loxodromic, but we include discreteness as
a hypothesis for emphasis. Wolpert gives a careful description of the Fenchel-Nielsen coordinates
for Riemann surfaces in [26]. Given such a representation, the Fenchel-Nielsen coordinates may be

computed directly from the matrices; see [14] for an explicit way to do this. The length parameters
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lj may read off from the traces of the corresponding matrices and the twist parameters kj from

cross-ratios of certain combinations of fixed points. Note that all these quantities are conjugation
invariant. We also remark that it is not possible to determine the representation up to conjugacy
by merely using 6g − 6 trace parameters, in fact one needs 6g − 5; see [16] and [19].

In [12] and [20] Kourouniotis and Tan defined complex Fenchel-Nielsen coordinates on the quasi-
Fuchsian space of Σ, in which both the length parameters and the twist parameters become complex.
The group elements corresponding to γj in the curve system are now loxodromic with, in general,

non-real trace. Thus the imaginary part of the length parameter represents the holonomy angle
when moving around γj. Likewise, the imaginary part of the twist parameter becomes the parameter

of a bending deformation about γj ; see also [18] for more details of this correspondence and how

to relate these parameters to traces of matrices. The main difference from the situation with
real Fenchel-Nielsen coordinates is that, while distinct quasi-Fuchsian representations determine
distinct complex Fenchel-Nielsen coordinates, it is not at all clear which set of coordinates give rise
to discrete representations, and hence to a quasi-Fuchsian structure. In fact the boundary of the
set of realisable coordinates is fractal.

Another generalisation of Fenchel-Nielsen coordinates is given by Goldman in [8], where he
considers the space of convex real projective structures on a compact surface. There he constructs
16g − 16 real parameters. Goldman uses two real parameters generalising the length of each γj

and two real parameters generalising the twist parameters. Which gives 12g − 12 in total. For
the remaining 4g − 4 parameters, Goldman shows that one must associate an additional two real
parameters to each three-holed sphere.

The purpose of this paper is to define analogous Fenchel-Nielsen coordinates for complex hyper-
bolic quasi-Fuchsian representations of surface groups, that is discrete, faithful, totally loxodromic
representations; see [17]. (Once again a totally loxodromic representation is automatically discrete.)
In this setting the representation space, and hence the quasi-Fuchsian space, is more complicated.
There is a natural invariant of representations of surface groups to SU(2, 1), called the Toledo

invariant; see [21]. The Toledo invariant is an even integer lying in the interval [χ,−χ], where

χ = χ(Σ) is the Euler characteristic of Σ; see [9]. Moreover, the Toledo invariant distinguishes the

components of the SU(2, 1) representations variety; see [28]. Each component contains discrete,

faithful, totally loxodromic representations; see [9]. A representation preserves a complex line if

and only if its Toledo invariant equals ±χ; see [21]. The corresponding two components comprise

reducible representations and they are the direct product of Teichmüller space (within the complex

line) and representations of π1(Σ) to U(1) (rotations around the complex line). The representa-

tion is reducible and the corresponding components have dimension 8g − 6; see Theorem 6(d) of

Goldman [7]. The remaining components correspond to itteducible representations and so, using

Weil’s formula [22] their dimension is 16g − 16; see also Lemma 1 of [7].
The definition of the Toledo invariant uses an equivariant embedding of the universal cover of

the surface Σ (that is the hyperbolic plane) into complex hyperbolic space. We do not explicitly use
this surface. However, we will have this embedding in the backs of our minds when we use phrases
like ‘attaching groups along peripheral elements’ and ‘closing a handle’. These phrases are carried
over from plane hyperbolic geometry and do not make direct sense in four dimensions, although we
could make them precise by using equivariant embeddings of the surfaces in question.

Suppose that we are given a curve system γ1, . . . , γ3g−3 on a closed surface Σ of genus g ≥ 2,

as described above. We consider representations π1(Σ) to SU(2, 1) for which the 3g − 3 group
elements representing the γj are all loxodromic with distinct fixed points. It is clear that this is a

proper subset of the representation variety; but this subset contains all (discrete) faithful, totally
loxodromic representations. That is, it contains the complex hyperbolic quasi-Fuchsian space.

In fact, we restrict our attention to a particular type of curve systems. Namely, we suppose that
there are g of the curves γj that correspond to two boundary components of the same three-holed
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sphere. We call such a curve system simple. See Figure 2.1 for an example of a simple curve system.
This restriction makes our computations easier and should not be necessary in general.

Our goal is to describe 16g−16 real parameters that distinguish non-conjugate irreducible repre-
sentations and 8g−6 real parameters that distinguish non-conjugate representations that preserve a
complex line. As with the complex Fenchel-Nielsen coordinates described by Kourouniotis and Tan
it is not clear which coordinates correspond to discrete representations. However, our coordinates
determine the group up to conjugacy and distinguish between non-conjugate representations.

The major innovation in this paper is the use of cross-ratios in addition to complex length and
twist-bend parameters. Following Korányi and Reimann [11], there are 24 complex cross-ratios
associated to the different permutations of four ordered points. Certain permutations of the four
points preserve these cross ratios or send them to their complex conjugate, to their reciprocal or
to their conjugate reciprocal; see either page 225 of [6] or else [25]. After taking account of these

symmetries, one is left with three complex cross-ratios. Falbel [3] shows that these satisfy two real

equations and so lie on a real four-dimensional variety in C
3. This variety is Falbel’s cross-ratio

variety which we denote by X. Moreover, following Falbel, these three cross-ratios determine the
four ordered points up to SU(2, 1) equivalence.

In the case where our representation does not preserve a complex line, we assign parameters as
follows. To each of the 2g − 2 three-holed spheres we associate two complex traces and a point on
X. This gives eight real parameters. These 16g − 16 real parameters are subject to 3g − 3 complex
constraints that are compatibility conditions for gluing the three-holed spheres together. This
reduces the number of independent parameters to 10g − 10. There are then 3g − 3 complex twist-
bend parameters, one associated to each gluing operation. This gives 16g − 16 real parameters in
total; see Theorem 2.1. This parameter count is the same as Goldman’s [8], but his real parameters
are not combined into complex numbers.

Representations that preserve a complex line are reducible. A result analogous to Theorem 2.1
may be deduced by splitting the representation to one in SU(1, 1) and one in U(1). The first

corresponds to a point in Teichmüller space and is determined by 6g − 6 real parameters (for

example Fenchel-Nielsen coordinates). The second is abelian and is completely determined by 2g
real parameters, for example the arguments of the generators. In Theorem 2.2 we show that certain
of our parameters are real in this case and the parameters analogous to those indicated in Theorem

2.1 give 8g − 6 real parameters that completely determine ρ : π1(Σ) −→ Γ < S
(
U(1) × U(1, 1)

)
up

to conjugation.
The paper is organised as follows. We give the statements of the main results in Section 2.

After covering the necessary background material in Section 3 we discuss loxodromic isometries in
some detail, Section 4. Following this we discuss the properties of Korányi-Reimann cross-ratios and
Cartan angular invariants in Section 5. In Section 6 we show how to associate a point on X to a pair
of loxodromic maps A and B and we investigate the relationship between cross-ratios and traces of
elements of 〈A,B〉. We are then able to begin to discuss Fenchel-Nielsen coordinates. We begin with
coordinates for three-holed spheres, Section 7, and then go on to discuss in Section 8 the twist-bend
parameters that describe the ways to glue three-holed spheres to form four-holed spheres or one-
holed tori. This completes the list of ingredients necessary for Section 2. Additionally, in Section
7.3 we investigate what happens if we only use traces (that is complex lengths) to parametrise
three-holed spheres. We show that it is not sufficient to use four traces, but we must use five traces
subject to two real equations.

A large fraction of this paper is devoted to both showing that other possible coordinates do
not work (Section 7.3) and also treating the special case where the group preserves a complex line

(Sections 2.2, 5.4, 6.3 and 8.4). Readers who do not want to go into this material may by-pass it
as follows. A good overview can be obtained by reading the outline in Section 2.1; the background
material in Sections 3, 4, 5.1 and 5.2 and then Sections 6.1, 7.1, 8.1, 8.2 and 8.3. However, this
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Figure 2.1. An example of a simple curve system.

reading scheme omits certain crucial results, for example Proposition 5.10, which could be assumed
from Falbel’s work [3].

Part of this work was carried out while both authors were visiting the University of Paris VI,
where we had many useful discussions. We would particularly like to thank Elisha Falbel for
pointing out a subtle, but serious, error in an earlier version of this manuscript. We would also like
to thank the referee for giving us useful suggestions for improving the paper.

2. Complex hyperbolic Fenchel-Nielsen coordinates

2.1. Representations that do not preserve a complex line. We now summarise our con-
struction of Fenchel-Nielsen coordinates for complex hyperbolic quasi-Fuchsian surface groups. For
the details the reader should see subsequent sections and we give precise references as we go along.

As mentioned in the introduction we only consider curve systems with the property that each
handle is closed from inside the same three-holed sphere, and we call such a curve system simple;
see Figure 2.1 for an example of a simple curve system. Given a simple curve system on a closed
Riemann surface of genus g we consider representations of the fundamental group so that each curve
in our system is represented by a loxodromic map; see Section 4 for more details about loxodromic
isometries. The restriction that our curve system is simple should not be necessary in general. In
the classical case the effect of a change of curve system has been investigated by Okai [15]. This
could probably be extended to the complex hyperbolic setting, but we will not pursue it here.

The good thing about simple curve systems is that the surface may be built up using the following
recursive process. Begin with a single three-holed sphere. Attach a second three-holed sphere along
a boundary curve. In order to do this, two of the boundary curves, one from each three-holed
sphere, must be compatible. The result is a four-holed sphere. Keep adding pairs of three-holed
spheres so that at each stage the boundary curves are grouped in pairs and each pair belong to the
same three-holed sphere. Eventually one ends up with 2g−2 three-holed spheres attached together
to form a 2g-holed sphere. These 2g holes naturally come in pairs, each pair belonging to the same
three-holed sphere. For each such pair we close the handle. The result is a surface of genus g that
is naturally made up of 2g − 2 three-holed spheres attached along 3g − 3 curves γj and it is these

curves that make up our curve system, which by construction is simple. At each stage we have
required that the boundary components that are attached are compatible, both when adding new
three-holed spheres and when closing handles.

This way of using three-holed spheres to build up our surface with a simple curve system is
very well adapted to the Fenchel-Nielsen coordinates we shall construct. In this section we will
examine how this works for representations of π1(Σ) that do not preserve a complex line. Each
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three-holed sphere corresponds to a (0, 3) group and this is described up to conjugation by eight

real parameters (locally by four complex parameters): namely two complex traces and a point on

a cross-ratio variety; see Theorem 7.1. When attaching two (0, 3) groups together to form a (0, 4)

group we require that two of the peripheral elements are compatible (that is one is conjugate to the

inverse of the other); see Section 8.1 for a discussion of compatibility. This gives one fewer complex
degree of freedom. However, there is one complex parameter associated to the attaching process,
namely the Fenchel-Nielsen twist-bend. Thus there are still sixteen real parameters describing an
attached pair of (0, 3) groups (that is eight for each (0, 3) group); see Theorem 8.4. Continuing

in the same way, each (0, 3) group we attach is described by eight real parameters, two of which
are constrained by the compatibility condition. But there is one complex degree of freedom in
the attaching process. Thus once we have attached all 2g − 2 of our (0, 3) groups we will have

8 · (2g − 2) = 16g − 16 real parameters. In order to close the g handles we need to impose the
compatibility condition on each of the g pairs of boundary curves. These g complex constraints
reduce our number of real parameters to 14g−16. But there are g complex twist-bend parameters,
one for each handle we close; see Theorem 8.6. This gives a grand total of 16g−16 real parameters.
This is the number we require.

We call the resulting coordinates complex hyperbolic Fenchel-Nielsen coordinates for the group

Γ = ρ
(
π1(Σ)

)
. Specifically, these coordinates are the 3g − 3 complex twist-bend parameters; the

4g − 4 complex traces and 2g − 2 points on the cross-ratio variety X, all subject to 3g − 3 complex
constraints. It remains to check that these are independent and that they completely determine
our representations up to conjugacy. Our main theorem is the following:

Theorem 2.1. Let Σ be a surface of genus g with a simple curve system γ1, . . . , γ3g−3. Let

ρ : π1(Σ) −→ Γ < SU(2, 1) be a representation of the fundamental group of Σ with the property that

ρ(γj) = Aj is loxodromic for each j = 1, . . . , 3g − 3. Suppose that Γ does not preserve a complex

line. Then the Fenchel-Nielsen coordinates of ρ are independent and two representations have the
same Fenchel-Nielsen coordinates of and only if they are conjugate in SU(2, 1).

Proof. This theorem will follow from the results we prove below. In Theorem 7.1 we show that
the representations of each (0, 3) group may be parametrised by the trace of two peripheral curves

and a point of the corresponding cross-ratio variety. For each (0, 3) group we may choose the two
peripheral curves in three ways. Making a different choice corresponds to an analytic change of
coordinates; see Theorem 7.2. This gives a total of 4g−4 traces and 2g−2 points in the cross-ratio
variety (which has four real dimensions). The compatibility conditions when gluing impose 3g − 3
complex conditions on these parameters. There are 3g − 3 twist-bend parameters κj , each in C

with −π < ℑ(κj) ≤ π. The only relations between the parameters in adjacent (0, 3) groups are the

compatibility conditions. There are no relations between parameters in non-adjacent (0, 3) groups.
Thus, all other parameters are independent.

Now suppose we have two representations with the same coordinates. The coordinates of each
three-holed sphere are the same in both representations and so they are pairwise conjugate; see
Theorem 7.1. But when gluing across each curve in the system the resulting (0, 4) group or (1, 1)
group is determined up to conjugation; see Theorems 8.4 and 8.6. Thus the whole group is deter-
mined up to conjugation.

Conversely, suppose we have two representations that are conjugate. By definition, the traces
tr(Aj) are the same. This is also true of the parameters Xl provided we have chosen cross-ratios

of corresponding points. If not, then one cross-ratio, together with three length coordinates, deter-
mines all other cross-ratios for that particular (0, 3) group by a real analytic change of coordinates;
see Proposition 7.5. Finally, we know that the twist-bend parameters are the same.

This proves the result. �
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2.2. Representations preserving a complex line. The two components of the representation
variety with extreme Toledo invariant are made up of groups that preserve a complex line. These
representations are reducible and the components have real dimension 8g − 6. Specifically, the
components are a direct product of Teichmüller space, of dimension 6g − 6, and 2g copies of U(1).
In this section we describe what happens to our Fenchel-Nielsen coordinates in this case.

Let Aj = ρ(γj) be the group elements representing the simple closed curves γj in our simple

curve system. These 3g−3 curves fall into two classes. First, there are 2g−3 curves used to attach
distinct three-holed spheres and, secondly, there are g curves used to close handles. In Proposition
6.8 we show that, if γj is 2g − 3 curves used to attach distinct three-holed spheres, then tr(Aj) is

real. Furthermore, there can be no bending across such curves; see the discussion in Section 8.2.
Hence, each of these 2g−3 complex twist-bend parameters κj is forced to be a real twist parameter

kj (which is just the classical Fenchel-Nielsen twist).

Additionally, the cross-ratios are all real and satisfy certain equations; see Proposition 5.13.
Moreover, arguing as in Proposition 7.6, we may express this cross-ratio in terms of the traces. In
fact, using the notation of Proposition 7.6, in this case we have

X1(A,B) =
(tr(AB) − τ(λ − µ))

(eλ − e−λ)(eµ − e−µ)
.

Thus in this case there are no independent cross-ratio parameters.

Thus we have proved that when ρ
(
π1(Σ)

)
preserves a complex line the Fenchel-Nielsen coor-

dinates from Theorem 2.1 have degenerated as follows. First there are 2g complex parameters,
namely the complex length and twist-bend parameters λj and κj for j = 1, . . . , g associated to

curves γj that are used to close a handle. Then there are 4g−6 real parameters, namely the length

and twist parameters lj and kj for j = g + 1, . . . , 3g − 3 associated to the other curves in the

system. We call these the Fenchel-Nielsen coordinates for ρ.
In fact lj and kj for j = 1, . . . , 3g − 3 (where lj = ℜ(λj) and kj = ℜ(κj) for j = 1, . . . , g)

are just the classical Fenchel-Nielsen coordinates on the Teichmüller space of Σ. The other 2g
parameters correspond to rotations around the complex line fixed by Γ. They may be thought of
as a (necessarily abelian) representation of π1(Σ) into U(1). The stabiliser of a complex line is

isomorphic to S(U(1)×U(1, 1)
)
, the first factor corresponding to rotation around the complex line

and the second to isometries of the hyperbolic metric on the complex line. These representations
are clearly independent. Thus we have proved:

Theorem 2.2. Let Σ be a surface of genus g with a simple curve system γ1, . . . , γ3g−3. Let

ρ : π1(Σ) −→ Γ < SU(2, 1) be a representation of the fundamental group of Σ preserving a complex

line and with the property that ρ(γj) = Aj is loxodromic for each j = 1, . . . , 3g − 3. Then, the

Fenchel-Nielsen coordinates of ρ are independent and two representations have the same Fenchel-
Nielsen coordinates of and only if they are conjugate in SU(2, 1).

3. Preliminaries

3.1. Complex Hyperbolic Space. Let C
2,1 be the vector space C

3 with the Hermitian form of
signature (2, 1) given by

〈z,w〉 = w∗Jz = z1w3 + z2w2 + z2w1

with matrix

J =




0 0 1
0 1 0
1 0 0


 .
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We consider the following subspaces of C
2,1:

V− =
{
z ∈ C

2,1 : 〈z, z〉 < 0
}

,

V0 =
{
z ∈ C

2,1 − {0} : 〈z, z〉 = 0
}

.

Let P : C
2,1 − {0} −→ CP 2 be the canonical projection onto complex projective space. Then

complex hyperbolic space H2
C

is defined to be PV− and its boundary ∂H2
C

is PV0. Specifically,

C
2,1 − {0} may be covered with three charts H1, H2, H3 where Hj comprises those points in

C
2,1 − {0} for which zj 6= 0. It is clear that V− is contained in H3. The canonical projection from

H3 to C
2 is given by P(z) = (z1/z3, z2/z3) = z. Therefore we can write H2

C
= P(V−) as

H2
C =

{
(z1, z2) ∈ C

2 : 2ℜ(z1) + |z2|
2 < 0

}
.

There are distinguished points in V0 which we denote by o and ∞:

o =



0
0
1


 , ∞ =



1
0
0


 .

Then V0 −{∞} is contained in H3 and V0 −{o} (in particular ∞) is contained in H1. Let Po = o

and P∞ = ∞. Then we can write ∂H2
C

= P(V0) as

∂H2
C − {∞} =

{
(z1, z2) ∈ C

2 : 2ℜ(z1) + |z2|
2 = 0

}
.

In particular o = (0, 0) ∈ C
2. In this manner, H2

C
is the Siegel domain in C

2; see [6].

Conversely, given a point z of C
2 = P(H3) ⊂ CP 2 we may lift z = (z1, z2) to a point z in

H3 ⊂ C
2,1, called the standard lift of z, by writing z in non-homogeneous coordinates as

z =




z1

z2

1


 .

The Bergman metric on H2
C

is defined by the distance function ρ given by the formula

cosh2

(
ρ(z,w)

2

)
=

〈z,w〉 〈w, z〉

〈z, z〉 〈w,w〉
=

∣∣〈z,w〉
∣∣2

|z|2|w|2

where z and w in V− are the standard lifts of z and w in H2
C

and |z| =
√

−〈z, z〉. Alternatively,

ds2 = −
4

〈z, z〉2
det

[
〈z, z〉 〈dz, z〉
〈z, dz〉 〈dz, dz〉

]
.

The holomorphic sectional curvature of H2
C

equals −1 and its real sectional curvature is pinched

between −1 and −1/4.

There are no totally geodesic, real hypersurfaces of H2
C
, but there are are two kinds of totally

geodesic 2-dimensional subspaces of complex hyperbolic space, (see Section 3.1.11 of [6]). Namely:

(i) complex lines L, which have constant curvature −1, and

(ii) totally real Lagrangian planes R, which have constant curvature −1/4.

Both of these subspaces are isometrically embedded copies of the hyperbolic plane.
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3.2. Isometries. Let U(2, 1) be the group of unitary matrices for the Hermitian form 〈·, ·〉. Each

such matrix A satisfies the relation A−1 = JA∗J where A∗ is the Hermitian transpose of A.
The full group of holomorphic isometries of complex hyperbolic space is the projective unitary

group PU(2, 1) = U(2, 1)/U(1), where U(1) = {eiθI, θ ∈ [0, 2π)} and I is the 3× 3 identity matrix.

For our purposes we shall consider instead the group SU(2, 1) of matrices which are unitary with

respect to 〈·, ·〉, and have determinant 1. Therefore PU(2, 1) = SU(2, 1)/{I, ωI, ω2I}, where ω is

a non real cube root of unity, and so SU(2, 1) is a 3-fold covering of PU(2, 1). This is the direct

analogue of the fact that SL(2, C) is the double cover of PSL(2, C).

Every complex line L is the image under some A ∈ SU(2, 1) of the complex line where the

second coordinate is zero. The subgroup of SU(2, 1) stabilising this particular complex line is thus

(conjugate to) the group of block diagonal matrices S
(
U(1) × U(1, 1)

)
< SU(2, 1). Similarly, every

Lagrangian plane is the image under some element of SU(2, 1) of the Lagrangian plane RR where

both coordinates are real. This is preserved by the subgroup of SU(2, 1) comprising matrices with

real entries, that is SO(2, 1) < SU(2, 1).

Holomorphic isometries of H2
C

are classified as follows:

(i) An isometry is loxodromic if it fixes exactly two points of ∂H2
C
, one of which is attracting

and the other repelling.

(ii) An isometry is parabolic if it fixes exactly one point of ∂H2
C
.

(iii) An isometry is elliptic if it fixes at least one point of H2
C
.

4. Loxodromic Isometries

4.1. Eigenvalues and eigenvectors of loxodromic matrices. Let A ∈ SU(2, 1) be a matrix
representing a loxodromic isometry. By definition A has an attracting fixed point. From the

matrix point of view, this means that A has an eigenvalue eλ with |eλ| = eℜ(λ) > 1. In other words

ℜ(λ) > 0. Since elements of SU(2, 1) preserve the Hermitian form, it is not hard to show that if eλ

is an eigenvalue of A then so is e−λ (Lemma 6.2.5 of [6]) and since det(A) = 1, its third eigenvalue

must be eλ−λ. We may also assume that ℑ(λ) ∈ (−π, π] and, in this way, λ ∈ S where S is the
region defined by:

(4.1) S =
{
λ ∈ C : ℜ(λ) > 0, ℑ(λ) ∈ (−π, π]

}
.

Let aA ∈ ∂H2
C

be the attractive fixed point of A. Then any lift aA of aA to V0 is an eigenvector

of A and the corresponding eigenvalue is eλ with λ ∈ S. Likewise, if rA ∈ ∂H2
C

is the repelling

fixed point of A, then any lift rA of rA to V0 is an eigenvector of A with eigenvalue e−λ. The fixed

points aA and rA span a complex line LA in H2
C
, called the complex axis of A. The geodesic joining

rA and aA is called the real axis of A. The eigenvector nA of A corresponding to eλ−λ is a polar
vector to the complex axis of A.

For any λ ∈ C with −π < ℑ(λ) ≤ π define E(λ) by

(4.2) E(λ) =




eλ 0 0

0 eλ−λ 0

0 0 e−λ




It is easy to check that E(λ) is in SU(2, 1) for all λ. If λ ∈ S then E = E(λ) is a loxodromic map

with attractive eigenvalue eλ and fixed points aE = ∞, rE = o. If ℜ(λ) = 0 then E(λ) is elliptic

(or the identity) and fixes the complex line spanned by o and ∞. If ℜ(λ) < 0 then −λ ∈ S and

E(λ) is a loxodromic map with attractive eigenvalue e−λ and fixed points aE = o, rE = ∞.
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Let A be a general loxodromic map with attracting eigenvalue eλ for λ ∈ S. Since SU(2, 1) acts

2-transitively on ∂H2
C

then there exists a Q ∈ SU(2, 1) whose columns are projectively aA, nA, rA.

Moreover, aA = Q(∞) and rA = Q(o). Thus we may write: A = QE(λ)Q−1, where E(λ) is given

by (4.2).

If A lies in SO(2, 1) and corresponds to a loxodromic isometry of the hyperbolic plane then λ is

real and so tr(A) = 2 cosh(λ) + 1 is real and greater than 3. If ℑ(λ) = π then A corresponds to a

hyperbolic glide reflection on H2
R

and tr(A) = −2 cosh(ℜ(λ)) + 1 < −1.

4.2. The trace function for a loxodromic matrix. Let A be a loxodromic matrix and let eλ

be its attracting eigenvalue, where λ ∈ S. As indicated in Section 4.1 the other eigenvalues are e−λ

and eλ−λ and so the trace of A is given by the following function of λ which we denote by τ(λ):

(4.3) tr(A) = τ(λ) = eλ + eλ−λ + e−λ.

This generalises the well known formula tr(A) = eλ + e−λ for SL(2, C). However our function τ(λ)

is not holomorphic. It is easy to see that τ(λ) has the following properties:

(i) τ is a real analytic function of λ.

(ii) τ(−λ) = τ(λ).

(iii) τ(λ + 2πi) = τ(λ).

The latter two properties prevent τ from being one-to-one in the whole of C. We therefore restrict
our attention to those λ lying in the strip S defined by (4.1). We now determine the image in C of

S under τ . In order to do so, following Goldman §6.2.3 of [6], we define the function f : C −→ R

by

(4.4) f(τ) = |τ |4 − 8ℜ(τ3) + 18|τ |2 − 27.

In Theorem 6.2.4 (2) of [6], Goldman proves that the matrix A ∈ SU(2, 1) is loxodromic if and only

if f
(
tr(A)

)
> 0. Therefore we define the region T of C by

(4.5) T =
{
τ ∈ C : f(τ) > 0

}
.

This region is the exterior of a closed curve in C called a deltoid. We can now prove

Lemma 4.1. The function τ(λ) = eλ + eλ−λ + e−λ is a real analytic diffeomorphism from S onto
T .

Proof. Writing λ = l + iθ, we calculate the Jacobian of τ(λ):

|Jτ (λ)| =

∣∣∣∣
∂τ

∂λ

∣∣∣∣
2

−

∣∣∣∣
∂τ

∂λ

∣∣∣∣
2

=
∣∣∣eλ − eλ−λ

∣∣∣
2
−

∣∣∣eλ−λ − e−λ
∣∣∣
2

= 2 sinh(2l) − 4 sinh(l) cos(3θ)

= 4 sinh(l)
(
cosh(l) − cos(3θ)

)
,

which is clearly different from 0 whenever l 6= 0. Hence τ is a local diffeomorphism on S.
We now show that τ is injective on S. Suppose that λ = l + iθ and λ′ = l′ + iθ′ are two points

of S with τ(λ) = τ(λ′). By equating real and imaginary parts we have

2 cosh(l) cos(θ) + cos(2θ) = 2 cosh(l′) cos(θ′) + cos(2θ′),

2 cosh(l) sin(θ) − sin(2θ) = 2 cosh(l′) sin(θ′) − sin(2θ′).
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Eliminating l′ and using the addition rule for sin(α + β) gives

2 cosh(l) sin(θ′ − θ) = sin(3θ′) − sin(2θ + θ′) = 2 cos(2θ′ + θ) sin(θ′ − θ).

Since cosh(l) > 1 ≥ cos(2θ′ + θ) we see that sin(θ′ − θ) = 0. Hence θ′ = θ + kπ. Plugging this into
the expression for τ we see that

2 cosh(l)eiθ + e−2iθ = (−1)k2 cosh(l′)eiθ + e−2iθ.

Cancelling e−2iθ from each side and comparing signs, we see that k is even and so eiθ = eiθ′ . Hence
we also have cosh(l) = cosh(l′). Since λ and λ′ both lie in S we see that λ = λ′ as required. Hence
τ is an injective, local diffeomorphism and so is a global diffeomorphism onto its image.

We now show that the image of S under τ is T . If f(τ) is Goldman’s function given by (4.4), a
brief calculation shows that

f(eλ + eλ−λ + e−λ) = 16 sinh2(l)
(
cosh(l) − cos(3θ)

)2
= |Jτ (λ)|2 > 0

and so τ(S) ⊂ T . Conversely, if τ ∈ T then τ is the trace of a loxodromic map by Goldman’s

theorem and we may take eλ to be its eigenvalue of largest modulus. By construction λ ∈ S and
so T ⊂ τ(S). �

Even though it is not holomorphic, the function τ(λ) does enjoy a stronger property than merely

being real analytic. Namely, in Proposition 4.2 we show that τ(λ) it is quasiconformal, and hence

this is also true of its inverse λ(τ). This result and its proof are very short and are are only
included for interest. We will not use them in the rest of the paper. Further information about
quasiconformality may be found in Lehto and Virtanen [13]. For any ǫ > 0 define Sǫ by

(4.6) Sǫ =
{
λ ∈ S : ℜ(λ) ≥ ǫ

}
.

Proposition 4.2. For each ǫ > 0 the function τ(λ) is e−ǫ-quasiconformal on Sǫ.

Proof. The Beltrami differential µτ (λ) is well defined on S and given by

µτ (λ) =
∂τ/∂λ

∂τ/∂λ
=

eλ−λ − e−λ

eλ − eλ−λ
= e−λ eλ − eλ−λ

eλ − eλ−λ
.

Therefore
∣∣µτ (λ)

∣∣ = |e−λ| < e−ǫ on Sǫ. �

5. Cross-ratios and angular invariants

5.1. The Korányi-Reimann cross-ratio. Cross-ratios were generalised to complex hyperbolic
space by Korányi and Reimann [11]. Following their notation, we suppose that z1, z2, z3, z4 are

four distinct points of ∂H2
C
. Let z1, z2, z3 and z2 be corresponding lifts in V0 ⊂ C

2,1. Their

complex cross-ratio is defined to be

X = [z1, z2, z3, z4] =
〈z3, z1〉〈z4, z2〉

〈z4, z1〉〈z3, z2〉
.

Since the zi are distinct we see that X is finite and non-zero. We note that X is invariant under
SU(2, 1) and independent of the chosen lifts. More properties of the complex cross-ratio may be

found in Section 7.2 of [6]. We highlight the following properties, which are Theorem 7.2.1 and

Property 7 on page 226 of [6].

Proposition 5.1. Let X = [z1, z2, z3, z4] be the complex cross-ratio of the distinct points z1, z2, z3,

z4 ∈ ∂H2
C
. Then

(i) X < 0 if and only if all zi lie on a complex line and z1, z2 separate z3, z4;
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(ii) X > 0 if and only if z3, z4 lie in the same orbit of the stabiliser of z1, z2;

(iii) X > 0 if and only if there is an antiholomorphic involution swapping z1, z2 and swapping
z3, z4.

We remark that Proposition 5.1 (iii) corrects a mistake in Theorem 7.2.1 of [6] (this error was

pointed out to us by Pierre Will). We now give a proof.

Proof. [Proposition 5.1 (iii)] Suppose that such an antiholomorphic involution ι exists. Then, using

Properties 2 and 5 on page 225 of [6] we have:

[z1, z2, z2, z4] =
[
ι(z1), ι(z2), ι(z3), ι(z4)

]

= [z2, z1, z4, z3]

= [z1, z2, z3, z4].

Hence [z1, z2, z3, z4] is real. (It is non-zero since the zj are distinct.)

Suppose that [z1, z2, z3, z4] < 0. Then, using Proposition 5.1 (i), all the points zi lie on a
complex line L and z1, z2 separate z3, z4. Another way of saying this is that the geodesics γ12

and γ34 with endpoints z1, z2 and z3, z4 respectively intersect in a point z of L. There is a
holomorphic isometry Iz in SU(2, 1) fixing z and interchanging z1, z2 and z3, z4. Therefore Izι is
an antiholomorphic isometry fixing z1, z2, z3 and z4. Thus these points lie on a Lagrangian plane.
This is a contradiction, since four distinct boundary points cannot lie on both a complex line and
a Lagrangian plane. Hence if ι exists then [z1, z2, z3, z4] is real and positive.

Conversely, suppose that [z1, z2, z3, z4] is real and positive. Using Proposition 5.1 (ii) we see that

there exists A ∈ SU(2, 1) so that A(z1) = z1, A(z2) = z2 and A(z3) = z4. Using the construction

of Falbel and Zocca [4], there is a decomposition A = ι1ι2 as a product of two antiholomorphic
involutions ι1 and ι2, each of which interchanges z1 and z2. Moreover, we are free to choose ι2
among all involutions interchanging z1 and z2 and this determines ι1. We choose ι2 to be the
involution fixing z3, that is ι2(z1) = z2 and ι2(z3) = z3. Using A = ι1ι2 gives ι1(z3) = ι1ι2(z3) = z4.
Hence ι1 interchanges z3 and z4. Since it also interchanges z1 and z2, it is the involution we require.

Alternatively, one can follow Goldman’s proof after observing that [z1, z2, z3, z4] = Π(z3)/Π(z4)

must be positive if Π(z3) and Π(z4) lie on a hypercycle. �

5.2. The cross-ratio variety. By choosing different orderings of our four points we may define
other cross-ratios. There are some symmetries associated to certain permutations, see Property 5
on page 225 of [6]. After taking these into account, there are only three cross-ratios that remain.

Given distinct points z1, . . . , z4 ∈ ∂H2
C
, we define

(5.1) X1 = [z1, z2, z3, z4], X2 = [z1, z3, z2, z4], X3 = [z2, z3, z1, z4].

In [3] Falbel has given a general setting for cross-ratios that includes both Korányi-Reimann cross-
ratios and the standard real hyperbolic cross-ratio. We use a different normalisation to his. Our
three cross-ratios satisfy two real equations, which we now derive. In Falbel’s normalisation, the
analogous relations are given in Proposition 2.3 of [3]. In his general setting there are six cross-

ratios that lie on a complex algebraic variety in C
6. Our cross-ratios correspond to the fixed locus

of an antiholomorphic involution on this variety.

Proposition 5.2. Let z1, z2, z3, z4 be any four distinct points in ∂H2
C
. Let X1, X2 and X3 be

defined by (5.1). Then

|X2| = |X1| |X3|,(5.2)

2|X1|
2ℜ(X3) = |X1|

2 + |X2|
2 + 1 − 2ℜ(X1 + X2).(5.3)
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Proof. Since SU(2, 1) acts 2-transitively on ∂H2
C

we may suppose that z2 = ∞ and z3 = o. Let z1

and z4 be lifts of z1 and z4 chosen so that 〈z1, z4〉 = 1. We write them in coordinates as:

(5.4) z1 =




ξ1

η1

ζ1


 , z2 =




1
0
0


 , z3 =




0
0
1


 , z4 =




ξ4

η4

ζ4


 .

Then we have

0 = 〈z1, z1〉 = ξ1ζ1 + ζ1ξ1 + |η1|
2,(5.5)

1 = 〈z4, z1〉 = ξ4ζ1 + ζ4ξ1 + η4η1,(5.6)

0 = 〈z4, z4〉 = ξ4ζ4 + ζ4ξ4 + |η4|
2.(5.7)

From the definitions of the cross-ratios, we have

X1 = [z1, z2, z3, z4] =
〈z3, z1〉〈z4, z2〉

〈z4, z1〉〈z3, z2〉
= ζ4ξ1,

X2 = [z1, z3, z2, z4] =
〈z2, z1〉〈z4, z3〉

〈z4, z1〉〈z2, z3〉
= ξ4ζ1,

X3 = [z2, z3, z1, z4] =
〈z1, z2〉〈z4, z3〉

〈z4, z2〉〈z1, z3〉
=

ξ4ζ1

ζ4ξ1
.

We immediately see that |X3| = |X2|/|X1|. Using equations (5.5), (5.6) and (5.7) we have:

|X1|
2|X3 − 1|2 = |ζ4ξ1 − ξ4ζ1|

2

= |ζ4ξ1|
2 + |ξ4ζ1|

2 + ζ4ξ4

(
ζ1ξ1 + |η1|

2
)

+ ξ4ζ4

(
ξ1ζ1 + |η1|

2
)

= |ζ4ξ1 + ξ4ζ1|
2 − |η1η4|

2

= |X1 + X2|
2 − |1 − X1 − X2|

2.

Rearranging this gives the identity we want. �

Since −|X3| ≤ ℜ(X3) ≤ |X3| an immediate consequence of the identities (5.2) and (5.3) is:

Corollary 5.3. Let X1 and X2 be defined by (5.1). Then

(
|X1| − |X2|

)2
≤ 2ℜ(X1 + X2) − 1 ≤

(
|X1| + |X2|

)2
.

In particular, 2ℜ(X1 + X2) ≥ 1.

Corollary 5.4. Let X1, X2 and X3 be defined by (5.1). Then X1 + X2 = 1 if and only if either

X3 = −X2/X1 or X3 = −X2/X1.

Proof. We can rearrange (5.3) as:

2|X1|
2ℜ(X3 + X2/X1) = |X1 + X2 − 1|2.

Therefore X1 + X2 = 1 if and only if ℜ(X3) = ℜ(−X2/X1). Since |X3| = |X2|/|X1| this is true if

and only if X3 = −X2/X1 or X3 = −X2/X1. �

We now show that any three complex numbers satisfying the identities of Proposition 5.2 are the
cross-ratios of four points. Again, this follows Falbel, Proposition 2.6 of [3].
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Proposition 5.5. Let x1, x2 and x3 be three complex numbers satisfying

|x2| = |x1| |x3| and 2|x1|
2ℜ(x3) = |x1|

2 + |x2|
2 + 1 − 2ℜ(x1 + x2).

Then there exist points z1, z2, z3, z4 in ∂H2
C

so that

X1 = [z1, z2, z3, z4] = x1, X2 = [z1, z3, z2, z4] = x2, X3 = [z2, z3, z1, z4] = x3.

Proof. Suppose that z2 = ∞ and z3 = o. Then, making a consistent choice of square roots of x1,
x2, x3 and 1 − x1 − x2, define z1 and z4 by:

z1 =




−x
1/2
1(

2ℜ(x
1/2
1 x

1/2
2 eiδ)

)1/2
e−iη

x
1/2
2 eiδ


 , z2 =




1
0
0


 , z3 =




0
0
1


 , z4 =




x
1/2
2 eiδ

(
2ℜ(x

1/2
1 x

1/2
2 e−iδ)

)1/2
eiη

−x
1/2
1




where 2δ is the argument of x3 and 2η is the argument of 1−x1−x2 provided 1 6= x1 +x2. Arguing
as in Corollary 5.4, if x1 + x2 = 1 then either x3 = −x2/x1 or x3 = −x2/x1. This implies that

ℜ(x
1/2
1 x

1/2
2 eiδ) = 0 or ℜ(x

1/2
1 x

1/2
2 e−iδ) = 0 respectively. Hence when x1 + x2 = 1 the middle entry

of either z1 or z4 (or both) is zero, and so we are free to choose η to be any angle.

One may easily check that 〈zj , zj〉 = 0 for j = 1, 2, 3, 4 and also

〈z3, z2〉 = 1, 〈z3, z1〉 = 〈z4, z2〉 = −x
1/2
1 , 〈z2, z1〉 = x

1/2
2 e−iδ, 〈z4, z3〉 = x

1/2
2 eiδ.

Also, since |x1| |x2| cos(2δ) = |x1|
2ℜ(x3), we have:

2ℜ(x
1/2
1 x

1/2
2 eiδ)2ℜ(x

1/2
1 x

1/2
2 e−iδ) = x1x2 + 2|x1| |x2| cos(2δ) + x2x1

= x1x2 + |x1|
2 + |x2|

2 + 1 − 2ℜ(x1 + x2) + x2x1

= |1 − x1 − x2|
2.

Therefore

〈z4, z1〉 = x2 +
(
2ℜ(x

1/2
1 x

1/2
2 eiδ)2ℜ(x

1/2
1 x

1/2
2 e−iδ)

)1/2
e2iη + x1

= x2 + |1 − x1 − x2|e
2iη + x1 = 1,

where we have used |1 − x1 − x2|e
2iη = 1 − x1 − x2. Thus

[z1, z2, z3, z4] =
〈z3, z1〉〈z4, z2〉

〈z4, z1〉〈z3, z2〉
= x1,

[z1, z3, z2, z4] =
〈z2, z1〉〈z4, z3〉

〈z4, z1〉〈z2, z3〉
= x2

[z2, z3, z1, z4] =
〈z1, z2〉〈z4, z3〉

〈z4, z2〉〈z1, z3〉
=

|x2|e
2iδ

|x1|
= x3.

�

Therefore any triple of complex numbers (x1, x2, x3) is the triple of cross-ratios (X1, X2, X3) of

an ordered quadruple of points z1, z2, z3, z4 in ∂H2
C

if and only if they satisfy the two real identities

from Proposition 5.5. In other words, (X1, X2, X3) lie in a four dimensional real algebraic variety in

C
3. We call this variety the cross-ratio variety and we denote it by X. From Falbel’s point of view,

this variety is the moduli space of CR tetrahedra [3] and he has used it to model the figure eight

knot complement [2]. From our point of view it is the moduli space of ordered pairs of oriented
geodesics, that is the axes of A and B.
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Notice that we may express |X3| and ℜ(X3) as real analytic functions of X1 and X2. Therefore we

may determine ℑ(X3) from X1 and X2 up to an ambiguity of sign. Thus there is an involution on

X obtained by sending (X1, X2, X3) to (X1, X2, X3). This involution is not given by a permutation

of the points (see [25] for all the maps given by permutations) and its geometric action on the
collection of quadruples of four points seems to be very mysterious. Away from the fixed point
set of this involution, that is the locus where X3 is real, the complex numbers X1, X2 give local
complex coordinates on X.

Similarly, we may use the identities from Proposition 5.5 to write |X2| and ℜ(X2) as real analytic

functions of X1 and X3. There is again a sign ambiguity when solving for ℑ(X2) and so the complex
numbers X1 and X3 give local coordinates away from the locus where X2 is real. Finally, a similar
argument shows that the complex numbers X2 and X3 give local coordinates away from the locus
where X1 is real. In Section 5.4 we show that all three of X1, X2 and X3 are real if and only if the
four points either lie in the same complex line or on the same Lagrangian plane. Hence X has local
complex coordinates away from this set.

5.3. Cartan’s angular invariant. Let z1, z2, z3 be three distinct points of ∂H2
C

with lifts z1, z2

and z3. Cartan’s angular invariant [1] is defined as follows:

A (z1, z2, z3) = arg
(
−〈z1, z2〉〈z2, z3〉〈z3, z1〉

)
.

The angular invariant is independent of the chosen lifts zj of the points zj . It is clear that applying

an element of SU(2, 1) to our triple of points does not change the Cartan invariant. The converse

is also true; the following result is Theorem 7.1.1 of [6]:

Proposition 5.6. Let z1, z2, z3 and z′1, z′2, z′3 be triples of distinct points of ∂H2
C
. Then

A(z1, z2, z3) = A(z′1, z
′
2, z

′
3) if and only if there exists an A ∈ SU(2, 1) so that A(zj) = z′j for

j = 1, 2, 3. Moreover, A is unique unless the three points lie on a complex line.

The properties of A may be found in Section 7.1 of [6]. We shall make use of the following, which
are Corollary 7.1.3 and Theorem 7.1.4 on pages 213-4.

Proposition 5.7. Let z1, z2, z3 be three distinct points of ∂H2
C

and let A = A(z1, z2, z3) be their

angular invariant. Then,

(i) A ∈ [−π/2, π/2];

(ii) A = ±π/2 if and only if z1, z2 and z3 all lie on a complex line;

(iii) A = 0 if and only if z1, z2 and z3 all lie on a Lagrangian plane.

We can relate cross-ratios and angular invariants as follows:

Proposition 5.8. Let z1, . . . , z4 be distinct points of ∂H2
C

and let X1, X2, X3 denote the cross-

ratios defined by (5.1). Let A1 = A(z4, z3, z2) and A2 = (z3, z2, z1). Then

A1 + A2 = arg(X1X2),(5.8)

A1 − A2 = arg(X3).(5.9)

Proof. We have

X1X2 =
〈z1, z3〉〈z2, z4〉

〈z1, z4〉〈z2, z3〉
·
〈z2, z1〉〈z4, z3〉

〈z4, z1〉〈z2, z3〉
=

〈z4, z3〉〈z3, z2〉〈z2, z4〉 · 〈z1, z3〉〈z3, z2〉〈z2, z1〉∣∣〈z2, z3〉
∣∣4∣∣〈z4, z1〉

∣∣2 .

This clearly has argument A1 + A2. Likewise

X3 =
〈z1, z2〉〈z4, z3〉

〈z4, z2〉〈z1, z3〉
=

〈z4, z3〉〈z3, z2〉〈z2, z4〉
∣∣〈z1, z2〉

∣∣2

〈z3, z2〉〈z2, z1〉〈z1, z3〉
∣∣〈z2, z4〉

∣∣2 ,
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which has argument A1 − A2. �

The following result, which should be compare to Corollary 5.4, follows immediately:

Corollary 5.9. Let Xi be given by (5.1). Then X3 = −X2/X1 if and only if z1, z2 and z3 lie on

the same complex line. Similarly, X3 = −X2/X1 if and only if z2, z3 and z4 lie on a complex line.

Proof. First, X3 = −X2/X1 if and only if arg(X3) = arg(X1X2) ± π. From (5.8) and (5.9) this is

true if and only if A2 = ±π/2. The result follows from Proposition 5.7 (ii). A similar argument

shows X3 = −X2/X1 if and only if A1 = ±π/2. �

We can use Proposition 5.8 to prove the following crucial result; see also [3].

Proposition 5.10. Let z1, . . . , z4 be distinct points of ∂H2
C

with cross ratios X1, X2, X3 given

by (5.1). Let z′1, . . . , z′4 be another set be distinct points of ∂H2
C

with corresponding cross-ratios

X
′
1, X

′
2 and X

′
3. If X

′
i = Xi for i = 1, 2, 3 then there exists A ∈ SU(2, 1) so that A(zj) = z′j for

j = 1, 2, 3, 4.

Proof. As in the proof of Proposition 5.2, applying elements of SU(2, 1) if necessary, we suppose

that z2 = z′2 = ∞ and z3 = z′3 = o. We write lifts of the other points as

z1 =




ξ1

η1

ζ1


 , z4 =




ξ4

η4

ζ4


 , z′1 =




ξ′1
η′1
ζ ′1


 , z′4 =




ξ′4
η′4
ζ ′4


 .

We may suppose that the lifts of these points are chosen so that both 1 = 〈z4, z1〉 = ζ4ξ1+η4η1+ξ4ζ1

and 1 = 〈z′4, z
′
1〉 = ζ ′4ξ

′

1 + η′4η
′
1 + ξ′4ζ

′

1. Then our condition on the cross-ratios is

ζ4ξ1 = ζ ′4ξ
′

1, ξ4ζ1 = ξ′4ζ
′

1,
ζ1ξ4

ζ4ξ1
=

ζ ′1ξ
′
4

ζ ′4ξ
′
1

.

Hence we also have η4η1 = η′4η
′
1.

As above, denote the angular invariants of the points by A1 = A(z4, z3, z2), A2 = (z3, z2, z1),

A
′
1 = A(z′4, z

′
3, z

′
2) and A

′
2 = (z′3, z

′
2, z

′
1). Using Proposition 5.8 we see that A1 + A2 = A

′
1 + A

′
2 and

A1 − A2 = A
′
1 − A

′
2. Hence A1 = A

′
1 and A2 = A

′
2. From Proposition 5.6 we see that there exists

A ∈ SU(2, 1) sending z3, z2, z1 to z′3 = z3, z′2 = z2, z′1 respectively.

We now show that A sends z4 to z′4, which will prove the result. Because A fixes z2 = ∞ and

z3 = 0 it must be diagonal and so, from (4.2), has the form E(α) given in (4.2) for some α ∈ C

with −π < ℑ(α) ≤ π. Hence (multiplying z′1 by a unit modulus complex number if necessary) we

have ξ′1 = eαξ1, η′1 = eα−αη1 and ζ ′1 = e−αζ1. Therefore

ξ′4 =
ξ′4ζ

′

1

ζ
′

1

=
ξ4ζ1

e−αζ1
= eαξ4, η′4 =

η′4η
′
1

η′1
=

η4η1

eα−αη1

= eα−αη4, ζ ′4 =
ζ ′4ξ

′

1

ξ
′

1

=
ζ4ξ1

eαξ1

= e−αζ4.

Hence A = E(α) also sends z4 to z′4. �

We remark that this result is false if we only know that two of the cross-ratios the same. Suppose
we have two quadruples of points z1, . . . , z4 and z′1, . . . , z′4 with cross ratios Xi and X

′
i respectively

for i = 1, 2, 3. If we only know that X1 = X
′
1 and X2 = X

′
2 then either X3 = X

′
3 or X3 = X

′

3. In the

latter case we have A1 = A
′
2 and A2 = A

′
1, where the angular invariants A1, A2, A

′
1 and A

′
2 are as

defined in the proof above. When X3 is not real we know that A1 6= A2 from (5.9). Thus A1 6= A
′
1

and therefore there is no element of SU(2, 1) sending zj to z′j for j = 2, 3, 4.
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Composing the above result with complex conjugation gives

Corollary 5.11. Let z1, . . . , z4 be distinct points of ∂H2
C

with cross ratios X1, X2, X3 given by

(5.1). Let z′1, . . . , z′4 be another set be distinct points of ∂H2
C

with corresponding cross-ratios X
′
1,

X
′
2 and X

′
3. If X

′
i = Xi for i = 1, 2, 3 then there exists an anti-holomorphic complex hyperbolic

isometry ι so that ι(zj) = z′j for j = 1, 2, 3, 4.

5.4. When all the cross-ratios are real. In this section we consider the special case where all
three cross-ratios are real. Putting this into equation (5.2) implies that X3 = ±X2/X1. We show
that these two cases correspond to our four points either lying in a complex line or a Lagrangian
plane; compare [25]. Moreover, there are six components to the locus where all three cross-ratios
are real: three each for the cases where the points lie on complex line or a Lagrangian plane. The
three cases are determined by the relative separation properties of the points.

Proposition 5.12. Suppose that X1, X2 and X3 are all real.

(i) If X3 = −X2/X1 then the points zj all lie on a complex line.

(ii) If X3 = X2/X1 then the points zj all lie on a Lagrangian plane.

Proof. If X3 = −X2/X1 then at least one of them is negative and the result follows from Proposition

5.1 (i).

If X3 = X2/X1 then either all three of them are positive or two of them are negative. In the

latter case the separation conditions of Proposition 5.1 (i) lead to a contradiction. Thus they are

all positive. From Proposition 5.1 (iii) there are antiholomorphic involutions ι1, ι2 and ι3 so that

ι1(z1) = z2, ι1(z3) = z4; ι2(z1) = z3, ι2(z2) = z4; ι3(z2) = z3, ι3(z1) = z4.

One immediately checks that ι3ι2ι1 fixes each of z1, z2, z3, z4. Therefore the four points are all
fixed by the same antiholomorphic isometry, and so must be in the same Lagrangian plane; see
Lemma 7.1.6 (i) of [6]. �

We now prove the converse to Proposition 5.12. We begin with the case where the points lie on
a complex line.

Proposition 5.13. Suppose that z1, z2, z3 and z4 all lie on the same complex line. Then X1, X2

and X3 are each real and satisfy X3 = −X2/X1.

Proof. From Corollary 5.9 we see that both X3 = −X2/X1 and X3 = −X2/X1. Thus X3 is real.
Using Corollary 5.4 we also have X1 + X2 = 1. Since the ratio and sum of X1 and X2 are both real
then they must also be real. This proves the result. �

Proposition 5.14. Suppose that all of the fixed points of A and B are contained in same Lagrangian
plane. Then X1, X2, X3 are each real, positive and satisfy X3 = X2/X1.

Proof. Let ι be the antiholomorphic involution fixing the Lagrangian plane. Then applying ι to the

points zj we see that Xi = Xi, for i = 1, 2, 3. Hence all the cross-ratios are real. Using Proposition

5.7 (iii) we have A1 = A2 = 0. Thus from Proposition 5.8, we have arg(X3) = arg(X1X2) = 0.

Hence X3 and X2/X1 are both real and positive and hence are equal. Finally, putting this into (5.3)
and rearranging gives

2X1 + 2X2 = 1 + (X1 − X2)
2 > 0.

Since X2/X1 > 0 this implies X1 and X2 are both positive. �
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4

4

3

2

3

1

−2

1

2

0

−1

−3

0−1−2−3

Figure 5.1. The line X1 + X2 = 1 where the points lie on a complex line and the
parabola X

2
1 +X

2
2 +1−2X1−2X2−2X1X2 = 0 where they lie on a Lagrangian plane.

If the points zj lie on a complex line then X3 = −X2/X1 and so either one or all three of the Xi

must be negative. Moreover, using Corollary 5.4, we have X1 +X2 = 1 and so that all three of them
cannot be negative. Thus two of the Xi are positive and the third is negative. Furthermore, by
using Proposition 5.1 (i), the one that is negative is determined by the separation properties of the
points zj . This gives three components to the cross-ratio variety associated to quadruples of points

on a complex line. In Figure 5.1 we draw this locus in the (X1, X2) plane. The three components

are obtained from the line X1 + X2 = 1 by removing the points (1, 0) and (0, 1).
Similarly, if the points lie on a Lagrangian plane then the Xi are each real, positive and satisfy

X3 = X2/X1. In this case, we can rearrange (5.3) to give

0 = X
2
1 + X

2
2 + 1 − 2X1 − 2X2 − 2X1X2

=
(
X

1/2
1 + X

1/2
2 + 1

)(
X

1/2
1 + X

1/2
2 − 1

)(
X

1/2
1 − X

1/2
2 + 1

)(
X

1/2
1 − X

1/2
2 − 1

)

for some consistent choice of square roots of the positive numbers X1 and X2. By making a suitable
normalisation, it is not hard to show which of these brackets is zero from the separation properties
of the points, and so we deduce that there are again three components:

Corollary 5.15. Suppose that the four points zj lie on a Lagrangian plane. Then the positive

square roots of X1 and X2 satisfy:

(i) X
1/2
1 + X

1/2
2 = 1 if z1 and z4 separate z2 and z3;

(ii) X
1/2
1 − X

1/2
2 = 1 if z1 and z3 separate z2 and z4;

(iii) −X
1/2
1 + X

1/2
2 = 1 if z1 and z2 separate z3 and z4.

In Figure 5.1 we also draw this locus in the (X1, X2) plane. The three components are obtained

by removing the points (1, 0) and (0, 1) from the parabola X
2
1 + X

2
2 + 1 − 2X1 − 2X2 − 2X1X2 = 0.

(Compare this with Figure 2 of [10] where the same locus is plotted in the (X
1/2
1 , X

1/2
2 ) plane.)
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6. Cross-ratios and pairs of loxodromic maps

6.1. Associating cross-ratios to pairs of loxodromic transformations. Let A and B be
loxodromic transformations with attracting fixed points aA, aB and repelling fixed points rA, rB

respectively. Suppose that these fixed points correspond to attractive eigenvectors aA, aB and
repulsive eigenvectors rA, rB respectively. For the rest of this paper we only consider the case
where neither rB nor aB equals either rA or aA, that is the real axes of A and B are distinct and
do not share an end-point. Cross-ratios associated to pairs of loxodromic maps were used in [10]
to generalise Jørgensen’s inequality to complex hyperbolic space. Some of the properties of the
cross-ratios we use in this section are generalisations of properties used there.

Following (5.1), we define the first, second and third cross-ratios of the loxodromic maps A and
B to be

X1(A,B) = [aB , aA, rA, rB ] =
〈rA,aB〉〈rB ,aA〉

〈rB ,aB〉〈rA,aA〉
,(6.1)

X2(A,B) = [aB , rA, aA, rB ] =
〈aA,aB〉〈rB , rA〉

〈rB ,aB〉〈aA, rA〉
,(6.2)

X3(A,B) = [aA, rA, aB , rB ] =
〈aB ,aA〉〈rB , rA〉

〈rB ,aA〉〈aB , rA〉
.(6.3)

Since the fixed points were assumed to be distinct, none of these cross-ratios is either zero or infinity.
These three numbers satisfy the identities of of Proposition 5.2. Therefore they define a point on
the cross-ratio variety X associated to these four points. We call this the cross-ratio variety of the
pair of loxodromic maps A and B and we call it X(A,B). Using Property 5 on page 225 of [6] we
immediately obtain.

Proposition 6.1. The following hold:

X1(B,A) = X1(A,B), X2(B,A) = X2(A,B), X3(B,A) = X3(A,B);
X1(A

−1, B) = X2(A,B), X2(A
−1, B) = X1(A,B), X3(A

−1, B) = 1/X3(A,B);

X1(A,B−1) = X2(A,B), X2(A,B−1) = X1(A,B), X3(A,B−1) = 1/X3(A,B);

X1(A
−1, B−1) = X1(A,B), X2(A

−1, B−1) = X2(A,B), X3(A
−1, B−1) = X3(A,B).

Therefore either swapping A and B or else replacing either or both of A and B with their inverse
defines an automorphism of X(A,B).

6.2. Traces and cross-ratios. In this section we investigate the relationship between the cross-
ratios Xi(A,B) and traces of elements of the group 〈A,B〉. We shall use this when discussing
change of coordinates on a three-holed sphere in Section 7.2 and also trace coordinates in Section
7.3. In what follows we make use of the following normalisation; see [10]. Our main results are
independent of this normalisation, but it will be useful for calculations. We normalise so that A
fixes o and ∞, that is it as the form (4.2):

(6.4) A = E(λ) =



eλ 0 0

0 eλ−λ 0

0 0 e−λ




where λ ∈ S. As in Section 4.1 we can write

(6.5) B = QE(µ)Q−1 =



a b c
d e f
g h j






eµ 0 0
0 eµ−µ 0
0 0 e−µ







j f c

h e b
g d a




where µ ∈ S and Q ∈ SU(2, 1).



COMPLEX HYPERBOLIC FENCHEL-NIELSEN COORDINATES 19

Lemma 6.2. If A and B are as given in (6.4) and (6.5) then X1(A,B) = ja, X2(A,B) = cg and

X3(A,B) = cg/aj.

Proof. We have

aA = ∞ =




1
0
0


 , rA = o =




0
0
1


 , aB = Q(∞) =




a
d
g


 , rB = Q(o) =




c
f
j


 .

Therefore

X1(A,B) =
[
Q(∞),∞, o,Q(o)

]
=

〈o, Q(∞)〉〈Q(o),∞〉

〈Q(o), Q(∞)〉〈o,∞〉
= ja,

X2(A,B) =
[
Q(∞), o,∞, Q(o)

]
=

〈∞, Q(∞)〉〈Q(o),o〉

〈Q(o), Q(∞)〉〈∞,o〉
= cg,

X3(A,B) =
[
∞, o,Q(∞), Q(o)

]
=

〈Q(∞),∞〉〈Q(o),o〉

〈Q(o),∞〉〈Q(∞),o〉
=

cg

aj
.

�

We define σ(µ) = eµ − eµ−µ. Note that σ(−µ) = −e−µσ(µ) and σ(µ) = σ(µ).

Lemma 6.3. If B is by given by (6.5) then, writing σ(µ) = eµ − eµ−µ we have

B =




eµ−µ + ajσ(µ) + cgσ(−µ) afσ(µ) + cdσ(−µ) acσ(µ) + caσ(−µ)

djσ(µ) + fgσ(−µ) eµ−µ + dfσ(µ) + fdσ(−µ) dcσ(µ) + faσ(−µ)

gjσ(µ) + jgσ(−µ) gfσ(µ) + jdσ(−µ) eµ−µ + gcσ(µ) + jaσ(−µ)


 .

Proof. This is proved by performing the matrix multiplication and then substituting identities that

come from QQ−1 = I. For example, the top left hand entry is

ajeµ + bheµ−µ + cge−µ = ajeµ + (1 − aj − cg)eµ−µ + cge−µ = eµ−µ + ajσ(µ) + cgσ(−µ),

where we have used the identity 1 = aj + bh + cg which comes from the top left hand entry of

QQ−1 = I. �

Proposition 6.4. If A and B are given by (6.4) and (6.5) then the traces of their product and
their commutator are given by

tr(AB) = (eλ + e−λ)eµ−µ + eλ−λ(eµ + e−µ) − eλ−λeµ−µ

+X1 σ(−λ)σ(−µ) + X1 σ(λ)σ(µ) + X2 σ(λ)σ(−µ) + X2 σ(−λ)σ(µ)

and

tr[A,B] = 3 − 2ℜ
(
X1 σ(λ)σ(−λ)σ(µ)σ(−µ) + X2 σ(λ)σ(−λ)σ(µ)σ(−µ)

)

+
(
1 − 2ℜ(X1 + X2)

)(∣∣σ(λ)σ(µ)
∣∣2 +

∣∣σ(−λ)σ(−µ)
∣∣2

)

+
∣∣∣X1 σ(λ)σ(µ) + X1 σ(−λ)σ(−µ) + X2 σ(−λ)σ(µ) + X2 σ(λ)σ(−µ)

∣∣∣
2

+
(
|X2|

2 − |X1|
2
X3

)(∣∣σ(λ)
∣∣2 −

∣∣σ(−λ)
∣∣2

)(∣∣σ(µ)
∣∣2 −

∣∣σ(−µ)
∣∣2

)
,

where σ(λ) = eλ − eλ−λ.
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Proof. We may conjugate so that

A = E(λ), B = QE(µ)Q−1.

Then substituting ja = X1, cg = X2 and fd = 1 − ja − cg = 1 − X1 − X2 into Lemma 6.3, a short
calculation yields

tr(AB) = eλ
(
eµ−µ + X1 σ(µ) + X2 σ(−µ)

)

+ eλ−λ
(
eµ−µ + (1 − X1 − X2)σ(µ) + (1 − X1 − X2)σ(−µ)

)

+ e−λ
(
eµ−µ + X2 σ(µ) + X1 σ(−µ)

)
.

Rearranging this expression and using σ(λ) = eλ − eλ−λ gives the first part of the result. A similar

but lengthier calculation, which also uses (5.2) and (5.3), gives the second. �

Using σ(λ) = −eλσ(−λ) and λ, µ ∈ S, we have:

Corollary 6.5. Let A and B be loxodromic maps with tr(A) = τ(λ) and tr(B) = τ(µ). Let

Xi = Xi(A,B) be their cross-ratios. Then

X3 =
F (λ, µ, X1, X2) − tr[A,B]

|X1|2
(
|eλ|2 − 1

)∣∣σ(−λ)
∣∣2(|eµ|2 − 1

)∣∣σ(−µ)
∣∣2 ,

where F (λ, µ, X1, X2) is a real valued, real analytic function of λ, µ, X1 and X2.

6.3. Representations that preserve a complex line. We now consider representations that
preserve a complex line. We show that certain traces are also forced to be real, and so the associated
complex length parameter λj will be a real length parameter lj ∈ R+.

Lemma 6.6. Let A and B be elements of SU(2, 1) that both preserve the same complex line with

A loxodromic. Then [A,B] = ABA−1B−1 has real trace.

Proof. The imaginary part of the trace arises from the representation into the group U(1) of rota-
tions around the complex line. This representation is necessarily abelian and so the commutator is
represented by the identity.

Alternatively, we now show the result directly. We may suppose that A and BA−1B−1 have
the forms (6.4) and (6.5) with µ = −λ. Since they preserve a complex line we know that their

cross-ratios are real and sum to 1. Putting this information into Proposition 7.3 (with BA−1B−1

in place of B) and simplifying, gives tr(ABA−1B−1) = 3 + 2
(
cosh(λ + λ) − 1

)
X2. �

Lemma 6.7. Let A and B be loxodromic elements of SU(2, 1) preserving a complex line and both

having real trace. Then tr(AB) is real.

Proof. This again uses Proposition 7.3 but is even easier as λ, µ, X1 and X2 are all real. �

These seemingly innocent lemmas have a far reaching consequence for the traces associated curves
in our curve system.

Proposition 6.8. Let γj be a simple curve system on Σ. Suppose that ρ : π1(Σ) −→ SU(2, 1)

preserves a complex line. Let ρ(γj) = Aj for j = 1, . . . , 3g − 3. Suppose that γj is in the boundary

of distinct three-holed spheres (that is γj is not associated to a handle). Then tr(Aj) is real.
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Proof. Consider the g three-holed spheres that are used to close a handle. Each of these corresponds
to a (1, 1) group and the boundary component is a commutator [A,B]. Thus it is represented by
a loxodromic map with real trace, Lemma 6.6. If g = 2 we are done. Suppose g ≥ 3. Consider the
remaining g − 2 three-holed spheres that are not used to form a handle. These are glued together
to form a g-holed sphere, and each of the g group elements representing a hole is a commutator.
Of these g − 2 three-holed spheres, there is at least one with two boundary loops represented by
commutators, and hence which have real trace. The third peripheral element of this three-holed
sphere is the product of the inverses of the other two peripheral elements. Hence, using Lemma
6.7, it too has real trace. Now consider the remaining g−3 three-holed spheres. These are attached
together to form a (g − 1)-holed sphere, where all g − 1 holes are represented by group elements
with real trace. Thus we may repeat the above argument and, by induction, we see that in each of
the g − 2 three-holed spheres that is not used to form a handle, each peripheral element has real
trace. This proves the result. �

7. Fenchel-Nielsen coordinates of three-holed spheres

7.1. Parameters associated to a three-holed sphere. The first step in defining Fenchel-Nielsen
coordinates is to parametrise complex hyperbolic groups representing three-holed spheres. In the
classical case, one parametrises each three-holed sphere by the three lengths lj of the geodesic

boundary curves γj . From the group theory perspective, a three-holed sphere corresponds to a

subgroup generated by two loxodromic transformations A and B in SL(2, R) whose product is also

loxodromic. (One needs to restrict to the case where the axes of A, B and AB are disjoint and do

not separate each other.) Such a group is called a (0, 3) group, that is it corresponds to a surface
of genus 0 with 3 boundary components. The three boundary curves γ1, γ2 and γ3 are represented

by A, B and B−1A−1 which are called the peripheral elements of 〈A,B〉. Actually, the boundary

components correspond to the conjugacy classes of A, B and B−1A−1. Going once around each

boundary curve in turn gives a trivial loop and this corresponds to the relation AB(B−1A−1) = I

and explains why we have used B−1A−1 for the third boundary curve. The three length parameters

l1, l2 and l3 may be read off from the traces of A, B and B−1A−1. Plane hyperbolic geometry tells
us that these three numbers are independent and completely determine the three-holed sphere, or
equivalently A and B, up to conjugation.

We want to mimic this construction in the complex hyperbolic setting. Once again a (0, 3) group
is a group generated by two loxodromic elements A and B whose product AB is also loxodromic.

The three boundary curves are again represented by (the conjugacy classes of) A, B and B−1A−1.
We choose to focus on the representation theory viewpoint and so we want to parametrise conjugacy
classes of groups generated by two loxodromic transformations A and B. Unfortunately, three
complex numbers are not enough to parametrise such groups and so the obvious analogy with the
classical case breaks down. In fact one needs to use eight real parameters.

The parameters we use to describe (0, 3) groups 〈A, B〉, and so also to parametrise the associated

three-holed spheres, are the traces tr(A), tr(B), which each lie in the domain T ⊂ C given by (4.5),

together with a point on the cross-ratio variety X(A,B). We call these parameters the Fenchel-

Nielsen coordinates of the (0, 3) group 〈A, B〉. Away from the locus where X3(A,B) is real, the

cross-ratios X1(A,B) and X2(A,B) give local complex coordinates on X(A,B), but, as remarked
above, these are not global coordinates. The goal of this section is to show that these parameters
determine the (0, 3) group up to conjugation. The collection of pairs of loxodromic isometries with

distinct fixed points have also been parametrised by Will [24] using their traces and a particular
normalisation of their fixed points. One may write his fixed points in terms of our cross-ratios and
vice versa.
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The following Theorem establishes that complex hyperbolic Fenchel-Nielsen coordinates for (0, 3)
groups are unique up to conjugation.

Theorem 7.1. The (0, 3) group 〈A, B〉 is determined up to conjugation in SU(2, 1) by its Fenchel-

Nielsen coordinates: tr(A), tr(B) and a point on X(A,B).

Proof. Suppose that A, B, A′ and B′ are loxodromic transformations for which tr(A) = tr(A′),

tr(B) = tr(B′) and Xi(A,B) = Xi(A
′, B′) for i = 1, 2, 3. Since the cross-ratios are equal,

Proposition 5.10 implies that there exists a C ∈ SU(2, 1) so that aA′ = C(aA), rA′ = C(rA),

aB′ = C(aB) and rB′ = C(rB). Therefore A′ and CAC−1 have the same fixed points. Since they

also have the same trace, we must have A′ = CAC−1. Similarly, B′ and CBC−1 are equal as they

have the same fixed points and the same trace. Thus 〈A′, B′〉 = 〈CAC−1, CBC−1〉 = C〈A,B〉C−1

as claimed. �

7.2. Change of coordinates on the same three-holed sphere. There is a natural three-fold
symmetry associated to a three-holed sphere which is respected by the classical Fenchel-Nielsen
coordinates, both for Teichmüller space and for quasi-Fuchsian space. It is glaringly obvious that
our parameters fail to respect this symmetry. Namely, they use the group elements corresponding
to two of the boundary components and completely ignore the third. This is not an ideal situation.
In this section we partially rectify this problem by showing that passing from the Fenchel-Nielsen
coordinates determined by one pair of boundary components to those coordinates determined by
another pair is a real analytic change of variables. Let 〈A, B〉 be a (0, 3) group with peripheral

curves represented by A, B and B−1A−1. Our goal will be to show that the Fenchel-Nielsen

coordinates associated to the pair A, B−1A−1 may be expressed as a real analytic function of the
Fenchel-Nielsen coordinates associated to A, B. Using this result and Proposition 6.1, we could do

the same for the peripheral curves B, B−1A−1. We leave the details for the reader.
Another way of symmetrising our Fenchel-Nielsen coordinates for a three-holed sphere would be

to take the three traces tr(A), tr(B) and tr(B−1A−1) together with a point on each of the cross-ratio

varieties X(A,B), X(A,B−1A−1) and X(B,B−1A−1) subject to suitable (real analytic) relations.
These relations could be deduced from the results below and we will not pursue this idea.

Theorem 7.2. Let A, B and B−1A−1 be loxodromic elements of SU(2, 1). Then tr(B−1A−1),

X1(A,B−1A−1), X2(A,B−1A−1) and X3(A,B−1A−1) may be expressed as real analytic functions

of tr(A), tr(B), X1(A,B), X2(A,B) and X3(A,B).

Let eλ and eµ, for λ, µ ∈ S, be the attractive eigenvalues of the loxodromic maps A and B,
respectively. Then, using Lemma 4.1, we can write λ and µ as a real analytic functions of tr(A) and

tr(B) respectively. Thus, to prove Theorem 7.2 it suffices to show that tr(B−1A−1), X1(A,B−1A−1),

X2(A,B−1A−1) and X3(A,B−1A−1) may be expressed as real analytic functions of λ, µ, X1(A,B),

X2(A,B) and X3(A,B).

The following result is an immediate consequence of Proposition 6.4. Note that tr(B−1A−1) may

be obtained from from tr(AB) by replacing λ and µ with −λ and −µ respectively.

Proposition 7.3. Let A and B be loxodromic maps in SU(2, 1) with attracting eigenvalues eλ, eµ

where λ, µ ∈ S and let also X1 = X1(A,B) and X2 = X2(A,B) be their first two cross-ratios. Then

tr(B−1A−1) may be expressed as a real analytic function of λ, µ, X1 and X2.

We now show the same thing for the cross ratios Xi(A,B−1A−1).
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Proposition 7.4. Let A and B be loxodromic maps in SU(2, 1) with attracting eigenvalues eλ, eµ

where λ, µ ∈ S and let also X1 = X1(A,B), X2 = X2(A,B) and X3 = X3(A,B) be their cross-ratios.

Then Xj(A,B−1A−1) may be expressed as a real analytic function of λ, µ, X1, X3 and X3.

Proof. We may conjugate so that

A = E(λ), B = QE(µ)Q−1, B−1A−1 = RE(ν)R−1.

Then multiplying through, equating the upper left hand entries of B−1A−1 and those of AB and
using standard properties of the entries of Q and R we obtain

eν−ν + X1(A,B−1A−1)σ(ν) + X2(A,B−1A−1)σ(−ν) = e−λ
(
eµ−µ + X1 σ(−µ) + X2 σ(µ)

)
,

eν−ν + X1(A,B−1A−1)σ(−ν) + X2(A,B−1A−1)σ(ν) = eλ
(
eµ−µ + X1 σ(µ) + X2 σ(−µ)

)
.

Since σ(ν) = −eνσ(−ν) and |eν | 6= 1, we may eliminate either X1(A,B−1A−1) or X2(A,B−1A−1)

from these equations. Thus we can write each of X1(A,B−1A−1) and X2(A,B−1A−1) as a real
analytic function of λ, µ, ν, X1 and X2.

Using Corollary 6.5 as well as |eλ| 6= 1 and |eν | 6= 1, we can write X3(A,B−1A−1) as a real an-

alytic function of λ, ν, X1(A,B−1A−1), X2(A,B−1A−1) and tr[A,B−1A−1]. As is well known,

[A,B−1A−1] = A(AB)−1A−1(AB) = B−1(BAB−1A−1)B = B−1[A,B]−1B. Hence, we have

tr[A,B−1A−1] = tr[A,B]. Using the second part of Proposition 6.4 we can write tr[A,B] as a
real analytic function of λ, µ, X1, X2 and X3. Substituting this in the previous expression, we can

write X3(A,B−1A−1) as a real analytic function of λ, µ, ν, X1, X2 and X3.

Hence we can express X1(A,B−1A−1), X2(A,B−1A−1) and X3(A,B−1A−1) as real analytic func-

tions of λ, µ, ν, X1, X2 and X3. Using Proposition 7.3 we see that tr(B−1A−1), and hence ν, may
be expressed as a real analytic function of λ, µ, X1 and X2. Substituting for ν in the expressions
above gives the result. �

Thus we have proved Theorem 7.2. In the application to surface groups we shall consider the
following situation which is not quite covered by the preceding results. We shall want to specify

the traces of the peripheral elements A, B and B−1A−1 and find all possible Fenchel-Nielsen

coordinates. We now show that we can find X1(A,B) in terms of tr(A), tr(B), tr(B−1A−1) and

X2(A,B). Hence we can find
∣∣X3(A,B)

∣∣ and ℜ
(
X3(A,B)

)
and so we can determine two possible

points on X(A,B); or one if ℑ
(
X3(A,B)

)
= 0.

Proposition 7.5. Let A and B be loxodromic maps in SU(2, 1) with attracting eigenvalues eλ, eµ

where λ, µ ∈ S and let also X1 = X1(A,B) and X2 = X2(A,B) be their first two cross-ratios.

Suppose that B−1A−1 is loxodromic with attracting eigenvalue eν for ν ∈ S. Then X1 may be
expressed as a real analytic function of λ, µ, ν and X2.

Proof. Since tr(B−1A−1) = eν + eν−ν + e−ν is linear in X1, X1, X2 and X2 with coefficients that

are analytic functions of λ and µ, we can conjugate and eliminate X1 and so express X1 as a real
analytic function of λ, µ, ν and X2. This function is well defined provided

X1 σ(−λ)σ(−µ) + X1 σ(λ)σ(µ),

viewed as a function of X1 and X1, is not a multiple of its complex conjugate. This is true provided
∣∣σ(−λ)

∣∣ ∣∣σ(−µ)
∣∣ 6=

∣∣σ(λ)
∣∣ ∣∣σ(µ)

∣∣ = |eλ|
∣∣σ(−λ)

∣∣ |eµ|
∣∣σ(−µ)

∣∣.

in other words, provided |eλ| |eµ| 6= 1. Since λ and µ lie in S this condition is satisfied. This gives
the result. �
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We remark that the same argument enables us to express X2 as a real analytic function of λ, µ,

ν and X1 provided |eλ| 6= |eν |. This is not always the case for λ, µ ∈ S. In particular, when we

close a handle below we will have µ = λ.

7.3. Trace coordinates. In this section we discuss the number of trace parameters that are needed
to parametrise (0, 3) groups. We do not use this when constructing Fenchel-Nielsen coordinates,

but we include it for completeness. We first show that the cross-ratios X1(A,B) and X2(A,B) may

be expressed uniquely in terms of tr(A), tr(B), tr(AB) and tr(A−1B).

Proposition 7.6. Let A and B be loxodromic maps in SU(2, 1) with attracting eigenvalues eλ,

eµ where λ, µ ∈ S. Then X1 = X1(A,B) and X2 = X2(A,B) may be expressed as a real analytic

function of λ, µ, tr(AB) and tr(A−1B).

Proof. By Proposition 6.4 we have

tr(AB) = (eλ + e−λ)eµ−µ + eλ−λ(eµ + e−µ) − eλ−λeµ−µ

+
(
X1 σ(−µ) + X2 σ(µ)

)
σ(−λ) +

(
X1 σ(µ) + X2 σ(−µ)

)
σ(λ).

From the fact that the attractive eigenvalue of A−1 is eλ we similarly have

tr(A−1B) = (e−λ + eλ)eµ−µ + eλ−λ(eµ + e−µ) − eλ−λeµ−µ

+
(
X1 σ(−µ) + X2 σ(µ)

)
σ(λ) +

(
X1 σ(µ) + X2 σ(−µ)

)
σ(−λ).

Using elementary linear algebra we may solve these two equations for X1 σ(−µ) + X2 σ(µ) and

X1 σ(µ) + X2 σ(−µ). This uses
∣∣σ(λ)

∣∣= |eλ|
∣∣σ(−λ)

∣∣ and |eλ| 6= 1. Then complex conjugating

one of the resulting equations we may solve for X1 and X2. This uses
∣∣σ(µ)

∣∣= |eµ|
∣∣σ(−µ)

∣∣ and

|eµ| 6= 1. �

We can use the previous result to eliminate the cross-ratios and only deal with traces. However,
as we show here this does not determine 〈A,B〉 up to conjugacy in SU(2, 1). This is because the

sign of ℑ
(
X3(A,B)

)
is not determined by the traces of A, B, AB and AB−1.

Proposition 7.7. Suppose that Γ = 〈A, B〉 and Γ′ = 〈A′, B′〉 are (0, 3) groups with tr(A) = tr(A′),

tr(B) = tr(B′), tr(AB) = tr(A′B′) and tr(A−1B) = tr(A′−1B′). Then either there exists a holo-

morphic isometry C in SU(2, 1) so that A′ = CAC−1 and B′ = CBC−1 or else there is an anti-

holomorphic isometry ι so that A′ = ιA−1ι−1 and B′ = ιB−1ι−1. In particular the groups Γ and Γ′

are conjugate by an isometry, which may not be holomorphic.

Proof. Write Xi = Xi(A,B) and X
′
i = Xi(A

′, B′). From Proposition 7.6 we see that our hypotheses

on the traces imply that X
′
1 = X1 and X

′
2 = X2. From equations (5.2) and (5.3) we see that either

X
′
3 = X3 or else X

′
3 = X3.

In the former case, by Proposition 5.10, there exists a holomorphic isometry C with aA′ = C(aA),

rA′ = C(rA), aB′ = C(aB) and rB′ = C(rB). Since A′ and CAC−1 have the same traces and fixed

points they must be equal. Likewise, B′ and CBC−1 are equal.

Now consider the latter case, namely X
′
1 = X1, X

′
2 = X2 and X

′
3 = X3. Using Proposition 6.1 we

have

X1(A
′, B′) = X1(A,B) = X1(A−1, B−1),

X2(A
′, B′) = X2(A,B) = X2(A−1, B−1),

X3(A
′, B′) = X3(A,B) = X3(A−1, B−1).
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Therefore, from Corollary 5.11, there is an antiholomorphic isometry ι sending the attractive and re-

pulsive fixed points of A−1 and B−1 to those of A′ and B′. In other words, aA′ = ι(rA), rA′ = ι(aA),

aB′ = ι(rB) and rB′ = ι(aB). Since ι is antiholomorphic, we have

tr(A′) = tr(A) = tr(A−1) = tr(ιA−1ι−1).

Because the fixed points and traces of A′ and ιA−1ι−1 are the same, they are equal. Likewise,

B′ = ιB−1ι−1. This proves the result. �

There is a strong contrast between the previous result and the classical case, where these four
traces determine the group up to conjugacy by a holomorphic (that is orientation preserving) isom-

etry. Thus one must be very careful when using trace parameters to determine SU(2, 1) conjugacy
classes. However, we can conclude that five traces are sufficient. Of course, these five traces satisfy
two real equations, which may be deduced from Proposition 6.4. This is in the spirit of the theorem
of Okumura [16] and Schmutz [19].

Proposition 7.8. Let 〈A, B〉 and 〈A′, B′〉 be two (0, 3) groups. If tr(A) = tr(A′), tr(B) = tr(B′),

tr(AB) = tr(A′B′), tr(A−1B) = tr(A′−1B′) and tr[A,B] = tr[A′, B′] then 〈A, B〉 and 〈A′, B′〉 are

conjugate in SU(2, 1).

Proof. Using Proposition 7.6 we may show that tr(A) = tr(A′), tr(B) = tr(B′), tr(AB) = tr(A′B′)

and tr(A−1B) = tr(A′−1B′) imply that both X1(A,B) = X1(A
′, B′) and X2(A,B) = X2(A

′, B′). If

we also have tr[A,B] = tr[A′, B′] then these facts and Corollary 6.5 imply X3(A,B) = X3(A
′, B′).

Hence the groups correspond to the same point on the cross-ratio variety. In other words, they
have the same Fenchel-Nielsen coordinates and so, from Theorem 7.1, they are conjugate. �

This should be compared to the discussion on page 102 of [23], where Wen shows that in SL(3, C)

one may express the traces of any element of 〈A,B〉 as a polynomial in the traces of A, A−1, B,

B−1, AB, B−1A−1, A−1B, B−1A and ABA2B2. Moreover, the last of these traces satisfies a
quadratic polynomial whose coefficients are polynomials in the other eight. In other words there

are two possibilities for this trace. In our setting tr(A−1) = tr(A) and so Wen’s first eight variables
may be replaced with just four. Moreover, in order to determine the group up to conjugation we
just need a choice of sign for ℑ(X3). This translates into two possible values for tr[A,B]. See also

[25] for a more detailed discussion of this material.

8. Twist-bend parameters

8.1. The complex hyperbolic Fenchel-Nielsen twist-bend. Suppose that we are given two
three-holed spheres with the property that two of the boundary components, one on each three-holed
sphere, are compatible (in a sense to be made precise below). We now discuss how to parametrise
the possible ways to attach the two three-holed spheres to form a four-holed sphere. An analogous
situation is that of a single three-holed sphere where two of the boundary components are compatible
and we want to discuss how to parametrise ways to attach these boundary components to form a
one holed torus group. We will discuss the details of these two cases in separate sections below,
but the general principles in each case are the same.

First we must explain what we meant by the word ‘compatible’ in the previous paragraph. To be
precise suppose that 〈A,B〉 and 〈C,D〉 are two (0, 3) groups (which may be conjugate). We say that

the boundary components associated to A and D are compatible if and only if D = A−1; compare
Wolpert [27]. Why do we need an inverse? If we were dealing with the case where 〈A,B〉 and 〈C,D〉

are Fuchsian groups then saying that D = A−1 means that A and D have the same (oriented) axis
but that the universal covers of the two three-holed spheres are subsets of the hyperbolic plane
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on opposite sides of the axis (perhaps by adopting the convention that, when viewed from inside

the surface the orientation on the boundary curves is always to the right). We can make sense
of this idea in the complex hyperbolic setting by equivariantly embedding the universal covers of

our three-holed spheres into H2
C

so that the boundary curves are mapped onto the axes of A, B,

B−1A−1 and their conjugates. We leave the details of this to the reader.
A complex hyperbolic Fenchel-Nielsen twist-bend consists of taking these two three-holed spheres

in H2
C

that are glued together along the axis of A = D−1 and, while fixing the surface corresponding

to 〈A,B〉, moving the surface corresponding to 〈C,D〉 by a hyperbolic translation along the axis

of A (the twist) and a rotation around the complex axis of A (the bend). In other words, we take

a map K that commutes with A = D−1 and we conjugate 〈C,D〉 by K. A twist by a hyperbolic

distance k ∈ R corresponds to K being purely hyperbolic with trace 2 cosh(k/2) + 1 = τ(k/2)

and a bend through an angle β ∈ (−π, π] corresponds to K being a boundary elliptic with trace

2eiβ/3 + e−2iβ/3 = τ(β/3). Putting this together, we see that if tr(K) = τ(κ) = τ(−κ) then K

corresponds to a twist through distance ±ℜ(2κ) and a bend through angle ℑ(3κ) = ℑ(−3κ). We
remark that the ambiguity in the sign of the twist is also present when passing from twists to
traces in the classical construction as well; see [18]. We call κ defined in this way the twist-bend

parameter. In the above description we started with a given way of attaching 〈A,B〉 to 〈C,D〉 to

form the group 〈A,B,C〉 and then performed the twist-bend relative to this initial choice of group.
We remark that the twist-bend is not an absolute invariant but must always be chosen relative to
some starting group 〈A,B,C〉. We are free to fix this group once and for all at the beginning.

The issue of the direction of twist is subtle and it can be very easy to introduce ambiguities. So
we now make very clear what we are doing. Conjugating if necessary, we assume that aA = ∞ and
rA = o. This means that A = E(λ) for some λ ∈ S. Let κ ∈ C with −π < ℑ(κ) ≤ π. Then we

define K = E(κ), that is:

K = E(κ) =




eκ 0 0
0 eκ−κ 0
0 0 e−κ


 .

If ℜ(κ) > 0 then κ ∈ S and K is loxodromic. Its attractive fixed point is aK = aA and its repulsive

fixed point is rK = rA. Thus the twist goes in the same direction as A (from rA to aA). If ℜ(κ) = 0

then K is boundary elliptic and κ corresponds to a pure bend, that is there is no twist. If ℜ(κ) < 0
then −κ ∈ S and again K is loxodromic. This time aK = rA and rK = aA and the twist goes in
the opposite direction to A. We say that the twist-bend parameter κ is oriented consistently with

A if when we write A = QE(λ)Q−1 the matrix K is given by QE(κ)Q−1. Note that with respect

to 〈C,D〉 we must twist 〈A,B〉 by K−1. The orientation of K−1 with respect to D = A−1 is the
same as that of K with respect to A. In other words, −κ is oriented consistently with D.

A crucial special case is when either 〈A,B〉 or 〈C,D〉 preserves a complex line. In this case there

are no bends. In order to see that, we observe that if 〈A,B〉 preserves a complex line then it must
be LA, the complex axis of A. Moreover, if K is a boundary elliptic commuting with A then it too
fixes LA. Hence K commutes with both A and B and so leaves 〈A,B〉 unchanged. Hence there is no
bending in this case. This phenomenon contributes to the reduction in the number of parameters
for representations whose Toledo invariant is ±χ(Σ), that is surface groups that preserve complex
lines.

We need to find a conjugation invariant way of measuring the twist-bend parameter κ. We do this
using the cross-ratios of the fixed points aA = rKDK−1, rA = aKDK−1, aB and rKCK−1 = K(rC).
We define

(8.1) X̃1(κ) = [aB , aA, rA,K(rC)], X̃2(κ) = [aB , rA, aA,K(rC)].
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Note that if aB = K(rC) then both of these cross-ratios are infinite. We remark that the angular

invariants A(aA, rA, aB) and A
(
aA, rA,K(rC)

)
are independent of κ. For the latter one, we see

this by observing that A
(
K(aA),K(rA),K(rC)

)
= A(aA, rA, rC), Then using Proposition 5.8 we

see that there are in fact only two degrees of freedom in X̃1(κ) and X̃2(κ), as we should expect.

Proposition 8.1. Let A, B and C be loxodromic transformations. Let aA, rA, aB, rB, aC , rC be
the fixed points of A, B and C respectively. Suppose that neither aB nor rC lies on LA, the complex
axis of A. Let κ and κ′ be twist-bend parameters that are oriented consistently with A. If

X̃1(κ) = X̃1(κ
′) and X̃2(κ) = X̃2(κ

′)

(which are possibly infinity) then κ = κ′.

Proof. Without loss of generality, suppose that aA = ∞ and rA = o. That is A = E(λ), K = E(κ)

and K ′ = E(κ′) where λ ∈ S and κ, κ′ are any complex numbers with ℑ(κ), ℑ(κ′) ∈ (−π, π]. Write
lifts of aB , rB, aC and rC as

aB =



a
d
g


 , rB =




c
f
j


 , aC =




a′

d′

g′


 , rC =




c′

f ′

j′


 .

Then

X̃1(κ) =
〈KrC ,∞〉〈o,aB〉

〈KrC ,aB〉〈o,∞〉
=

e−κj′a

e−κj′a + eκ−κf ′d + eκc′g
,

X̃2(κ) =
〈KrC ,o〉〈∞,aB〉

〈KrC ,aB〉〈∞,o〉
=

eκc′g

e−κj′a + eκ−κf ′d + eκc′g
.

Since we know that aB and rC are distinct from o and ∞ we automatically see that neither X̃1(κ)

nor X̃2(κ) is zero. Since neither aB nor rC lies on LA, using Corollaries 5.9 and 5.4, we see that

X̃1(κ) + X̃2(κ) 6= 1.

If X̃1(κ) is infinite then aB = K(rC). But X̃1(κ
′) must also be infinite and so aB = K ′(rC).

Thus K−1K ′ = E(κ′ − κ) fixes rC . Thus either κ′ = κ or else rC lies in LA, a contradiction.

Suppose that X̃1(κ) = X̃1(κ
′) is finite (and non-zero). Since X̃1(κ)+X̃2(κ) = X̃1(κ

′)+X̃2(κ
′) 6= 1,

we have

e2κ−κ f ′d

j′a
=

1 − X̃1(κ) − X̃2(κ)

X̃1(κ)
=

1 − X̃1(κ
′) − X̃2(κ

′)

X̃1(κ′)
= e2κ′−κ′ f ′d

j′a
.

Thus e2κ′−κ′

= e2κ−κ and so κ = κ′. �

Corollary 8.2. Let A, B and C be loxodromic transformations. Suppose that neither 〈A,B〉 nor

〈A,C〉 preserves a complex line. Let κ and κ′ be twist-bend parameters that are oriented consistently

with A and let K and K ′ be the corresponding elements of SU(2, 1) that commute with A. Then

〈A, B, KCK−1〉 = 〈A, B, K ′CK ′−1〉 if and only if κ = κ′.

Proof. Clearly if κ = κ′ then K = K ′ and 〈A, B, KCK−1〉 = 〈A, B, K ′CK ′−1〉.
Conversely, let aA, rA, aB , rB , aC and rC denote the fixed points of A, B, C. Suppose that

neither aB nor rC lies on LA. Since 〈A, B, KCK−1〉 = 〈A, B, K ′CK ′−1〉 we have

[aB , aA, rA,K(rC)] = [aB , aA, rA,K ′(rC)] and [aB , rA, aA,K(rC)] = [aB , rA, aA,K ′(rC)].

From Proposition 8.1 we have κ = κ′.
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If aB lies on LA then, since 〈A,B〉 does not preserve LA, we see that rB does not lie on LA.

Thus repeating the above argument with B−1 in place of B gives the result. Likewise if rC lies on

LA then we replace C with C−1. �

8.2. Attaching pairs of three-holed spheres. We define a (0, 4) subgroup of SU(2, 1) to be
a group with four loxodromic generators satisfying the single relation that their product is the
identity. These four loxodromic maps correspond to the boundary curves and (their conjugacy

classes) are called peripheral. Note that the (0, 4) group is freely generated by any three of these
loxodromic maps.

Let 〈A,B〉 and 〈C,D〉 be two (0, 3)-groups with A = D−1. We now show how to construct

a (0, 4) group from 〈A,B〉 and 〈C,D〉. Algebraically this is done by taking the free product of

〈A,B〉 and 〈C,D〉 with amalgamation along the common cyclic subgroup 〈A〉 = 〈D〉. We are free

to conjugate 〈C,D〉 by any K ∈ SU(2, 1) that commutes with A = D−1 and doing so yields a new

(0, 4) group depending on K. As explained above, varying this K corresponds to a Fenchel-Nielsen
twist deformation.

Lemma 8.3. Suppose that Γ1 = 〈A,B〉 and Γ2 = 〈C,D〉 are two (0, 3) groups with peripheral

elements A, B, B−1A−1 and C, D and D−1C−1 respectively. Moreover suppose that A = D−1.

Let K be any element of SU(2, 1) that commutes with A = D−1. Then the group 〈A,B,KCK−1〉

is a (0, 4)-group with peripheral elements B, B−1A−1, KCK−1 and KD−1C−1K−1.

Proof. The loxodromic transformations

B, B−1A−1, KD−1C−1K−1, KCK−1

generate a (0, 4) group since we see that their product is

(B)(B−1A−1)(KD−1C−1K−1)(KCK−1) = A−1KD−1K−1.

which is the identity since D = A−1 and KAK−1 = A. �

Note that in Lemma 8.3 the generator D is redundant and so we just speak of the (0, 4) group

〈A,B,KCK−1〉 obtained from the (0, 3) groups 〈A,B〉 and K〈C,A−1〉K−1 by gluing along A with
twist-bend parameter κ corresponding to K, relative to some specified group. We then associate

to 〈A,B,KCK−1〉 the four complex numbers

tr(A), tr(B), tr(C), κ

together with a point on each of the cross-ratio varieties X(A,B) and X(A,C). We call these sixteen

real parameters the Fenchel-Nielsen coordinates of 〈A,B,KCK−1〉. As remarked above, if either

of the (0, 3) groups 〈A,B〉 or 〈C,A−1〉 preserves a complex line (that is LA equals LB or LC) then
the twist-bend parameter must be real.

Theorem 8.4. Suppose that 〈A,B〉 and 〈C,A−1〉 are two (0, 3) groups neither of which preserves a

complex line. Let κ be a twist-bend parameter oriented consistently with A and let 〈A,B,KCK−1〉

be the corresponding (0, 4) group. Then 〈A,B,KCK−1〉 is uniquely determined up to conjugation

in SU(2, 1) by its Fenchel-Nielsen coordinates: a point on each of the cross-ratio varieties X(A,B)

and X(A,C) together with the four complex numbers

tr(A), tr(B), tr(C), κ
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Proof. Suppose that 〈A,B,KCK−1〉 and 〈A′, B′,K ′C ′K ′−1〉 are two (0, 4) groups with

tr(A) = tr(A′), tr(B) = tr(B′), tr(C) = tr(C ′), κ = κ′

and

X1(A,B) = X1(A
′, B′), X2(A,B) = X2(A

′, B′), X3(A,B) = X3(A
′, B′),

X1(A,C) = X1(A
′, C ′), X2(A,C) = X2(A

′, C ′), X3(A,C) = X3(A
′, C ′).

Since the Fenchel-Nielsen coordinates of 〈A,B〉 and 〈A′, B′〉 are the same, then using Theorem 7.1,

they are conjugate. Conjugating if necessary, we suppose that A = A′ and B = B′. Similarly

〈C,A−1〉 and 〈C ′, A′−1〉 are conjugate. The twist-bend parameters must be defined relative to the

same initial group which we take to be 〈A,B,C〉. Then by construction, since κ = κ′ it is clear

that 〈A,B,KCK−1〉 and 〈A′, B′,K ′C ′K ′−1〉 are conjugate.

Conversely suppose that 〈A,B,KCK−1〉 and 〈A′, B′,K ′C ′K ′−1〉 are conjugate. Then clearly

tr(A) = tr(A′), tr(B) = tr(B′) and tr(C) = tr(C ′). Also because cross-ratios are SU(2, 1) invariant

we also have Xi(A,B) = Xi(A
′, B′) and Xi(A,C) = Xi(A

′, C ′) for i = 1, 2, 3. Thus it remains to

show that κ = κ′. Again using the invariance of cross-ratios, we have

[aB , aA, rA,K(rC)] = [aB , aA, rA,K ′(rC)] and [aB , rA, aA,K(rC)] = [aB , rA, aA,K ′(rC)].

In other words, X̃1(κ) = X̃1(κ
′) and X̃2(κ) = X̃2(κ

′). Using Proposition 8.1 we see that κ = κ′. �

8.3. Closing a handle. Most of the results of this section run in parallel with the corresponding
results in the previous section. We will be interested in the case of one-holed tori in complex
hyperbolic space obtained by attaching two of the boundary components of a single three-holed
sphere. We call the process of attaching these two ends closing a handle. For this to work, one of the
peripheral elements of the corresponding (0, 3) group must be conjugate to the inverse of another,

so that they are compatible. Suppose that these two (conjugacy classes of) peripheral elements are

A and BA−1B−1, which we suppose are loxodromic. Clearly the (0, 3) group is freely generated

by A and BA−1B−1 and, by hypothesis the third peripheral element BAB−1A−1 = [B,A] must

also be loxodromic. A (1, 1) subgroup Γ of SU(2, 1) is a group that corresponds to a one-holed
torus. That is, this group has three generators A,B,C where C is the commutator of A and B,

that is, C = [B,A] = BAB−1A−1 (and so A(BA−1B−1)C is the identity). In particular, Γ is freely
generated by A,B. From the group theory point of view, closing a handle is the same as taking

the HNN-extension of the (0, 3) group 〈A,BA−1B−1〉 by adjoining the element B to form a (1, 1)

group. Hence our (1, 1) group is 〈A,B〉 and its peripheral element is BAB−1A−1, which is not
affected by our attaching operation.

Clearly when we close a handle (that is when we take the HNN-extension) the map B is not

unique. If K is any element of SU(2, 1) that commutes with A then (BK)A−1(BK)−1 = BA−1B−1.

So we could just as well have taken our (1, 1) group to be 〈A,BK〉. Varying K corresponds to

a Fenchel-Nielsen twist-bend as above. If A = QE(λ)Q−1 for λ ∈ S we define the twist-bend

parameter κ by K = QE(κ)Q−1 just as before, and we say that κ is oriented consistently with A.

Again κ is any complex number with −π < ℑ(κ) ≤ π and the real part of κ corresponds to a twist
and its imaginary part to a bend. Also, just as before, κ is only defined relative to a fixed reference
group.

Proposition 8.5. Let 〈A,BA−1B−1〉 be a (0, 3) group. Let B be a fixed choice of an element in

SU(2, 1) conjugating A−1 to BA−1B−1. Let κ and κ′ be twist-bend parameters oriented consistently

with A. Then 〈A,BK〉 is conjugate to 〈A,BK ′〉 if and only if κ = κ′.
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Proof. Clearly if κ = κ′ then BK = BK ′ and the groups are equal.
Conversely, suppose that 〈A,BK〉 is conjugate to 〈A,BK ′〉 are conjugate. Then the conjugating

element D must commute with A, and so fixes aA and rA. Since BA−1B−1 is specified we must
have

BA−1B−1 = (BK ′)A−1(BK ′)−1 = (DBKD−1)A−1(DBKD−1)−1 = D(BA−1B−1)D−1.

Thus D also commutes with BA−1B−1 and so fixes aBA−1B−1 = B(rA) and rBA−1B−1 = B(aA).
As these fixed points are distinct, the only possibilities are that either D is the identity or else aA,
rA, B(rA) and B(aA) all lie on a complex line fixed by D. In the latter case D commutes with B

as well as A (and hence with K and K ′). Thus in either case BK ′ = DBKD−1 = BK. In other

words, K = K ′ and so κ = κ′ as required. �

Suppose that 〈A,BK〉 is a (1, 1) group obtained by closing the handle in the (0, 3) group

〈A,BA−1B−1〉 with twist-bend parameter κ. Then we associate to 〈A,BK〉 a point on the cross-

ratio variety X(A,BA−1B−1) and the two complex numbers tr(A) and κ. We call these parameters

the Fenchel-Nielsen coordinates of 〈A,BK〉: Our main theorem in this section is

Theorem 8.6. The (1, 1) group 〈A,BK〉 is determined up to conjugation in SU(2, 1) by its Fenchel-

Nielsen coordinates: a point on the cross-ratio variety X(A,BA−1B−1) and the complex numbers

tr(A) and κ.

Proof. Suppose that 〈A,BK〉 and 〈A′, B′K ′〉 are two (1, 1) groups with the same Fenchel-Nielsen

coordinates. In particular, tr(A) = tr(A′) and so

tr(BA−1B−1) = tr(A) = tr(A′) = tr(B′A′−1B′−1).

Moreover, Xi(A,BA−1B−1) = Xi(A
′, B′A′−1B′−1) for i = 1, 2, 3, so we see that the (0, 3) groups

〈A,BA−1B−1〉 and 〈A′, B′A′−1B′−1〉 have the same Fenchel-Nielsen coordinates and so, using

Theorem 7.1, are conjugate. Thus we may suppose that A = A′ and BA−1B−1 = B′A′−1B′−1.
Using Proposition 8.5 we see that, since κ = κ′ (with reference to the same conjugating element

B = B′), then 〈A,BK〉 and 〈A′, B′K ′〉 are conjugate.

Conversely, suppose that 〈A,BK〉 and 〈A′, B′K ′〉 are conjugate. It is clear that tr(A) = tr(A′),

Xi(A,BA−1B−1) = Xi(A
′, B′A′−1B′−1) for i = 1, 2, 3. Conjugating if necessary, we may suppose

that A = A′ and B = B′ (the latter being a fixed choice of conjugating element with reference to

which κ and κ′ are defined). Again using Proposition 8.5, we see that κ = κ′. �

8.4. Twist-bends for groups preserving a complex line. We now consider what happens
when we attach two (0, 3) groups 〈A,B〉 or 〈A,C〉 (at least) one of which preserves a complex
line. In this case, as indicated above, there can be no bending around this complex line and so
the twist-bend parameter degenerates into a real twist parameter which we call k. Once again k is
only defined relative to a specific reference group. More precisely, we cannot distinguish between
different bending angles (rather like the origin in polar coordinates). Thus, in the irreducible case,

a group where one of the (0, 3) groups preserves a complex line can be the limit of groups which
do not preserve a complex line and which have any bending angles. In the reducible case, all the
bending angles between distinct (0, 3) groups are undetermined at each point and we take them all
to be identically zero.

Proposition 8.7. Let A, B and C be loxodromic transformations. Let aA, rA, aB, rB, aC , rC be
the fixed points of A, B and C respectively. Suppose that either aB and rB or aC and rC lie on LA,
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the complex axis of A. Let k and k′ be (real) twist parameters oriented consistently with A and let

K and K ′ be the corresponding matrices in SU(2, 1) that commute with A. If

X̃1(k) = X̃1(k
′) and X̃2(k) = X̃2(k

′)

(which are possibly infinity) then k = k′.

Proof. This is similar to the proof of Proposition 8.1. Again we suppose that A = E(λ), K = E(k)

and K ′ = E(k′). In this case Corollaries 5.9 and 5.4 imply X̃1(k) + X̃2(k) = X̃1(k
′) + X̃2(k

′) = 1
With the notation used in the proof of Proposition 8.1, we have:

X̃1(k) =
〈KrC ,∞〉〈o,aB〉

〈KrC ,aB〉〈o,∞〉
=

e−kj′a

e−kj′a + ekc′g
, X̃1(k

′) =
e−k′

j′a

e−k′j′a + ek′c′g
,

X̃2(k) =
〈KrC ,o〉〈∞,aB〉

〈KrC ,aB〉〈∞,o〉
=

ekc′g

e−kj′a + ekc′g
, X̃2(k

′) =
ek′

c′g

e−k′j′a + ek′c′g
,

Thus

e2k′ c′g

j′a
=

X̃2(k
′)

X̃1(k′)
=

X̃2(k)

X̃1(k)
= e2k c′g

j′a
.

Hence k′ = k as claimed. �

Corollary 8.8. Let A = QE(λ)Q−1, B and C be loxodromic transformations. Suppose that one

or both of 〈A,B〉 or 〈C,A−1〉 preserves a complex line. Let k and k′ be twist parameters oriented

consistently with A and let K and K ′ be the corresponding matrices in SU(2, 1) that commute with

A. Then 〈A, B, KCK−1〉 = 〈A, B, K ′CK ′−1〉 if and only if k = k′.

We could mimic the proof of Theorem 8.4 and show that if either 〈A,B〉 or 〈C,A−1〉 preserves

a complex line then (0, 4) group 〈A,B,KCK−1〉 is uniquely determined by its Fenchel-Nielsen
parameters. The main difference is that some of the parameters that were complex will now be
real. For example, if 〈A,B〉 preserves a complex line then X1(A,B) and X2(A,B) are both real

and satisfy X3(A,B) = −X2(A,B)/X1(A,B) and X1(A,B) + X2(A,B) = 1. Moreover κ = k is

real. The details in the case where the whole surface group (and so each (0, 3) group) preserves a
complex line are given in Section 2.2.

Finally, we remark that, unlike the (0, 4) case, even if the (0, 3) group 〈A,BA−1B−1〉 preserves

a complex line, if we close the handle to obtain 〈A,BK〉, the twist-bend parameter κ associated
to K is still complex. The point is that we are not conjugating by K and so we can see the effect
of twists around LA. This is even the case when the whole surface group preserves a complex line.
In other words, there is still a two parameter family of ways to close a handle in (0, 3) groups that
preserve a complex line.
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