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Abstract. Let π1 be the fundamental group of a closed surface Σ of genus g > 1. One of the
fundamental problems in complex hyperbolic geometry is to find all discrete, faithful, geometrically

finite and purely loxodromic representations of π1 into SU(2, 1), (the triple cover of) the group

of holomorphic isometries of H2

C. In particular, given a discrete, faithful, geometrically finite and
purely loxodromic representation ρ0 of π1, can we find an open neighbourhood of ρ0 comprising
representations with these properties. We show that this is indeed the case when ρ0 preserves a
totally real Lagrangian plane.

1. Introduction

Let Σ be a closed surface of genus g > 1 and let π1 = π1(Σ) denoted its fundamental group. A
specific choice of generators for π1 is called a marking. The collection of marked representations of
π1 into a Lie group G up to conjugation will be denote Hom(π1, G)/G. We give Hom(π1, G)/G the
compact-open topology. This enables us to make sense of what it means for two representations

to be close. In the cases we consider, the compact-open topology is equivalent to the l2-topology
on the relevant matrix group. Our main interest in this paper will be the case where G = SU(2, 1)
but, before we consider this case, we motivate our discussion by reviewing the better known cases
when G is SL(2,R) or SL(2,C).

Suppose that ρ : π1 −→ SL(2,R) is a discrete and faithful representation of π1. Then ρ(π1)

is called Fuchsian. Also, ρ(π1) is necessarily geometrically finite and totally loxodromic (if Σ
had punctures then this condition would be replaced with type-preserving, which requires that an
element of ρ(π1) is parabolic if and only if it represents a peripheral curve). The group SL(2,R)
is a double cover of the group of orientation preserving isometries of the hyperbolic plane. The
quotient of the hyperbolic plane by ρ(π1) naturally corresponds to a hyperbolic structure on Σ.

The collection of distinct, marked Fuchsian representations, up to conjugacy within SL(2,R), is the

Teichmüller space of Σ, denoted T = T (Σ) ⊂ Hom
(

π1, SL(2,R)
)

/SL(2,R). This has been studied

extensively and is known to be a ball of real dimension 6g− 6. It also has a structure of a complex
Banach manifold and is equipped with a Kähler metric (the well known Weil-Petersson metric) of
negative holomorphic sectional curvature.

Instead of considering representations of π1 into SL(2,R), we may consider representations to

SL(2,C). If such a representation ρ is discrete, faithful, geometrically finite and totally loxodromic

then ρ(π1) is quasi-Fuchsian (again in the presence of punctures purely loxodromic should be re-

placed with type-preserving). The collection of distinct, marked quasi-Fuchsian representations, up

to conjugation in SL(2,C) is called quasi-Fuchsian space Q = Q(Σ) ⊂ Hom
(

π1, SL(2,C)
)

/SL(2,C).

A quasi-Fuchsian representation corresponds to a three dimensional hyperbolic structure on an in-
terval bundle over Σ. According to a celebrated theorem of Bers [1], Q may be identified with the
product of two copies of Teichmüller space, and so has dimension 12g − 12. Furthermore, Q has a
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rich geometrical and analytic structure. It is a complex manifold of dimension 6g − 6 and it is en-
dowed with a hyper-Kähler metric whose induced complex symplectic form is the complexification
of the Weil-Petersson metric on T .

Motivated by these two examples, one may consider representations of π1 into SU(2, 1) up to

conjugation, that is Hom
(

π1,SU(2, 1)
)

/SU(2, 1). A representation in Hom
(

π1,SU(2, 1)
)

/SU(2, 1)

is said to be complex hyperbolic quasi-Fuchsian if it is discrete, faithful, geometrically finite and
totally loxodromic (for surfaces with punctures the last condition should be type-preserving, see

[14]). The group SU(2, 1) is a triple cover of the holomorphic isometry group of complex hyperbolic

space H2
C
. Thus such a representation corresponds to a complex hyperbolic structure on a disc

bundle over Σ.
Bowditch has discussed notions of geometrical finiteness for variable negative curvature in [2].

In particular, if Γ is a discrete subgroup of SU(2, 1) and Ω ⊂ ∂H2
C
is the domain of discontinuity of

Γ then consider the orbifold MC(Γ) =
(

H2
C
∪ Ω

)

/Γ. Bowditch defines Γ to have property F1, that

is Γ is geometrically finite in the first sense, if MC(Γ) has only finitely many topological ends, each
of which is a parabolic end. In our context, Γ will be totally loxodromic and so will have property
F1 provided MC(Γ) is a closed manifold.

The space of all marked complex hyperbolic quasi-Fuchsian representations, up to conjugacy, will

be called complex hyperbolic quasi-Fuchsian space QC = QC(Σ) ⊂ Hom
(

π1, SU(2, 1)
)

/SU(2, 1).

Compared to Teichmüller space and quasi-Fuchsian space, relatively little is known about complex
hyperbolic quasi-Fuchsian space QC.

There are two ways to make a Fuchsian representation act on H2
C
. These correspond to the

two types of totally geodesic, isometric embeddings of the hyperbolic plane into H2
C
. Namely,

totally real Lagrangian planes, which may be thought of as copies of H2
R
, and complex lines,

which may be thought of as copies of H1
C
. If a discrete, faithful representation ρ is conju-

gate to a representation ρ : π1 −→ SO(2, 1) < SU(2, 1) then it preserves a Lagrangian plane
and is called R-Fuchsian. If a discrete, faithful representation ρ is conjugate to a representation

ρ : π1 −→ S
(

U(1) × U(1, 1)
)

< SU(2, 1) then it preserves a complex line and is called C-Fuchsian.

There is an important invariant of a representation ρ : π1 −→ SU(2, 1) called the Toledo invariant

denoted τ(ρ). The main properties of the Toledo invariant are

(i) τ varies continuously with ρ,

(ii) 2− 2g ≤ τ(ρ) ≤ 2g − 2, see [3],

(iii) τ(ρ) ∈ 2Z, see [12],

(iv) ρ is C-Fuchsian if and only if |τ(ρ)| = 2g − 2, see [17],

(v) if ρ is R-Fuchsian then τ(ρ) = 0, see [12].

Further properties of complex hyperbolic representations of surface groups which refer to the Toledo
invariant are

(vi) for each even integer t with 2−2g ≤ t ≤ 2g−2 there exists a discrete, faithful representation

ρ of π1 with τ(ρ) = t, see [12],

(vii) if τ(ρ1) = τ(ρ2) then ρ1 and ρ2 lie in the same component of Hom
(

π1,SU(2, 1)
)

/SU(2, 1),

see [19].

We remark that in the case where Σ has cusps then, in fact, τ(ρ) is a real number in the interval
[

χ(Σ), −χ(Σ)
]

and for any real number t in this interval there exists a discrete, faithful representa-

tion ρ of π1(Σ) with τ(ρ) = t, see [14]. Moreover, Dutenhefner and Gusevskii [4] have constructed
an example of a discrete, faithful, type-preserving representation of the fundamental group of a
particular punctured surface whose limit set is a wild knot. This means that it cannot be in the
same component of the space of discrete faithful representations as a Fuchsian representation. It
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may well be possible to extend this example to the case of closed surfaces, which would lead to ques-
tions about the number of components of complex hyperbolic quasi-Fuchsian space (Xia’s result

[19], given in (vii) above, does not involve discreteness).

An immediate consequence of (i) and (iii) is that τ is locally constant and, together with (iv),
implies that given a C-Fuchsian representation ρ0 any nearby representation ρt is also C-Fuchsian.
This result is known as the Toledo-Goldman rigidity theorem [17], [10]. In fact, the component of

Hom
(

π1,SU(2, 1)
)

/SU(2, 1) with |τ | = 2g− 2 has dimension 8g− 6 and the other components have

dimension 16g − 16 (see Theorem 6 of [10]).

In [15] we begin with any R-Fuchsian representation ρ0 and we consider nearby representations

ρt in Hom
(

π1,SU(2, 1)
)

/SU(2, 1). The main result of [15] is

Theorem 1.1. Let Σ be a closed surface of genus g with fundamental group π1 = π1(Σ). Let

ρ0 : π1 −→ SU(2, 1) be an R-Fuchsian representation of π1. Then there exists an open neighbourhood

U = U(ρ0) of ρ0 in Hom
(

π1,SU(2, 1)
)

/SU(2, 1) so that any representation ρt in U is complex

hyperbolic quasi-Fuchsian (that is discrete, faithful, geometrically finite and totally loxodromic).

Corollary 1.2. There are open sets of dimension 16g − 16 in QC(Σ).

Up to now, families of complex hyperbolic quasi-Fuchsian groups have only been constructed
by varying a particular geometrical construction, see for example [13], [14], [6], [7], [8], [16]. By
contrast, in this paper we only use the hypothesis that ρt and ρ0 are nearby representations. From
this information we must make a geometrical construction of a fundamental domain. To go from
algebra to geometry (and back again) we use the following theorem of Falbel and Zocca [9].

Theorem 1.3. Any element C of SU(2, 1) may be written as C = ι1 ◦ ι0 where ι0 and ι1 are
involutions fixing Lagrangian planes R0 and R1 respectively. Moreover

(i) C = ι1 ◦ ι0 is loxodromic if and only if R0 and R1 are disjoint;

(ii) C = ι1 ◦ ι0 is parabolic if and only if R0 and R1 intersect in exactly one point of ∂H2
C
;

(iii) C = ι1 ◦ ι0 is elliptic if and only if R0 and R1 intersect in at least one point of H2
C
.

We prove Theorem 1.1 by first constructing a fundamental domain ∆0 in H2
C
for ρ0(π1) and then

showing that for any other representation ρt sufficiently close to ρ0 we may construct a fundamental
domain∆t for ρt(π1). By sufficiently close, we mean that there exists an ǫ > 0 so that the generators

of ρt(π1) are ǫ-close to the generators of ρ0(π1) in the l2-topology on SU(2, 1).
Constructing fundamental domains in complex hyperbolic space is challenging because, unlike

the case of constant curvature, there are no totally geodesic real hypersurfaces. Thus, before
constructing a fundamental polyhedron we must choose the class of real hypersurfaces containing
its faces. The most usual method of constructing a fundamental domain in complex hyperbolic
space involves domains whose boundary is made up of pieces of bisectors. In particular, this is the
case for the construction of Dirichlet domains. This idea goes back to Giraud and was developed
further by Mostow and Goldman (see [11] and the references therein), and see [13], [14] for other
examples of fundamental domains bounded by bisectors. Other classes of hypersurfaces used to
build fundamental domains are C-spheres [9] and R-spheres [16] (for the relationship between C-

spheres and R-spheres see [8]).
Since bisectors are rather badly adapted to R-Fuchsian representations, we have chosen to in-

troduce a new class of hypersurfaces. Just as bisectors are foliated by slices that are complex lines
so our hypersurfaces are foliated by Lagrangian planes. These hypersurfaces resemble a pack of
(infinitely many) playing cards, each Lagrangian plane representing a card. Therefore we call we
call such hypersurfaces packs. Explicitely, we have
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Proposition 1.4. Let R0 and R1 be disjoint Lagrangian planes in H2
C

and let ι0 and ι1 be the

respective inversions. Consider C = ι1ι0 (which is loxodromic map by Theorem 1.3) and its powers
Cx for each x ∈ R. Then:

(i) ιx defined by Cx = ιxι0 is inversion in a Lagrangian plane Rx = Cx/2(R0).

(ii) Rx intersects the complex axis LC of C orthogonally in a geodesic γx.

(iii) The geodesics γx are the leaves of a foliation of LC .

(iv) For each x 6= y ∈ R, Rx and Ry are disjoint.

Definition 1.5. Given disjoint Lagrangian planes R0 and R1, then for each x ∈ R let Rx be the
Lagrangian plane constructed in Proposition 1.4. Define

P = P (R0, R1) =
⋃

x∈R

Rx.

Then P is a real analytic 3-submanifold which we call the pack determined by R0 and R1. We call
γ = Ax(ι1ι0) the spine of P and the Lagrangian planes Rx for x ∈ R the slices of P .

The boundaries of packs are foliated by R-circles and so are closely related to Schwartz’
R-spheres [16] and examples of packs (with no twist) were introduced by Will [18], who calls them
R-balls. Both Schwartz and Will use these objects to construct fundamental domains. The
relationship between bisectors and packs is an example of the duality, which resembles mirror
symmetry, between complex and real objects in complex hyperbolic space, see the discussion in
the introduction to [8]. The polyhedra ∆0 and ∆t we construct have boundaries that are made

up of pieces of packs. In order to show that ρt(π1) is complex hyperbolic quasi-Fuchsian we use a

version of Poincaré’s polyhedron theorem for such polyhedra (this should be compared with [5]).

2. Sketch of the proof of the main theorem

2.1. A fundamental polyhedron for an R-Fuchsian group. Let Σ be a closed surface of
genus g > 1 and let ρ0 be any R-Fuchsian representation of π1, the fundamental group of Σ. We
denote the image of ρ0 by Γ0 = ρ0(π1) < SU(2, 1). Without loss of generality, we suppose that Γ0

preserves RR and so Γ0 < SO(2, 1). Consider the action of Γ0 on RR and let ∆0 be a fundamental

hyperbolic polygon for this action with 4g sides s(1), . . . , s(4g). Let v(1), . . . , v(4g) denote the

vertices of ∆0. We adopt the convention that s(k) has endpoints v(k) and v(k+1) and superscripts

are taken mod 4g. Conjugating if necessary, we suppose that v(1) is the origin o. By construction,

there are 4g elements of Γ0, denoted A
(1)
0 , . . . , A

(4g)
0 that pair the sides of ∆ according to the

following rules:

(i) For j = 0, . . . , g− 1 the map A
(4j+1)
0 sends the side s(4j+1) to the side s(4j+3) and the map

A
(4j+2)
0 sends the side s(4j+2) to the side s(4j+4). Thus A

(4j+1)
0 =

(

A
(4j+3)
0

)

−1
and

A
(4j+2)
0 =

(

A
(4j+4)
0

)

−1
.

(ii) There are no reflection relations and only one cycle relation:

(2.1)

g−1
∏

j=0

A
(4j+2)
0

(

A
(4j+1)
0

)

−1(

A
(4j+2)
0

)

−1
A

(4j+1)
0 = I.

For this polygon, it is straightforward to verify that side conditions analogous to (S.1) to (S.6) are

satisfied. In this case, each codimension 2 face is a point, namely one of v(1), . . . , v(4g). This
condition replaces (E.1). With this change, (E.2) is also satisfied. Thus we could have used the
classical Poincaré polygon theorem to verify that ∆0 is a fundamental domain for the action of Γ0

on RR. Moreover, as (2.1) generates all relations in π1 we see that ρ0 is faithful. In particular, Γ0
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has no elliptic elements. Since there are no tangencies between faces of ∆0 we also see that Γ0

contains no parabolics. Hence it is totally loxodromic.

Let ∆0 = Π−1
R

(∆0) be the inverse image of the polygon ∆0 under projection onto RR (see Section

6.1.1 of [18] where Will constructs fundamental domains for R-Fuchsian triangle groups and

punctured torus groups in a similar way). We claim that ∆0 satisfies the conditions (S.1) to (S.6),

(E.1) and (E.2). Thus Poincaré’s Theorem will imply that ∆0 is a fundamental domain for the

action of Γ0 on H2
C
. We now show how to check the conditions. The edges of ∆0 are the

Lagrangian planes R
(k)
0 = Π−1

R
(v(k)). In particular, R

(1)
0 = Π−1

R
(o) = RJ. Thus condition (E.1) is

satisfied. The sides of ∆0 are S
(k)
0 = Π−1

R
(v(k)) for k = 0, . . . , 4g. These are each pieces of the

pack P
(k)
0 determined by the Lagrangian planes R

(k)
0 and R

(k+1)
0 .

It is easy to prove that ΠR commutes with any element of SO(2, 1), and so for j = 0, . . . , g − 1

the map A
(4j+1)
0 sends the side S

(4j+1)
0 to the side S

(4j+3)
0 and the map A

(4j+2)
0 sends the side

S
(4j+2)
0 to the side S

(4j+4)
0 . Thus the side conditions (S.1) to (S.6) are automatically satisfied. The

condition (E.2) is therefore satisfied: there is only one cycle of vertices and the cycle

transformation is given by (2.1) with m = 1. Using a suitable version of Poincaré’s theorem, we
see that ∆0 is indeed a fundamental domain for Γ0.

By construction, for any k = 1, . . . , 4g the edge R
(k)
0 is the image of R

(1)
0 = RJ under some fixed

word in the generators A
(1)
0 , . . . , A

(4g)
0 . In fact this word comprises the last n letters of the relation

(2.1) for some n. We denote this word by B
(k)
0 . For example B

(1)
0 is the identity, B

(4)
0 = A

(1)
0 and

B
(3)
0 =

(

A
(2)
0

)

−1
A

(1)
0 . There is a homotopy class of loops βk ∈ π1 so that B

(k)
0 = ρ0(βk). Clearly

B
(k)
0 is loxodromic for each k. So there is a constant K > 0 so that tr(B

(k)
0 ) ≥ 3 +K > 3 for all k.

2.2. The variation of the polyhedron. Let Γt = ρt(π1) < SU(2, 1) be a point in the

representation variety Hom
(

(π1,SU(2, 1)
)

/SU(2, 1). We will only consider representations that are

close to Γ0. To make this notion precise, for k = 2, . . . , 4g let B
(k)
t = ρt(βk) (here βk ∈ π1 is the

homotopy class of loops for which ρ0(βk) = B
(k)
0 as described above). Then, given ǫ = ǫ(t) > 0 the

representation ρt is said to be ǫ-close to ρ0 if for each k = 2, . . . , 4g we have
∥

∥

∥
B

(k)
t −B

(k)
0

∥

∥

∥
< ǫ

measured using the l2-norm on SU(2, 1). In the same way, for k = 1, . . . , 4g let αk be the

homotopy class of loops in π1 so that A
(k)
0 = ρ0(αk). Then we define A

(k)
t = ρt(αk).

Our goal will be to show that there exists an ǫ depending only on ρ0 so that all representations ρt
that are ǫ-close to ρ0 are complex hyperbolic-quasi-Fuchsian. In order to achieve this goal we will
construct a domain ∆t and by Poincaré’s Theorem we may show that ∆t is a fundamental
domain for Γt = ρt(π1). Moreover, this will also imply that ρt is faithful, and Γt is totally
loxodromic and geometrically finite. In other words, Γt is complex hyperbolic quasi-Fuchsian. We

begin by constructing the edges of ∆t. Let R
(1)
t = RJ, the totally imaginary Lagrangian plane.

For k = 2, . . . , 4g we define R
(k)
t to be the Lagrangian plane

(2.2) R
(k)
t = B

(k)
t

(

R
(1)
t

)

= B
(k)
t (RJ).

Theorem 2.1. There exists ǫ1 = ǫ1(ρ0) > 0 so that if ǫ < ǫ1 then the Lagrangian planes

R
(1)
t , . . . , R

(4g)
t are disjoint.
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Suppose that the disjoint Lagrangian planes R
(k)
0 and R

(k+1)
0 are edges of ∆0 in the boundary of

the side S
(k)
0 . Then we define the corresponding side S

(k)
t of ∆t as follows. From Theorem 2.1 we

see that the Lagrangian planes R
(k)
t and R

(k+1)
t are disjoint, and so determine a pack P

(k)
t . Define

the side S
(k)
t to be that part of P

(k)
t lying between R

(k)
t and R

(k+1)
t . We emphasise that once we

have defined the Lagrangian planes R
(k)
t , the construction of S

(k)
t is canonical. Thus, since the

side pairing maps match the edges R
(k)
t they automatically match the sides S

(k)
t .

Theorem 2.2. There exists ǫ2 = ǫ2(ρ0) with 0 < ǫ2 < ǫ1 so that for all ǫ < ǫ2 we have:

(i) the sides S
(1)
t , . . . , S

(4g)
t only intersect in the Lagrangian planes R

(1)
t , . . . , R

(4g)
t ;

(ii) the combinatorial pattern of this intersection is the same as that for the faces of ∆0;

(iii) there is a λ > 0 so that disjoint sides of ∆t are at least a distance λ apart.

It follows that ∆t satisfies the conditions of Poincaré’s theorem, and so is a fundamental domain
for Γt. Thus Γt is discrete, faithful, totally loxodromic and is geometrically finite. This has proved
our main theorem.
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[9] E. Falbel & V. Zocca; A Poincaré’s polyhedron theorem for complex hyperbolic geometry. J. reine angew.

Math., 516 (1999) 133–158.

[10] W.M. Goldman; Representations of fundamental groups of surfaces. Geometry and Topology, ed. J.

Alexander & J. Harer, Lecture Notes in Mathematics 1167 (1985) 95–117.

[11] W.M. Goldman; Complex Hyperbolic Geometry. Oxford University Press, 1999.

[12] W.M. Goldman, M.E. Kapovich & B. Leeb; Complex hyperbolic manifolds homotopy equivalent to a

Riemann surface. Comm. Anal. Geom. 9 (2001) 61–95.

[13] W.M. Goldman & J.R. Parker; Complex hyperbolic ideal triangle groups. J. reine angew. Math., 425 (1992)
71–86.

[14] N. Gusevskii & J.R. Parker; Complex hyperbolic quasi-Fuchsian groups and Toledo’s invariant. Geometriae

Dedicata, 97 (2003) 151–185.

[15] J.R. Parker & I.D. Platis; Open sets of maximal dimension in complex hyperbolic quasi-Fuchsian space.

Preprint 2004, http://maths.dur.ac.uk/~dma0jrp/img/OpenSet.pdf.

[16] R.E. Schwartz; Degenerating the complex hyperbolic ideal triangle groups. Acta Math., 186 (2001) 105–154.

[17] D. Toledo; Representations of surface groups in complex hyperbolic space. J. Differential Geometry, 29

(1989) 125–133.

[18] P. Will; Punctured torus and Lagrangian triangle groups in PU(2, 1), preprint 2004,

http://www/institut.math.jussieu.fr/~preprints/.

[19] E.Z. Xia; The moduli of flat PU(2, 1) structures on Riemann surfaces. Pacific J. Maths., 195 (2000) 231–256.



OPEN SETS OF MAXIMAL DIMENSION IN COMPLEX HYPERBOLIC QUASI-FUCHSIAN SPACE 7

University of Durham, Durham DH1 3LE, England

E-mail address: j.r.parker@dur.ac.uk,i.d.platis@dur.ac.uk


