Ασκήσεις

Στις Ασκήσεις 1 έως 6, υπολογίστε τις μερικές παραγώγους δεύτερης τάξης $\partial^2 f/\partial x^2$, $\partial^2 f/\partial x \partial y$, $\partial^2 f/\partial y \partial x$, $\partial^2 f/\partial y^2$ για καθεμία από τις παρακάτω συναρτήσεις. Επαληθεύστε το Θεώρημα 1 σε κάθε περίπτωση.

(1.)
$$f(x,y) = 2xy/(x^2+y^2)^2$$
, στο χωρίο όπου $(x,y) \neq (0,0)$

2.
$$f(x,y,z)=e^z+(1/x)+xe^{-y}$$
, στο χωρίο όπου $x\neq 0$

3.
$$f(x,y) = \cos(xy^2)$$

5.
$$f(x,y) = 1/(\cos^2 x + e^{-y})$$

6.
$$f(x,y) = \log(x-y)$$

Βρείτε όλες τις μερικές παραγώγους δεύτερης τάξης των παρακάτω συναρτήσεων στο σημείο χη.

(a)
$$f(x,y) = \sin(xy), x_0 = (\pi, 1)$$

(b)
$$f(x,y) = xy^8 + x^2 + y^4, \mathbf{x}_0 = (2,-1)$$

(
$$\gamma$$
) $f(x, y, z) = e^{xyz}$, $\mathbf{x}_0 = (0, 0, 0)$

- 8. Βρείτε όλες τις μερικές παραγώγους δεύτερης τάξης της $f(x,y) = \sec^3(4y - 3x).$
- Μπορεί να υπάρχει συνάρτηση f(x,y) κλάσης C^2 με $f_x=2x-5y$ και $f_y=4x+y;$
- Η εξίσωση διάδοσης της θερμότητας είναι $u_t=ku_{xx}$. Ελέγζτε αν η $u(x,t)=e^{-kt}\sin(x)$ είναι λύση.
- 11. Δείξτε ότι οι παρακάτω συναρτήσεις ικανοποιούν τη

μονοδιάστατη κυματική εξίσωση

$$\frac{\partial^2 f}{\partial x^2} = \frac{1}{c^2} \frac{\partial^2 f}{\partial t^2}.$$

- (a) $f(x,t) = \sin(x-ct)$
- (B) $f(x,t) = \sin(x)\sin(ct)$
- $(\gamma) f(x,t) = (x-ct)^6 + (x+ct)^6$
- $oxed{12.}$ (α) Δείξτε ότι η $T(x,t)=e^{-kt}\cos x$ ικανοποιεί τη μονοδιάστατη εξίσωση θερμότητας

$$k\frac{\partial^2 T}{\partial x^2} = \frac{\partial T}{\partial t}.$$

(β) Δείξτε ότι η $T(x,y,t)=e^{-kt}(\cos x+\cos y)$ ικανοποιεί τη διδιάστατη εξίσωση θερμότητας

$$k\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2}\right) = \frac{\partial T}{\partial t}.$$

(γ) Δείξτε ότι η $T(x,y,z,t)=e^{-kt}(\cos x+\cos y+\cos z)$ ואמעיסתטופו την τριδιάστατη εξίσωση θερμότητας

$$k\left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2}\right) = \frac{\partial T}{\partial t}.$$

13. Breite tig $\partial^2 z/\partial x^2$, $\partial^2 z/\partial x\,\partial y$, $\partial^2 z/\partial y\,\partial x$ kai $\partial^2 z/\partial y^2$ των

$$(\alpha) \ z = 3x^2 + 2y^2$$

(α)
$$z = 3x^2 + 2y^2$$

(β) $z = (2x^2 + 7x^2y)/3xy$, στο χωρίο όπου $x \neq 0$ και $y \neq 0$

- 14. Βρείτε όλες τις μερικές παραγώγους δεύτερης τάξης των
 - $(a) z = \sin(x^2 3xy)$
 - $(\beta) \ z = x^2 y^2 e^{2xy}$
- 15. Βρείτε τις f_{xy} , f_{yz} , f_{zx} και f_{xyz} για την

$$f(x, y, z) = x^2y + xy^2 + yz^2.$$

- 16. Έστω $z = x^4y^3 x^8 + y^4$.
 - (a) Υπολογίστε τις $\partial^3 z/\partial y \,\partial x \,\partial x$, $\partial^3 z/\partial x \,\partial y \,\partial x$ και $\partial^3 z/\partial x \,\partial x \,\partial y$ (που γράφεται επίσης ως $\partial^3 z/\partial x^2 \partial y$).
 - (β) Υπολογίστε τις $\partial^3 z/\partial x\,\partial y\,\partial y$, $\partial^3 z/\partial y\,\partial x\,\partial y$ και $\partial^3 z/\partial y\,\partial y\,\partial x$ (που γράφεται επίσης ως $\partial^3 z/\partial y^2\partial x$).
- 17. Χρησιμοποιώντας το Θεώρημα 1 δείξτε ότι αν η f(x,y,z)είναι κλάσης C^3 , τότε

$$\frac{\partial^3 f}{\partial x \, \partial y \, \partial z} = \frac{\partial^3 f}{\partial y \, \partial z \, \partial x}.$$

18. Επαληθεύστε ότι

$$\frac{\partial^3 f}{\partial x \, \partial y \, \partial z} = \frac{\partial^3 f}{\partial z \, \partial y \, \partial x}$$

για την $f(x, y, z) = ze^{xy} + yz^3x^2$.

- $f(x,y,z,w)=e^{xyz}\sin(xw).$
 - **20.** Αν η f(x, y, z, w) είναι κλάσης C^3 , δείξτε ότι $f_{xzw} = f_{zwx}$.
 - 21. Υπολογίστε τις μερικές παραγώγους πρώτης και δεύτερης τάξης των παρακάτω συναρτήσεων:
 - (a) $f(x,y) = x \arctan(x/y)$
 - (β) $f(x,y) = \cos \sqrt{x^2 + y^2}$
 - (y) $f(x,y) = \exp(-x^2 y^2)$
- Έστω w=f(x,y) μια συνάρτηση δύο μεταβλητών και έστω $x=u+v,\,y=u-v$. Δείξτε ότι

$$\frac{\partial^2 w}{\partial u \, \partial v} = \frac{\partial^2 w}{\partial x^2} - \frac{\partial^2 w}{\partial y^2}.$$

- **23.** Έστω $f: \mathbb{R}^2 \to \mathbb{R}$ μια συνάρτηση C^2 και έστω $\mathbf{c}(t)$ μια καμπύλη C^2 στον \mathbb{R}^2 . Βρείτε την παράγωγο δεύτερης τάξης $(d^2/dt^2)((f \circ \mathbf{c})(t))$ χρησιμοποιώντας τον κανόνα της αλυσίδας δύο φορές.
- Έστω $f(x,y,z) = e^{xz} \tan(yz)$, x = g(s,t), y = h(s,t), z = k(s,t), και έστω η συνάρτηση m(s,t) = f(g(s,t), h(s,t), k(s,t)). Βρείτε την m_{st} χρησιμοποιώντας τον κανόνα της αλυσίδας και επιβεβαιώστε ότι η απάντησή σας είναι συμμετρική ως προς s και t.
- 25. \mathbf{N} ια συνάρτηση u=f(x,y) με συνεχείς μερικές παραγώγους δεύτερης τάξης που ικανοποιεί την εξίσωση

του Laplace

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

καλείται $a\rho\mu o v i \kappa \dot{\eta}$ συνάρτηση. Δείξτε ότι η συνάρτηση $u(x,y)=x^3-3xy^2$ είναι αρμονική.

- Ποιες από τις παρακάτω συναρτήσεις είναι αρμονικές;
 (Βλ. Άσκηση 25.)
 - (a) $f(x,y) = x^2 y^2$
 - (β) $f(x,y) = x^2 + y^2$
 - (γ) f(x,y) = xy
 - (δ) $f(x,y) = y^3 + 3x^2y$
 - (E) $f(x,y) = \sin x \cosh y$
 - (or) $f(x,y) = e^x \sin y$
- **27.** (α) Είναι η συνάρτηση $f(x,y,z) = x^2 2y^2 + z^2$ αρμονική; Η $f(x,y,z) = x^2 + y^2 z^2$;
 - (β) Η εξίσωση του Laplace για συναρτήσεις n μεταβλητών είναι

$$\frac{\partial^2 f}{\partial x_1^2} + \frac{\partial^2 f}{\partial x_2^2} + \dots + \frac{\partial^2 f}{\partial x_n^2} = 0.$$

Να βρείτε ένα παράδειγμα συνάρτησης n μεταβλητών που να είναι αρμονική και να δείξετε ότι είναι αρμονική.

- 28. Δείζτε ότι οι παρακάτω συναρτήσεις είναι αρμονικές:
 - (a) $f(x,y) = \arctan \frac{y}{x}$
 - (β) $f(x,y) = \log(x^2 + y^2)$
- Έστω ότι οι f και g είναι συναρτήσεις C^2 μίας μεταβλητής και έστω $\phi=f(x-t)+g(x+t)$.
 - (α) Αποδείξτε ότι η ϕ ικανοποιεί την κυματική εξίσωση: $\partial^2 \phi/\partial t^2 = \partial^2 \phi/\partial x^2.$
 - (β) Σχεδιάστε το γράφημα της ϕ συναρτήσει των t και x αν $f(x)=x^2$ και g(x)=0.
- **30.** (a) Δείξτε ότι η συνάρτηση $g(x,t)=2+e^{-t}\sin x$ ικανοποιεί την εξίσωση θερμότητας: $g_t=g_{xx}.$ [H g(x,t) αναπαριστά τη θερμοκρασία μιας μεταλλικής ράβδου στη θέση x τη χρονική στιγμή t.]
 - (β) Σχεδιάστε το γράφημα της g για $t \ge 0$. (Υποδείση: Βρείτε τις τομές με τα επίπεδα t=0, t=1 και t=2.)
 - (γ) Τι συμβαίνει στην g(x,t) καθώς $t\to\infty$; Ερμηνεύστε αυτό το όριο σε σχέση με τη συμπεριφορά της θερμότητας στη ράβδο.
- Δείξτε ότι το δυναμικό του Νεύτωνα V=-GmM/rικανοποιεί την εξίσωση του Laplace

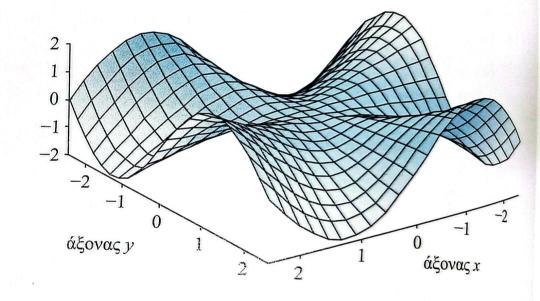
$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0 \quad \text{gia} \quad (x,y,z) \neq (0,0,0).$$

32) Έστω

$$f(x,y) = \begin{cases} xy(x^2 - y^2)/(x^2 + y^2), & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

(βλ. Σχήμα 3.1.4).

- (α) Aν $(x,y) \neq (0,0)$, υπολογίστε τις $\partial f/\partial x$ και $\partial f/\partial y$.
- (β) Δείξτε ότι $(\partial f/\partial x)(0,0) = 0 = (\partial f/\partial y)(0,0)$.
- (γ) Δείξτε ότι $(\partial^2 f/\partial x\,\partial y)(0,0)=1,$ $(\partial^2 f/\partial y\,\partial x)(0,0)=-1.$
- (δ) Τι πήγε στραβά; Γιατί δεν είναι ίσες οι μεικτές μερικές παράγωγοι;



Σχήμα 3.1.4 Το γράφημα της συνάρτησης της Άσκησης 32.