
THE GEOMETRY OF COMPLEX HYPERBOLIC PACKS

IOANNIS D. PLATIS

Abstract. Complex hyperbolic packs are 3-hypersurfaces of complex hyperbolic plane H
2

C which
may be considered as dual to the well known bisectors. In this article we study the geometric
aspects associated to packs.

1. Introduction and Statement of Results

This article is devoted to the study of a rather new family of 3–hypersurfaces of complex hy-
perbolic plane, called packs. Our study is divided in two overlapping parts. In the one part we
discuss in extent the differential geometry of packs, by simultaneously highliting its similarities as
well as its differences to the geometry of the well known bisectors. Secondly, and from the study
of the action of the symplectic group of complex hyperbolic plane on packs, we construct in detail
a quasiconformal mapping of the Heisenberg group associated to packs. This mapping is sugges-
tive towards the further study of quasiconformal deformations of fundamental domains in complex
hyperbolic plane.

Complex hyperbolic plane H2
C
is a 2–complex dimensional complete Kähler manifold with con-

stant holomorphic sectional curvature −1 and real sectional curvature pinched between −1/4 and

−1. Its group of holomorphic isometries is PU(2, 1). Real hyperbolic plane is embedded into H2
C

in two ways. First as a complex submanifold (a copy of the Poincaré disk model H1
C
) and secondly

as a totally real Lagrangian submanifold (a copy of the Beltrami–Klein model H2
R
). Complex hy-

perbolic plane H2
C
has no totally geodesic hypersurfaces of codimension 1, unlikely to the case of

its real counterpart, the hyperbolic space H4
R
. Nevertheless, a well known class of fair substitutes

exist; these are the so called bisectors. The study of bisectors goes back to the 1930’s in the work
of Giraud and an extensive treatment on the subject may be found in [6]. Below we state in brief

some well known facts about bisectors, see [6] and also Section 2.3.2 for more details. Following

Mostow [14], a bisector B may be obtained as follows. Let γ be a geodesic in H2
C
and denote by

a and r its endpoints in ∂H2
C
. Let L be the unique complex geodesic spanned by a and r and

consider the projection ΠL : H2
C
→ L. Then

B = B(γ) =
⋃

x∈γ
Π−1
L (x).

Hence B is a 3–hypersurface of H2
C
foliated by complex lines Π−1

L (x), x ∈ γ. This is called the slice

decomposition of a bisector and from that we obtain an integrable CR structure of codimension 1
for each bisector. Goldman showed (see Theorem 5.1.10 in [6]) that bisectors also admit another

decomposition (the meridianal decomposition), this time into Lagrangian planes which all intersect

at γ. Since a bisector B = B(γ) only depends on the edpoints of γ and PU(2, 1) acts (doubly)

transitively in H2
C
, we immediately have that PU(2, 1) acts transitively in the space of bisectors.

Considering its actual differential geometric properties, a bisector B is a minimal hypersurface
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of complex hyperbolic plane with zero Gauss–Kronecker curvature (see for instance [6] or, for a

somewhat different treatment see [7]).

The natural counterparts of bisectors are packs; these were introduced by Will in [17] and in

their general form by Parker and Platis in [15]. Roughly speaking, packs are 3–hypersurfaces of
complex hyperbolic plane which are naturally foliated by Lagrangian planes. That is, a pack may
be visualised as an infinite deck of cards, each of which is a Lagrangian plane. A pack P may be
obtained by a loxodromic element C of the isometry group, see Section 3 below for details. But

unlikely to the case of bisectors, the isometry group of H2
C
does not necessarily act transitively

in packs; transitive action depends on a parameter associated to each pack, called the curl factor
κ of the pack which is a measure of the rotation of each Lagrangian plane around the axis of C.
This factor constitutes the main obstruction for the transitive action according to the following
Theorem.

Theorem 3.5. Two packs P1 and P2 with curl factors κ1 and κ1 respectively are isometric if
and only if κ1 = κ2.

This is a rather restrictive Theorem in terms of the action of the isometry group. In order to
obtain a non restrictive result, we can only turn to the action of the group of symplectic diffeo-
morphisms. But before that, we can make a statement about the CR geometry of packs and their
”slice” decomposition. By our Proposition 3.12, a pack P = P (C) with curl factor κ admits a
singular codimension 1 foliation which is such that its singular leaf is the complex axis of C and
each non singular leaf is biholomorphic to the Riemann surface

w = z
1−3κi

2 .

We now turn our discussion to the action of the group of symplectic diffeomorphisms of complex
hyperbolic plane in the space of packs; this is our first main result:

Theorem 5.1. The group of symplectomorphisms Sp(H2
C
) of complex hyperbolic plane acts

transitively in packs.

We are able to give a quite simple proof of this Theorem by making use of cylindrical coordinates
for complex hyperbolic plane which we use throughout the whole paper, see Section 4. The idea of

the proof of Theorem 5.1 is to construct a symplectomorphism of H2
C
which maps a certain pack

with zero curl factor (a flat pack) to another certain pack with curl factor κ, see Lemma 5.3. From
the proof of this Lemma, another geometrical object arises which is fair to call a κ−bisector. In
fact we show that to each bisector B and to each real number κ there are associated exactly two
such manifolds which are equidistant to B in distance depending only on κ. This generalises the
hyperbolic geometric notion of equidistant lines, to the complex hyperbolic setting. One should
also think of κ−bisectors as submanifolds looking very much alike to bisectors but which, instead
of having a geodesic as their real spine, they rather have a horocycle, see for details Section 5.1.

To study the Riemannian aspects of packs, we follow the line suggested by Goldman in [6] for
the case of bisectors. But here we have modified his method motivated by Theorem 7.2, see Section
7. In this way, we are able to give comparative results concerning packs and bisectors.

Theorem 7.5. Let P be a pack with curl factor κ and B be a κ−bisector. Then

(1) P is a minimal submanifold of H2
C
with zero Gauss-Kronecker curvature and

(2) B is a submanifold of H2
C
with zero Gauss-Kronecker curvature. Moreover, it is minimal if

and only if κ = 0.

Before we state our last main theorem, which relates packs to quasiconformal mappings of
the Heisenberg group, we wish to recall in brief some facts concerning bisectors and complex
hyperbolic quasi–Fuchsian space. In this way, our motivation will be entirely transparent. Bisectors
have been used to construct fundamental polyhedra for the action of a subgroup of the isometry
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group in H2
C
; in particular, Dirichlet domains have boundaries comprising of pieces of bisectors.

Thus, bisectors are directly related to the study of the space of complex hyperbolic quasi–Fuchsian
representations QC(Σ) of the fundamental group π1 of a topological surface Σ of negative Euler

characteristic. We recall thatQC(Σ) is the set of discrete, faithful, type preserving and geometrically
finite representations of π1 into the isometry group of complex hyperbolic plane, that is, it is the
natural generalisation of the well known Teichmüller space T (Σ) of Σ to the complex hyperbolic

setting. For more details, see [15] and the references stated therein.

Teichmüller space T (Σ) comprises of Fuchsian representations of π1, that is discrete, faithful, type

preserving and geometrically finite representations of π1 into SU(1, 1). Every such representation is
then homotopically equivalent to a quasiconformal representation; in this case, by uniformisation
we may identify π1 with a Fuchsian group Γ and then any ρ ∈ T (Σ) is equivalent to one of the
form

ρ(γ) = fµ ◦ γ ◦ f−1
µ

where fµ is a quasiconformal self mapping of the hyperbolic plane which solves the Beltrami equa-

tion ∂f/∂z = µ∂f/∂z for some Γ−invariant Beltrami coefficient µ and fixes three points in the

boundary R ∪ {±∞}.
One of the most distinguished problems in the study of complex hyperbolic quasi–Fuchsian

space QC(Σ) is to determine if the analogous result holds there, i.e. whenever a representation ρ

in QC(Σ) is homotopically equivalent to a quasiconformal representation. This is not at all trivial
problem; should we wish to solve this problem, then in principle we have to construct a fundamental
domain for an arbitrary Γ = ρ(π1) and then deform it inside QC(Σ) in a way such that all induced

representations are quasiconformal. In other words, we have to construct a curve ρt ∈ QC(Σ),
with ρ0 = ρ and t small enough, and then show that for each t there exists a homeomorphism ft
of the closure of complex hyperbolic plane which is quasiconformal on the boundary and which is
ρt−equivariant:

ρt(γ) ◦ ft = ft ◦ γ, γ ∈ Γ0 = ρ(π1).

A primary obstacle is that not all ρ ∈ QC(Σ) look alike; their nature is determined by a natural
invariant associated to each representation, called the Toledo invariant. We shall not discuss the
details about this invariant here. The interested reader should consult the introduction of [15] for
further details.

However, and by a general Theorem of Guichard, [8], it follows that around each ρ ∈ QC(Σ)

there exists an open neighborhood of ρ comprising only of elements of QC(Σ). (See also [15] for an

entirely different proof of the result in a special case).
The tool for the solution of the general problem is the theory of quasiconformal mappings of

the Heisenberg group H as this was developed by Korányi and Reimann (see for instance [12] and

[13]). This theory is the analogous to our case, of the Ahlfors–Bers theory of quasiconformal
mappings of the complex plane and we have to use it in order to associate a quasiconformal
deformation of the Heisenberg group to a deformation of a fundamental polyhedron. To that
direction little progress has been made so far; for instance, Aebischer and Miner proved this result
for the elementary case of complex hyperbolic quasi–Fuchsian space of a classical complex hyperbolic
Schottky group of n generators, see [1]. Such a group admits a fundamental domain whose sides

are disjoint bisectors. (For the definition and properties of the classical Schottky groups, see

[16]). Their line of proof is based on the construction of a quasiconformal deformation of the
Heisenberg group associated to families of bisectors which form the boundaries of the deformed
initial fundamental domain. Therefore one should ask if their construction can be extended in the
general case. Unfortunately, this does not seem to be likely in all cases. For instance, bisectors
behave rather badly at R−Fuchsian points of QC(Σ), that is representations in SO(2, 1) < SU(2, 1).

Thus it is reasonable to turn our attention to packs. In fact, let {Pt}, t ∈ [0, 1] be a given family
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of packs. We only assume that this family is smooth enough in t. Then, from Theorem 5.1 we are
able to construct a quasiconformal deformation of H which is associated to the family {Pt}.

Theorem 6.4. Let {Pt}, t ∈ [0, 1] be a C1 family of packs. Then the following hold.

(1) Associated to {Pt} there is a continuously time dependent Hamiltonian vector field bt in

H2
C
generating a flow of symplectomorphisms φs,t such that φ0,t(P0) = Pt.

(2) The Hamiltonian function Bt of bt is C∞ and continuous in t.

(3) bt extends smoothly to H2
C
as a flow of contactomorphisms.

(4) Let M = maxt∈[0,1] |κ′(t)| ≥ 0. Then the family φs,t is quasiconformal and its dilation

satisfies the following inequality.

‖ µt ‖2∞≤ tanh

(
3
√
2

2
M

)
.

The reader should compare this Theorem to Lemma 2.1 in [1]; the latter is the necessary step

for the proof of the main result of the paper (See Theorems 1.1 and 1.3 in [1]). Using our Theorem
6.4 we are able to prove exactly the same result for the complex hyperbolic quasi-Fuchsian group
of a complex hyperbolic p−Scottky group of n generators. Such a group admits a fundamental
domain whose boundary consists of packs rather than bisectors. A proof of this result will appear
elsewhere.

This paper is organised as follows. In Section 2 we present the background material we use
for our further discussion. In Section 3 we deal with packs and some of their intrinsic geometric
properties. Theorem 3.5 is proved in Section 3.1. A representation for the standard pack with curl
factor κ is given in Section 3.1.1 and this is used to study the CR geometry of packs in Section
3.2. In Section 4 we introduce the cylindrical model for complex hyperbolic plane. In Section 5

we prove that the group of symplectomorphisms of H2
C
acts transitively in packs (Theorem 5.1).

Section 6 is devoted to the proof of Theorem 6.4. This is carried out after extending the cylindrical

coordinates to the boundary of H2
C
(Section 6.1). Finally, in Section 7 we present a simultaneous

study of the differential geometry of bisectors and packs proving Theorems 7.2 and 7.5.

It is my pleasure to thank J.R. Parker for numerous valuable discussions and suggestions.

2. Preliminaries and Background Material

Most of the results stated in this section are well known. The reader may consult the reference
book of Goldman [6], for more information about the standard aspects of complex hyperbolic plane

presented in Sections 2.1, 2.2 and 2.3. In particular, for Section 2.2.1 the reader may consult [15].
Section 2.4 is not really needed for our construction, but we have chosen to add it in order to further
clarify the context. The interested reader may consult for instance Chapter 7 of [4] for an extensive
presentation of quasiconformal symplectomorphisms. For Section 2.5 we refer the reader to the
standard bibliography about the Heisenberg group and its contact structure. For more information
about sections 2.5.1 and 2.5.2, one may consult Chapter 7 of [4] as well as [10], [11], [12] and [13].

2.1. Complex hyperbolic plane. Let C2,1 be the complex vector space C3 equipped with the
non-degenerate, indefinite Hermitian form 〈·, ·〉 of signature (2, 1) given by

〈z,w〉 = z1w3 + z2w2 + z3w1.
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For all z ∈ C2,1 we have that 〈z, z〉 ∈ R. We thus may define subsets V−, V0 and V+ of C2,1 by

V− =
{
z ∈ C

2,1 : 〈z, z〉 < 0
}
,

V0 =
{
z ∈ C

2,1 − {0} : 〈z, z〉 = 0
}
,

V+ =
{
z ∈ C

2,1 : 〈z, z〉 > 0
}
.

We say that z ∈ C2,1 is negative, null or positive if z is in V−, V0 or V+ respectively. The Siegel

domain model for complex hyperbolic plane H2
C
is defined as follows. Let P : C2,1 → CP2 be the

usual projection and let also the section defined by z3 = 1. We consider what it means for 〈z, z〉 to
be negative and thence we obtain z ∈ H2

C
provided

〈z, z〉 = 2ℜ(z1) + |z2|2 < 0.

Definition 2.1. The domain {z = (z1, z2) ∈ C2 : 2ℜ(z1) + |z2|2 < 0} is called the Siegel domain

of C2 and forms the Siegel domain model of complex hyperbolic plane H2
C
. Its boundary is the

paraboloid defined by 2ℜ(z1) + |z2|2 = 0.

2.1.1. Kähler structure. Complex hyperbolic plane is a Kähler manifold with constant holomorphic
sectional curvature −1 and real sectional curvature pinched between −1 and −1/4. Let

(2.1) ρ(z) = −2ℜ(z1)− |z2|2 > 0

be the defining function of H2
C
. The Bergman-Kähler symplectic form for H2

C
is given by

Ω = 2i∂∂(log ρ(z))

=
−2i

ρ2(z)
(dz1 ∧ dz1 + 2iℑ(z2dz1 ∧ dz2)− 2ℜ(z1)dz2 ∧ dz2) .(2.2)

Accordingly, the Bergman metric tensor is given by

(2.3) ds2 =
4

ρ2(z)

(
|dz1|2 + 2ℜ(z2dz1dz2)− 2ℜ(z1)|dz2|2

)
.

2.2. Isometries. The full group of holomorphic isometries of H2
C
is PU(2, 1) = U(2, 1)/U(1), but

we prefer to consider instead the group SU(2, 1), that is the set of matrices which are unitary with

respect to 〈·, ·〉 and have determinant 1. The group SU(2, 1) is a 3-fold covering of PU(2, 1).

There exist three kinds of holomorphic isometries of H2
C
:

(i) Loxodromic isometries, each of which fixes exactly two points of ∂H2
C
. One of these points

is attracting and the other is repelling.

(ii) Parabolic isometries, each of which fixes exactly one point of ∂H2
C
.

(iii) Elliptic isometries, each of which fixes at least one point of H2
C
.

In our context we deal only with loxodromic isometries.

2.2.1. Loxodromic isometries. For any λ ∈ C∗ = {λ ∈ C : −π < ℑ(λ) ≤ π we defineE(λ) ∈ SU(2, 1)
by

(2.4) E(λ) =



eλ 0 0

0 eλ−λ 0

0 0 e−λ


 .

Let

(2.5) S =
{
λ ∈ C : ℜ(λ) > 0, ℑ(λ) ∈ (−π, π]

}
.
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If λ ∈ S then E = E(λ) is a loxodromic map with attractive (resp. repelling) fixed point ∞ (resp.

o). If ℜ(λ) < 0 then −λ ∈ S and E(λ) is a loxodromic map with attractive fixed point o and
repelling fixed point ∞.

Let C ∈ SU(2, 1) be a matrix representing a loxodromic isometry and also let a, r ∈ ∂H2
C
be the

attractive and the repelling fixed points of A with lifts a, r to V0 respectively. From the transitive

action of SU(2, 1) on ∂H2
C
it follows that there exists a Q ∈ SU(2, 1) whose columns are projectively

a, n, r, where n is a vector polar to a and r. We may write

(2.6) C = QE(λ)Q−1,

where E(λ) is given by (2.4). The geodesic (r, a) joining r and a is called the real axis of C and
the complex line LC spanned by a and r is called the complex axis of C. The trace of C is

tr(C) = τ(λ) = eλ + eλ−λ + e−λ.

The complex number λ(C) = l(C) + iθ(C) is called the complex hyperbolic length of C. Its real

part l(C) is half the geodesic length of the real axis of C and θ(C) is half the rotation angle about
the real axis.

2.3. Submanifolds.

2.3.1. Totally geodesic submanifolds. There exist only 2–dimensional totally geodesic submanifolds

of H2
C
: a) Complex lines L which have constant curvature −1. These submanifolds realise isometric

embeddings of H1
C
into H2

C
. Every complex line L is the image under some A ∈ SU(2, 1) of the

complex line

(2.7) L0 = {(z1, z2) ∈ H2
C : z2 = 0}.

b) Lagrangian planes R which have constant curvature −1/4. These in turn realise isometric

embeddings of H2
R
into H2

C
. Each Lagrangian plane R may be consider as the set of fixed points

of an antiholomorphic inversion R of complex hyperbolic plane. The following holds, see [5].

Theorem 2.2. An element C ∈ SU(2, 1) is loxodromic if and only if it can be written as C = I2◦I1
where I1 and I2 are antiholomorphic inversions on disjoint Lagrangian planes R1 and R2 respec-
tively.

Every Lagrangian plane is the image under some element of SU(2, 1) of the standard real
Lagrangian plane RR; the latter admits the following normalisation.

(2.8) RR =



r =




−eiψ
ir
√

2 cos(ψ)eiψ/2

1


 ∈ V− : (ψ, r) ∈ (−π/2, π/2) × (−1, 1)



 .

This normalisation of RR will be used in the proof of Proposition 3.10 below.

2.3.2. Bisectors. For an extensive study of bisectors, see [6]. Here we only state some basic facts

about them. Let z1, z2 ∈ H2
C
be two distinct points. The bisector B(z1, z2) equidistant from z1 and

z2 is

B(z1, z2) = {z ∈ H2
C : δ(z1, z) = δ(z2, z)}

where δ denotes complex hyperbolic distance. Let L be the complex line spanned by z1 an z2 and
s be the real geodesic defined by

s(z1, z2) = B(z1, z2) ∩ L.
Then L is called the complex spine and s is called the real spine of B(z1, z2). The spine and the
complex spine depend on the bisector and not to the points z1, z2. Let ΠL be orthogonal projection
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onto L. Then, following Mostow, the bisector B with spine s is the inverse image of s under ΠL.
Thus, each slice of this bisector is the inverse image of a point of s under ΠL, and is a complex
line. A bisector also admits a meridianal decomposition: it is the union of the Lagrangian planes
which all meet in s, see Section 5.1.6 of [6]. Finaly, bisectors are completely determined by (the

endpoints of) their spine s and we may thus write B = B(s). Let

(2.9) B0 =
{
(z1, z2) ∈ H2

C : ℑ(z1) = 0
}
.

If Π0 is orthogonal projection onto L0 where L0 is as in 2.7, and s0 is the geodesic (−∞, 0) then
one may verify directly that

B0 =
⋃

x∈s0
Π−1

0 (x).

Thus B0 is the bisector B(s0) which will be called the standard bisector. Suppose now that B(s)

is an arbitrary bisector with spine s and choose the element of the isometry group of H2
C
mapping

s onto s0. Then from the discussion above we conclude that B(s) is mapped onto B0 and thus we

obtain that the isometry group acts transitively on bisectors, see also section 5.2.1 of [6] for more
details.

2.4. Symplectomorphisms and complex dilation. A symplectomorphism ofH2
C
is a diffeomor-

phism F such that F ∗Ω = Ω. The group of symplectomorphisms Sp(H2
C
) is an infinite dimensional

Lie group. Denote by J is the natural complex structure of H2
C
. A symplectomorphism F defines

another complex structure Jµ in H2
C

by the relation Jµ = F−1
∗ ◦ J ◦ F∗. By Lemma 7.5 of [4],

there is a complex antilinear self mapping of the holomorphic tangent bundle T(1,0) of the complex

hyperbolic plane such that the holomorphic tangent bundle T
(1,0)
µ of the Jµ complex structure is

T(1,0)
µ = {Z − µZ : Z ∈ T(1,0)}.

The map µ is called the complex dilation of F . A neat description of the complex dilation is via a
Beltrami system of equations, see pp. 401–402 of [4]. If dF be the Jacobian matrix of F = (f1, f2)
then there is a decomposition

dF =MA +MS =

[
ℜ(DF ) −ℑ(DF )
ℑ(DF ) ℜ(DF )

]
+

[
ℜ(DF ) ℑ(DF )
ℑ(DF ) −ℜ(DF )

]

where

DF =

[
∂f1
∂z1

∂f1
∂z2

∂f2
∂z1

∂f2
∂z2

]
, DF =

[
∂f1
∂z1

∂f1
∂z2

∂f2
∂z1

∂f2
∂z2

]
.

The matrix of the complex dilation µ (denoted again by µ) is the 2 × 2 complex matrix A + iB
which is given by the equation

MS =MA

[
A B
B −A

]
.

Equivalently, it is given by the system of Beltrami equations

(2.10) DF = DFµ.

Let ‖ µ ‖∞= sup ‖ µ ‖. If ‖ µ ‖∞≤ k < 1 then F is called K–symplectic quasiconformal where

K = 1−k
1+k .
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2.5. The boundary. Contact structure. The boundary ∂H2
C
, i.e. the paraboloid 2ℜ(z1)+|z2|2 = 0

is identified to the one point compactification of the Heisenberg group H via the map

∂H2
C ∋ (z1, z2) 7→ [ζ, t] ∈ H, ζ =

1√
2
z2, t = ℑ(z1).

The contact structure of ∂H2
C

is obtained as a strongly pseudoconvex CR structure as follows.

Consider the 1–form ω = −1
2Jdρ, where J is the standard complex structure restricted to the

boundary. Explicitly, in Heisenberg coordinates ζ = x+ iy, t,

ω = dt+ 2(xdy − ydx).

Consider the vector fields

X =
∂

∂x
+ 2y

∂

∂t
, Y =

∂

∂y
− 2x

∂

∂t
, T =

∂

∂t

and also the complex fields

Z =
1

2
(X − iY ) =

∂

∂ζ
+ iζ

∂

∂t
Z =

1

2
(X + iY ) =

∂

∂ζ
− iζ

∂

∂t
.

The tangent space to ∂H2
C
is spanned by X,Y, T and the kernel of ω, else called the horizontal space

H of ∂H2
C
is spanned by the vector fields X,Y . The vector field T is called the Reeb vector field

and satisfies [X,Y ] = −4T , i(T )dω = 0 and ω(T ) = 1. The Levi form dω defines a positive definite

hermitian form on H since dω(X, JY ) > 0. Thus the CR-structure ω is strictly pseudoconvex and

thus contact. The volume form on ∂H2
C
is ω ∧ dω = 4dx ∧ dy ∧ dt.

2.5.1. Contactomorphisms and quasiconformal mappings. A contactomorphism of H2
C
is a self map-

ping f enjoying the following properties.

(1) f : H2
C
→ H2

C
is a diffeomorphism and

(2) its continuation to the boundary, denoted again by f , satisfies f∗(H) = H. This is equivalent
to say that f∗ω = τω for some function τ .

We shall use the following definition for quasiconformal mappings, see Theorem 7 of [13] or Theorem

C of [12] and the reader should mind the difference of normalisation of the Siegel domain which,
nevertheless, plays no important role.

Definition 2.3. Assume that f = (f1, f2), 2ℜ(f1) + |f2|2 = 0, is a C2−diffeomorphism. Then it is

K−quasiconformal if and only if there exists a complex valued function µ with ‖ µ ‖∞≤ K−1
K+1 such

that fi satisfy the equations

Zfi = µZfi, i = 1, 2.(2.11)

2.5.2. Symplectomorphisms vs. contactomorphisms. The following Proposition summarises some
well known facts, see [10].

Proposition 2.4. (1) A (quasiconformal) symplectomorphism f of the complex hyperbolic plane

extends to a (quasiconformal) contactomorphism in the boundary.

(2) A C2 vector field V generates a one parameter group fs of contactomorphisms if and only
if is of the form

(2.12) V = −1

4
((Y p)X − (Xp)Y ) + pT

for some real valued function p.



THE GEOMETRY OF COMPLEX HYPERBOLIC PACKS 9

(3) If moreover |ZZp| ≤ k then fs is K−quasiconformal with

1

2

(
K +

1

K

)
≤ e

√
2k|s|

(4) A smooth one parameter family ft of (quasiconformal) contactomorphisms, t ∈ [0, 1],

f0 = id. extends to a one parameter family of (quasiconformal) symplectomorphisms in
the interior.

3. Packs

Packs are the counterpart of bisectors: in general, a pack is real analytic 3-dimensional subman-
ifold of complex hyperbolic plane which is naturally foliated by Lagrangian planes. The simplest
case of packs (the flat packs in our terminology) was first presented by Will; see [17]. The general

definition we give below may be found in [15]. We have pointed out in section 2.3.2 that bisectors

are characterised only by the endpoints of their spine and subsequently, SU(2, 1) acts transitively
on the set of bisectors. In the case of packs, this is not true in general. In Section 3.1 we give a
necessary and sufficient condition under which two packs can be mapped onto each other via an
element of SU(2, 1). This will enable us to describe the CR-geometry of packs in Section 3.2. We
first recall the definition of a pack.

Definition 3.1. Let R1, R2 be disjoint Lagrangian planes, Ii, i = 1, 2 be inversions on Ri and
C = I2 ◦ I1 be the loxodromic element of SU(2, 1) induced by I1 and I2. The set

P (R1;C) =
⋃

x∈R
Cx/2(R1)

is called the pack associated to the loxodromic element C. The real axis γ of C (oriented from the

repulsive fixed point to the attractive fixed point of C) is called the real spine of P and the complex
axis LC of P is called the complex spine of P . The complex length λ = l + iθ ∈ S of C is called
the complex length of P .

A pack P (R1;C) is invariant under some obvious isometries. These are described in the next
Lemma.

Lemma 3.2. Let P (R1;C) be a pack. Then the following hold.

(1) If A ∈ SU(2, 1) then

A(P (R1;C)) = P (A(R1);ACA
−1).

(2) Cx(P (R1;C)) = P (Cx(R1);C) = P (R1;C) for all fixed x ∈ R.

(3) Let I1 be inversion on the Lagrangian plane R1. Then I1(P (R1;C)) = P (R1;C). In
particular, let

P+ =
⋃

x≥0

Cx/2(R1), P− =
⋃

x≤0

Cx/2(R1).

Then

I1(P
+) = P−, I1(P

−) = P+.

By Lemma 3.2 we obtain that a pack P (R1;C) depends only on the loxodromic element C and

not on R1. Thus from now on we shall write P (C) instead of P (R1;C).
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Corollary 3.3. Let P = P (C) be a pack. We may normalise so that

P =
⋃

x∈R
Cx/2(R′

1)

where R′
1 is a Lagrangian plane passing through the intersection point of LC and its orthogonal L⊥

C
.

Proof. Let z0 be the intersection point of LC and L⊥
C
. Let γ0 be the geodesic in LC which passes

from z0 and is the intersection of LC and Cx0/2(R1) for some x0 ∈ R. Let R′
1 = Rx0 = Cx0/2(R1).

Our claim then follows from properties (1) and (2) of Lemma 3.2. �

3.1. The action of the isometry group. As we have already mantioned, and in contrast to the
case of bisectors, the isometry group of complex hyperbolic plane does not in general act transitively
on packs. We shall prove in this section that transitive action is controlled by a certain number
associated to each pack, called the curl factor.

Definition 3.4. Let P = P (C) be a pack, C = QE(λ)Q−1 where eλ is the attractive eigenvalue
of C.

(1) The curl factor κ = κ(P ) of the pack P is defined to be κ = θ/l = tan(arg(λ)).

(2) The pack P shall be called flat if its curl factor is 0.

It is obvious that a pack P = P (C) is flat if and only if C is conjugate to an element of SO(2, 1).
We now proceed to the main Theorem of this section.

Theorem 3.5. Two packs P1 and P2 with curl factors κ1 and κ1 respectively are isometric if and
only if κ1 = κ2.

Lemma 3.6. Let P = P (C) be a pack with complex length λ. Then P is isometric to the pack

P (E(λ)).

Proof. We may suppose that P is normalised as in Corollary 3.3 and let also C = QE(λ)Q−1. Then

Q−1 maps P (C) to P (E(λ)). By applying a rotation around the real axis of E(λ), we may also
suppose that

P (E(λ)) =
⋃

x∈R
Ex/2(λ)(RR),

where RR is the standard real Lagrangian plane as in Equation 2.8. �

Lemma 3.7. Suppose Pj = P (E(λj)), λj = lj + iθj ∈ S, j = 1, 2. Let also κj = θj/lj be the curl

factor of Pj, j = 1, 2. Then P1 and P2 are isometric if and only if κ1 = κ2.

Proof. Suppose first that P1 is isometric to P2. Since an isometry preserves complex lengths, then
we must have λ1 = λ2 and thus κ1 = κ2.

Conversely, suppose that κ1 = κ2 = κ. Then we may write

P (E(λj)) =
⋃

x∈R
Ex/2(λj)(RR)

=
⋃

x∈R
Eljx/2(1 + iκ)(RR)

Let now x1 ∈ R and El1x1/2(1 + iκ)(RR) be a slice of P1. Then there exists a x2 ∈ R, x2 = l1x1/l2

such that El1x1/2(1+ iκ)(RR) = El2x2/2(1+ iκ)(RR) is also a slice of P2. Analogously we may show
that any slice of P2 is also a slice of P1. Therefore P1 = P2 and the proof is complete. �
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Proof of Theorem 3.5. By Lemma 3.6 we may restrict ourselves to the case where Pj = P (E(λj)),

j = 1, 2. Then our claim follows directly from Lemma 3.7. 2

Corollary 3.8. Any two flat packs are isometric.

From the proof of Lemma 3.7 it follows that any pack with complex length λ and curl factor κ
is isometric to the pack

(3.1) Pκ = P (E(1 + iκ)) =
⋃

xi∈R
Eξ/2(1 + iκ)(RR).

Definition 3.9. The pack Pκ is called the standard pack with curl factor κ.

The standard pack Pκ is the prototype of a pack in the subsequent discussion. Therefore we
would like to have a neat normalisation for Pκ and we indeed obtain one in the next section.

3.1.1. Represantation of the standard pack. In this section we represent the standard pack Pκ in a

manner which identifies Pκ to an infinite cylinder in R3. To do so, we use the normalisation of the
standard Lagrangian plane RR given in Equation 2.8.

Proposition 3.10. Let Pκ be the standard pack with curl factor κ. Then

(3.2) Pκ =
{(

−eξ+iψ, ireξ/2+i(ψ−3κξ)/2
√

2 cos(ψ)
)
∈ C

2; (ξ, ψ, r) ∈ R× Iψ × Ir

}

where

Iψ =
(
−π
2
,
π

2

)
Ir = (−1, 1).

Proof. We first write

Pκ =
⋃

ξ∈R
Eξ/2(1 + iκ)(RR)

and recall from Equation 2.8 that the standard real Lagrangian plane RR may be written as

RR =



r =




−eiψ
ir
√

2 cos(ψ)eiψ/2

1


 ∈ V− : (ψ, r) ∈ Iψ × Ir



 .

Applying Eξ/2(1 + iκ) to each r ∈ RR we have

Eξ/2(1 + iκ)(r) =



e(1+iκ)ξ/2 0 0

0 e−iκξ 0

0 0 e(−1+iκ)ξ/2






−eiψ
ir
√

2 cos(ψ)eiψ/2

1




=




−e(1+iκ)ξ/2+iψ
irei(ψ/2−κξ)

√
2 cos(ψ)

e(−1+iκ)ξ/2




∼




−eξ+iψ
ireξ/2+i(ψ−3κξ)/2

√
2 cos(ψ)

1


 .

This completes the proof. �
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3.2. CR Geometry. The fact that by definition a pack is a 3-dimensional real analytic hyper-

surface of H2
C

foliated by Lagrangian planes automatically gives rise to questions about its CR

geometry. In the case of a bisector, it is naturally foliated by complex lines and also, it may as well
be seen as the union of the Lagrangian planes which all meet at the real spine of the bisector. In
the case of a pack, by definition it is foliated by Lagrangian planes. Therefore it remains to check
if is also foliated by 1-complex dimensional objects, a problem which is naturally associated to the
study of its CR geometry.

Since packs are characterised by their curl factor, it is sufficient to study the CR geometry of
the standard pack Pκ with curl factor κ.

Corollary 3.11. The standard pack Pκ with curl factor κ is defined as a (singular) differentiable

hypersurface of H2
C
by the Equation

(3.3) pκ(z1, z2) = arg

(
z22
z1

)
+ 3κ log(|z1|) = 0 mod (2π)

Proof. If (z1, z2) ∈ Pκ then from Equation 3.2 we have

z1 = −eξ+iψ, z2 = ireξ/2+i(ψ−3κξ)/2
√

2 cos(ψ)

for some (ξ, ψ, r) ∈ R× Iψ × Ir. Now,

z22
z1

= 2r2e−3iκξ cos(ψ).

Therefore,

arg

(
z22
z1

)
= −3κ log(|z1|) mod (2π).

Finally, it is clear that pκ is differentiable except at points of the complex spine L0 = {(z1, z2) : z2 = 0}.
�

Let z ∈ Pκ − L0 be an arbitrary point. The horizontal space Hz of Pκ − L0 at z is defined to be

the intersection of Tz(H
2
C
) and JTz(H

2
C
) where J is the natural complex operator of H2

C
with its

action restricted at points of Pκ − L0. The CR structure of Pκ − L0 is the distribution

E(z) = {z,Hz} = ker(dcFκ)z .

In order to determine E we equivalently determine

E(1,0)(z) = {z,H(1,0)
z } = ker(∂pκ)z.

We have

∂pκ =
∂pκ
∂z1

dz1 +
∂pκ
∂z2

dz2

= −3κ+ i

2z1
dz1 +

i

z2
dz2.

Thus, E(1,0) is generated by the holomorphic vector field

Z = 2iz1
∂

∂z1
+ (3κ+ i)z2

∂

∂z2
.

A CR structure is completely integrable if and only if for each Z,W ∈ E(1,0) the Lie bracket [Z,W ]

is also in E(1,0). In our case this is true since Z is holomorphic and thus [Z,Z ] = 0. Therefore,
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Pκ − L0 is foliated by 1-complex dimensional submanifolds which are determined by solving the
differential equation

3κ+ i

2z1
dz1 =

i

z2
dz2.

Thus the leaves are given by

z2 = cz
1−3κi

2

1 ,

where c is a complex constant depending on the point z. The previous discussion is summarised to
the next Proposition which describes the decomposition of packs into complex submanifolds.

Proposition 3.12. Let P be a pack with curl factor κ. Then P admits a singular codimension 1
foliation which is such that

(1) its singular leaf is the complex spine of P and

(2) each non singular leaf is biholomorphic to the Riemann surface

w = z
1−3κi

2 .

4. Cylindrical Model

Towards the further study of the geometry of packs, and motivated by the representation of the

standard pack given in section 3.1.1, we introduce here a set of coordinates for H2
C
which arise

naturally from our previous discussion. Moreover, these coordinates may as well be considered as
the dual to the cylindrical coordinates of Goldman and Corlette, see Section 5.5 of [6]. In the latter,
the standard bisector B0 defined in Equation 2.9 is parametrised by a simple equation, in fact it
is the zero image of one of the coordinate functions. In what follows we show that there exists an
analogous result in the case of packs. The construction we present below will provide a model for
complex hyperbolic plane which is proved to be quite handy for our purposes.

4.1. Cylindrical coordinates. Cylindrical coordinates for complex hyperbolic plane are defined
by the following Lemma.

Lemma 4.1. Let

D = {z ∈ C : |z| < 1} , Iψ =
(
−π
2
,
π

2

)
.

We consider the following subdomain of C2:

C = {(w, z) : w = ξ + iψ ∈ R× Iψ, z = u+ iv ∈ D} .

The mapping Ξ : C → C2 defined by

(4.1) Ξ(ξ, ψ, u, v) =
(
−eξ+iψ, (u+ iv)

√
2 cos(ψ)e(ξ+iψ)/2

)

is a differentiable one–to–one transformation of C onto the Siegel domain of C2 with a differentiable

inverse. Its inverse Ξ−1 is also differentiable. For each (z1, z2) ∈ H2
C
we have

(4.2) Ξ−1(z1, z2) = (w, z) =

(
log(z1)− iπ,

iz2e
−i arg(z1)/2

√
−2ℜ(z1)

)

where here log(z1) is the branch of the logarithm for which arg(z1) ∈ (π/2, 3π/2).

Proof. To prove that Ξ is a one–to–one mapping onto the Siegel domain is trivial and we leave the
details to the reader. To prove differentiability we write first Ξ in real terms as

Ξ(ξ, ψ, u, v) = (x1, y1, x2, y2)
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where

x1 = −eξ cos(ψ),
y1 = −eξ sin(ψ),
x2 = eξ/2

√
2 cos(ψ)(u cos(ψ/2) − v sin(ψ/2)),

y2 = eξ/2
√

2 cos(ψ)(v cos(ψ/2) + u sin(ψ/2)).

The Jacobian determinant JΞ = det(dΞ) of Ξ is then

JΞ =

∣∣∣∣
∂(x1, y1, x2, y2)

∂(ξ, ψ, u, v)

∣∣∣∣

=

∣∣∣∣∣∣∣∣

x1 −y1 0 0
y1 x1 0 0
x2/2 ∗ √−2x1 cos(ψ/2) −√−2x1 sin(ψ/2)
y2/2 ∗ √−2x1 sin(ψ/2)

√−2x1 cos(ψ/2)

∣∣∣∣∣∣∣∣

= (x21 + y21) · (−2x1)

= 2e3ξ cos(ψ)

which is clearly positive everywhere in C.

Finally we prove Equation 4.2. To do so, we fix a (z1, z2) ∈ H2
C

and we may suppose that

arg(z1) ∈ (π/2, 3π/2) and arg(z2) ∈ (−π, π]. Then from z1 = −eξ+iψ we have

ξ = log(|z1|), ψ = arg(z1)− π.

Thus z2 = (u+ iv)
√

2 cos(ψ)e(ξ+iψ)/2 yields

u+ iv =
iz2e

−i arg(z1)/2
√

−2ℜ(z1)
.

�

From now on we identify complex hyperbolic plane with C. The domain

C = R× Iψ ×D

resembles the cylindrical model for complex hyperbolic plane. It is possible to express all standard
features of complex hyperbolic plane in terms of cylindrical coordinates w = ξ + iψ, z = u + iv.
However, we prefer for our purposes to use ”polar” coordinates (ξ, ψ, r, η) where r, η are defined

by the relation z = ire−3iη/2, with r ∈ (−1, 1) and η ∈
(
−2π

3 , 0
)
. The reason why we did not

define cylindrical coordinates to be ξ, ψ, r, η in the first place, is to avoid in the proof of Lemma 4.1
the usual polar coordinates singularity at points where r = 0 (Observe that the Ξ−image of these

points are the complex line L0). Nevertheless, this singularity does not affect the whole picture and
moreover, in terms of coordinates ξ, ψ, r, η, the expressions of the geometrical features of complex
hyperbolic plane as well as the expression for the defining function of the standard pack Pκ are
much more simpler, as we explain below.

Now, Equations 2.9 and 3.3 together with Lemma 4.1 yield the following.

Corollary 4.2. In the cylindrical model of complex hyperbolic plane:

(1) The standard pack Pκ with curl factor κ is defined the equation η = κξ mod (2π/3).

(2) The standard bisector B0 with complex spine L0 is defined by the equation ψ = 0.

(3) The intersection S0 = B0 ∩ P0 is the Lagrangian plane 2x1 + x22 < 0, x1 < 0, x2 ∈ R.
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4.2. Complex structure. We are particularly interested in the expression of the Riemannian as
well as of the symplectic structure of complex hyperbolic plane in cylindrical coordinates. For this,
it is necessary to start by describing the action of the standard complex structure J in terms of
ξ, ψ, r, η.

Proposition 4.3. The natural complex operator J of H2
C
is expressed in cylindrical coordinates by

the following matrix equations.

(4.3) J




dξ
dψ
dr
dη


 =




0 1 0 0
−1 0 0 0

− r
2 tan(ψ) 0 0 −3r

2

0 − tan(ψ)
3

2
3r 0







dξ
dψ
dr
dη


 ,

which describes the action of J in the cotangent space and

(4.4) J




∂
∂ξ
∂
∂ψ
∂
∂r
∂
∂η


 =




0 1 r
2 tan(ψ) 0

−1 0 0 tan(ψ)
3

0 0 0 − 2
3r

0 0 3r
2 0







∂
∂ξ
∂
∂ψ
∂
∂r
∂
∂η




which describes the action of J in the tangent space of H2
C
.

Proof. By taking logarithms in equations

z1 = −eξ+iψ, z2 = ir
√

2 cos(ψ)eξ/2+i(ψ−3η)/2

we obtain

log(z1) = ξ + iψ + iπ,(4.5)

log(z2) =
1

2
(ξ + log(2 cos(ψ))) + log(r) +

i

2
(ψ − 3η + π).(4.6)

Thus

dz1
z1

= dξ + idψ,(4.7)

dz2
z2

=
1

2
(dξ − tan(ψ)dψ) +

dr

r
+
i

2
(dψ − 3dη).(4.8)

By applying J to both parts of 4.7 and 4.8 and then using the relations J(dzi) = −idzi we obtain
equation 4.3. Equation 4.4 follows immediately. �

5. Transitive Action of the Symplectic Group

In this section we prove our first main

Theorem 5.1. The group of symplectomorphisms Sp(H2
C
) acts transitively in packs.

The main key to the proof is the construction of a symplectomorphism Fκ of C ≡ H2
C
which maps

the standard flat pack P0 onto the standard pack Pκ with curl factor κ. This symplectomorphism
admits a simple expression in cylindrical cordinates (ξ, ψ, r, η). Thus we start by expressing the
symplectic form Ω of complex hyperbolic plane in these coordinates. To do so, we identify the

defining function ρ of H2
C
as in 2.1 with the function ρ ◦ Ξ. In this manner, ρ : C → R is given by

(5.1) ρ(ξ, ψ, r, η) = 2eξ cos(ψ)(1 − r2).
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Proposition 5.2. In the cylindrical model of complex hyperbolic plane, the Bergman-Kähler sym-
plectic form Ω is given by

(5.2) Ω = − 1

(1− r2)2
(
(1− r2)(1 + tan2(ψ))dξ ∧ dψ + 2r tan(ψ)dξ ∧ dr + 6rdη ∧ dr

)
.

Proof. The Bergman-Kähler symplectic form is Ω = ddc log(ρ). We use equations 4.3 to obtain

dc log(ρ) = Jd log(ρ) = Jdξ − tan(ψ)Jdψ − 2r

1− r2
Jdr

= dψ +
1

1− r2
(tan(ψ)dξ + 3r2dη).

Formula 5.2 is then obtained by applying the differential operator d in both sides of the above
equation. �

Lemma 5.3. Let Pκ be the standard pack with curl factor κ and let also Fκ : C → C2 where

(5.3) Fκ(ξ, ψ, r, η) = (ξ, arctan(tan(ψ)− 3κ), r, η + κξ mod (2π/3)) .

The mapping Fκ is a diffeomorphism of C and also satisfies the following.

(1) F ∗
κΩ = Ω and

(2) Fκ maps the standard flat pack P0 onto Pκ.

Proof. Writing Equation 5.3 in the equivalent form

(5.4) Fκ(ξ, ψ, u, v) = (ξ, arctan(tan(ψ) − 3κ), u cos(3κξ) + v sin(3κξ), v cos(3κξ)− u sin(3κξ))

we may verify easily that Fκ is a one–to–one and onto self mapping of C. Next, Fκ is clearly
differentiable and its Jacobian determinant is

det(dFκ) =

∣∣∣∣
∂Fκ(ξ, ψ, u, v)

∂(ξ, ψ, u, v)

∣∣∣∣

=
1 + tan2(ψ)

1 + (tan(ψ) − 3κ)2

which is positive everywhere in C. Thus Fκ is a diffeomorphism of C.
We now use Equation 5.3 and Proposition 5.2 to obtain F ∗

κΩ = Ω. Our second assertion follows
from

Fκ(ξ, ψ, r, 0) = (ξ, arctan(tan(ψ) − 3κ), r, κξ mod (2π/3))

which implies Fκ(P0) = Pκ since the defining function of Pκ is independent of ψ. The proof is thus
complete. �

Proof of Theorem 5.1. Let P and P ′ be any two packs with curl factors κ and κ′ respectively.
We have to show that there exists a symplectomorphism F : H2

C
→ H2

C
such that F (P ) = P ′.

Now we may isometrically map P and P ′ respectively to the standard packs Pκ and P ′
κ. Thus, we

only have to show the existence of a symplectomorphism F : H2
C
→ H2

C
such that F (Pκ) = Pκ′ .

Let P0 be the standard flat pack. By Lemma 5.3 there exist symplectomorphisms Fκ, Fκ′ mapping

P0 respectively to Pκ and Pκ′ . Thus the desired symplectomorphism is F = Fκ′ ◦ F−1
κ and this

concludes the proof. 2.
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5.1. κ−Bisectors. Let B0 be the standard bisector and consider its Fκ image Bκ = Fκ(B0). This
is a new 3–submanifold of complex hyperbolic plane, with defining function given in cylindrical
coordinates by ψ = arctan(−3κ). Now Fκ preserves the complex spine L0 therefore L0 is con-

tained in Bκ. The real spine s0 = (−∞, 0) is mapped onto the Euclidean straight line (that is

a horocycle) on L0 given by sκ : ψ = arctan(−3κ), r = 0, η = 0 or, in standard coordinates,

sκ : arg(z1) = π − arctan(3κ), z2 = 0. Hence the hyperbolic distance δ(sκ, s0) is given by

cosh(δ(sκ, s0)) = − 1

cos(θ0)
, θ0 = π − arctan(3κ),

(see for instance formulae 7.20.3 of [2] but mind the opposite sign due to the different normalisation

of the hyperbolic plane).
Since Fκ is a symplectomorphism, there is a meridianal decomposition of Bκ by Lagrangian planes

meeting at sκ, which is exactly the Fκ−image of the meridianal decomposition of B0. Let now ΠL0

be the projection in L0. In standard coordinates ΠL0
(z1, z2) = (z1, 0) and thus in cylindrical

coordinates

ΠL0
(ξ, ψ, u, v) = (ξ, ψ, 0, 0).

Thus Fκ commutes with ΠL0
and therefore

Bκ = Fκ(B0) =
⋃

x∈s0
Fκ(Π

−1
L0

(x))

=
⋃

x∈s0
Π−1
L0

(Fκ(x))

=
⋃

y∈sκ
Π−1
L0

(y)

and this resembles the foliation of Bκ by complex lines. If we carry out the same discussion but

instead of Fκ we use its inverse F−1
κ = F−κ then we end up with

B−κ =
⋃

y∈s−κ

Π−1
L0

(y)

where s−κ is the Euclidean straight line s−κ : arg(z1) = π + arctan(3κ), z2 = 0. Observe that if

δ(s−κ, s0) is the hyperbolic distance of s−κ and s0 then

cosh(δ(s−κ, s0)) = cosh(δ(sκ, s0)) =
1

cos(arctan(3κ))
.

The above discussion lead us naturally to the following definition.

Definition 5.4. Let B = B(s) be a bisector with real spine s and complex spine LC. Let also κ
be a real number. The two 3–hypersurfaces defined by

B(s±κ) =

{
z ∈ H2

C : cosh(δ(z, s)) =
1

cos(arctan(3κ))

}
,

are called the κ−bisectors associated to B with horocyclic spines s±κ given by

B(s±κ) ∩ LC =

{
z ∈ LC : cosh(δ(z, s)) =

1

cos(arctan(3κ))

}
.

From our previous discussion we obtain the following Proposition which summarises some of the
basic properties enjoyed by κ−bisectors.
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Proposition 5.5. Let B = B(s) be a bisector with real spine s and complex spine LC and consider

its asociated κ−bisectors for some κ ∈ R. Let also ΠLC
: H2

C
→ LC be the orthogonal projection in

LC. Then the following hold.

(1) There exist symplectomorphisms of complex hyperbolic plane mapping each κ−bisector onto

the bisector B(s).

(2) (Slice decomposition). B(s±κ) are foliated by complex lines:

B(s±κ) =
⋃

x∈s±κ

Π−1
LC

(x).

(3) (Meridianal decomposition). B(s±κ) are the union of all Lagrangian planes meeting at their
horocyclic spines.

Proof. To prove (1) consider an isometry G mapping B to the standard bisector B0 and let also

F±κ be as in Lemma 5.3. Then F± = G−1 ◦ F±κ ◦ G is a symplectomorphism of H2
C

and it is

easy to see using the definition of κ−bisectors that F±(B(s±κ)) = B(s). Now (2) and (3) follow

immediately from (1) and the discussion in the beginning of this Section. �

6. Quasiconformal Deformation

In this section we construct a family of quasiconformal mappings of the Heisenberg group H
associated to a family of packs. We are doing so with the aid of the symplectomorphism Fκ defined
in the previous section. The idea is the following. Suppose that {Pτ}, τ ∈ [0, 1] is a family of

packs (see 6.2 below). For simlicity we may assume that all Pτ are standard. Based on Lemma 5.3
we construct a globally defined Hamiltonian time dependent vector field which generates a flow of
symplectomorphisms φs, τ such that φ0,τ (P0) = Pτ . This vector field can be extended to the closure

of complex hyperbolic plane and there, it generates a flow of quasiconformal contactomorphisms. By
Proposition 2.4 (4), this flow is also a flow of quasiconformal symplectomorphisms in the interior.
Again, we find very convenient to use cylindrical coordinates for our calculations, as these are

extended to ∂H2
C
.

6.1. Cylindrical model: Extension to the boundary. Cylindrical coordinates extend to the
boundary in a natural manner.

Lemma 6.1. Let

D = {z ∈ C : |z| ≤ 1} , Iψ =
[
−π
2
,
π

2

)
.

We consider the domain

C =
{
(w, z) : w = ξ + iψ ∈ R× Iψ, z = u+ iv ∈ D

}
.

Then cylindrical coordinates are naturally extended to the closure of complex hyperbolic plane in the

sense that the boundary ∂H2
C
of H2

C
is identified to R× Iψ× ∂D and the mapping Ξ̃ : ∂(C) → ∂H2

C

given for each (ξ, ψ, u, v) ∈ ∂(C) by

(6.1) Ξ̃(ξ, ψ, u, v) =
(
−eξ+iψ, (u+ iv)

√
2 cos(ψ)e(ξ+iψ)/2

)

is a differentiable one–to–one transformation of ∂C onto ∂H2
C
with differentiable inverse.

The proof of this Lemma runs in the same lines as this of Lemma 4.1 and thus we leave the
details for the reader.

By letting z = ie−3iη/2, where now η ∈
(
−2π

3 ,
2π
3

)
we obtain the obvious

Corollary 6.2. In the cylindrical model of the boundary of complex hyperbolic plane, the boundary
of the standard pack Pκ is defined by the equation η = κξ mod (2π/3).



THE GEOMETRY OF COMPLEX HYPERBOLIC PACKS 19

We shall also need

Lemma 6.3. In the cylindrical model of the boundary of complex hyperbolic plane, the contact form

ω of ∂H2
C
is given by

ω = eξ cos(ψ) (tan(ψ)dξ + 3dη) .(6.2)

The proof of this Lemma follows immediately after we write the relation

ω = −1

2
Jdρ

in terms of cylindrical coordinates by using Equations 4.3.

6.2. C1 families of packs. Let {Pτ} be a family of packs indexed by τ ∈ [0, 1], with corresponding

loxodromic elements Cτ . The family {Pτ} shall be called C1 if C(τ) = Cτ is C1 in τ . This is

equivalent to say that the fixed points r(τ), a(τ) and the complex lengths λ(τ) = l(τ) + iθ(τ) of

C(τ) are C1 functions of τ . It follows that κτ = κ(τ) = θ(τ)/l(τ) is also a C1 function.

Theorem 6.4. Let {Pτ}, τ ∈ [0, 1] be a C1 family of packs. Then the following hold.

(1) Associated to {Pτ} there is a continuously time dependent Hamiltonian vector field bτ in

H2
C
generating a flow of symplectomorphisms φs,τ such that φ0,τ (P0) = Pτ .

(2) The Hamiltonian function Bτ of bτ is C∞ and continuous in τ .

(3) bτ extends smoothly to H2
C
as a flow of contactomorphisms.

(4) Let M = maxτ∈[0,1] |κ′(τ)| ≥ 0. Then the one parameter family φs,τ is quasiconformal and

its dilation satisfies the following inequality.

(6.3) ‖ µτ ‖2∞≤ tanh

(
3
√
2

2
M

)
.

Proof. The proof of this Theorem shall be given in steps. We may only consider the case where
{Pτ}, τ ∈ [0, 1] is the family

Pτ =
⋃

ξ∈R
Eξ/2(1 + iκ(τ))(RR),

that is Pτ are all standard with curl factor κ(τ).

Step 1. Time dependent vector field. The symplectomorphism Fτ of complex hyperbolic plane
mapping P0 onto Pτ is given in cylindrical coordinates by

(6.4) Fτ (ξ, ψ, r, η) = (ξ, arctan (tan(ψ)− 3(κ(τ) − κ0)) , r, η + (κ(τ) − κ0)ξ) .

Let p denote an arbitrary point of H2
C
. We define the time dependent vector field in H2

C
by

bτ (Fτ (p)) =
d

ds

∣∣∣
s=τ

Fs(p).

We now calculate bτ explicitely. In fact, relation

bτ (p) =
d

ds

∣∣∣
s=τ

(Fs ◦ F−1
τ )(p)

yields after taking the derivative at τ of

φs,τ (ξ, ψ, r, η) = (Fs ◦ F−1
τ )(ξ, ψ, r, η)

= (ξ, arctan (tan(ψ)− 3(κ(s) − κ(τ))) , r, η + (κ(s)− κ(τ))ξ)
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that

(6.5) bτ =
dFs,τ
ds

|s=τ= κ′(τ)

(
−3 cos2(ψ)

∂

∂ψ
+ ξ

∂

∂η

)
.

Hence bτ is C∞ everywhere in H2
C
and by hypothesis is also continuous in τ .

Step 2. The Hamiltonian.

Lemma 6.5. The Hamiltonian function of bτ is given globally by

Bτ = Hbτ
= −3κ′(τ)

ξ

1 − r2
.

Proof. We calculate the inner product i(bτ )Ω. That is

i(bτ )Ω = Ω(bτ , ·)

= −3κ′(τ)

(
dξ

1− r2
+

2ξrdr

(1− r2)2

)

= −3κ′(τ)d

(
ξ

1− r2

)

and this proves our statement. �

Step 3. Extension to the boundary. Following Proposition 1 of [10], bτ is extended to the boundary
and its flow is a flow of contactomorphisms. Without making use of that, one may observe that
the extension of φs,τ to the boundary-denoted again by the same letter-is given there by

(6.6) φs,τ (ξ, ψ, η) = (ξ, arctan (tan(ψ)− 3(κ(s) − κ(τ)), η + (κ(s)− κ(τ))ξ))

and is a flow of contactomorphisms. Note further that in the boundary, bτ is given in exactly the
same formula as in Equation 6.5.

By Proposition 24 of [12], which also applies for time dependent vecto fields, the time dependent
vector field bτ has to be of the form

bτ =
i

2

(
(Zbτ )Z − (Zbτ )Z

)
+ bτT

where bτ is a real valued C∞ function. Again, we don’t have to use this Proposition; the interested
reader may verify this formula for bτ by direct calculations.

Corollary 6.6. In Heisenberg coordinates,

bτ =
3

2
κ′(τ)|ζ|2 log

(
|ζ|4 + t2

)
.

Proof. We have ω(bτ ) = bτω(T ) and since additionally ω(T ) = 1 we obtain

bτ = ω(bτ ) = 3κ′(τ) ξeξ cos(ψ)

= −3κ′(τ) x1 log(|z1|)

=
3

2
κ′(τ) |ζ|2 log

(
|ζ|4 + t2

)
.

�
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Step 4. Complex dilation. Calculation of the complex dilation is based on the following.

Lemma 6.7. If bτ is as in Corollary 6.6 then

|ZZbτ | ≤ 3|κ′(τ)|.
Proof. We set

b̃ = |ζ|2 log
(
|ζ|4 + t2

)
= f1 log(f2)

and let also

Z =
∂

∂ζ
+ iζ

∂

∂t
.

Then we only have to prove that |ZZb̃| ≤ 2. We have

Zb̃ = Zf1 log(f2) +
f1
f2

Zf2,

ZZb̃ = ZZf1 log(f2) +
2

f2
(Zf1)(Zf2)

− f1
f22

(Zf2)
2 +

f1
f2

ZZf2.

Now,

Zf1 = ζ,

Zf2 = 2ζ(|ζ|2 + it),

ZZf1 = 0,

ZZf2 = 0.

Thus

ZZb̃ =
2

f2
Zf1Zf2 −

f1
f22

(Zf2)
2

=
4ζ

2

|ζ|2 − it

(
1− |ζ|2

|ζ|2 − it

)

= − 4ζ
2
t

(|ζ|2 − it)2

and therefore,

|ZZb̃| = 4|ζ|2|t|
||ζ|2 − it|2 =

4|ζ|2|t|
|ζ|4 + t2

≤ 2.

�

Hence, from (3) of Proposition 2.4 we obtain that Fτ is K−quasiconformal with

K +K−1 ≤ 2e3
√
2Mτ ≤ 2e3

√
2M .

Finally, if ‖ µτ ‖ is the complex dilation of Fτ then

‖ µτ ‖≤
K − 1

K + 1

and therefore

‖ µτ ‖∞≤ e3
√
2M +

√
e6

√
2M − 1− 1

e3
√
2M +

√
e6

√
2M − 1 + 1

,
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which is equivalent to Equation 6.3. �

7. Differential Geometry

In this section we simultaneously study the differential geometry of bisectors and packs, in the
same spirit of the discussion carried out in section 5.5 of [6]. For the notation we use, we refer the

author to the general textbooks [3] and [9].
We start by expressing the Bergman-Kähler Riemaniann tensor of complex hyperbolic plane in

terms of cylindrical coordinates (ξ, ψ, r, η) of complex hyperbolic plane.

Proposition 7.1. In the cylindrical model of complex hyperbolic plane, the Bergman-Kähler metric
tensor g is given by

g =
1

(1− r2)2

(
(1 + tan2(ψ)− r2)dξ2 + 6r2tan(ψ)dξdη + 9r2dη2(7.1)

+(1− r2)(1 + tan2(ψ))dψ2 + 4dr2
)
.

Proof. Denote by J the matrix of Equation 4.3 and denote also by Ω, G the matrices of the sym-
plectic form and the Riemannian product respectively, where Ω is given by Proposition 5.2. Since
G = Ω · J , we obtain

G =
1

(1− r2)2




1 + tan2(ψ)− r2 0 0 3 r2tan(ψ)
0 (1− r2) (1 + tan2(ψ)) 0 0
0 0 4 0

3r2 tan(ψ) 0 0 9 r2


(7.2)

and formula 7.1 follows. �

The inverse matrix G−1 = (gij) is given by

G−1 =
(1− r2)

1 + tan2(ψ)




1 0 0 −1
3tan(ψ)

0 1 0 0
0 0 (1− r2)(1 + tan2(ψ)) 0

−1
3tan(ψ) 0 0 1+tan2(ψ)−r2

9r2


 .(7.3)

7.1. Orthogonality. We shall prove

Theorem 7.2. Let B be a κ1−bisector with complex spine LC and suppose that P is a pack with
curl factor κ2 whose complex spine is also LC. Then there exist codimension one foliations FB and

FP of H2
C
such that

(1) The leaves of FB (resp. of FP ) are diffeomorphic to B (resp. to P ).

(2) FB is orthogonal to FP .

The proof of this Theorem is an immediate consequence of the following Proposition.

Proposition 7.3. Let (κ1, κ2) ∈ R2 and let also B be a κ1−bisector with complex spine LC and P
be a pack with curl factor κ2 whose complex spine is also LC. Let NB and NP be vector fields normal
to B and P respectively. Then NB ⊥ NP . In particular, if bκ1 and pκ2 are defining functions for
B and P respectively, then gradbκ1 ⊥ gradpκ2.
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Proof. Wemay restrict ourselves to the case whereB = Bκ with defining function bκ1 = ψ+arctan(3κ1)
and P = Pκ2 with defining function pκ2 = η − κ2ξ. Then by using Equation 7.3 we have

g(gradbκ1, gradpκ2) = g(dbκ1 , dpκ2)

= g(dψ, dη − κ2dξ)

= g(dψ, dη) − κ2g(dψ, dξ)

= 0− κ2 · 0
= 0.

�

As a Corollary, we also have

Corollary 7.4. Let XB and XP be the Hamiltonian vector fields to B and P respectively, where
B and P are as in Proposition 7.3. Then XB ⊥ XP .

Proof. By restricting ourselves again to the case where B = Bκ1 and P = Pκ2 we have

g(XB ,XP ) = g(Jgradbκ1 , Jgradpκ2) = g(gradbκ1 , gradpκ2) = 0.

�

7.2. Comparative geometry of packs and bisectors. In this section we shall prove

Theorem 7.5. Let P be a pack with curl factor κ and B be a κ−bisector. Then

(1) P is a minimal submanifold of H2
C
with zero Gauss-Kronecker curvature.

(2) B is a submanifold of H2
C
with zero Gauss-Kronecker curvature. Moreover, it is minimal if

and only if κ = 0.

Our strategy for the proof is the following. Instead of studying the geometrical aspects of packs

and bisectors induced from the Bergman metric g of H2
C
, we study the pulled-back metric gκ of

H2
C
which arises from the action of Fκ. We next proceed by constructing and orthonormal frame

of vector fields Xi, i = 1, . . . 4 for this metric, which is such that

X2 =
gradb0

‖ gradb0 ‖κ
, X4 =

gradp0
‖ gradp0 ‖κ

that is, X2 is a unit normal vector field to the standard bisector B0 and X4 is a unit normal vector
field to he standard flat pack P0. Following standard differential geometric procedures, we calculate
next the second fundamental forms and the sectional curvatures of B0 and P0 in the gκ metric.
This will prove our Theorem.

Proof. The proof will be given in steps.

Step 1. The pulled–back metric. Let

Fκ(ξ, ψ, r, η) = (ξ, arctan(tan(ψ)− 3κ), r, η + κξ),

be the symplectomorphism as in Equation 5.3. By calculating straightforwrdly we obtain

gκ = F ∗
κg =

1

(1− r2)2

(
(tan2(ψ) + (1− r2)(1 + 9κ2 − 6κ tan(ψ)))dξ2

+6r2 tan(ψ)dξdη + 9r2dη2 + (1− r2)
(1 + tan2(ψ))2

1 + (tan(ψ)− 3κ)2
dψ2 + 4dr2

)
.

In order to clearly show the consistency of our results with those of Goldman, we find suitable to
set

σ = tan(ψ), τ = 2 tanh−1(r).



THE GEOMETRY OF COMPLEX HYPERBOLIC PACKS 24

In this way, we may write gκ in terms of ξ, σ, τ, η as follows.

gκ = cosh2(τ/2)
(
(σ − 3κ)2 + σ2 sinh2(τ/2) + 1

)
dξ2(7.4)

+6σ cosh2(τ/2) sinh2(τ/2)dξdη + 9cosh2(τ/2) sinh2(τ/2)dη2

+
cosh2(τ/2)

1 + (σ − 3κ)2
dσ2 + dτ2.

Let

f =
sech2(τ/2)

1 + (σ − 3κ)2
, g = sinh2(τ/2) cosh2(τ/2), h = 1 + σ2fg.

Then,

Gκ =




f−1h 0 0 3σg
0 f cosh4(τ/2) 0 0
0 0 1 0

3σg 0 0 9g


 .

Thus det(Gκ) = 9 cosh6(τ/2) sinh2(τ/2) and

G−1
κ =




f 0 0 −1
3σf

0 f−1sech4(τ/2) 0 0
0 0 1 0

−1
3σf 0 0 1

9g
−1h


 .

A frame of orthonormal vector fields for the metric gκ is given by

X1 = f1/2h−1/2 ∂

∂ξ
,

X2 = f−1/2sech2(τ/2)
∂

∂σ
,

X3 =
∂

∂τ
,

X4 = −σfg1/2h−1/2 ∂

∂ξ
+

1

3
g−1/2h1/2

∂

∂η
.

The corresponding orthonormal coframe is

φ1 = f−1/2h1/2dξ + 3σgf1/2h−1/2dη,

φ2 = f1/2 cosh2(τ/2)dσ,

φ3 = dτ,

φ4 = 3g1/2h−1/2dη.

It is clear that the vector fields X2,X4 are the unit normal vector fields to the standard bisector
B0 with defining equation b0 = σ = 0 and to the standard flat pack P0 with defining function
p0 = η = 0 respectively.

Step 2. Second fundamental forms. We calculate here the second fundamental forms IIκ(B0) of B0

and IIκ(P0) of P0. For this, let IIσκ and II
η
κ be the second fundamental forms of the level sets of

the coordinate functions σ and η respectively. Then,

IIσκ(Xj ,Xk) = gκ(X2,∇Xj
Xk), j, k = 1, 3, 4,

IIηκ(Xj ,Xk) = gκ(X4,∇Xj
Xk), j, k = 1, 2, 3,
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where of course

gκ(Xi,∇Xj
Xk) = −1

2
{gκ([Xk,Xi],Xj) + gκ([Xj ,Xi],Xk) + gκ([Xk,Xj ],Xi)} , i = 2, 4.

Simple calculations show that

IIσκ =



â11 0 â14
0 0 0
â14 0 0


 ,

where

â11 =
1

2
f−1/2sech2(τ/2)

∂ log(f/h)

∂σ
,

â14 = −1

2
g1/2sech2(τ/2)

(
1 + σ

∂ log(f/h)

∂σ

)
.

Where,

(7.5)
∂ log(f/h)

∂σ
=

6κ cosh2(τ/2) − 2σ cosh(τ)

1 + (σ − 3κ)2 + σ2 sinh2(τ/2)
.

On B0 we have σ = 0. Thus, if II(Bκ) is the second fundamental form of Bκ with respect to the
metric g, it follows

IIκ(B0) = II(Bκ) =



3κ(1 + 9κ2)−1/2 cosh(τ/2) 0 −1

2 tanh(τ/2)
0 0 0

−1
2 tanh(τ/2) 0 0


 .

Therefore, Bκ is minimal if and only if κ = 0.
On the other hand we have

IIηκ =




0 ã12 ã13
ã12 0 0
ã13 0 0




where

ã12 =
1

2
tanh(τ/2)

(
1 + σ

∂ log(f/h)

∂σ

)
,

ã13 =
1

2
σ(fg)1/2

∂ log(fg/h)

∂τ
.

Here,

∂ log(fg/h)

∂τ
= cosh(τ/2)

1 + (σ − 3κ)2

1 + (σ − 3κ)2 + σ2 sinh2(τ/2)
.

On P0 we have η = 0 and thus if II(Pκ) is the second fundamental form of Pκ with repect to the
metric g we obtain

II(Pκ) = IIκ(P0) = IIηκ

since IIηκ depends only on σ, τ . This also proves minimality of Pκ. Finally, since both determinants
of II(Bκ) and II(Pκ) vanish, we have that both Bκ and Pκ are submanifolds wof zero Gauss-
Kronecker curvature.

�
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7.2.1. Curvature. Our goal in this section is to study the curvature of the submanifolds Bκ and Pκ
with respect to the metric g. For this, it suffices to study the curvatures of the submanifolds B0

and P0 with respect to the metric gκ. Thus we will resrict ourselves each time to the cases where
σ = 0 and η = 0 respectively.

We begin with the case of B0. This is given by σ = 0 and therefore from the coframe constructed
in the first step of the proof of Theorem 7.5 we obtain the corresponding coframe

φ̂1 = cosh(τ/2)(1 + 9κ2)−1/2dξ,

φ̂3 = dτ,

φ̂4 = 3cosh(τ/2) sinh(τ/2)dη,

which is associated to the restriction of the metric gκ on the submanifold B0. Now,

dφ̂1 =
1

2
tanh(τ/2) φ̂3 ∧ φ̂1,

dφ̂3 = 0,

dφ̂4 = coth(τ) φ̂3 ∧ φ̂4.

If Θ̂ = [θ̂ji ], i, j = 1, 3, 4, is the matrix of the conection form, then from structural equations

dφ̂i = −
∑

i

θ̂ji ∧ φ̂j

we obtain

Θ̂ =




0 1
2 tanh(τ/2) φ̂

1 0

−1
2 tanh(τ/2) φ̂

1 0 − coth(τ) φ̂4

0 coth(τ) φ̂4 0


 .

Let Ω̂ be the matrix of the curvature form. Then from structural equations

Ω̂ = dΘ̂ + Θ̂ ∧ Θ̂

we have

Ω̂ =




0 −1
4 φ̂

1 ∧ φ̂3 −1
4(1 + tanh2(τ/2)) φ̂1 ∧ φ̂4

−1
4 φ̂

3 ∧ φ̂1 0 −φ̂3 ∧ φ̂4
−1

4(1 + tanh2(τ/2)) φ̂4 ∧ φ̂4 −φ̂4 ∧ φ̂3 0


 .

The sectional curvatures of the coordinate 2–planes are therefore

K̂13 = −1

4
, K̂14 = −1

4

(
1 + tanh2(τ/2)

)
, K̂34 = −1.

Observe here that K̂ij do not depend on κ. (Compare also with [6], p.190.)

We next proceed to the case of P0. Here is η = 0 and by setting

k = (f−1 + σ2g)−1/2(f−1 + σ2g + 3κσ)

= (fh)−1/2(h+ 3κσf)

= (h/f)−1/2(h/f + 3κσ).
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we obtain the corresponding coframe

φ̃1 = k dξ,

φ̃2 = f1/2 cosh2(τ/2) dσ,

φ̃3 = dτ,

for the submanifold P0 of (H2
C
,gκ). Now,

dφ̃1 =
∂ log(k)

∂σ
f−1/2sech2(τ/2) φ̃2 ∧ φ̃1 + ∂ log(k)

∂τ
φ̃3 ∧ φ̃1,

dφ̃2 = −1

2
tanh(τ/2) φ̃2 ∧ φ̃3,

dφ̂3 = 0.

Where,

∂ log(k)

∂τ
= −1

2

h− 3κσf

h+ 3κσf

∂(log(f/h))

∂τ
,

∂ log(k)

∂σ
= −1

2

h− 3κσf

h+ 3κσf

∂(log(f/h))

∂σ
+

3κf

h+ 3κσf

with ∂(log(f/h))
∂σ given by Equation 7.5 and

(7.6)
∂(log(f/h))

∂τ
= − tanh(τ/2)

1 + (σ − 3κ)2 + σ2 cosh(τ)

1 + (σ − 3κ)2 + σ2 sinh2(τ/2)
.

Denote by Θ̃ = [θ̃ji ], i, j = 1, 2, 3, the matrix of the connection form. From structural equations

dφ̃i = −
∑

i

θ̂ji ∧ φ̂j

we obtain

Θ̃ =




0 ∂ log(k)
∂σ f−1/2sech2(τ/2) φ̃1 ∂ log(k)

∂τ φ̃1

−∂ log(k)
∂σ f−1/2sech2(τ/2) φ̃1 0 1

2 tanh(τ/2) φ̃
2

−∂ log(k)
∂τ φ̃1 −1

2 tanh(τ/2) φ̃
2 0


 .

The matrix Ω̃ of the curvature form given from the structural equations

Ω̃ = dΘ̃ + Θ̃ ∧ Θ̃

is quite complicated and we shall not write it down explicitely. However, the sectional curvatures
of the coordinate 2–planes may be expressed as follows.

K̃12 = −sech2(τ/2)(1 + (σ − 3κ)2)

(
∂2 log(k)

∂σ2
+

(
∂ log(k)

∂σ

)2
)

−sech2(τ/2)(σ − 3κ)
∂ log(k)

∂σ
,

K̃13 = −
(
∂2 log(k)

∂τ2
+

(
∂ log(k)

∂τ

)2
)
,

K̃23 = −1

4
.
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In the case of the flat pack P0 we have

K̃12 = −1

4

(1− tanh4(τ/2))
(
(1− tanh2(τ/2))(1 + σ2) + 2σ4

)

(1 + σ2 − tanh2(τ/2))2
,

K̃13 = −1

4

(3− 5σ2) tanh4(τ/2) + 2(2σ4 + σ2 − 2) tanh2(τ/2) + 1

(1 + σ2 − tanh2(τ/2))2
,

K̃23 = −1

4
.
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