ON THE DEGREE OF REGULARITY OF GENERALIZED VAN DER WAERDEN TRIPLES

Nikos Frantzikinakis
Department of Mathematics, Pennsylvania State University, University Park, PA 16802
nikos@math.psu.edu
Bruce Landman
Department of Mathematics, University of West Georgia, Carrollton, GA 30118
landman@westga.edu
Aaron Robertson
Department of Mathematics, Colgate University, Hamilton, NY 13346
aaron@math.colgate.edu

Abstract

: Let $1 \leq a \leq b$ be integers. A triple of the form $(x, a x+d, b x+2 d)$, where x, d are positive integers is called an (a, b)-triple. The degree of regularity of the family of all (a, b)-triples, denoted dor (a, b), is the maximum integer r such that every r-coloring of \mathbb{N} admits a monochromatic (a, b)-triple. We settle, in the affirmative, the conjecture that $\operatorname{dor}(a, b)<\infty$ for all $(a, b) \neq(1,1)$. We also disprove the conjecture that $\operatorname{dor}(a, b) \in\{1,2, \infty\}$ for all (a, b).

1. Introduction

B.L. van der Waerden [5] proved that for any positive integers k and r, there is a positive integer $w(k, r)$ such that any r-coloring of $\{1,2, \ldots, w(k, r)\}$ must admit a monochromatic k-term arithmetic progression. In [3], a generalization of van der Waerden's theorem for 3 -term arithmetic progressions was investigated. Namely, for integers $1 \leq a \leq b$, define an (a, b)-triple to be any 3 -term sequence of the form ($x, a x+d, b x+2 d$), where x, d are positive integers. Taking $a=b=1$ gives a 3 -term arithmetic progression, and by van der Waerden's theorem the associated van der Waerden number $w(3, r)$ is finite for all r.

Throughout this note, we assume that a and b are integers and that $1 \leq a \leq b$. For $r \geq 1$, denote by $n=n(a, b ; r)$ the least positive integer, if it exists, such that every r-coloring of $[1, n]$ admits a monochromatic (a, b)-triple. If no such n exists, we write $n(a, b ; r)=\infty$. We say that (a, b) is regular if $n(a, b ; r)<\infty$ for each $r \in \mathbb{N}$. By van der Waerden's theorem $(1,1)$ is regular. If (a, b) is not regular, the degree of regularity of (a, b), denoted dor (a, b), is the largest integer r such that (a, b) is r-regular.

In [3], it is shown that for a wide class of pairs $(a, b) \neq(1,1),(a, b)$ is not regular, i.e., dor $(a, b)<\infty$, and its authors conjectured that, in fact, $(1,1)$ is the only regular pair. In

Section 2 we confirm this conjecture.
Also in [3], it was shown that

$$
\begin{equation*}
\operatorname{dor}(a, b)=1 \text { if and only if } b=2 a \tag{1}
\end{equation*}
$$

and upper bounds on $\operatorname{dor}(a, b)$ are given for those pairs which are shown not to be regular. Further, those authors speculated that $\operatorname{dor}(a, b) \in\{1,2, \infty\}$ for all pairs (a, b). In Section 3 we show this conjecture to be false. We also obtain upper bounds on $\operatorname{dor}(a, b)$ for all $(a, b) \neq(1,1)$, which improve upon the results of [3], and provide an alternate proof that $(1,1)$ is the only regular triple.

2. The Only Regular Triples are Arithmetic Progressions

In this section we give a short proof which shows that (1,1)-triples are the only regular (a, b) triples. The proof makes use of Rado's regularity theorem (see [4]) which states, in particular, that the linear equation $a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{k} x_{k}=0$ has a monochromatic solution in \mathbb{N} under any finite coloring of \mathbb{N} if and only if some nonempty subset of the nonzero coefficients sums to zero. It also uses the following lemma.

Lemma 1 For all $1 \leq a \leq b$, and all $i \geq 1$,

$$
n(a, b ; r) \leq n(a+i, b+2 i ; r)
$$

and hence $\operatorname{dor}(a, b) \geq \operatorname{dor}(a+i, b+2 i)$.
Proof. Let a, b, i be given. To prove the lemma, it suffices to show that every $(a+i, b+2 i)$ triple is also an (a, b)-triple. Let $X=(x, y, z)$ be an $(a+i, b+2 i)$-triple. So $y=(a+i) x+d$ and $z=(b+2 i) x+2 d$ for some $d>0$. But then X is also an (a, b) triple, since $y=a x+(i x+d)$ and $z=b x+2(i x+d)$.

Theorem 1 Let $1 \leq a \leq b$. If $(a, b) \neq(1,1)$, then (a, b) is not regular.
Proof. Since the triple $\{x, a x+d, b x+2 d\}$ satisfies the equation $(2 a-b) x-2 y+z=0$, by Rado's regularity theorem an (a, b)-triple is regular only if $b-2 a \in\{-2,-1,1\}$. Hence, this leaves three cases to consider: (i) $b=2 a+1$, (ii) $b=2 a-1$, and (iii) $b=2 a-2$. In [3] it was shown that $\operatorname{dor}(1,3) \leq 3$, $\operatorname{dor}(2,3)=2$, and $\operatorname{dor}(2,2) \leq 5$. By Lemma 1, these three facts cover Cases (i), (ii), and (iii), respectively.

Remark 1 In Section 3 we will show that $\operatorname{dor}(2,2) \leq 4$. We see from this fact, the proof of Theorem 1, and (1), that $2 \leq \operatorname{dor}(a, 2 a-2) \leq 4$ for all $a \geq 2$; that $\operatorname{dor}(a, 2 a-1)=2$ for all $a \geq 2$; and that $2 \leq \operatorname{dor}(a, 2 a+1) \leq 3$ for all $a \geq 1$.

3. More on the Degree of Regularity

Using the Fortran program AB.f, available from the third author's website ${ }^{1}$, we have found that $n(2,2 ; 3)=88$. This implies

$$
\begin{equation*}
\operatorname{dor}(2,2) \geq 3 \tag{2}
\end{equation*}
$$

which is a counterexample to the suggestion made in [3] that $\operatorname{dor}(a, b) \in\{1,2, \infty\}$ for all (a, b). The program uses a well-known backtracking algorithm (see [4], Algorithm 2, page $31)$ which checks that all 3 -colorings of $[1,88]$ contain a monochromatic $(2,2)$-triple.

Although (2) shows the existence of a pair besides $(1,1)$ whose degree of regularity is greater than two, we wonder if $\operatorname{dor}(a, b)=2$ for "almost all" (a, b). In particular, we pose the following questions.

Question 1 Is it true that $\operatorname{dor}(a, b) \leq 2$ whenever $b \neq 2 a-2$ and $a \geq 2$?
Question 2 For $b \neq 2 a$, are there only a finite number of pairs (a, b) such that dor $(a, b) \neq 2$?

While we do not yet have the answers to these questions, we have been able to improve the upper bounds for dor (a, b), as established in [3], for many (a, b)-triples. These new bounds are supplied by the next two theorems. The proofs of both theorems use the following coloring.

Notation Let $c \geq 3$ be an integer and let $p=2-\frac{2}{c}$. Denote by γ_{c} the c-coloring of \mathbb{N} defined by coloring, for each $k \geq 0$, the interval $\left[p^{k}, p^{k+1}\right)$ with color $k(\bmod c)$.
Theorem 2 Let $a, i, c \in \mathbb{Z}$ such that $a \geq 2$ and $c \geq 5$. Define $p=2-\frac{2}{c}$ and let $0 \leq i \leq$ $p^{c}\left(p^{c-1}-2\right)$. If $a \leq \frac{p^{c}}{c-1}$, then $\operatorname{dor}(a, a+i) \leq c-1$.
Proof. We use the c-coloring γ_{c}. Assume, for a contradiction, that $\{x, a x+d,(a+i) x+2 d\}$ is a monochromatic $(a, a+i)$-triple under γ_{c}. Let $x \in\left[p^{k}, p^{k+1}\right)$. Since $p<2$ and $a \geq 2$, we have that $a x+d \in\left[p^{k+c j}, p^{k+c j+1}\right)$ for some $j \in \mathbb{N}$. This gives us that $d>p^{k+c j}-a p^{k+1}$, which, in turn, gives us $(a+i) x+2 d>2 p^{k+c j}-a p^{k+1}+i p^{k}$. We now show that this lower bound is more that $p^{k+c j+1}$: By choice of a we have $a \leq p^{c-1}(2-p)$ so that $2-\frac{a}{p^{c j}} \geq p$ for all $j \in \mathbb{N}$. This gives us $2 p^{k+c j}-a p^{k+1}>p^{k+c j+1}$ which is sufficient for all $i \geq 0$.

Next, we will show that $(a+i) x+2 d<p^{k+c(j+1)}$. Since $d<a x+d<p^{k+c j+1}$ and $i x<i p^{k+1}$ it suffices to show that $2 p^{k+c j+1}+i p^{k+1}<p^{k+c j+c}$. We have $i \leq p^{c}\left(p^{c-1}-2\right)$, which implies that $2+\frac{i}{p^{c} j}<p^{c-1}$ for all $j \in \mathbb{N}$, which, in turn, implies the desired bound.

Hence, we have $p^{k+c j+1}<(a+i) x+2 d<p^{k+c(j+1)}$. By the definition of γ_{c}, we see that if x and $a x+d$ are the same color, then $(a+i) x+2 d$ must be a different color under γ_{c}, a contradiction.

[^0]Example By Theorem 2 and (2), dor $(2,2) \in\{3,4\}$.
Theorem 3 Let $b, c \in \mathbb{N}$ such that $b \geq 2$ and $c \geq 5$. Let $p=2-\frac{2}{c}$. If $b<\frac{2+p^{c}}{p}$, then $\operatorname{dor}(1, b) \leq c-1$.

Proof. The proof is quite similar to that of Theorem 2. Assume, for a contradiction, that $\{x, x+d, b x+2 d\}$ is monochromatic under γ_{c}. Let $x \in\left[p^{k}, p^{k+1}\right)$ so that $b x+2 d \in$ $\left[p^{k+c j}, p^{k+c j+1}\right.$) (since $b \geq 2>c$) for some $j \in \mathbb{N}$. This gives $d \geq \frac{1}{2} p^{k+c j}-\frac{b}{2} p^{k+1}$ so that $x+d>p^{k}+\frac{1}{2} p^{k+c j}-\frac{b}{2} p^{k+1}$. The condition on b implies that this last bound is larger than p^{k+1}.

We next show that $x+d<p^{k+c j}$. We have $d<\frac{1}{2} p^{k+c j+1}$ so that $x+d<p^{k+1}+\frac{1}{2} p^{k+c j+1}$. Since $2<p^{c-1}(2-p)$ for all $c \geq 5$, we have $p^{k+1}+\frac{1}{2} p^{k+c j+1}<p^{k+c j}$ for all $j \in \mathbb{N}$. Hence, $p^{k+1}<x+d<p^{k+c j}$ so that $x+d$ is not the same color, under γ_{c}, as x and $b x+2 d$, a contradiction.

Corollary 1 For $a \geq 1$ and $1 \leq j \leq 5$, $\operatorname{dor}(a, 2 a+j) \leq 4$.
Proof. This follows from Theorem 3 and Lemma 1.
Remark 2 Theorems 2 and 3, along with the following result from [3], provide an alternate proof of Theorem 1 without the use of Rado's regularity theorem.

Lemma 2 Assume $b \geq\left(2^{3 / 2}-1\right) a-2^{3 / 2}+2$. Then $\operatorname{dor}(a, b) \leq\left\lceil 2 \log _{2} c\right\rceil$, where $c=\lceil b / a\rceil$.
Below we give a table showing the known bounds on the degrees of regularity for some small values of a and b. The entries in the table that improve the previously known bounds are marked with *; all others are from [3]. The improved bounds for dor $(1,5)$, dor(1,6), dor(1,7), dor $(1,8)$, and dor $(1,9)$ follow from Theorem 3; the upper bound on dor $(2,10)$ follows from Theorem 2; and the upper bounds on dor $(3,4)$ and dor $(3,7)$ follow from Lemma 1.

(a, b)	$\operatorname{dor}(a, b)$	(a, b)	$\operatorname{dor}(a, b)$	(a, b)	$\operatorname{dor}(a, b)$
$(1,1)$	∞	$(2,2)$	$3^{*}-4^{*}$	$(3,3)$	$2-5$
$(1,2)$	1	$(2,3)$	2	$(3,4)$	$2-3^{*}$
$(1,3)$	$2-3$	$(2,4)$	1	$(3,5)$	2
$(1,4)$	$2-4$	$(2,5)$	$2-3$	$(3,6)$	1
$(1,5)$	$2-4^{*}$	$(2,6)$	$2-3$	$(3,7)$	$2-3^{*}$
$(1,6)$	$2-4^{*}$	$(2,7)$	$2-4$	$(3,8)$	$2-3$
$(1,7)$	$2-4^{*}$	$(2,8)$	$2-4$	$(3,9)$	$2-3$
$(1,8)$	$2-5^{*}$	$(2,9)$	$2-4$	$(3,10)$	$2-4$
$(1,9)$	$2-5^{*}$	$(2,10)$	$2-4^{*}$	$(3,11)$	$2-4$

Acknowledgement The result that $(1,1)$ is the only regular pair has been independently shown by Fox and Radoicic [2]. They show that, in fact, $\operatorname{dor}(a, b) \leq 23$ for all $(a, b) \neq(1,1)$.

References

[1] T. Brown and B. Landman, Monochromatic Arithmetic Progressions with Large Differences, Bull. Australian Math. Soc. 60 (1999), 21-35.
[2] J. Fox and R. Radoicic, preprint
[3] B. Landman and A. Robertson, On Generalized van der Waerden Triples, Disc. Math. 256 (2002), 279-290.
[4] B. Landman and A. Robertson, Ramsey Theory on the Integers, STML 24, Am. Math. Soc., 2004.
[5] B. L. van der Waerden, Bewis einer Baudetschen Vermutung, Nieuw. Arch. Wisk. 15 (1927), 212-216.

[^0]: ${ }^{1}$ http://math.colgate.edu/~aaron/programs.html

