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Abstract:

Let 1 ≤ a ≤ b be integers. A triple of the form (x, ax + d, bx + 2d), where x, d are positive integers is
called an (a,b)-triple. The degree of regularity of the family of all (a, b)-triples, denoted dor(a, b), is the
maximum integer r such that every r-coloring of N admits a monochromatic (a, b)-triple. We settle, in the
affirmative, the conjecture that dor(a, b) < ∞ for all (a, b) 6= (1, 1). We also disprove the conjecture that
dor(a, b) ∈ {1, 2,∞} for all (a, b).

1. Introduction

B.L. van der Waerden [5] proved that for any positive integers k and r, there is a positive
integer w(k, r) such that any r-coloring of {1, 2, ..., w(k, r)} must admit a monochromatic
k-term arithmetic progression. In [3], a generalization of van der Waerden’s theorem for
3-term arithmetic progressions was investigated. Namely, for integers 1 ≤ a ≤ b, define an
(a, b)-triple to be any 3-term sequence of the form (x, ax+d, bx+2d), where x, d are positive
integers. Taking a = b = 1 gives a 3-term arithmetic progression, and by van der Waerden’s
theorem the associated van der Waerden number w(3, r) is finite for all r.

Throughout this note, we assume that a and b are integers and that 1 ≤ a ≤ b. For r ≥ 1,
denote by n = n(a, b; r) the least positive integer, if it exists, such that every r-coloring of
[1, n] admits a monochromatic (a, b)-triple. If no such n exists, we write n(a, b; r) = ∞. We
say that (a, b) is regular if n(a, b; r) < ∞ for each r ∈ N. By van der Waerden’s theorem
(1, 1) is regular. If (a, b) is not regular, the degree of regularity of (a, b), denoted dor(a, b), is
the largest integer r such that (a, b) is r-regular.

In [3], it is shown that for a wide class of pairs (a, b) 6= (1, 1), (a, b) is not regular, i.e.,
dor(a, b) < ∞, and its authors conjectured that, in fact, (1, 1) is the only regular pair. In



Section 2 we confirm this conjecture.

Also in [3], it was shown that

dor(a, b) = 1 if and only if b = 2a, (1)

and upper bounds on dor(a, b) are given for those pairs which are shown not to be regular.
Further, those authors speculated that dor(a, b) ∈ {1, 2,∞} for all pairs (a, b). In Section
3 we show this conjecture to be false. We also obtain upper bounds on dor(a, b) for all
(a, b) 6= (1, 1), which improve upon the results of [3], and provide an alternate proof that
(1,1) is the only regular triple.

2. The Only Regular Triples are Arithmetic Progressions

In this section we give a short proof which shows that (1,1)-triples are the only regular (a, b)-
triples. The proof makes use of Rado’s regularity theorem (see [4]) which states, in particular,
that the linear equation a1x1 + a2x2 + · · · + akxk = 0 has a monochromatic solution in N
under any finite coloring of N if and only if some nonempty subset of the nonzero coefficients
sums to zero. It also uses the following lemma.

Lemma 1 For all 1 ≤ a ≤ b, and all i ≥ 1,

n(a, b; r) ≤ n(a + i, b + 2i; r),

and hence dor(a, b) ≥ dor(a + i, b + 2i).

Proof. Let a, b, i be given. To prove the lemma, it suffices to show that every (a + i, b + 2i)-
triple is also an (a, b)-triple. Let X = (x, y, z) be an (a + i, b + 2i)-triple. So y = (a + i)x + d
and z = (b+2i)x+2d for some d > 0. But then X is also an (a, b) triple, since y = ax+(ix+d)
and z = bx + 2(ix + d). 2

Theorem 1 Let 1 ≤ a ≤ b. If (a, b) 6= (1, 1), then (a, b) is not regular.

Proof. Since the triple {x, ax + d, bx + 2d} satisfies the equation (2a− b)x− 2y + z = 0, by
Rado’s regularity theorem an (a, b)-triple is regular only if b− 2a ∈ {−2,−1, 1}. Hence, this
leaves three cases to consider: (i) b = 2a + 1, (ii) b = 2a − 1, and (iii) b = 2a − 2. In [3] it
was shown that dor(1, 3) ≤ 3, dor(2, 3) = 2, and dor(2, 2) ≤ 5. By Lemma 1, these three
facts cover Cases (i), (ii), and (iii), respectively. 2

Remark 1 In Section 3 we will show that dor(2, 2) ≤ 4. We see from this fact, the proof of
Theorem 1, and (1), that 2 ≤ dor(a, 2a− 2) ≤ 4 for all a ≥ 2; that dor(a, 2a− 1) = 2 for all
a ≥ 2; and that 2 ≤ dor(a, 2a + 1) ≤ 3 for all a ≥ 1.
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3. More on the Degree of Regularity

Using the Fortran program AB.f, available from the third author’s website1, we have found
that n(2, 2; 3) = 88. This implies

dor(2, 2) ≥ 3, (2)

which is a counterexample to the suggestion made in [3] that dor(a, b) ∈ {1, 2,∞} for all
(a, b). The program uses a well-known backtracking algorithm (see [4], Algorithm 2, page
31) which checks that all 3-colorings of [1, 88] contain a monochromatic (2, 2)-triple.

Although (2) shows the existence of a pair besides (1,1) whose degree of regularity is
greater than two, we wonder if dor(a, b) = 2 for “almost all” (a, b). In particular, we pose
the following questions.

Question 1 Is it true that dor(a, b) ≤ 2 whenever b 6= 2a− 2 and a ≥ 2?

Question 2 For b 6= 2a, are there only a finite number of pairs (a, b) such that
dor(a, b) 6= 2?

While we do not yet have the answers to these questions, we have been able to improve the
upper bounds for dor(a, b), as established in [3], for many (a, b)-triples. These new bounds
are supplied by the next two theorems. The proofs of both theorems use the following
coloring.

Notation Let c ≥ 3 be an integer and let p = 2− 2
c
. Denote by γc the c-coloring of N defined

by coloring, for each k ≥ 0, the interval [pk, pk+1) with color k (mod c).

Theorem 2 Let a, i, c ∈ Z such that a ≥ 2 and c ≥ 5. Define p = 2 − 2
c

and let 0 ≤ i ≤
pc(pc−1 − 2). If a ≤ pc

c−1
, then dor(a, a + i) ≤ c− 1.

Proof. We use the c-coloring γc. Assume, for a contradiction, that {x, ax + d, (a + i)x + 2d}
is a monochromatic (a, a + i)-triple under γc. Let x ∈ [pk, pk+1). Since p < 2 and a ≥ 2, we
have that ax + d ∈ [pk+cj, pk+cj+1) for some j ∈ N. This gives us that d > pk+cj − apk+1,
which, in turn, gives us (a + i)x + 2d > 2pk+cj − apk+1 + ipk. We now show that this lower
bound is more that pk+cj+1: By choice of a we have a ≤ pc−1(2− p) so that 2− a

pcj ≥ p for

all j ∈ N. This gives us 2pk+cj − apk+1 > pk+cj+1 which is sufficient for all i ≥ 0.

Next, we will show that (a + i)x + 2d < pk+c(j+1). Since d < ax + d < pk+cj+1 and
ix < ipk+1 it suffices to show that 2pk+cj+1 + ipk+1 < pk+cj+c. We have i ≤ pc(pc−1 − 2),
which implies that 2 + i

pcj
< pc−1 for all j ∈ N, which, in turn, implies the desired bound.

Hence, we have pk+cj+1 < (a + i)x + 2d < pk+c(j+1). By the definition of γc, we see that
if x and ax + d are the same color, then (a + i)x + 2d must be a different color under γc, a
contradiction. 2

1http://math.colgate.edu/∼aaron/programs.html

3



Example By Theorem 2 and (2), dor(2, 2) ∈ {3, 4}.
Theorem 3 Let b, c ∈ N such that b ≥ 2 and c ≥ 5. Let p = 2 − 2

c
. If b < 2+pc

p
, then

dor(1, b) ≤ c− 1.

Proof. The proof is quite similar to that of Theorem 2. Assume, for a contradiction,
that {x, x + d, bx + 2d} is monochromatic under γc. Let x ∈ [pk, pk+1) so that bx + 2d ∈
[pk+cj, pk+cj+1) (since b ≥ 2 > c) for some j ∈ N. This gives d ≥ 1

2
pk+cj − b

2
pk+1 so that

x + d > pk + 1
2
pk+cj − b

2
pk+1. The condition on b implies that this last bound is larger than

pk+1.

We next show that x + d < pk+cj. We have d < 1
2
pk+cj+1 so that x + d < pk+1 + 1

2
pk+cj+1.

Since 2 < pc−1(2 − p) for all c ≥ 5, we have pk+1 + 1
2
pk+cj+1 < pk+cj for all j ∈ N. Hence,

pk+1 < x + d < pk+cj so that x + d is not the same color, under γc, as x and bx + 2d, a
contradiction. 2

Corollary 1 For a ≥ 1 and 1 ≤ j ≤ 5, dor(a, 2a + j) ≤ 4.

Proof. This follows from Theorem 3 and Lemma 1. 2

Remark 2 Theorems 2 and 3, along with the following result from [3], provide an alternate
proof of Theorem 1 without the use of Rado’s regularity theorem.

Lemma 2 Assume b ≥ (23/2 − 1)a− 23/2 + 2. Then dor(a, b) ≤ d2 log2 ce, where c = db/ae.

Below we give a table showing the known bounds on the degrees of regularity for some
small values of a and b. The entries in the table that improve the previously known bounds are
marked with *; all others are from [3]. The improved bounds for dor(1,5), dor(1,6), dor(1,7),
dor(1,8), and dor(1,9) follow from Theorem 3; the upper bound on dor(2,10) follows from
Theorem 2; and the upper bounds on dor(3,4) and dor(3,7) follow from Lemma 1.

(a, b) dor(a, b) (a, b) dor(a, b) (a, b) dor(a, b)
(1, 1) ∞ (2, 2) 3∗ − 4∗ (3, 3) 2− 5
(1, 2) 1 (2, 3) 2 (3, 4) 2− 3∗
(1, 3) 2− 3 (2, 4) 1 (3, 5) 2
(1, 4) 2− 4 (2, 5) 2− 3 (3, 6) 1
(1, 5) 2− 4∗ (2, 6) 2− 3 (3, 7) 2− 3∗
(1, 6) 2− 4∗ (2, 7) 2− 4 (3, 8) 2− 3
(1, 7) 2− 4∗ (2, 8) 2− 4 (3, 9) 2− 3
(1, 8) 2− 5∗ (2, 9) 2− 4 (3, 10) 2− 4
(1, 9) 2− 5∗ (2, 10) 2− 4∗ (3, 11) 2− 4

Acknowledgement The result that (1, 1) is the only regular pair has been independently
shown by Fox and Radoicic [2]. They show that, in fact, dor(a, b) ≤ 23 for all (a, b) 6= (1, 1).

4



References

[1] T. Brown and B. Landman, Monochromatic Arithmetic Progressions with Large Differences, Bull. Aus-
tralian Math. Soc. 60 (1999), 21-35.

[2] J. Fox and R. Radoicic, preprint

[3] B. Landman and A. Robertson, On Generalized van der Waerden Triples, Disc. Math. 256 (2002),
279-290.

[4] B. Landman and A. Robertson, Ramsey Theory on the Integers, STML 24, Am. Math. Soc., 2004.

[5] B. L. van der Waerden, Bewis einer Baudetschen Vermutung, Nieuw. Arch. Wisk. 15 (1927), 212-216.

5


