ON THE DEGREE OF REGULARITY OF GENERALIZED VAN DER WAERDEN TRIPLES

Nikos Frantzikinakis

Department of Mathematics, Pennsylvania State University, University Park, PA 16802 nikos@math.psu.edu

Bruce Landman

Department of Mathematics, University of West Georgia, Carrollton, GA 30118 landman@westga.edu

Aaron Robertson

Department of Mathematics, Colgate University, Hamilton, NY 13346 aaron@math.colgate.edu

Abstract:

Let $1 \leq a \leq b$ be integers. A triple of the form (x, ax + d, bx + 2d), where x, d are positive integers is called an (a,b)-triple. The degree of regularity of the family of all (a,b)-triples, denoted dor(a,b), is the maximum integer r such that every r-coloring of \mathbb{N} admits a monochromatic (a,b)-triple. We settle, in the affirmative, the conjecture that dor $(a,b) < \infty$ for all $(a,b) \neq (1,1)$. We also disprove the conjecture that dor(a,b).

1. Introduction

B.L. van der Waerden [5] proved that for any positive integers k and r, there is a positive integer w(k, r) such that any r-coloring of $\{1, 2, ..., w(k, r)\}$ must admit a monochromatic k-term arithmetic progression. In [3], a generalization of van der Waerden's theorem for 3-term arithmetic progressions was investigated. Namely, for integers $1 \le a \le b$, define an (a, b)-triple to be any 3-term sequence of the form (x, ax + d, bx + 2d), where x, d are positive integers. Taking a = b = 1 gives a 3-term arithmetic progression, and by van der Waerden's theorem the associated van der Waerden number w(3, r) is finite for all r.

Throughout this note, we assume that a and b are integers and that $1 \le a \le b$. For $r \ge 1$, denote by n = n(a, b; r) the least positive integer, if it exists, such that every r-coloring of [1, n] admits a monochromatic (a, b)-triple. If no such n exists, we write $n(a, b; r) = \infty$. We say that (a, b) is regular if $n(a, b; r) < \infty$ for each $r \in \mathbb{N}$. By van der Waerden's theorem (1, 1) is regular. If (a, b) is not regular, the *degree of regularity* of (a, b), denoted dor(a, b), is the largest integer r such that (a, b) is r-regular.

In [3], it is shown that for a wide class of pairs $(a, b) \neq (1, 1)$, (a, b) is not regular, i.e., $dor(a, b) < \infty$, and its authors conjectured that, in fact, (1, 1) is the *only* regular pair. In

Section 2 we confirm this conjecture.

Also in [3], it was shown that

$$dor(a,b) = 1 \text{ if and only if } b = 2a, \tag{1}$$

and upper bounds on dor(a, b) are given for those pairs which are shown not to be regular. Further, those authors speculated that dor $(a, b) \in \{1, 2, \infty\}$ for all pairs (a, b). In Section 3 we show this conjecture to be false. We also obtain upper bounds on dor(a, b) for all $(a, b) \neq (1, 1)$, which improve upon the results of [3], and provide an alternate proof that (1, 1) is the only regular triple.

2. The Only Regular Triples are Arithmetic Progressions

In this section we give a short proof which shows that (1,1)-triples are the only regular (a, b)-triples. The proof makes use of Rado's regularity theorem (see [4]) which states, in particular, that the linear equation $a_1x_1 + a_2x_2 + \cdots + a_kx_k = 0$ has a monochromatic solution in \mathbb{N} under any finite coloring of \mathbb{N} if and only if some nonempty subset of the nonzero coefficients sums to zero. It also uses the following lemma.

Lemma 1 For all $1 \le a \le b$, and all $i \ge 1$,

$$n(a,b;r) \le n(a+i,b+2i;r),$$

and hence $dor(a, b) \ge dor(a + i, b + 2i)$.

Proof. Let a, b, i be given. To prove the lemma, it suffices to show that every (a + i, b + 2i)-triple is also an (a, b)-triple. Let X = (x, y, z) be an (a + i, b + 2i)-triple. So y = (a + i)x + d and z = (b+2i)x+2d for some d > 0. But then X is also an (a, b) triple, since y = ax+(ix+d) and z = bx + 2(ix + d).

Theorem 1 Let $1 \le a \le b$. If $(a, b) \ne (1, 1)$, then (a, b) is not regular.

Proof. Since the triple $\{x, ax + d, bx + 2d\}$ satisfies the equation (2a - b)x - 2y + z = 0, by Rado's regularity theorem an (a, b)-triple is regular only if $b - 2a \in \{-2, -1, 1\}$. Hence, this leaves three cases to consider: (i) b = 2a + 1, (ii) b = 2a - 1, and (iii) b = 2a - 2. In [3] it was shown that dor $(1, 3) \leq 3$, dor(2, 3) = 2, and dor $(2, 2) \leq 5$. By Lemma 1, these three facts cover Cases (i), (ii), and (iii), respectively.

Remark 1 In Section 3 we will show that $dor(2, 2) \le 4$. We see from this fact, the proof of Theorem 1, and (1), that $2 \le dor(a, 2a - 2) \le 4$ for all $a \ge 2$; that dor(a, 2a - 1) = 2 for all $a \ge 2$; and that $2 \le dor(a, 2a + 1) \le 3$ for all $a \ge 1$.

3. More on the Degree of Regularity

Using the Fortran program AB.f, available from the third author's website¹, we have found that n(2,2;3) = 88. This implies

$$\operatorname{dor}(2,2) \ge 3,\tag{2}$$

which is a counterexample to the suggestion made in [3] that $dor(a, b) \in \{1, 2, \infty\}$ for all (a, b). The program uses a well-known backtracking algorithm (see [4], Algorithm 2, page 31) which checks that all 3-colorings of [1, 88] contain a monochromatic (2, 2)-triple.

Although (2) shows the existence of a pair besides (1,1) whose degree of regularity is greater than two, we wonder if dor(a, b) = 2 for "almost all" (a, b). In particular, we pose the following questions.

Question 1 Is it true that $dor(a, b) \le 2$ whenever $b \ne 2a - 2$ and $a \ge 2$?

Question 2 For $b \neq 2a$, are there only a finite number of pairs (a, b) such that $dor(a, b) \neq 2$?

While we do not yet have the answers to these questions, we have been able to improve the upper bounds for dor(a, b), as established in [3], for many (a, b)-triples. These new bounds are supplied by the next two theorems. The proofs of both theorems use the following coloring.

Notation Let $c \geq 3$ be an integer and let $p = 2 - \frac{2}{c}$. Denote by γ_c the *c*-coloring of \mathbb{N} defined by coloring, for each $k \geq 0$, the interval $[p^k, p^{k+1})$ with color $k \pmod{c}$.

Theorem 2 Let $a, i, c \in \mathbb{Z}$ such that $a \geq 2$ and $c \geq 5$. Define $p = 2 - \frac{2}{c}$ and let $0 \leq i \leq p^c(p^{c-1}-2)$. If $a \leq \frac{p^c}{c-1}$, then dor $(a, a+i) \leq c-1$.

Proof. We use the c-coloring γ_c . Assume, for a contradiction, that $\{x, ax + d, (a+i)x + 2d\}$ is a monochromatic (a, a+i)-triple under γ_c . Let $x \in [p^k, p^{k+1})$. Since p < 2 and $a \ge 2$, we have that $ax + d \in [p^{k+cj}, p^{k+cj+1})$ for some $j \in \mathbb{N}$. This gives us that $d > p^{k+cj} - ap^{k+1}$, which, in turn, gives us $(a+i)x + 2d > 2p^{k+cj} - ap^{k+1} + ip^k$. We now show that this lower bound is more that p^{k+cj+1} : By choice of a we have $a \le p^{c-1}(2-p)$ so that $2 - \frac{a}{p^{cj}} \ge p$ for all $j \in \mathbb{N}$. This gives us $2p^{k+cj} - ap^{k+1} > p^{k+cj+1}$ which is sufficient for all $i \ge 0$.

Next, we will show that $(a + i)x + 2d < p^{k+c(j+1)}$. Since $d < ax + d < p^{k+cj+1}$ and $ix < ip^{k+1}$ it suffices to show that $2p^{k+cj+1} + ip^{k+1} < p^{k+cj+c}$. We have $i \le p^c(p^{c-1}-2)$, which implies that $2 + \frac{i}{p^c j} < p^{c-1}$ for all $j \in \mathbb{N}$, which, in turn, implies the desired bound.

Hence, we have $p^{k+cj+1} < (a+i)x + 2d < p^{k+c(j+1)}$. By the definition of γ_c , we see that if x and ax + d are the same color, then (a+i)x + 2d must be a different color under γ_c , a contradiction.

¹http://math.colgate.edu/~aaron/programs.html

Example By Theorem 2 and (2), $dor(2, 2) \in \{3, 4\}$.

Theorem 3 Let $b, c \in \mathbb{N}$ such that $b \ge 2$ and $c \ge 5$. Let $p = 2 - \frac{2}{c}$. If $b < \frac{2+p^c}{p}$, then $dor(1,b) \le c-1$.

Proof. The proof is quite similar to that of Theorem 2. Assume, for a contradiction, that $\{x, x + d, bx + 2d\}$ is monochromatic under γ_c . Let $x \in [p^k, p^{k+1})$ so that $bx + 2d \in [p^{k+cj}, p^{k+cj+1})$ (since $b \geq 2 > c$) for some $j \in \mathbb{N}$. This gives $d \geq \frac{1}{2}p^{k+cj} - \frac{b}{2}p^{k+1}$ so that $x + d > p^k + \frac{1}{2}p^{k+cj} - \frac{b}{2}p^{k+1}$. The condition on b implies that this last bound is larger than p^{k+1} .

We next show that $x + d < p^{k+cj}$. We have $d < \frac{1}{2}p^{k+cj+1}$ so that $x + d < p^{k+1} + \frac{1}{2}p^{k+cj+1}$. Since $2 < p^{c-1}(2-p)$ for all $c \ge 5$, we have $p^{k+1} + \frac{1}{2}p^{k+cj+1} < p^{k+cj}$ for all $j \in \mathbb{N}$. Hence, $p^{k+1} < x + d < p^{k+cj}$ so that x + d is not the same color, under γ_c , as x and bx + 2d, a contradiction.

Corollary 1 For $a \ge 1$ and $1 \le j \le 5$, $dor(a, 2a + j) \le 4$.

Proof. This follows from Theorem 3 and Lemma 1.

Remark 2 Theorems 2 and 3, along with the following result from [3], provide an alternate proof of Theorem 1 without the use of Rado's regularity theorem.

Lemma 2 Assume $b \ge (2^{3/2} - 1)a - 2^{3/2} + 2$. Then $dor(a, b) \le \lceil 2 \log_2 c \rceil$, where $c = \lceil b/a \rceil$.

Below we give a table showing the known bounds on the degrees of regularity for some small values of a and b. The entries in the table that improve the previously known bounds are marked with *; all others are from [3]. The improved bounds for dor(1,5), dor(1,6), dor(1,7), dor(1,8), and dor(1,9) follow from Theorem 3; the upper bound on dor(2,10) follows from Theorem 2; and the upper bounds on dor(3,4) and dor(3,7) follow from Lemma 1.

(a,b)	$\operatorname{dor}(a, b)$	(a,b)	$\operatorname{dor}(a, b)$	(a,b)	$\operatorname{dor}(a, b)$
(1,1)	∞	(2,2)	$3^* - 4^*$	(3,3)	2 - 5
(1, 2)	1	(2,3)	2	(3, 4)	$2 - 3^{*}$
(1, 3)	2 - 3	(2,4)	1	(3,5)	2
(1, 4)	2 - 4	(2,5)	2 - 3	(3,6)	1
(1, 5)	$2 - 4^{*}$	(2,6)	2 - 3	(3,7)	$2 - 3^{*}$
(1, 6)	$2 - 4^{*}$	(2,7)	2 - 4	(3,8)	2 - 3
(1,7)	$2 - 4^{*}$	(2,8)	2 - 4	(3,9)	2 - 3
(1, 8)	$2 - 5^{*}$	(2,9)	2 - 4	(3, 10)	2 - 4
(1,9)	$2 - 5^{*}$	(2, 10)	$2 - 4^{*}$	(3, 11)	2 - 4

Acknowledgement The result that (1, 1) is the only regular pair has been independently shown by Fox and Radoicic [2]. They show that, in fact, dor $(a, b) \leq 23$ for all $(a, b) \neq (1, 1)$.

References

[1] T. Brown and B. Landman, Monochromatic Arithmetic Progressions with Large Differences, *Bull. Australian Math. Soc.* **60** (1999), 21-35.

[2] J. Fox and R. Radoicic, preprint

[3] B. Landman and A. Robertson, On Generalized van der Waerden Triples, *Disc. Math.* **256** (2002), 279-290.

[4] B. Landman and A. Robertson, Ramsey Theory on the Integers, STML 24, Am. Math. Soc., 2004.

[5] B. L. van der Waerden, Bewis einer Baudetschen Vermutung, Nieuw. Arch. Wisk. 15 (1927), 212-216.